prithivMLmods commited on
Commit
9aa9279
Β·
verified Β·
1 Parent(s): eb3a19a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +226 -3
README.md CHANGED
@@ -1,3 +1,226 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - triangulum_1b
15
+ - sft
16
+ - chain_of_thought
17
+ - ollama
18
+ - text-generation-inference
19
+ - llama_for_causal_lm
20
+ - reasoning
21
+ library_name: transformers
22
+ metrics:
23
+ - code_eval
24
+ - accuracy
25
+ - competition_math
26
+ - character
27
+ ---
28
+ ![Triangulum-5b.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/By0OJ1lMvP5ZvVvfEGvz5.png)
29
+
30
+ <pre align="center">
31
+ __ .__ .__
32
+ _/ |_ _______ |__|_____ ____ ____ __ __ | | __ __ _____
33
+ \ __\\_ __ \| |\__ \ / \ / ___\ | | \| | | | \ / \
34
+ | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \
35
+ |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| /
36
+ \/ \//_____/ \/
37
+ </pre>
38
+
39
+ # **Triangulum 1B GGUF: Multilingual Large Language Models (LLMs)**
40
+
41
+ Triangulum 1B is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.
42
+
43
+ # **Key Features & Model Architecture**
44
+
45
+ - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance.
46
+
47
+ - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety.
48
+
49
+ - **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts.
50
+
51
+ ---
52
+
53
+ - Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
54
+
55
+ # **Training Approach**
56
+
57
+ 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities.
58
+ 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets.
59
+ 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes.
60
+
61
+ # **How to use with transformers**
62
+
63
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
64
+
65
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
66
+
67
+ ```python
68
+ import torch
69
+ from transformers import pipeline
70
+
71
+ model_id = "prithivMLmods/Triangulum-1B"
72
+ pipe = pipeline(
73
+ "text-generation",
74
+ model=model_id,
75
+ torch_dtype=torch.bfloat16,
76
+ device_map="auto",
77
+ )
78
+ messages = [
79
+ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
80
+ {"role": "user", "content": "Who are you?"},
81
+ ]
82
+ outputs = pipe(
83
+ messages,
84
+ max_new_tokens=256,
85
+ )
86
+ print(outputs[0]["generated_text"][-1])
87
+ ```
88
+ # **Demo Inference LlamaForCausalLM**
89
+ ```python
90
+ import torch
91
+ from transformers import AutoTokenizer, LlamaForCausalLM
92
+
93
+ # Load tokenizer and model
94
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-1B', trust_remote_code=True)
95
+ model = LlamaForCausalLM.from_pretrained(
96
+ "prithivMLmods/Triangulum-1B",
97
+ torch_dtype=torch.float16,
98
+ device_map="auto",
99
+ load_in_8bit=False,
100
+ load_in_4bit=True,
101
+ use_flash_attention_2=True
102
+ )
103
+
104
+ # Define a list of system and user prompts
105
+ prompts = [
106
+ """<|im_start|>system
107
+ You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
108
+ <|im_start|>user
109
+ Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
110
+ <|im_start|>assistant"""
111
+ ]
112
+
113
+ # Generate responses for each prompt
114
+ for chat in prompts:
115
+ print(f"Prompt:\n{chat}\n")
116
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
117
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
118
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
119
+ print(f"Response:\n{response}\n{'-'*80}\n")
120
+ ```
121
+
122
+ # **Key Adjustments**
123
+ 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
124
+ 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
125
+ 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.
126
+
127
+ You can expand the list of prompts to explore a variety of scenarios and responses.
128
+
129
+ # **Use Cases for T5B**
130
+
131
+ - Multilingual content generation
132
+ - Question answering and dialogue systems
133
+ - Text summarization and analysis
134
+ - Translation and localization tasks
135
+
136
+ # **Technical Details**
137
+
138
+ Triangulum 1B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.
139
+
140
+ # **How to Run Triangulum 5B on Ollama Locally**
141
+
142
+ ```markdown
143
+ # How to Run Ollama Locally
144
+
145
+ This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease.
146
+
147
+ ---
148
+
149
+ ## Example 1: How to Run the Triangulum-1B Model
150
+
151
+ The **Triangulum-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants.
152
+
153
+ ### Step 1: Download the Model
154
+
155
+ First, download the **Triangulum-1B-F16.gguf** model using the following command:
156
+
157
+ ```bash
158
+ ollama run triangulum-1b-f16.gguf
159
+ ```
160
+
161
+ ### Step 2: Model Initialization and Download
162
+
163
+ Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following:
164
+
165
+ ```plaintext
166
+ pulling manifest
167
+ pulling 8934d96d3f08... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.8 GB
168
+ pulling 8c17c2ebb0ea... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 7.0 KB
169
+ pulling 7c23fb36d801... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.8 KB
170
+ pulling 2e0493f67d0c... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 59 B
171
+ pulling fa304d675061... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 91 B
172
+ pulling 42ba7f8a01dd... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 557 B
173
+ verifying sha256 digest
174
+ writing manifest
175
+ removing any unused layers
176
+ success
177
+ >>> Send a message (/? for help)
178
+ ```
179
+
180
+ ### Step 3: Interact with the Model
181
+
182
+ Once the model is ready, you can send a prompt. For example, let's ask:
183
+
184
+ ```plaintext
185
+ >>> What can you do for me?
186
+ ```
187
+
188
+ If you asked the same question, you should receive a response like this:
189
+
190
+ ```plaintext
191
+ As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with:
192
+
193
+ 1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture.
194
+ 2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems.
195
+ 3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases.
196
+ 4. Translation: I can translate text from one language to another.
197
+ 5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions.
198
+ 6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing.
199
+ 7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises.
200
+ 8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss.
201
+
202
+ Please let me know if there is anything specific you would like me to help you with.
203
+ ```
204
+
205
+ ### Step 4: Exit the Program
206
+
207
+ To exit the program, simply type:
208
+
209
+ ```plaintext
210
+ /exit
211
+ ```
212
+
213
+ ## Example 2: Running Multi-Modal Models (Future Use)
214
+
215
+ Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available.
216
+
217
+ ## Notes on Using Quantized Models
218
+
219
+ Quantized models like **triangulum-1b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference.
220
+
221
+ 1. Ensure your system has sufficient VRAM or CPU resources.
222
+ 2. Use the `.gguf` model format for compatibility with Ollama.
223
+
224
+ # **Conclusion**
225
+
226
+ Running the **Triangulum-5B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.