--- library_name: transformers base_model: afmck/testing-llama-tiny tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: llma-finetuned-ner results: [] --- # llma-finetuned-ner This model is a fine-tuned version of [afmck/testing-llama-tiny](https://huggingface.co/afmck/testing-llama-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1003 - Precision: 0.9755 - Recall: 0.9764 - F1: 0.9759 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0726 | 1.0 | 5285 | 0.1305 | 0.9820 | 0.9672 | 0.9745 | 0.9749 | | 0.0558 | 2.0 | 10570 | 0.1090 | 0.9733 | 0.9740 | 0.9737 | 0.9796 | | 0.07 | 3.0 | 15855 | 0.1003 | 0.9755 | 0.9764 | 0.9759 | 0.9815 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1