prithivMLmods commited on
Commit
fef7d92
·
verified ·
1 Parent(s): e65bfc6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md CHANGED
@@ -14,3 +14,69 @@ tags:
14
  ---
15
 
16
  ![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BgPXl9DNWOmssPkj10jCu.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  ![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BgPXl9DNWOmssPkj10jCu.png)
17
+
18
+ # **Primal-Opus-14B-Optimus-v2**
19
+
20
+ Primal-Opus-14B-Optimus-v2 is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. It has been fine-tuned on a **synthetic dataset based on DeepSeek R1**, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
21
+
22
+ ### **Key Improvements**
23
+ 1. **Enhanced Reasoning and Logic**: Improved multi-step logical deduction, mathematical reasoning, and problem-solving accuracy.
24
+ 2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
25
+ 3. **Greater Adaptability**: Better role-playing capabilities and resilience to diverse system prompts.
26
+ 4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
27
+ 5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
28
+
29
+ ### **Quickstart with Transformers**
30
+
31
+ ```python
32
+ from transformers import AutoModelForCausalLM, AutoTokenizer
33
+
34
+ model_name = "prithivMLmods/Primal-Opus-14B-Optimus-v2"
35
+
36
+ model = AutoModelForCausalLM.from_pretrained(
37
+ model_name,
38
+ torch_dtype="auto",
39
+ device_map="auto",
40
+ trust_remote_code=True
41
+ )
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+
44
+ prompt = "Give me a short introduction to large language models."
45
+ messages = [
46
+ {"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
47
+ {"role": "user", "content": prompt}
48
+ ]
49
+ text = tokenizer.apply_chat_template(
50
+ messages,
51
+ tokenize=False,
52
+ add_generation_prompt=True
53
+ )
54
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
55
+
56
+ generated_ids = model.generate(
57
+ **model_inputs,
58
+ max_new_tokens=512
59
+ )
60
+ generated_ids = [
61
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
62
+ ]
63
+
64
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
65
+ print(response)
66
+ ```
67
+
68
+ ### **Intended Use**
69
+ - **Advanced Logical Reasoning**: Designed for logical deduction, multi-step problem-solving, and knowledge-based tasks.
70
+ - **Mathematical & Scientific Problem-Solving**: Enhanced capabilities for calculations, theorem proving, and scientific queries.
71
+ - **Code Generation & Debugging**: Generates and optimizes code across multiple programming languages.
72
+ - **Structured Data Analysis**: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
73
+ - **Multilingual Applications**: High proficiency in over 29 languages, enabling global-scale applications.
74
+ - **Extended Content Generation**: Supports detailed document writing, research reports, and instructional guides.
75
+
76
+ ### **Limitations**
77
+ 1. **High Computational Requirements**: Due to its **14B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
78
+ 2. **Language-Specific Variability**: Performance may vary across supported languages, especially for low-resource languages.
79
+ 3. **Potential Error Accumulation**: Long-text generation can sometimes introduce inconsistencies over extended outputs.
80
+ 4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
81
+ 5. **Prompt Sensitivity**: Outputs can depend on the specificity and clarity of the input prompt.
82
+