Commit
·
9b0479e
1
Parent(s):
0aba389
Uploading trained PPO model of LunarLander-V2
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunar_v2.zip +3 -0
- ppo_lunar_v2/_stable_baselines3_version +1 -0
- ppo_lunar_v2/data +96 -0
- ppo_lunar_v2/policy.optimizer.pth +3 -0
- ppo_lunar_v2/policy.pth +3 -0
- ppo_lunar_v2/pytorch_variables.pth +3 -0
- ppo_lunar_v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.61 +/- 19.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbf946bdd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbf946bddc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbf946bde50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbf946bdee0>", "_build": "<function ActorCriticPolicy._build at 0x7fbf946bdf70>", "forward": "<function ActorCriticPolicy.forward at 0x7fbf946c2040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbf946c20d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbf946c2160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbf946c21f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbf946c2280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbf946c2310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbf946c23a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbf946bfb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681338989592792120, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABofRb1IaYe60JnqOiLSvLNvPP66hpEGugAAgD8AAIA/AAx7vFz3ULqoqU46MFWCNaZnLTvywHK5AACAPwAAgD9mpL29KXxSuuKDf7vM4BM4RTKeOz7FIDoAAIA/AACAP83GZL0pBAq6lXzuulELQrbTKX47dckKOgAAgD8AAIA/zTw4u64thrqqMoy6RN6js9/SUzvxtqI5AACAPwAAgD+a9NK9j/4CuiZFyboAzo+0zxnAuqhr7TkAAIA/AACAPzZRnj6LMZ4/fuS3Pl1Opb4Yz90+osOMOwAAAAAAAAAAszRJvVxbO7p2RE88YeOWNtFiKbqbrJY1AACAPwAAgD9N1Wq9exiLuv+JGDxP5g42rE4Vu5KsCTUAAIA/AACAP5phsztIn4e661UsO4DFjbVt57M6mghIugAAgD8AAIA/zUMmvR/N+bnfzhM8vFUmNWTPL7gJHio0AACAPwAAgD+mvb+9XFMxuoaYuTqAD0A24KtQO5Ms2LkAAIA/AACAP5pVuLxcIwS6qk5fOX6J5DSRGdg6QFSDuAAAgD8AAIA/TUlzvcPBQ7oYhQs7