ppuva1 commited on
Commit
470f1e7
·
verified ·
1 Parent(s): 97cd804

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:208
8
+ - loss:BatchSemiHardTripletLoss
9
+ base_model: BAAI/bge-base-en
10
+ widget:
11
+ - source_sentence: '
12
+
13
+ Name : Casa del Camino
14
+
15
+ Category: Boutique Hotel, Travel Services
16
+
17
+ Department: Marketing
18
+
19
+ Location: Laguna Beach, CA
20
+
21
+ Amount: 842.67
22
+
23
+ Card: Team Retreat Planning
24
+
25
+ Trip Name: Annual Strategy Offsite
26
+
27
+ '
28
+ sentences:
29
+ - '
30
+
31
+ Name : Gartner & Associates
32
+
33
+ Category: Consulting, Business Services
34
+
35
+ Department: Legal
36
+
37
+ Location: San Francisco, CA
38
+
39
+ Amount: 5000.0
40
+
41
+ Card: Legal Consultation Fund
42
+
43
+ Trip Name: unknown
44
+
45
+ '
46
+ - '
47
+
48
+ Name : SkillAdvance Academy
49
+
50
+ Category: Online Learning Platform, Professional Development
51
+
52
+ Department: Engineering
53
+
54
+ Location: Austin, TX
55
+
56
+ Amount: 1875.67
57
+
58
+ Card: Continuous Improvement Initiative
59
+
60
+ Trip Name: unknown
61
+
62
+ '
63
+ - '
64
+
65
+ Name : Innovative Patents Co.
66
+
67
+ Category: Intellectual Property Services, Legal Services
68
+
69
+ Department: Legal
70
+
71
+ Location: New York, NY
72
+
73
+ Amount: 3250.0
74
+
75
+ Card: Patent Acquisition Fund
76
+
77
+ Trip Name: unknown
78
+
79
+ '
80
+ - source_sentence: '
81
+
82
+ Name : Miller & Gartner
83
+
84
+ Category: Consulting, Business Expense
85
+
86
+ Department: Legal
87
+
88
+ Location: Chicago, IL
89
+
90
+ Amount: 1500.0
91
+
92
+ Card: Legal Fund
93
+
94
+ Trip Name: unknown
95
+
96
+ '
97
+ sentences:
98
+ - '
99
+
100
+ Name : Agora Services
101
+
102
+ Category: Office Equipment Maintenance, IT Support & Maintenance
103
+
104
+ Department: Office Administration
105
+
106
+ Location: Berlin, Germany
107
+
108
+ Amount: 877.29
109
+
110
+ Card: Quarterly Equipment Evaluation
111
+
112
+ Trip Name: unknown
113
+
114
+ '
115
+ - '
116
+
117
+ Name : InsightReports Group
118
+
119
+ Category: Research and Insights, Consulting Services
120
+
121
+ Department: Marketing
122
+
123
+ Location: New York, NY
124
+
125
+ Amount: 1499.89
126
+
127
+ Card: Market Research
128
+
129
+ Trip Name: unknown
130
+
131
+ '
132
+ - '
133
+
134
+ Name : Mosaic Technologies
135
+
136
+ Category: Cloud Solutions Provider, Data Analytics Platforms
137
+
138
+ Department: R&D
139
+
140
+ Location: Berlin, Germany
141
+
142
+ Amount: 1785.45
143
+
144
+ Card: AI Model Enhancement Project
145
+
146
+ Trip Name: unknown
147
+
148
+ '
149
+ - source_sentence: '
150
+
151
+ Name : Café Del Mar
152
+
153
+ Category: Catering Services, Event Planning
154
+
155
+ Department: Sales
156
+
157
+ Location: Barcelona, ES
158
+
159
+ Amount: 578.29
160
+
161
+ Card: Q3 Client Engagement
162
+
163
+ Trip Name: unknown
164
+
165
+ '
166
+ sentences:
167
+ - '
168
+
169
+ Name : Wong & Lim
170
+
171
+ Category: Technical Equipment Services, Facility Services
172
+
173
+ Department: Office Administration
174
+
175
+ Location: Berlin, Germany
176
+
177
+ Amount: 458.29
178
+
179
+ Card: Monthly Equipment Care Program
180
+
181
+ Trip Name: unknown
182
+
183
+ '
184
+ - '
185
+
186
+ Name : Staton Morgan
187
+
188
+ Category: Recruitment Services, Consulting
189
+
190
+ Department: HR
191
+
192
+ Location: Melbourne, Australia
193
+
194
+ Amount: 1520.67
195
+
196
+ Card: New Hires
197
+
198
+ Trip Name: unknown
199
+
200
+ '
201
+ - '
202
+
203
+ Name : Palace Suites
204
+
205
+ Category: Hotel Accommodation, Event Outsourcing
206
+
207
+ Department: Marketing
208
+
209
+ Location: Amsterdam, NL
210
+
211
+ Amount: 1278.64
212
+
213
+ Card: Annual Conference Stay
214
+
215
+ Trip Name: 2023 Innovation Summit
216
+
217
+ '
218
+ - source_sentence: '
219
+
220
+ Name : Nimbus Networks Inc.
