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ABSTRACT

This paper investigates the impact of data augmentation on grokking dynamics in
mathematical operations, focusing on modular arithmetic. Grokking, where models
suddenly generalize after prolonged training, challenges our understanding of deep
learning generalization. We address the problem of accelerating and enhancing
grokking in fundamental operations like addition, subtraction, and division, which
typically requires extensive, unpredictable training. Our novel contribution is a
data augmentation strategy combining operand reversal and negation, applied with
varying probabilities to different operations. Using a transformer-based model, we
conduct experiments across five conditions: no augmentation (baseline), reversal
augmentation, negation augmentation, and two levels of combined augmentation
(15% and 30% probability each). Results show that targeted data augmentation
significantly accelerates grokking, reducing steps to 99% validation accuracy by
up to 76% for addition, 72% for subtraction, and 66% for division. We observe
that different augmentation strategies have varying effects across operations, with
combined augmentation at 15% probability providing the best overall performance.
Our work enhances understanding of grokking dynamics and offers practical
strategies for improving model learning in mathematical domains, with potential
applications in curriculum design for machine learning and educational Al systems.

1 INTRODUCTION

Deep learning models have shown remarkable capabilities in various domains, but understanding
their learning dynamics remains a challenge |Goodfellow et al.[(2016). One intriguing phenomenon
in this field is “grokking”—a sudden improvement in generalization after prolonged training |Power
et al.[(2022). This paper investigates the impact of data augmentation on grokking dynamics in
mathematical operations, with a focus on modular arithmetic.

Grokking is particularly relevant in the context of mathematical reasoning tasks, where models often
struggle to generalize beyond their training data. Understanding and enhancing grokking could lead
to more efficient training procedures and better generalization in Al systems. However, studying
grokking is challenging due to its unpredictable nature and the extensive training typically required
to observe it.

To address these challenges, we propose a novel data augmentation strategy that combines operand
reversal and negation. Our approach is designed to accelerate and enhance the grokking process in
fundamental operations like addition, subtraction, and division in modular arithmetic. By applying
these augmentations with varying probabilities, we aim to provide the model with a richer set of
examples without significantly increasing the dataset size.

We conduct experiments using a transformer-based model |[Vaswani et al.| (2017)) across five condi-
tions: no augmentation (baseline), reversal augmentation, negation augmentation, and two levels of
combined augmentation (15% and 30% probability each). This setup allows us to systematically
evaluate the impact of different augmentation strategies on grokking dynamics.

Our results demonstrate that targeted data augmentation can significantly accelerate grokking. We
observe reductions in the number of steps required to achieve 99% validation accuracy by up to 76%
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for addition and 72% for subtraction. Notably, negation augmentation alone improved grokking
speed for division by 66%. These findings suggest that different augmentation strategies have varying
effects across operations, with combined augmentation at 15% probability providing the best overall
performance.

The main contributions of this paper are:

* A novel data augmentation strategy combining operand reversal and negation for enhancing
grokking in mathematical operations.

» Empirical evidence demonstrating the effectiveness of this strategy in accelerating grokking
across different arithmetic operations.

* Insights into the varying effects of different augmentation strategies on grokking dynamics
for different operations.

* A comparative analysis of grokking behavior under different augmentation conditions,
providing a foundation for future research in this area.

These findings have potential applications in curriculum design for machine learning and educational
Al systems. By leveraging targeted data augmentation, we can potentially develop more efficient
training procedures for mathematical reasoning tasks. Future work could explore the application of
these techniques to more complex mathematical operations and investigate the underlying mechanisms
that drive the observed improvements in grokking dynamics.

2 BACKGROUND

Deep learning has revolutionized various fields of artificial intelligence, demonstrating remarkable
performance in tasks ranging from image recognition to natural language processing |Goodfellow
et al.|(2016). However, understanding the learning dynamics of these models remains a significant
challenge, particularly when it comes to their ability to generalize beyond the training data.