D3UtNpdQlbo6zh26AACAPwAAgD/NSw+9KWhmuh4ATzoZs3Q23P2POdJ3c7kAAIA/AACAP6aYqr0HnJk/M0M1vhU5076Ne8K9CJJwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFMstrYZ4ZECUhpRSlIwBbJRN6AOMAXSUR0CXDR9H+ZPVdX2UKGgGaAloD0MIvsEXJlNkZECUhpRSlGgVTegDaBZHQJcSj3qRlpZ1fZQoaAZoCWgPQwgKndfYpb1hQJSGlFKUaBVN6ANoFkdAlxNswpON53V9lChoBmgJaA9DCGUZ4lgXxWZAlIaUUpRoFU3oA2gWR0CXE26Vt4zKdX2UKGgGaAloD0MIH73hPnKXY0CUhpRSlGgVTegDaBZHQJcXtg/keZJ1fZQoaAZoCWgPQwj1LAjl/XljQJSGlFKUaBVN6ANoFkdAlxfZ4W1twnV9lChoBmgJaA9DCHDQXn089GVAlIaUUpRoFU3oA2gWR0CXGASrYGt7dX2UKGgGaAloD0MICRnIs8syYkCUhpRSlGgVTegDaBZHQJcaFTkyULV1fZQoaAZoCWgPQwgmj6flBxY5QJSGlFKUaBVNHAFoFkdAlxtC8BdUsHV9lChoBmgJaA9DCESGVbwRf2ZAlIaUUpRoFU3oA2gWR0CXIboNd7fIdX2UKGgGaAloD0MIv5gtWZVyZUCUhpRSlGgVTegDaBZHQJckZtcfNiZ1fZQoaAZoCWgPQwh5kQn4NRtkQJSGlFKUaBVN6ANoFkdAlyfzAeq7y3V9lChoBmgJaA9DCOAtkKD40WJAlIaUUpRoFU3oA2gWR0CXLWe18b71dX2UKGgGaAloD0MIlrTiG4otY0CUhpRSlGgVTegDaBZHQJcucypJf6Z1fZQoaAZoCWgPQwi8CFOUy21gQJSGlFKUaBVN6ANoFkdAlzpxfWtlqnV9lChoBmgJaA9DCITWw5eJcGNAlIaUUpRoFU3oA2gWR0CXVnsMRYigdX2UKGgGaAloD0MI/mSMD7MVXkCUhpRSlGgVTegDaBZHQJdWwtnPE891fZQoaAZoCWgPQwhyTYHMzq1mQJSGlFKUaBVN6ANoFkdAl1u7jghr33V9lChoBmgJaA9DCPazWIrk9WNAlIaUUpRoFU3oA2gWR0CXXJO6NEPUdX2UKGgGaAloD0MIOEnzx7QVZ0CUhpRSlGgVTegDaBZHQJdclfnfVI91fZQoaAZoCWgPQwgXuaerO2hCQJSGlFKUaBVL/WgWR0CXXYNsnAqNdX2UKGgGaAloD0MIQwQcQhUSZUCUhpRSlGgVTegDaBZHQJdg683++/R1fZQoaAZoCWgPQwjfiy/a4/xiQJSGlFKUaBVN6ANoFkdAl2EPEOy3TnV9lChoBmgJaA9DCMuEX+rntmZAlIaUUpRoFU3oA2gWR0CXYTqrzXjEdX2UKGgGaAloD0MIkX9mEJ+CZ0CUhpRSlGgVTegDaBZHQJdjMjGDL8t1fZQoaAZoCWgPQwi8IvjfyqhiQJSGlFKUaBVN6ANoFkdAl2RoWtU4rHV9lChoBmgJaA9DCMtneR7cHF9AlIaUUpRoFU3oA2gWR0CXap3ueBhAdX2UKGgGaAloD0MIZ9Km6h67QUCUhpRSlGgVS/1oFkdAl2v4/eLvTnV9lChoBmgJaA9DCFYL7DGRLmNAlIaUUpRoFU3oA2gWR0CXbTfLcKw7dX2UKGgGaAloD0MIecpqup7kZECUhpRSlGgVTegDaBZHQJdw0n/kvK51fZQoaAZoCWgPQwjisDTwo0ZhQJSGlFKUaBVN6ANoFkdAl3gDIikftHV9lChoBmgJaA9DCA3k2eXbymZAlIaUUpRoFU3oA2gWR0CXeYN8ma6SdX2UKGgGaAloD0MI14o2xzm5ZECUhpRSlGgVTegDaBZHQJein0th/