221
+
222
+ Category: Cloud Services, Application Hosting
223
+
224
+ Department: Research & Development
225
+
226
+ Location: Austin, TX
227
+
228
+ Amount: 1134.67
229
+
230
+ Card: NextGen Application Deployment
231
+
232
+ Trip Name: unknown
233
+
234
+ '
235
+ sentences:
236
+ - '
237
+
238
+ Name : City Shuttle Services
239
+
240
+ Category: Transportation, Logistics
241
+
242
+ Department: Sales
243
+
244
+ Location: San Francisco, CA
245
+
246
+ Amount: 85.0
247
+
248
+ Card: Sales Team Travel Fund
249
+
250
+ Trip Name: Client Meeting in Bay Area
251
+
252
+ '
253
+ - '
254
+
255
+ Name : Omachi Meitetsu
256
+
257
+ Category: Transportation Services, Travel Services
258
+
259
+ Department: Sales
260
+
261
+ Location: Hakkuba Japan
262
+
263
+ Amount: 120.0
264
+
265
+ Card: Quarterly Travel Expenses
266
+
267
+ Trip Name: unknown
268
+
269
+ '
270
+ - '
271
+
272
+ Name : Clarion Data Solutions
273
+
274
+ Category: Cloud Computing & Data Storage Solutions, Consulting Services
275
+
276
+ Department: Engineering
277
+
278
+ Location: Berlin, Germany
279
+
280
+ Amount: 756.49
281
+
282
+ Card: Data Management Initiatives
283
+
284
+ Trip Name: unknown
285
+
286
+ '
287
+ - source_sentence: '
288
+
289
+ Name : CloudFlare Inc.
290
+
291
+ Category: Internet & Network Services, SaaS
292
+
293
+ Department: IT Operations
294
+
295
+ Location: New York, NY
296
+
297
+ Amount: 2000.0
298
+
299
+ Card: Annual Cloud Services Budget
300
+
301
+ Trip Name: unknown
302
+
303
+ '
304
+ sentences:
305
+ - '
306
+
307
+ Name : Zero One
308
+
309
+ Category: Media Production
310
+
311
+ Department: Marketing
312
+
313
+ Location: New York, NY
314
+
315
+ Amount: 7500.0
316
+
317
+ Card: Sales Operating Budget
318
+
319
+ Trip Name: unknown
320
+
321
+ '
322
+ - '
323
+
324
+ Name : Vitality Systems
325
+
326
+ Category: Facility Management, Health Services
327
+
328
+ Department: Office Administration
329
+
330
+ Location: Chicago, IL
331
+
332
+ Amount: 347.29
333
+
334
+ Card: Office Wellness Initiative
335
+
336
+ Trip Name: unknown
337
+
338
+ '
339
+ - '
340
+
341
+ Name : TechSavvy Solutions
342
+
343
+ Category: Software Services, Online Subscription
344
+
345
+ Department: Engineering
346
+
347
+ Location: Austin, TX
348
+
349
+ Amount: 1200.0
350
+
351
+ Card: Annual Engineering Tools Budget
352
+
353
+ Trip Name: unknown
354
+
355
+ '
356
+ pipeline_tag: sentence-similarity
357
+ library_name: sentence-transformers
358
+ metrics:
359
+ - cosine_accuracy
360
+ model-index:
361
+ - name: SentenceTransformer based on BAAI/bge-base-en
362
+ results:
363
+ - task:
364
+ type: triplet
365
+ name: Triplet
366
+ dataset:
367
+ name: bge base en train
368
+ type: bge-base-en-train
369
+ metrics:
370
+ - type: cosine_accuracy
371
+ value: 0.8269230723381042
372
+ name: Cosine Accuracy
