prithivMLmods commited on
Commit
6f9be6f
·
verified ·
1 Parent(s): c7637bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -3
README.md CHANGED
@@ -1,3 +1,99 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/QwQ-32B
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ tags:
10
+ - text-generation-inference
11
+ - StreamlinedMemory
12
+ - Reasoning
13
+ - Math
14
+ - Code
15
+ - Qwen
16
+ ---
17
+ ![3.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/5mIid7-RffKqEeL9t7H2J.png)
18
+
19
+ # **Sombrero-QwQ-32B-Elite10**
20
+
21
+ > Sombrero-QwQ-32B-Elite10 is based on the QwQ 32B modality architecture, optimized for **Streamlined Memory Optimization** while avoiding unwanted textual token mathematical problem-solving and reasoning. This model is tailored for enhanced contextual comprehension, structured text generation, and efficiency in long-context applications.
22
+
23
+ ## **Key Improvements**
24
+ 1. **Optimized Memory Utilization**: Designed to reduce memory overhead while maintaining high-performance inference, making it ideal for complex workflows.
25
+ 2. **Precision in Textual Outputs**: Prioritizes structured content generation and avoids unnecessary mathematical computations in responses.
26
+ 3. **Versatile Adaptability**: Handles diverse queries efficiently, providing coherent and relevant answers across multiple domains.
27
+ 4. **Long-Context Support**: Supports up to 256K tokens for input context and generates up to 16K tokens in a single output, ensuring detailed and structured responses.
28
+ 5. **Multilingual Excellence**: Supports over 35 languages, including English, Chinese, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
29
+
30
+ ## **Quickstart with transformers**
31
+
32
+ Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
33
+
34
+ ```python
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+
37
+ model_name = "prithivMLmods/Sombrero-QwQ-32B-Elite10"
38
+
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ model_name,
41
+ torch_dtype="auto",
42
+ device_map="auto"
43
+ )
44
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
45
+
46
+ prompt = "How does streamlined memory optimization improve AI model efficiency?"
47
+ messages = [
48
+ {"role": "system", "content": "You are an AI specialized in memory-efficient text generation and structured reasoning."},
49
+ {"role": "user", "content": prompt}
50
+ ]
51
+ text = tokenizer.apply_chat_template(
52
+ messages,
53
+ tokenize=False,
54
+ add_generation_prompt=True
55
+ )
56
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
57
+
58
+ generated_ids = model.generate(
59
+ **model_inputs,
60
+ max_new_tokens=512
61
+ )
62
+ generated_ids = [
63
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
64
+ ]
65
+
66
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
67
+ ```
68
+
69
+ ## **Intended Use**
70
+ 1. **Contextual Understanding & Content Generation**:
71
+ Designed to generate structured, coherent, and contextually relevant text while minimizing unnecessary computational overhead.
72
+
73
+ 2. **Enterprise and Research Applications**:
74
+ Suitable for large-scale knowledge retrieval, document summarization, and structured data processing.
75
+
76
+ 3. **Conversational AI & Virtual Assistants**:
77
+ Provides human-like conversational experiences while maintaining response clarity and efficiency.
78
+
79
+ 4. **Multilingual AI Systems**:
80
+ Enhances cross-language communication and supports multilingual deployments.
81
+
82
+ 5. **Long-Form Content Generation**:
83
+ Capable of producing extended articles, reports, and structured documents with high coherence.
84
+
85
+ ## **Limitations**
86
+ 1. **Hardware Requirements**:
87
+ Due to its 32B parameter size, high-memory GPUs or TPUs are recommended for optimal performance.
88
+
89
+ 2. **Avoidance of Mathematical Problem-Solving**:
90
+ Unlike traditional AI models, this model is optimized to reduce mathematical computation, which may limit its effectiveness in solving complex numerical problems.
91
+
92
+ 3. **Potential Bias in Responses**:
93
+ While fine-tuned for neutrality, responses may still carry biases from training data.
94
+
95
+ 4. **Prompt Sensitivity**:
96
+ The model’s output quality depends on the structure and clarity of the input prompt.
97
+
98
+ 5. **Real-Time Awareness Limitations**:
99
+ Does not have access to real-world events beyond its training data.