iJ1fZQoaAZoCWgPQwjUKCSZVf5lQJSGlFKUaBVN6ANoFkdAl6L7JSzgM3V9lChoBmgJaA9DCNMXQs771mZAlIaUUpRoFU3oA2gWR0CXqXjbi6xxdX2UKGgGaAloD0MIVI80uC38ZECUhpRSlGgVTegDaBZHQJeqiHbh3q11fZQoaAZoCWgPQwgcCTTYVBhnQJSGlFKUaBVN6ANoFkdAl6qKo60Y0nV9lChoBmgJaA9DCA5rKovC6GVAlIaUUpRoFU3oA2gWR0CXq7cyWRigdX2UKGgGaAloD0MIHTo978aSXkCUhpRSlGgVTegDaBZHQJewzXPJJXh1fZQoaAZoCWgPQwhHkEqxozJmQJSGlFKUaBVN6ANoFkdAl7FHVsk6cXV9lChoBmgJaA9DCGVuvhFdaWFAlIaUUpRoFU3oA2gWR0CXtHYlpoK2dX2UKGgGaAloD0MIpDUGnRAwY0CUhpRSlGgVTegDaBZHQJe2Vudf9gp1fZQoaAZoCWgPQwjLvFXXIW1lQJSGlFKUaBVN6ANoFkdAl8BBakhzNnV9lChoBmgJaA9DCFlN1xNdbGVAlIaUUpRoFU3oA2gWR0CXwc5Y5ksjdX2UKGgGaAloD0MIKbSs+0eXYkCUhpRSlGgVTegDaBZHQJfDPah6By11fZQoaAZoCWgPQwhDxqNUwnNcQJSGlFKUaBVN6ANoFkdAl8by7f51vHV9lChoBmgJaA9DCGL1RxjGpXBAlIaUUpRoFU2tAWgWR0CXy8j2zv7WdX2UKGgGaAloD0MIQnkfR/P0ZUCUhpRSlGgVTegDaBZHQJfMmFAVwgl1fZQoaAZoCWgPQwhTI/Qz9ZpgQJSGlFKUaBVN6ANoFkdAl82nE/B3zXV9lChoBmgJaA9DCBtLWBtjtGFAlIaUUpRoFU3oA2gWR0CX9IhLXcxkdX2UKGgGaAloD0MIPC6qRcQYYUCUhpRSlGgVTegDaBZHQJf0/ww0wal1fZQoaAZoCWgPQwjIQ9/dSrdiQJSGlFKUaBVN6ANoFkdAl/trGza9K3V9lChoBmgJaA9DCL7ArFCkYFxAlIaUUpRoFU3oA2gWR0CX/Fc/+sHTdX2UKGgGaAloD0MIWvROBVyXZkCUhpRSlGgVTegDaBZHQJf8WpeeFtd1fZQoaAZoCWgPQwibPGU1XW1nQJSGlFKUaBVN6ANoFkdAl/1X9vS+g3V9lChoBmgJaA9DCKYmwRvScWJAlIaUUpRoFU3oA2gWR0CYARQ+2VmjdX2UKGgGaAloD0MI7Z3RViV9ZkCUhpRSlGgVTegDaBZHQJgDTWFvhqF1fZQoaAZoCWgPQwiOklfnmNVhQJSGlFKUaBVN6ANoFkdAmASf7N0NjXV9lChoBmgJaA9DCF/uk6OAU2FAlIaUUpRoFU3oA2gWR0CYC+ZGrjo7dX2UKGgGaAloD0MICKpGrwYdZECUhpRSlGgVTegDaBZHQJgNVVENOM51fZQoaAZoCWgPQwisyOiApF5lQJSGlFKUaBVN6ANoFkdAmA6Y2GZeA3V9lChoBmgJaA9DCDfg88OIf2BAlIaUUpRoFU3oA2gWR0CYEipNsWO7dX2UKGgGaAloD0MI+BvtuGHyY0CUhpRSlGgVTegDaBZHQJgWp/BnBcl1fZQoaAZoCWgPQwgWp1oLs8lhQJSGlFKUaBVN6ANoFkdAmBdgkC3gDXV9lChoBmgJaA9DCJsg6j6AwWBAlIaUUpRoFU3oA2gWR0CYGFqTr3TNdX2UKGgGaAloD0MIfsnGgy2/Y0CUhpRSlGgVTegDaBZHQJgv75wfhdd1fZQoaAZoCWgPQwj1nV+UIAFkQJSGlFKUaBVN6ANoFkdAmEHOhoM8YHV9lChoBmgJaA9DCENxx5v8fGZAlIaUUpRoFU3oA2gWR0CYR4qqwQlKdX2UKGgGaAloD0MIMswJ2mQvZ0CUhpRSlGgVTegDaBZHQJhIhhE0BOp1fZQoaAZoCWgPQwiyaDo7GVNmQJSGlFKUaBVN6ANoFkdAmEiJh8Yyf3V9lChoBmgJaA9DCDGZKhgVHGdAlIaUUpRoFU3oA2gWR0CYSZuHN5dGdX2UKGgGaAloD0MIBYasbvWJZECUhpRSlGgVTegDaBZHQJhN9+UhV2l1fZQoaAZoCWgPQwi2EU92M/BmQJSGlFKUaBVN6ANoFkdAmFB4vzvqknV9lChoBmgJaA9DCNatnpNexGVAlIaUUpRoFU3oA2gWR0CYUf4JNTLodX2UKGgGaAloD0MIPZgUH5+2YkCUhpRSlGgVTegDaBZHQJhaG0UoKD11fZQoaAZoCWgPQwjTpBR0e8pkQJSGlFKUaBVN6ANoFkdAmFv+yRjjJnV9lChoBmgJaA9DCOI9B5Yjp2dAlIaUUpRoFU3oA2gWR0CYXfYvWYnfdX2UKGgGaAloD0MIUFWhgVjuYkCUhpRSlGgVTegDaBZHQJhjL1qWTot1fZQoaAZoCWgPQwinA1lPLQVlQJSGlFKUaBVN6ANoFkdAmGn/y9VWCHV9lChoBmgJaA9DCOv9Rjvu7mJAlIaUUpRoFU3oA2gWR0CYaxSqU/wBdX2UKGgGaAloD0MIDybFx6eIYECUhpRSlGgVTegDaBZHQJhsc3n6l+F1fZQoaAZoCWgPQwgxXB0AcYdiQJSGlFKUaBVN6ANoFkdAmH4XryDqW3V9lChoBmgJaA9DCMr+eRqwpWRAlIaUUpRoFU3oA2gWR0CYfmLDye7MdX2UKGgGaAloD0MIboWwGsu8YkCUhpRSlGgVTegDaBZHQJiTvNke6qd1fZQoaAZoCWgPQwj3PlWFhrBhQJSGlFKUaBVN6ANoFkdAmJSklu3tr3V9lChoBmgJaA9DCGAgCJAhdmNAlIaUUpRoFU3oA2gWR0CYlKghKUV0dX2UKGgGaAloD0MIZAYq49/iW0CUhpRSlGgVTegDaBZHQJiVjDbah6B1fZQoaAZoCWgPQwjqQqz+CFhmQJSGlFKUaBVN6ANoFkdAmJrI9X9zfnV9lChoBmgJaA9DCIyhnGjXlWFAlIaUUpRoFU3oA2gWR0CYnePf8/D+dX2UKGgGaAloD0MISWjLuRR0Z0CUhpRSlGgVTegDaBZHQJifvRYzSCx1fZQoaAZoCWgPQwgnS633m5NmQJSGlFKUaBVN6ANoFkdAmKlR0yP+43V9lChoBmgJaA9DCDaSBOGKBmRAlIaUUpRoFU3oA2gWR0CYqp9Vmz0IdX2UKGgGaAloD0MIpPs5BflWZkCUhpRSlGgVTegDaBZHQJir2/WUbDN1fZQoaAZoCWgPQwgMdy6MdJhkQJSGlFKUaBVN6ANoFkdAmK8Iu01IiHV9lChoBmgJaA9DCO5e7pMjmWlAlIaUUpRoFU3oA2gWR0CYsykMkQf7dX2UKGgGaAloD0MIlGk0uRixY0CUhpRSlGgVTegDaBZHQJiz4SxqwhZ1fZQoaAZoCWgPQwgkJqjh2xNhQJSGlFKUaBVN6ANoFkdAmLTMY2sJY3V9lChoBmgJaA9DCCiZnNoZgjfAlIaUUpRoFUv6aBZHQJi4D5xiobZ1fZQoaAZoCWgPQwhNE7afDNRhQJSGlFKUaBVN6ANoFkdAmMaVUIcBEXV9lChoBmgJaA9DCBy2Lcrsi2FAlIaUUpRoFU3oA2gWR0CYxuXPZ7HAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo_lunar_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eb80f912a6d66df10c3af5448d8176d78028c4b9188bc627ece6d70a42c6f74
|
3 |
+
size 147391
|