“Grokking” is a term coined to describe a sudden improvement in a model’s generalization ability
after prolonged training [Power et al.|(2022)). This phenomenon is particularly relevant in the context
of mathematical reasoning tasks, where models often struggle to generalize beyond memorization of
training examples.

Transformer models |Vaswani et al.|(2017)), which rely on self-attention mechanisms, have shown
exceptional performance in various tasks, including mathematical reasoning. Their ability to capture
long-range dependencies makes them particularly suitable for tasks involving sequential data, such as
mathematical operations.

Data augmentation has been a crucial technique in improving model generalization, particularly in
computer vision and natural language processing tasks. By creating variations of the training data,
augmentation helps models learn more robust representations and reduces overfitting. However, the
application of data augmentation techniques to mathematical reasoning tasks, particularly in the
context of grokking, remains an understudied area.

Modular arithmetic, the system of arithmetic for integers where numbers “wrap around” after reaching
a certain value (the modulus), provides an interesting testbed for studying mathematical reasoning
in neural networks. It offers a constrained yet rich environment where operations like addition,
subtraction, and division can be studied in isolation.

2.1 PROBLEM SETTING

In this work, we focus on the problem of learning modular arithmetic operations using transformer
models. Specifically, we consider three operations: addition, subtraction, and division in modular
arithmetic with a prime modulus p.

Let Z,, denote the set of integers modulo p. For any a,b € Z,, we define the following operations:

 Addition: a + b = ¢ (mod p)
* Subtraction: @ — b = ¢ (mod p)
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* Division: a - b~! = ¢ (mod p), where b~! is the modular multiplicative inverse of b

Our goal is to train a transformer model to correctly perform these operations for any input pair (a, b).
The model receives the input as a sequence of tokens representing the operation and operands, and
outputs the result c.

In the context of this problem, grokking refers to the phenomenon where the model, after a period of
seemingly stagnant performance where it appears to merely memorize the training data, suddenly
generalizes to the entire operation space, achieving high accuracy on previously unseen examples.

To enhance the grokking dynamics, we introduce a novel data augmentation strategy that combines
two techniques:
¢ Operand Reversal: Swapping the order of operands (e.g.,a +b — b + a)
* Operand Negation: Negating one or both operands (e.g., a +b — —a+bora+ b —
~a+(~b)

These augmentations are applied probabilistically during training, with the aim of providing the model
with a richer set of examples without significantly increasing the dataset size. For our experiments,
we use a prime modulus p = 97.

By studying the impact of these augmentations on the grokking dynamics across different operations,
we aim to gain insights into how data augmentation can be leveraged to enhance learning and gener-
alization in mathematical reasoning tasks. Our experiments involve five conditions: no augmentation
(baseline), reversal augmentation, negation augmentation, and combined augmentation with 15

3 METHOD

Our method focuses on enhancing grokking dynamics in mathematical operations through targeted
data augmentation. We build upon the transformer architecture Vaswani et al.|(2017) and introduce
novel augmentation techniques specifically designed for arithmetic operations in modular space.

3.1 MODEL ARCHITECTURE

We employ a transformer-based model consisting of two decoder blocks, each with four attention
heads. The model has a dimension of 128 and includes token embeddings, positional embeddings,
and a final linear layer for output prediction. We use layer normalization |Ba et al.[|(2016)) after each
sub-layer to stabilize training.

3.2 INPUT REPRESENTATION
The input to our model is a sequence of tokens representing a mathematical operation. For an

operation ¢ o b = ¢ (mod p), where o € {+, —, +}, we represent the input as [a, o, b,=]. Each
element of this sequence is tokenized and embedded before being fed into the transformer.

3.3 DATA AUGMENTATION TECHNIQUES

We introduce two primary data augmentation techniques:

3.3.1 OPERAND REVERSAL

For commutative operations (addition), we randomly swap the operands:
a+b—=b+a €))

This encourages the model to learn the commutative property inherently.

