prithivMLmods commited on
Commit
ddf9929
·
verified ·
1 Parent(s): 9a8b539

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -1
README.md CHANGED
@@ -7,7 +7,65 @@ base_model:
7
  pipeline_tag: image-classification
8
  library_name: transformers
9
  ---
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  Classification report:
12
 
13
  precision recall f1-score support
@@ -18,4 +76,14 @@ library_name: transformers
18
 
19
  accuracy 0.9905 4000
20
  macro avg 0.9906 0.9905 0.9905 4000
21
- weighted avg 0.9906 0.9905 0.9905 4000
 
 
 
 
 
 
 
 
 
 
 
7
  pipeline_tag: image-classification
8
  library_name: transformers
9
  ---
10
+ Here is the updated version with the new name **AI-vs-Deepfake-vs-Real-Siglip2**, classifying images into **AI-generated, deepfake, or real** categories.
11
 
12
+ ---
13
+
14
+ # **AI-vs-Deepfake-vs-Real-Siglip2**
15
+ **AI-vs-Deepfake-vs-Real-Siglip2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to **distinguish AI-generated images, deepfake images, and real images** using the **SiglipForImageClassification** architecture.
16
+
17
+ The model categorizes images into three classes:
18
+ - **Class 0:** "AI" – The image is fully AI-generated, created by machine learning models.
19
+ - **Class 1:** "Deepfake" – The image is a manipulated deepfake, where real content has been altered.
20
+ - **Class 2:** "Real" – The image is an authentic, unaltered photograph.
21
+
22
+ # **Run with Transformers**
23
+
24
+ ```python
25
+ !pip install -q transformers torch pillow gradio
26
+ ```
27
+
28
+ ```python
29
+ import gradio as gr
30
+ from transformers import AutoImageProcessor
31
+ from transformers import SiglipForImageClassification
32
+ from transformers.image_utils import load_image
33
+ from PIL import Image
34
+ import torch
35
+
36
+ # Load model and processor
37
+ model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-Siglip2"
38
+ model = SiglipForImageClassification.from_pretrained(model_name)
39
+ processor = AutoImageProcessor.from_pretrained(model_name)
40
+
41
+ def image_classification(image):
42
+ """Classifies an image as AI-generated, deepfake, or real."""
43
+ image = Image.fromarray(image).convert("RGB")
44
+ inputs = processor(images=image, return_tensors="pt")
45
+
46
+ with torch.no_grad():
47
+ outputs = model(**inputs)
48
+ logits = outputs.logits
49
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
50
+
51
+ labels = model.config.id2label
52
+ predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
53
+
54
+ return predictions
55
+
56
+ # Create Gradio interface
57
+ iface = gr.Interface(
58
+ fn=image_classification,
59
+ inputs=gr.Image(type="numpy"),
60
+ outputs=gr.Label(label="Classification Result"),
61
+ title="AI vs Deepfake vs Real Image Classification",
62
+ description="Upload an image to determine whether it is AI-generated, a deepfake, or a real image."
63
+ )
64
+
65
+ # Launch the app
66
+ if __name__ == "__main__":
67
+ iface.launch()
68
+ ```
69
  Classification report:
70
 
71
  precision recall f1-score support
 
76
 
77
  accuracy 0.9905 4000
78
  macro avg 0.9906 0.9905 0.9905 4000
79
+ weighted avg 0.9906 0.9905 0.9905 4000
80
+
81
+ # **Intended Use:**
82
+
83
+ The **AI-vs-Deepfake-vs-Real-Siglip2** model is designed to classify images into three categories: **AI-generated, deepfake, or real**. It helps in identifying whether an image is fully synthetic, altered through deepfake techniques, or an unaltered real image.
84
+
85
+ ### Potential Use Cases:
86
+ - **Deepfake Detection:** Identifying manipulated deepfake content in media.
87
+ - **AI-Generated Image Identification:** Distinguishing AI-generated images from real or deepfake images.
88
+ - **Content Verification:** Supporting fact-checking and digital forensics in assessing image authenticity.
89
+ - **Social Media and News Filtering:** Helping platforms flag AI-generated or deepfake content.