File size: 4,182 Bytes
f801e57
 
 
846856f
b16fe32
 
97e21e9
6b5b6f7
 
846856f
 
 
 
 
 
 
 
 
4c8096f
 
a11b6d4
9d6e57f
1cbbdfb
 
a11b6d4
a33f2b8
1cbbdfb
 
 
 
98cf1dd
 
 
1cbbdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f201c81
1cbbdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33f2b8
1cbbdfb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: apache-2.0
base_model:
- prithivMLmods/Qwen3-4B-ft-bf16
datasets:
- nvidia/OpenCodeReasoning
- efficientscaling/Z1-Code-Reasoning-107K
- HuggingFaceH4/CodeAlpaca_20K
- mlabonne/FineTome-100k
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- moe
- text-generation-inference
- code
- math
- mot
- coder
- stem
- trl
---

![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ftS9pbo7aFJ6yvsqrr6Ua.png)

# Bootes-Qwen3\_Coder-Reasoning

> Bootes-Qwen3\_Coder-Reasoning is a fine-tuned variant of the Qwen3-4B architecture, optimized for high-accuracy code reasoning and structured logical task completion. Trained on the CodeAlpaca\_20K dataset and additional curated programming corpora, this model is designed to perform technical coding, reasoning, and instruction-following tasks with lightweight computational requirements.

> [!note]
GGUF : https://huggingface.co/prithivMLmods/Bootes-Qwen3_Coder-Reasoning-Q4_K_M-GGUF

## Key Features

1. Code Reasoning with CodeAlpaca\_20K and More
   Fine-tuned on CodeAlpaca\_20K and supplementary high-quality datasets focused on:

   * Multi-language programming tasks
   * Code explanation, completion, and debugging
   * Instruction-following with step-wise execution logic

2. Cross-Language Code Understanding
   Handles Python, JavaScript, C++, and more. Ideal for code generation, transformation, bug-fixing, and logic validation.

3. Structured Output Generation
   Delivers responses in Markdown, JSON, YAML, and structured code blocks. Optimized for IDE workflows, documentation tools, and reproducible computation notebooks.

4. Instruction-Tuned for Developer Use Cases
   Maintains strong fidelity to user prompts, especially multi-turn or step-by-step technical instructions across engineering and data workflows.

5. Multilingual Reasoning in Technical Domains
   Capable of technical comprehension and explanation in over 20 human languages, supporting global developer audiences.

6. Efficient 4B Architecture
   Based on Qwen3-4B for a performance-efficient inference model that scales well on mid-range GPUs and cloud deployment setups.

## Quickstart with Transformers🤗

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Bootes-Qwen3_Coder-Reasoning"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Write a Python function to check whether a number is a palindrome. Explain each step."

messages = [
    {"role": "system", "content": "You are a precise coding and reasoning assistant trained on CodeAlpaca and developer datasets."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

## Intended Use

* Code generation, completion, and explanation
* Multi-step algorithmic reasoning
* Structured technical document generation (Markdown, JSON, YAML)
* Debugging assistance and refactoring suggestions
* Technical tutoring and developer assistant workflows
* Cross-lingual programming education and translation

## Limitations

* May underperform on non-code-related creative writing
* Limited context window versus larger models
* Sensitive to prompt phrasing for ambiguous instructions
* Occasionally over-justifies code when brevity is desired

## References
 
1. Qwen2.5 Technical Report – [https://arxiv.org/pdf/2412.15115](https://arxiv.org/pdf/2412.15115)
2. CodeAlpaca Dataset – [https://github.com/sahil280114/codealpaca](https://github.com/sahil280114/codealpaca)
3. YaRN: Context Window Extension for LLMs – [https://arxiv.org/pdf/2309.00071](https://arxiv.org/pdf/2309.00071)