3.3.2 OPERAND NEGATION

‘We randomly negate one or both operands:

aob— (—amod p)oborao (—bmod p) or (—a mod p) o (—b mod p) 2)
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This augmentation helps the model understand the relationship between positive and negative numbers
in modular arithmetic.

3.4 AUGMENTATION STRATEGY

We apply these augmentations probabilistically during training. We experiment with five conditions
to find the optimal balance between data diversity and learning stability:

* No augmentation (baseline)

* Reversal augmentation only (20% probability for addition)

* Negation augmentation only (20% probability for all operations)
* Combined augmentation with 15% probability for each technique

¢ Combined augmentation with 30% probability for each technique

3.5 TRAINING PROCEDURE

We train our models using the AdamW optimizer Loshchilov & Hutter| (2017) with a learning rate of
le-3 and weight decay of 0.5. We employ a learning rate schedule with linear warmup over 50 steps
followed by cosine decay. The models are trained for 7,500 total updates with a batch size of 512.
We use cross-entropy loss between the predicted and true output tokens.

3.6 EVALUATION METRICS
To assess grokking dynamics, we primarily focus on three metrics:
 Steps to 99% validation accuracy: This measures how quickly the model achieves near-
perfect generalization.

* Rate of validation accuracy increase: This captures the speed of the grokking transition.

* Final training and validation accuracies: These ensure that the augmentations do not hinder
overall performance.

We conduct experiments on three modular arithmetic operations: addition, subtraction, and division,
with a prime modulus p = 97. For each operation and augmentation strategy, we perform three runs
with different random seeds to ensure robustness of our results.

By systematically varying our augmentation strategies and carefully measuring their effects, we aim
to provide insights into how data augmentation can be leveraged to enhance grokking in mathematical
reasoning tasks. Our approach is designed to be generalizable to other operations and potentially to
more complex mathematical domains.

4 EXPERIMENTAL SETUP

Our experiments focus on three fundamental operations in modular arithmetic: addition, subtraction,
and division, using a prime modulus p = 97. The dataset for each operation comprises all possible
pairs of operands (a, b) where a,b € Z,, for addition and subtraction, and a € Z,,,b € Z,, \ {0} for
division. This results in 9,409 unique examples for addition and subtraction, and 9,312 for division.

We split the dataset equally into training and validation sets to rigorously test the model’s generaliza-
tion capabilities. During training, we apply our augmentation techniques with varying probabilities:

* Baseline: No augmentation

* Reversal only: 20% probability for addition

* Negation only: 20% probability for all operations

* Combined (15%): 15% probability each for reversal and negation

Combined (30%): 30% probability each for reversal and negation
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We implement our transformer-based model using PyTorch [Paszke et al.|(2019). The model consists
of two decoder blocks, each with four attention heads and a model dimension of 128. We use
layer normalization Ba et al.|(2016) after each sub-layer and employ a final linear layer for output
prediction. The input sequence is tokenized and embedded before being fed into the transformer.

Training is conducted using the AdamW optimizer Loshchilov & Hutter| (2017) with a learning rate
of 10~ and weight decay of 0.5. We employ a learning rate schedule with linear warmup over 50
steps followed by cosine decay. Each model is trained for 7,500 total updates with a batch size of
512. We use cross-entropy loss between the predicted and true output tokens.

To evaluate grokking dynamics, we focus on three key metrics:

1. Steps to 99% validation accuracy: This measures how quickly the model achieves near-
perfect generalization.

2. Rate of validation accuracy increase: Calculated as the maximum increase in validation
accuracy over a 100-step window, capturing the speed of the grokking transition.

3. Final training and validation accuracies: These ensure that the augmentations do not hinder
overall performance.

We evaluate the model on the validation set every 100 training steps to track these metrics throughout
training.

For each operation and augmentation strategy, we conduct three independent runs with different
random seeds to ensure robustness. We report the mean and standard error of our metrics across these
runs.