373
+ - task:
374
+ type: triplet
375
+ name: Triplet
376
+ dataset:
377
+ name: bge base en eval
378
+ type: bge-base-en-eval
379
+ metrics:
380
+ - type: cosine_accuracy
381
+ value: 0.42424243688583374
382
+ name: Cosine Accuracy
383
+ ---
384
+
385
+ # SentenceTransformer based on BAAI/bge-base-en
386
+
387
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
388
+
389
+ ## Model Details
390
+
391
+ ### Model Description
392
+ - **Model Type:** Sentence Transformer
393
+ - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
394
+ - **Maximum Sequence Length:** 512 tokens
395
+ - **Output Dimensionality:** 768 dimensions
396
+ - **Similarity Function:** Cosine Similarity
397
+ <!-- - **Training Dataset:** Unknown -->
398
+ <!-- - **Language:** Unknown -->
399
+ <!-- - **License:** Unknown -->
400
+
401
+ ### Model Sources
402
+
403
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
404
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
405
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
406
+
407
+ ### Full Model Architecture
408
+
409
+ ```
410
+ SentenceTransformer(
411
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
412
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
413
+ (2): Normalize()
414
+ )
415
+ ```
416
+
417
+ ## Usage
418
+
419
+ ### Direct Usage (Sentence Transformers)
420
+
421
+ First install the Sentence Transformers library:
422
+
423
+ ```bash
424
+ pip install -U sentence-transformers
425
+ ```
426
+
427
+ Then you can load this model and run inference.
428
+ ```python
429
+ from sentence_transformers import SentenceTransformer
430
+
431
+ # Download from the 🤗 Hub
432
+ model = SentenceTransformer("ppuva1/finetuned-bge-base-en")
433
+ # Run inference
434
+ sentences = [
435
+ '\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n',
436
+ '\nName : TechSavvy Solutions\nCategory: Software Services, Online Subscription\nDepartment: Engineering\nLocation: Austin, TX\nAmount: 1200.0\nCard: Annual Engineering Tools Budget\nTrip Name: unknown\n',
437
+ '\nName : Vitality Systems\nCategory: Facility Management, Health Services\nDepartment: Office Administration\nLocation: Chicago, IL\nAmount: 347.29\nCard: Office Wellness Initiative\nTrip Name: unknown\n',
438
+ ]
439
+ embeddings = model.encode(sentences)
440
+ print(embeddings.shape)
441
+ # [3, 768]
442
+
443
+ # Get the similarity scores for the embeddings
444
+ similarities = model.similarity(embeddings, embeddings)
445
+ print(similarities.shape)
446
+ # [3, 3]
447
+ ```
448
+
449
+ <!--
450
+ ### Direct Usage (Transformers)
451
+
452
+ <details><summary>Click to see the direct usage in Transformers</summary>
453
+
454
+ </details>
455
+ -->
456
+
457
+ <!--
458
+ ### Downstream Usage (Sentence Transformers)
459
+
460
+ You can finetune this model on your own dataset.
