--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - gym - workout - classifier --- ![sdfvdfv.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/kJ1YXUFjmOahI6LmpI--x.png) # **Gym-Workout-Classifier-SigLIP2** > **Gym-Workout-Classifier-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify gym workout exercises using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support barbell biceps curl 0.9613 0.9574 0.9593 493 bench press 0.9402 0.9359 0.9381 437 chest fly machine 0.9694 0.9484 0.9588 368 deadlift 0.9833 0.9542 0.9685 371 decline bench press 0.9884 0.9499 0.9688 359 hammer curl 0.9917 0.9398 0.9651 382 hip thrust 0.9692 0.9717 0.9705 389 incline bench press 0.9297 0.9588 0.9440 510 lat pulldown 0.9607 0.9735 0.9670 452 lateral raises 0.9539 0.9814 0.9674 590 leg extension 0.9573 0.9854 0.9712 410 leg raises 0.9939 0.9109 0.9506 359 plank 0.9828 0.9856 0.9842 695 pull up 0.9882 0.9744 0.9813 430 push up 0.9382 0.9762 0.9568 420 romanian deadlift 0.9617 0.9716 0.9667 388 russian twist 0.8702 0.9918 0.9270 365 shoulder press 0.9499 0.9525 0.9512 358 squat 0.9761 0.9441 0.9598 519 t bar row 0.9806 0.9743 0.9774 467 tricep dips 0.9834 0.9713 0.9773 488 tricep pushdown 0.9837 0.9657 0.9746 437 accuracy 0.9638 9687 macro avg 0.9643 0.9625 0.9630 9687 weighted avg 0.9647 0.9638 0.9639 9687 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/czlXLMN1O6q2yL4364ySm.png) The model categorizes images into 22 workout classes: - **Class 0:** "barbell biceps curl" - **Class 1:** "bench press" - **Class 2:** "chest fly machine" - **Class 3:** "deadlift" - **Class 4:** "decline bench press" - **Class 5:** "hammer curl" - **Class 6:** "hip thrust" - **Class 7:** "incline bench press" - **Class 8:** "lat pulldown" - **Class 9:** "lateral raises" - **Class 10:** "leg extension" - **Class 11:** "leg raises" - **Class 12:** "plank" - **Class 13:** "pull up" - **Class 14:** "push up" - **Class 15:** "romanian deadlift" - **Class 16:** "russian twist" - **Class 17:** "shoulder press" - **Class 18:** "squat" - **Class 19:** "t bar row" - **Class 20:** "tricep dips" - **Class 21:** "tricep pushdown" # **Dataset ID2LABEL** ```py from datasets import load_dataset # Load the dataset dataset = load_dataset("YOUR-DATASET-HERE") # Extract unique labels labels = dataset["train"].features["label"].names # Create id2label mapping id2label = {str(i): label for i, label in enumerate(labels)} # Print the mapping print(id2label) ``` # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Gym-Workout-Classifier-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def workout_classification(image): """Predicts workout exercise classification for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "barbell biceps curl", "1": "bench press", "2": "chest fly machine", "3": "deadlift", "4": "decline bench press", "5": "hammer curl", "6": "hip thrust", "7": "incline bench press", "8": "lat pulldown", "9": "lateral raises", "10": "leg extension", "11": "leg raises", "12": "plank", "13": "pull up", "14": "push up", "15": "romanian deadlift", "16": "russian twist", "17": "shoulder press", "18": "squat", "19": "t bar row", "20": "tricep dips", "21": "tricep pushdown" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=workout_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Gym Workout Classification", description="Upload an image to classify the workout exercise." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Gym-Workout-Classifier-SigLIP2** model is designed to classify different gym exercises based on images. Potential use cases include: - **Workout Tracking:** Identifying exercises performed during a workout session. - **Personal Training Assistance:** Helping trainers analyze and correct exercise form. - **Gym Activity Monitoring:** Automating exercise logging and analysis in fitness apps. - **AI-Powered Fitness Coaching:** Supporting AI-based fitness programs with real-time workout recognition.