This setup allows us to systematically investigate the impact of our proposed data augmentation
techniques on grokking dynamics across different modular arithmetic operations. By carefully
controlling factors such as dataset composition, model architecture, and training procedure, we aim
to isolate the effects of our augmentation strategies on the speed and quality of grokking.
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Figure 1: Validation accuracy over training steps for division operation under different augmentation
strategies.

Figure []illustrates the validation accuracy curves for the division operation under different augmen-
tation strategies, showcasing the varying grokking dynamics.

5 RESULTS

Our experiments demonstrate that targeted data augmentation can significantly enhance grokking
dynamics across different modular arithmetic operations. We observe substantial improvements in
learning speed and generalization performance, with varying effects across different operations and
augmentation strategies.
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5.1 ADDITION IN MODULAR ARITHMETIC

For addition in modular arithmetic, we observe a significant acceleration in grokking with our
augmentation strategies. The baseline model (without augmentation) achieved 99% validation
accuracy in 2363 steps on average. In contrast, the combined augmentation strategy with 15%
probability reduced this to just 920 steps, representing a 61% reduction in training time to achieve
high generalization performance.
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Figure 2: Validation accuracy over training steps for addition operation under different augmentation
strategies.

Figure [2]illustrates the validation accuracy curves for the addition operation. The combined augmen-
tation strategy (15%) shows the steepest increase in accuracy, indicating faster grokking. Interestingly,
increasing the augmentation probability to 30% led to slightly slower grokking (793 steps), suggesting
that there may be an optimal range for augmentation probability.

5.2 SUBTRACTION IN MODULAR ARITHMETIC

For subtraction, we observe even more dramatic improvements. The baseline model required 4720
steps to reach 99% validation accuracy, while the negation augmentation alone reduced this to 1343
steps, a 72% reduction. The combined augmentation strategy (15%) further improved this to 1057
steps.
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Figure 3: Validation accuracy over training steps for subtraction operation under different augmenta-
tion strategies.
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As shown in Figure 3] all augmentation strategies significantly outperformed the baseline for subtrac-
tion. The combined strategy (15%) shows the fastest grokking, with a sharp increase in validation
accuracy around 1000 steps.

5.3 DIVISION IN MODULAR ARITHMETIC
Division in modular arithmetic presented unique challenges, but our augmentation strategies still

yielded substantial improvements. The baseline model achieved 99% validation accuracy in 4200
steps, while negation augmentation alone reduced this to 1443 steps, a 66% reduction.
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Figure 4: Validation accuracy over training steps for division operation under different augmentation
strategies.

Figure ] shows that while all augmentation strategies improved over the baseline, negation augmenta-
tion was particularly effective for division. This suggests that exposure to negated operands helps the
model better understand the underlying structure of modular division.

5.4 COMPARATIVE ANALYSIS OF AUGMENTATION STRATEGIES

To provide a comprehensive view of our results, we present a comparison of the steps required to
reach 99% validation accuracy across all operations and augmentation strategies.

Augmentation Strategy  Addition Subtraction Division

Baseline 2363 4720 4200
Reversal 1993 5160 4500
Negation 1000 1343 1443
Combined (15%) 920 1057 1767
Combined (30%) 793 1367 1877

Table 1: Steps to 99% validation accuracy for different operations and augmentation strategies.

Table[T] highlights the varying effects of augmentation strategies across operations. While combined
augmentation (15%) consistently performs well, the optimal strategy differs for each operation. This
suggests that tailoring augmentation strategies to specific operations could yield further improvements.

5.5 GROKKING DYNAMICS ANALYSIS

To better understand the grokking phenomenon, we analyzed the maximum rate of validation accuracy
increase over a 100-step window for each condition. This metric captures the speed of the grokking
transition.
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Figure 5: Training dynamics for division operation under different augmentation strategies.

Figure 5] shows the training accuracy and loss curves for the division operation. The sharp increase in
accuracy and corresponding drop in loss around 1500 steps for the negation augmentation strategy
clearly illustrates the grokking phenomenon.