ppo_lunar_v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo_lunar_v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbf946bdd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbf946bddc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbf946bde50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbf946bdee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbf946bdf70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbf946c2040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbf946c20d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbf946c2160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbf946c21f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbf946c2280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbf946c2310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbf946c23a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbf946bfb40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1681338989592792120,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABofRb1IaYe60JnqOiLSvLNvPP66hpEGugAAgD8AAIA/AAx7vFz3ULqoqU46MFWCNaZnLTvywHK5AACAPwAAgD9mpL29KXxSuuKDf7vM4BM4RTKeOz7FIDoAAIA/AACAP83GZL0pBAq6lXzuulELQrbTKX47dckKOgAAgD8AAIA/zTw4u64thrqqMoy6RN6js9/SUzvxtqI5AACAPwAAgD+a9NK9j/4CuiZFyboAzo+0zxnAuqhr7TkAAIA/AACAPzZRnj6LMZ4/fuS3Pl1Opb4Yz90+osOMOwAAAAAAAAAAszRJvVxbO7p2RE88YeOWNtFiKbqbrJY1AACAPwAAgD9N1Wq9exiLuv+JGDxP5g42rE4Vu5KsCTUAAIA/AACAP5phsztIn4e661UsO4DFjbVt57M6mghIugAAgD8AAIA/zUMmvR/N+bnfzhM8vFUmNWTPL7gJHio0AACAPwAAgD+mvb+9XFMxuoaYuTqAD0A24KtQO5Ms2LkAAIA/AACAP5pVuLxcIwS6qk5fOX6J5DSRGdg6QFSDuAAAgD8AAIA/TUlzvcPBQ7oYhQs7D3UtNpdQlbo6zh26AACAPwAAgD/NSw+9KWhmuh4ATzoZs3Q23P2POdJ3c7kAAIA/AACAP6aYqr0HnJk/M0M1vhU5076Ne8K9CJJwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFMstrYZ4ZECUhpRSlIwBbJRN6AOMAXSUR0CXDR9H+ZPVdX2UKGgGaAloD0MIvsEXJlNkZECUhpRSlGgVTegDaBZHQJcSj3qRlpZ1fZQoaAZoCWgPQwgKndfYpb1hQJSGlFKUaBVN6ANoFkdAlxNswpON53V9lChoBmgJaA9DCGUZ4lgXxWZAlIaUUpRoFU3oA2gWR0CXE26Vt4zKdX2UKGgGaAloD0MIH73hPnKXY0CUhpRSlGgVTegDaBZHQJcXtg/keZJ1fZQoaAZoCWgPQwj1LAjl/XljQJSGlFKUaBVN6ANoFkdAlxfZ4W1twnV9lChoBmgJaA9DCHDQXn089GVAlIaUUpRoFU3oA2gWR0CXGASrYGt7dX2UKGgGaAloD0MICRnIs8syYkCUhpRSlGgVTegDaBZHQJcaFTkyULV1fZQoaAZoCWgPQwgmj6flBxY5QJSGlFKUaBVNHAFoFkdAlxtC8BdUsHV9lChoBmgJaA9DCESGVbwRf2ZAlIaUUpRoFU3oA2gWR0CXIboNd7fIdX2UKGgGaAloD0MIv5gtWZVyZUCUhpRSlGgVTegDaBZHQJckZtcfNiZ1fZQoaAZoCWgPQwh5kQn4NRtkQJSGlFKUaBVN6ANoFkdAlyfzAeq7y3V9lChoBmgJaA9DCOAtkKD40WJAlIaUUpRoFU3oA2gWR0CXLWe18b71dX2UKGgGaAloD0MIlrTiG4otY0CUhpRSlGgVTegDaBZHQJcucypJf6Z1fZQoaAZoCWgPQwi8CFOUy21gQJSGlFKUaBVN6ANoFkdAlzpxfWtlqnV9lChoBmgJaA9DCITWw5eJcGNAlIaUUpRoFU3oA2gWR0CXVnsMRYigdX2UKGgGaAloD0MI/mSMD7MVXkCUhpRSlGgVTegDaBZHQJdWwtnPE891fZQoaAZoCWgPQwhyTYHMzq1mQJSGlFKUaBVN6ANoFkdAl1u7jghr33V9lChoBmgJaA9DCPazWIrk9WNAlIaUUpRoFU3oA2gWR0CXXJO6NEPUdX2UKGgGaAloD0MIOEnzx7QVZ0CUhpRSlGgVTegDaBZHQJdclfnfVI91fZQoaAZoCWgPQwgXuaerO2hCQJSGlFKUaBVL/WgWR0CXXYNsnAqNdX2UKGgGaAloD0MIQwQcQhUSZUCUhpRSlGgVTegDaBZHQJdg683++/R1fZQoaAZoCWgPQwjfiy/a4/xiQJSGlFKUaBVN6ANoFkdAl2EPEOy3TnV9lChoBmgJaA9DCMuEX+rntmZAlIaUUpRoFU3oA2gWR0CXYTqrzXjEdX2UKGgGaAloD0MIkX9mEJ+CZ0CUhpRSlGgVTegDaBZHQJdjMjGDL8t1fZQoaAZoCWgPQwi8IvjfyqhiQJSGlFKUaBVN6ANoFkdAl2RoWtU4rHV9lChoBmgJaA9DCMtneR7cHF9AlIaUUpRoFU3oA2gWR0CXap3ueBhAdX2UKGgGaAloD0MIZ9Km6h67QUCUhpRSlGgVS/1oFkdAl2v4/eLvTnV9lChoBmgJaA9DCFYL7DGRLmNAlIaUUpRoFU3oA2gWR0CXbTfLcKw7dX2UKGgGaAloD0MIecpqup7kZECUhpRSlGgVTegDaBZHQJdw0n/kvK51fZQoaAZoCWgPQwjisDTwo0ZhQJSGlFKUaBVN6ANoFkdAl3gDIikftHV9lChoBmgJaA9DCA3k2eXbymZAlIaUUpRoFU3oA2gWR0CXeYN8ma6SdX2UKGgGaAloD0MI14o2xzm5ZECUhpRSlGgVTegDaBZHQJein0th/iJ1fZQoaAZoCWgPQwjUKCSZVf5lQJSGlFKUaBVN6ANoFkdAl6L7JSzgM3V9lChoBmgJaA9DCNMXQs771mZAlIaUUpRoFU3oA2gWR0CXqXjbi6xxdX2UKGgGaAloD0MIVI80uC38ZECUhpRSlGgVTegDaBZHQJeqiHbh3q11fZQoaAZoCWgPQwgcCTTYVBhnQJSGlFKUaBVN6ANoFkdAl6qKo60Y0nV9lChoBmgJaA9DCA5rKovC6GVAlIaUUpRoFU3oA2gWR0CXq7cyWRigdX2UKGgGaAloD0MIHTo978aSXkCUhpRSlGgVTegDaBZHQJewzXPJJXh1fZQoaAZoCWgPQwhHkEqxozJmQJSGlFKUaBVN6ANoFkdAl7FHVsk6cXV9lChoBmgJaA9DCGVuvhFdaWFAlIaUUpRoFU3oA2gWR0CXtHYlpoK2dX2UKGgGaAloD0MIpDUGnRAwY0CUhpRSlGgVTegDaBZHQJe2Vudf9gp1fZQoaAZoCWgPQwjLvFXXIW1lQJSGlFKUaBVN6ANoFkdAl8BBakhzNnV9lChoBmgJaA9DCFlN1xNdbGVAlIaUUpRoFU3oA2gWR0CXwc5Y5ksjdX2UKGgGaAloD0MIKbSs+0eXYkCUhpRSlGgVTegDaBZHQJfDPah6By11fZQoaAZoCWgPQwhDxqNUwnNcQJSGlFKUaBVN6ANoFkdAl8by7f51vHV9lChoBmgJaA9DCGL1RxjGpXBAlIaUUpRoFU2tAWgWR0CXy8j2zv7WdX2UKGgGaAloD0MIQnkfR/P0ZUCUhpRSlGgVTegDaBZHQJfMmFAVwgl1fZQoaAZoCWgPQwhTI/Qz9ZpgQJSGlFKUaBVN6ANoFkdAl82nE/B3zXV9lChoBmgJaA9DCBtLWBtjtGFAlIaUUpRoFU3oA2gWR0CX9IhLXcxkdX2UKGgGaAloD0MIPC6qRcQYYUCUhpRSlGgVTegDaBZHQJf0/ww0wal1fZQoaAZoCWgPQwjIQ9/dSrdiQJSGlFKUaBVN6ANoFkdAl/trGza9K3V9lChoBmgJaA9DCL7ArFCkYFxAlIaUUpRoFU3oA2gWR0CX/Fc/+sHTdX2UKGgGaAloD0MIWvROBVyXZkCUhpRSlGgVTegDaBZHQJf8WpeeFtd1fZQoaAZoCWgPQwibPGU1XW1nQJSGlFKUaBVN6ANoFkdAl/1X9vS+g3V9lChoBmgJaA9DCKYmwRvScWJAlIaUUpRoFU3oA2gWR0CYARQ+2VmjdX2UKGgGaAloD0MI7Z3RViV9ZkCUhpRSlGgVTegDaBZHQJgDTWFvhqF1fZQoaAZoCWgPQwiOklfnmNVhQJSGlFKUaBVN6ANoFkdAmASf7N0NjXV9lChoBmgJaA9DCF/uk6OAU2FAlIaUUpRoFU3oA2gWR0CYC+ZGrjo7dX2UKGgGaAloD0MICKpGrwYdZECUhpRSlGgVTegDaBZHQJgNVVENOM51fZQoaAZoCWgPQwisyOiApF5lQJSGlFKUaBVN6ANoFkdAmA6Y2GZeA3V9lChoBmgJaA9DCDfg88OIf2BAlIaUUpRoFU3oA2gWR0CYEipNsWO7dX2UKGgGaAloD0MI+BvtuGHyY0CUhpRSlGgVTegDaBZHQJgWp/BnBcl1fZQoaAZoCWgPQwgWp1oLs8lhQJSGlFKUaBVN6ANoFkdAmBdgkC3gDXV9lChoBmgJaA9DCJsg6j6AwWBAlIaUUpRoFU3oA2gWR0CYGFqTr3TNdX2UKGgGaAloD0MIfsnGgy2/Y0CUhpRSlGgVTegDaBZHQJgv75wfhdd1fZQoaAZoCWgPQwj1nV+UIAFkQJSGlFKUaBVN6ANoFkdAmEHOhoM8YHV9lChoBmgJaA9DCENxx5v8fGZAlIaUUpRoFU3oA2gWR0CYR4qqwQlKdX2UKGgGaAloD0MIMswJ2mQvZ0CUhpRSlGgVTegDaBZHQJhIhhE0BOp1fZQoaAZoCWgPQwiyaDo7GVNmQJSGlFKUaBVN6ANoFkdAmEiJh8Yyf3V9lChoBmgJaA9DCDGZKhgVHGdAlIaUUpRoFU3oA2gWR0CYSZuHN5dGdX2UKGgGaAloD0MIBYasbvWJZECUhpRSlGgVTegDaBZHQJhN9+UhV2l1fZQoaAZoCWgPQwi2EU92M/BmQJSGlFKUaBVN6ANoFkdAmFB4vzvqknV9lChoBmgJaA9DCNatnpNexGVAlIaUUpRoFU3oA2gWR0CYUf4JNTLodX2UKGgGaAloD0MIPZgUH5+2YkCUhpRSlGgVTegDaBZHQJhaG0UoKD11fZQoaAZoCWgPQwjTpBR0e8pkQJSGlFKUaBVN6ANoFkdAmFv+yRjjJnV9lChoBmgJaA9DCOI9B5Yjp2dAlIaUUpRoFU3oA2gWR0CYXfYvWYnfdX2UKGgGaAloD0MIUFWhgVjuYkCUhpRSlGgVTegDaBZHQJhjL1qWTot1fZQoaAZoCWgPQwinA1lPLQVlQJSGlFKUaBVN6ANoFkdAmGn/y9VWCHV9lChoBmgJaA9DCOv9Rjvu7mJAlIaUUpRoFU3oA2gWR0CYaxSqU/wBdX2UKGgGaAloD0MIDybFx6eIYECUhpRSlGgVTegDaBZHQJhsc3n6l+F1fZQoaAZoCWgPQwgxXB0AcYdiQJSGlFKUaBVN6ANoFkdAmH4XryDqW3V9lChoBmgJaA9DCMr+eRqwpWRAlIaUUpRoFU3oA2gWR0CYfmLDye7MdX2UKGgGaAloD0MIboWwGsu8YkCUhpRSlGgVTegDaBZHQJiTvNke6qd1fZQoaAZoCWgPQwj3PlWFhrBhQJSGlFKUaBVN6ANoFkdAmJSklu3tr3V9lChoBmgJaA9DCGAgCJAhdmNAlIaUUpRoFU3oA2gWR0CYlKghKUV0dX2UKGgGaAloD0MIZAYq49/iW0CUhpRSlGgVTegDaBZHQJiVjDbah6B1fZQoaAZoCWgPQwjqQqz+CFhmQJSGlFKUaBVN6ANoFkdAmJrI9X9zfnV9lChoBmgJaA9DCIyhnGjXlWFAlIaUUpRoFU3oA2gWR0CYnePf8/D+dX2UKGgGaAloD0MISWjLuRR0Z0CUhpRSlGgVTegDaBZHQJifvRYzSCx1fZQoaAZoCWgPQwgnS633m5NmQJSGlFKUaBVN6ANoFkdAmKlR0yP+43V9lChoBmgJaA9DCDaSBOGKBmRAlIaUUpRoFU3oA2gWR0CYqp9Vmz0IdX2UKGgGaAloD0MIpPs5BflWZkCUhpRSlGgVTegDaBZHQJir2/WUbDN1fZQoaAZoCWgPQwgMdy6MdJhkQJSGlFKUaBVN6ANoFkdAmK8Iu01IiHV9lChoBmgJaA9DCO5e7pMjmWlAlIaUUpRoFU3oA2gWR0CYsykMkQf7dX2UKGgGaAloD0MIlGk0uRixY0CUhpRSlGgVTegDaBZHQJiz4SxqwhZ1fZQoaAZoCWgPQwgkJqjh2xNhQJSGlFKUaBVN6ANoFkdAmLTMY2sJY3V9lChoBmgJaA9DCCiZnNoZgjfAlIaUUpRoFUv6aBZHQJi4D5xiobZ1fZQoaAZoCWgPQwhNE7afDNRhQJSGlFKUaBVN6ANoFkdAmMaVUIcBEXV9lChoBmgJaA9DCBy2Lcrsi2FAlIaUUpRoFU3oA2gWR0CYxuXPZ7HAdWUu"
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo_lunar_v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ce17a92660e4d3c4eb300e4f63628eb2317af8cf79fb11d5d0dd7a330307a51
|
3 |
+
size 87929
|
ppo_lunar_v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:449f73116f8f77b9ed620cde5798d82d410b6c7540683c2632537153e6fcfb0e
|
3 |
+
size 43329
|
ppo_lunar_v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (194 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.60523361642885, "std_reward": 19.503244827272507, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T23:16:45.717709"}
|