461
+
462
+ <details><summary>Click to expand</summary>
463
+
464
+ </details>
465
+ -->
466
+
467
+ <!--
468
+ ### Out-of-Scope Use
469
+
470
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
471
+ -->
472
+
473
+ ## Evaluation
474
+
475
+ ### Metrics
476
+
477
+ #### Triplet
478
+
479
+ * Datasets: `bge-base-en-train` and `bge-base-en-eval`
480
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
481
+
482
+ | Metric | bge-base-en-train | bge-base-en-eval |
483
+ |:--------------------|:------------------|:-----------------|
484
+ | **cosine_accuracy** | **0.8269** | **0.4242** |
485
+
486
+ <!--
487
+ ## Bias, Risks and Limitations
488
+
489
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
490
+ -->
491
+
492
+ <!--
493
+ ### Recommendations
494
+
495
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
496
+ -->
497
+
498
+ ## Training Details
499
+
500
+ ### Training Dataset
501
+
502
+ #### Unnamed Dataset
503
+
504
+ * Size: 208 training samples
505
+ * Columns: <code>sentence</code> and <code>label</code>
506
+ * Approximate statistics based on the first 208 samples:
507
+ | | sentence | label |
508
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
509
+ | type | string | int |
510
+ | details | <ul><li>min: 33 tokens</li><li>mean: 39.81 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~3.85%</li><li>1: ~3.37%</li><li>2: ~3.85%</li><li>3: ~2.40%</li><li>4: ~5.29%</li><li>5: ~4.33%</li><li>6: ~4.33%</li><li>7: ~3.37%</li><li>8: ~3.85%</li><li>9: ~4.33%</li><li>10: ~3.37%</li><li>11: ~3.85%</li><li>12: ~2.40%</li><li>13: ~5.29%</li><li>14: ~3.37%</li><li>15: ~5.77%</li><li>16: ~4.33%</li><li>17: ~2.40%</li><li>18: ~2.88%</li><li>19: ~3.37%</li><li>20: ~3.85%</li><li>21: ~4.33%</li><li>22: ~2.88%</li><li>23: ~4.33%</li><li>24: ~4.81%</li><li>25: ~1.92%</li><li>26: ~1.92%</li></ul> |
511
+ * Samples:
512
+ | sentence | label |
513
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
514
+ | <code><br>Name : Transcend<br>Category: Upskilling<br>Department: Human Resource<br>Location: London, UK<br>Amount: 859.47<br>Card: Technology Skills Enhancement<br>Trip Name: unknown<br></code> | <code>0</code> |
515
+ | <code><br>Name : Ayden<br>Category: Financial Software<br>Department: Finance<br>Location: Berlin, DE<br>Amount: 1273.45<br>Card: Enterprise Technology Services<br>Trip Name: unknown<br></code> | <code>1</code> |
516
+ | <code><br>Name : Urban Sphere<br>Category: Utilities Management, Facility Services<br>Department: Office Administration<br>Location: New York, NY<br>Amount: 937.32<br>Card: Monthly Operations Budget<br>Trip Name: unknown<br></code> | <code>2</code> |
517
+ * Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
518
+
519
+ ### Evaluation Dataset
520
+
521
+ #### Unnamed Dataset
522
+
523
+ * Size: 52 evaluation samples
524
+ * Columns: <code>sentence</code> and <code>label</code>
525
+ * Approximate statistics based on the first 52 samples:
526
+ | | sentence | label |
527
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
528
+ | type | string | int |
529
+ | details | <ul><li>min: 32 tokens</li><li>mean: 38.37 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~1.92%</li><li>4: ~1.92%</li><li>5: ~11.54%</li><li>7: ~5.77%</li><li>8: ~5.77%</li><li>10: ~7.69%</li><li>11: ~3.85%</li><li>12: ~3.85%</li><li>13: ~1.92%</li><li>16: ~3.85%</li><li>17: ~1.92%</li><li>18: ~13.46%</li><li>19: ~5.77%</li><li>20: ~3.85%</li><li>21: ~3.85%</li><li>22: ~7.69%</li><li>23: ~3.85%</li><li>24: ~5.77%</li><li>25: ~5.77%</li></ul> |
530
+ * Samples:
531
+ | sentence | label |
532
