File size: 1,957 Bytes
5cfddc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: ise-uiuc/Magicoder-S-DS-6.7B
datasets:
- generator
library_name: peft
license: other
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: finetune_starcoder2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune_starcoder2

This model is a fine-tuned version of [ise-uiuc/Magicoder-S-DS-6.7B](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3220

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 5
- seed: 0
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 2000

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8634        | 0.5340 | 50   | 0.6751          |
| 0.6619        | 1.0681 | 100  | 0.4653          |
| 0.5147        | 1.6021 | 150  | 0.4231          |
| 0.4761        | 2.1362 | 200  | 0.3912          |
| 0.4348        | 2.6702 | 250  | 0.3663          |
| 0.4123        | 3.2043 | 300  | 0.3515          |
| 0.3893        | 3.7383 | 350  | 0.3407          |
| 0.3769        | 4.2724 | 400  | 0.3329          |
| 0.3719        | 4.8064 | 450  | 0.3266          |
| 0.3578        | 5.3405 | 500  | 0.3220          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1