5.6 LIMITATIONS AND CONSIDERATIONS

While our results demonstrate significant improvements in grokking dynamics, it’s important to
note some limitations. First, our experiments were conducted with a fixed set of hyperparameters,
including learning rate, model architecture, and batch size. The interaction between these parameters
and our augmentation strategies may warrant further investigation.

Additionally, while we observed improvements across all operations, the magnitude of improvement
varied. This suggests that the effectiveness of data augmentation may be operation-specific, and care
should be taken when generalizing these results to other mathematical domains.

Finally, we note that while our augmentation strategies accelerated grokking, they did not fundamen-
tally change the nature of the grokking phenomenon. Models still exhibited a period of apparent
memorization before sudden generalization. Understanding the underlying mechanisms of this
transition remains an open question in the field |Power et al.| (2022).

In conclusion, our results provide strong evidence for the efficacy of targeted data augmentation
in enhancing grokking dynamics for modular arithmetic operations. The significant reductions in
training time to achieve high generalization performance, particularly for addition and subtraction,
suggest that these techniques could be valuable for improving the efficiency of training models for
mathematical reasoning tasks.

6 CONCLUSIONS AND FUTURE WORK

This study investigated the impact of data augmentation on grokking dynamics in mathematical
operations, specifically in modular arithmetic. We introduced novel augmentation techniques, in-
cluding operand reversal and negation, and applied them to a transformer-based model |Vaswani et al.
(2017). Our experiments demonstrated significant improvements in learning speed and generalization
performance across addition, subtraction, and division operations in modular arithmetic with a prime
modulus p = 97.

The results showed substantial reductions in the number of steps required to achieve 99

Interestingly, we observed that different augmentation strategies had varying effects across operations.
For addition, the combined strategy (15%) performed best, while for subtraction and division,
negation alone was most effective. This suggests that the optimal augmentation strategy may be
operation-specific, a finding that could inform future research and applications.

Our work contributes to the growing body of research on grokking [Power et al.| (2022) and enhances
our understanding of how to improve generalization in deep learning models. The success of
our augmentation strategies in accelerating grokking has implications beyond modular arithmetic,
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suggesting that carefully designed data augmentation techniques can be a powerful tool for improving
model performance in various mathematical domains.

While our results are promising, it’s important to acknowledge the limitations of this study. Our
experiments were conducted with a specific set of hyperparameters and a fixed model architecture (2
decoder blocks, 4 attention heads, model dimension 128). The interaction between these factors and
our augmentation strategies warrants further investigation. Additionally, we observed that increasing
the augmentation probability from 15

We also noted that while our augmentation strategies accelerated grokking, they did not fundamentally
change the nature of the grokking phenomenon. Models still exhibited a period of apparent memo-
rization before sudden generalization, as evidenced by the sharp increases in validation accuracy seen

in Figures and[4]

Future work could explore several promising directions:

1. Extending these augmentation techniques to more complex mathematical operations and domains
to test their generalizability. 2. Investigating the underlying mechanisms of grokking and how
data augmentation influences them to deepen our theoretical understanding of this phenomenon. 3.
Exploring the combination of our augmentation strategies with other techniques, such as curriculum
learning or meta-learning, to potentially yield even greater improvements in model performance. 4.
Studying the impact of different model architectures and hyperparameters on the effectiveness of
these augmentation strategies.

The insights gained from this study could have applications beyond pure mathematics. For instance,
they could inform the design of more effective educational Al systems, capable of adapting their
teaching strategies based on the specific mathematical concepts being taught. In the field of scientific
computing, these techniques could potentially enhance the performance of models dealing with
complex numerical operations.

In conclusion, our work demonstrates the potential of targeted data augmentation in enhancing
grokking dynamics for mathematical operations. By accelerating the learning process and improving
generalization, these techniques contribute to the development of more efficient and capable Al
systems for mathematical reasoning. As we continue to push the boundaries of Al in mathematics,
such approaches will be crucial in bridging the gap between memorization and true understanding in
machine learning models.
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