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
533
+ | <code><br>Name : Tooly<br>Category: Survey Software, SaaS<br>Department: Marketing<br>Location: San Francisco, CA<br>Amount: 2000.0<br>Card: Annual Marketing Technology Budget<br>Trip Name: unknown<br></code> | <code>10</code> |
534
+ | <code><br>Name : CloudFlare Inc.<br>Category: Internet & Network Services, SaaS<br>Department: IT Operations<br>Location: New York, NY<br>Amount: 2000.0<br>Card: Annual Cloud Services Budget<br>Trip Name: unknown<br></code> | <code>21</code> |
535
+ | <code><br>Name : Gartner & Associates<br>Category: Consulting, Business Services<br>Department: Legal<br>Location: San Francisco, CA<br>Amount: 5000.0<br>Card: Legal Consultation Fund<br>Trip Name: unknown<br></code> | <code>5</code> |
536
+ * Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
537
+
538
+ ### Training Hyperparameters
539
+ #### Non-Default Hyperparameters
540
+
541
+ - `eval_strategy`: steps
542
+ - `per_device_train_batch_size`: 16
543
+ - `per_device_eval_batch_size`: 16
544
+ - `learning_rate`: 2e-05
545
+ - `num_train_epochs`: 5
546
+ - `warmup_ratio`: 0.1
547
+ - `batch_sampler`: no_duplicates
548
+
549
+ #### All Hyperparameters
550
+ <details><summary>Click to expand</summary>
551
+
552
+ - `overwrite_output_dir`: False
553
+ - `do_predict`: False
554
+ - `eval_strategy`: steps
555
+ - `prediction_loss_only`: True
556
+ - `per_device_train_batch_size`: 16
557
+ - `per_device_eval_batch_size`: 16
558
+ - `per_gpu_train_batch_size`: None
559
+ - `per_gpu_eval_batch_size`: None
560
+ - `gradient_accumulation_steps`: 1
561
+ - `eval_accumulation_steps`: None
562
+ - `torch_empty_cache_steps`: None
563
+ - `learning_rate`: 2e-05
564
+ - `weight_decay`: 0.0
565
+ - `adam_beta1`: 0.9
566
+ - `adam_beta2`: 0.999
567
+ - `adam_epsilon`: 1e-08
568
+ - `max_grad_norm`: 1.0
569
+ - `num_train_epochs`: 5
570
+ - `max_steps`: -1
571
+ - `lr_scheduler_type`: linear
572
+ - `lr_scheduler_kwargs`: {}
573
+ - `warmup_ratio`: 0.1
574
+ - `warmup_steps`: 0
575
+ - `log_level`: passive
576
+ - `log_level_replica`: warning
577
+ - `log_on_each_node`: True
578
+ - `logging_nan_inf_filter`: True
579
+ - `save_safetensors`: True
580
+ - `save_on_each_node`: False
581
+ - `save_only_model`: False
582
+ - `restore_callback_states_from_checkpoint`: False
583
+ - `no_cuda`: False
584
+ - `use_cpu`: False
585
+ - `use_mps_device`: False
586
+ - `seed`: 42
587
+ - `data_seed`: None
588
+ - `jit_mode_eval`: False
589
+ - `use_ipex`: False
590
+ - `bf16`: False
591
+ - `fp16`: False
592
+ - `fp16_opt_level`: O1
593
+ - `half_precision_backend`: auto
594
+ - `bf16_full_eval`: False
595
+ - `fp16_full_eval`: False
596
+ - `tf32`: None
597
+ - `local_rank`: 0
598
+ - `ddp_backend`: None
599
+ - `tpu_num_cores`: None
600
+ - `tpu_metrics_debug`: False
601
+ - `debug`: []
602
+ - `dataloader_drop_last`: False
603
+ - `dataloader_num_workers`: 0
604
+ - `dataloader_prefetch_factor`: None
605
+ - `past_index`: -1
606
+ - `disable_tqdm`: False
607
+ - `remove_unused_columns`: True
608
+ - `label_names`: None
609
+ - `load_best_model_at_end`: False
610
+ - `ignore_data_skip`: False
611
+ - `fsdp`: []
612
+ - `fsdp_min_num_params`: 0
613
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
614
+ - `fsdp_transformer_layer_cls_to_wrap`: None
615
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
616
+ - `deepspeed`: None
617
+ - `label_smoothing_factor`: 0.0
618
+ - `optim`: adamw_torch
619
+ - `optim_args`: None
620
+ - `adafactor`: False
621
+ - `group_by_length`: False
622
+ - `length_column_name`: length
