--- library_name: transformers license: apache-2.0 base_model: google/muril-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: MuRILHateSpeechClassification results: [] --- # MuRILHateSpeechClassification This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7371 - Accuracy: 0.8407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5519 | 1.0 | 1137 | 0.4704 | 0.8110 | | 0.4345 | 2.0 | 2274 | 0.4862 | 0.8198 | | 0.3547 | 3.0 | 3411 | 0.4660 | 0.8473 | | 0.2919 | 4.0 | 4548 | 0.6066 | 0.8440 | | 0.2205 | 5.0 | 5685 | 0.6805 | 0.8429 | | 0.1759 | 6.0 | 6822 | 0.7371 | 0.8407 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0