Model save
Browse files
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: microsoft/codebert-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: codebert-fine-tuned
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# codebert-fine-tuned
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.0908
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 3
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
50 |
+
| 3.5941 | 0.0325 | 500 | 2.0780 |
|
51 |
+
| 2.091 | 0.0651 | 1000 | 1.8173 |
|
52 |
+
| 1.9005 | 0.0976 | 1500 | 1.6783 |
|
53 |
+
| 1.7817 | 0.1301 | 2000 | 1.6071 |
|
54 |
+
| 1.712 | 0.1626 | 2500 | 1.5634 |
|
55 |
+
| 1.6661 | 0.1952 | 3000 | 1.5229 |
|
56 |
+
| 1.6348 | 0.2277 | 3500 | 1.4965 |
|
57 |
+
| 1.6106 | 0.2602 | 4000 | 1.4514 |
|
58 |
+
| 1.5685 | 0.2928 | 4500 | 1.4360 |
|
59 |
+
| 1.5419 | 0.3253 | 5000 | 1.4203 |
|
60 |
+
| 1.5429 | 0.3578 | 5500 | 1.4026 |
|
61 |
+
| 1.5069 | 0.3903 | 6000 | 1.3959 |
|
62 |
+
| 1.5021 | 0.4229 | 6500 | 1.3819 |
|
63 |
+
| 1.4651 | 0.4554 | 7000 | 1.3660 |
|
64 |
+
| 1.4704 | 0.4879 | 7500 | 1.3544 |
|
65 |
+
| 1.4799 | 0.5205 | 8000 | 1.3428 |
|
66 |
+
| 1.44 | 0.5530 | 8500 | 1.3357 |
|
67 |
+
| 1.4433 | 0.5855 | 9000 | 1.3224 |
|
68 |
+
| 1.4297 | 0.6180 | 9500 | 1.3173 |
|
69 |
+
| 1.4115 | 0.6506 | 10000 | 1.3069 |
|
70 |
+
| 1.4119 | 0.6831 | 10500 | 1.2996 |
|
71 |
+
| 1.3908 | 0.7156 | 11000 | 1.2972 |
|
72 |
+
| 1.4022 | 0.7482 | 11500 | 1.2879 |
|
73 |
+
| 1.381 | 0.7807 | 12000 | 1.2843 |
|
74 |
+
| 1.374 | 0.8132 | 12500 | 1.2747 |
|
75 |
+
| 1.382 | 0.8457 | 13000 | 1.2734 |
|
76 |
+
| 1.3746 | 0.8783 | 13500 | 1.2576 |
|
77 |
+
| 1.3724 | 0.9108 | 14000 | 1.2605 |
|
78 |
+
| 1.3404 | 0.9433 | 14500 | 1.2560 |
|
79 |
+
| 1.3452 | 0.9759 | 15000 | 1.2414 |
|
80 |
+
| 1.3433 | 1.0084 | 15500 | 1.2373 |
|
81 |
+
| 1.3273 | 1.0409 | 16000 | 1.2398 |
|
82 |
+
| 1.3175 | 1.0735 | 16500 | 1.2311 |
|
83 |
+
| 1.3123 | 1.1060 | 17000 | 1.2217 |
|
84 |
+
| 1.3095 | 1.1385 | 17500 | 1.2213 |
|
85 |
+
| 1.3229 | 1.1710 | 18000 | 1.2167 |
|
86 |
+
| 1.2995 | 1.2036 | 18500 | 1.2185 |
|
87 |
+
| 1.3019 | 1.2361 | 19000 | 1.2144 |
|
88 |
+
| 1.299 | 1.2686 | 19500 | 1.2093 |
|
89 |
+
| 1.2784 | 1.3012 | 20000 | 1.1990 |
|
90 |
+
| 1.2886 | 1.3337 | 20500 | 1.2032 |
|
91 |
+
| 1.2788 | 1.3662 | 21000 | 1.1943 |
|
92 |
+
| 1.284 | 1.3987 | 21500 | 1.1975 |
|
93 |
+
| 1.2706 | 1.4313 | 22000 | 1.1878 |
|
94 |
+
| 1.2771 | 1.4638 | 22500 | 1.1856 |
|
95 |
+
| 1.2731 | 1.4963 | 23000 | 1.1797 |
|
96 |
+
| 1.2607 | 1.5289 | 23500 | 1.1919 |
|
97 |
+
| 1.2729 | 1.5614 | 24000 | 1.1872 |
|
98 |
+
| 1.272 | 1.5939 | 24500 | 1.1712 |
|
99 |
+
| 1.251 | 1.6264 | 25000 | 1.1656 |
|
100 |
+
| 1.2437 | 1.6590 | 25500 | 1.1665 |
|
101 |
+
| 1.2523 | 1.6915 | 26000 | 1.1697 |
|
102 |
+
| 1.2393 | 1.7240 | 26500 | 1.1546 |
|
103 |
+
| 1.2521 | 1.7566 | 27000 | 1.1595 |
|
104 |
+
| 1.2498 | 1.7891 | 27500 | 1.1541 |
|
105 |
+
| 1.2187 | 1.8216 | 28000 | 1.1586 |
|
106 |
+
| 1.2311 | 1.8541 | 28500 | 1.1530 |
|
107 |
+
| 1.2419 | 1.8867 | 29000 | 1.1412 |
|
108 |
+
| 1.2246 | 1.9192 | 29500 | 1.1460 |
|
109 |
+
| 1.2381 | 1.9517 | 30000 | 1.1475 |
|
110 |
+
| 1.2237 | 1.9843 | 30500 | 1.1432 |
|
111 |
+
| 1.2273 | 2.0168 | 31000 | 1.1458 |
|
112 |
+
| 1.2167 | 2.0493 | 31500 | 1.1368 |
|
113 |
+
| 1.2039 | 2.0818 | 32000 | 1.1358 |
|
114 |
+
| 1.2142 | 2.1144 | 32500 | 1.1410 |
|
115 |
+
| 1.2003 | 2.1469 | 33000 | 1.1278 |
|
116 |
+
| 1.2052 | 2.1794 | 33500 | 1.1344 |
|
117 |
+
| 1.2094 | 2.2120 | 34000 | 1.1378 |
|
118 |
+
| 1.2128 | 2.2445 | 34500 | 1.1291 |
|
119 |
+
| 1.1936 | 2.2770 | 35000 | 1.1280 |
|
120 |
+
| 1.195 | 2.3095 | 35500 | 1.1278 |
|
121 |
+
| 1.207 | 2.3421 | 36000 | 1.1220 |
|
122 |
+
| 1.1969 | 2.3746 | 36500 | 1.1248 |
|
123 |
+
| 1.188 | 2.4071 | 37000 | 1.1159 |
|
124 |
+
| 1.1921 | 2.4397 | 37500 | 1.1187 |
|
125 |
+
| 1.1916 | 2.4722 | 38000 | 1.1196 |
|
126 |
+
| 1.1797 | 2.5047 | 38500 | 1.1167 |
|
127 |
+
| 1.1865 | 2.5372 | 39000 | 1.1135 |
|
128 |
+
| 1.1787 | 2.5698 | 39500 | 1.1154 |
|
129 |
+
| 1.1865 | 2.6023 | 40000 | 1.1174 |
|
130 |
+
| 1.1754 | 2.6348 | 40500 | 1.1161 |
|
131 |
+
| 1.1805 | 2.6674 | 41000 | 1.1085 |
|
132 |
+
| 1.1786 | 2.6999 | 41500 | 1.1116 |
|
133 |
+
| 1.1689 | 2.7324 | 42000 | 1.1069 |
|
134 |
+
| 1.1755 | 2.7649 | 42500 | 1.1032 |
|
135 |
+
| 1.1858 | 2.7975 | 43000 | 1.1027 |
|
136 |
+
| 1.1722 | 2.8300 | 43500 | 1.1027 |
|
137 |
+
| 1.1686 | 2.8625 | 44000 | 1.1002 |
|
138 |
+
| 1.1801 | 2.8951 | 44500 | 1.1016 |
|
139 |
+
| 1.1596 | 2.9276 | 45000 | 1.1024 |
|
140 |
+
| 1.1788 | 2.9601 | 45500 | 1.1052 |
|
141 |
+
| 1.1609 | 2.9926 | 46000 | 1.0908 |
|
142 |
+
|
143 |
+
|
144 |
+
### Framework versions
|
145 |
+
|
146 |
+
- Transformers 4.46.3
|
147 |
+
- Pytorch 2.4.1+cu121
|
148 |
+
- Datasets 3.1.0
|
149 |
+
- Tokenizers 0.20.3
|