623
+ - `ddp_find_unused_parameters`: None
624
+ - `ddp_bucket_cap_mb`: None
625
+ - `ddp_broadcast_buffers`: False
626
+ - `dataloader_pin_memory`: True
627
+ - `dataloader_persistent_workers`: False
628
+ - `skip_memory_metrics`: True
629
+ - `use_legacy_prediction_loop`: False
630
+ - `push_to_hub`: False
631
+ - `resume_from_checkpoint`: None
632
+ - `hub_model_id`: None
633
+ - `hub_strategy`: every_save
634
+ - `hub_private_repo`: None
635
+ - `hub_always_push`: False
636
+ - `gradient_checkpointing`: False
637
+ - `gradient_checkpointing_kwargs`: None
638
+ - `include_inputs_for_metrics`: False
639
+ - `include_for_metrics`: []
640
+ - `eval_do_concat_batches`: True
641
+ - `fp16_backend`: auto
642
+ - `push_to_hub_model_id`: None
643
+ - `push_to_hub_organization`: None
644
+ - `mp_parameters`:
645
+ - `auto_find_batch_size`: False
646
+ - `full_determinism`: False
647
+ - `torchdynamo`: None
648
+ - `ray_scope`: last
649
+ - `ddp_timeout`: 1800
650
+ - `torch_compile`: False
651
+ - `torch_compile_backend`: None
652
+ - `torch_compile_mode`: None
653
+ - `dispatch_batches`: None
654
+ - `split_batches`: None
655
+ - `include_tokens_per_second`: False
656
+ - `include_num_input_tokens_seen`: False
657
+ - `neftune_noise_alpha`: None
658
+ - `optim_target_modules`: None
659
+ - `batch_eval_metrics`: False
660
+ - `eval_on_start`: False
661
+ - `use_liger_kernel`: False
662
+ - `eval_use_gather_object`: False
663
+ - `average_tokens_across_devices`: False
664
+ - `prompts`: None
665
+ - `batch_sampler`: no_duplicates
666
+ - `multi_dataset_batch_sampler`: proportional
667
+
668
+ </details>
669
+
670
+ ### Training Logs
671
+ | Epoch | Step | bge-base-en-train_cosine_accuracy | bge-base-en-eval_cosine_accuracy |
672
+ |:-----:|:----:|:---------------------------------:|:--------------------------------:|
673
+ | -1 | -1 | 0.8269 | 0.4242 |
674
+
675
+
676
+ ### Framework Versions
677
+ - Python: 3.11.8
678
+ - Sentence Transformers: 3.4.1
679
+ - Transformers: 4.49.0
680
+ - PyTorch: 2.4.1
681
+ - Accelerate: 0.34.2
682
+ - Datasets: 3.2.0
683
+ - Tokenizers: 0.21.0
684
+
685
+ ## Citation
686
+
687
+ ### BibTeX
688
+
689
+ #### Sentence Transformers
690
+ ```bibtex
691
+ @inproceedings{reimers-2019-sentence-bert,
692
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
693
+ author = "Reimers, Nils and Gurevych, Iryna",
694
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
695
+ month = "11",
696
+ year = "2019",
697
+ publisher = "Association for Computational Linguistics",
698
+ url = "https://arxiv.org/abs/1908.10084",
699
+ }
700
+ ```
701
+
702
+ #### BatchSemiHardTripletLoss
703
+ ```bibtex
704
+ @misc{hermans2017defense,
705
+ title={In Defense of the Triplet Loss for Person Re-Identification},
706
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
707
+ year={2017},
708
+ eprint={1703.07737},
709
+ archivePrefix={arXiv},
710
+ primaryClass={cs.CV}
711
+ }
712
+ ```
713
+
714
+ <!--
715
+ ## Glossary
716
+
717
+ *Clearly define terms in order to be accessible across audiences.*
718
+ -->
719
+
720
+ <!--
721
+ ## Model Card Authors
722
+
723
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
724
+ -->
725
+
726
+ <!--
727
+ ## Model Card Contact
728
+
729
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
730
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.49.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.4.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38ef7ea968f92ad2167bb851954777b17fd39f24d4260300a2ab308cac71df1f
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff