{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d51978a3f60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d51978ac040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d51978ac0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d51978ac180>", "_build": "<function ActorCriticPolicy._build at 0x7d51978ac220>", "forward": "<function ActorCriticPolicy.forward at 0x7d51978ac2c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d51978ac360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d51978ac400>", "_predict": "<function ActorCriticPolicy._predict at 0x7d51978ac4a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d51978ac540>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d51978ac5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d51978ac680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d519827dd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738316096543740095, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCT1z1tbOs+yRUbvn5kjr4cL4M8nuRTPQAAAAAAAAAAOoYQPkkKVD6aAEa+1H59vjtTzjySJqq9AAAAAAAAAACzowy9haPLuQ7CVrkGSpS0LK61OvizezgAAIA/AACAPzMDdb2ubYu60FRbtwnE7jHiIEq7MnB5NgAAgD8AAIA/TfGRPcy2ij+fIi0+xzjWvmlSrT3y1bs9AAAAAAAAAACa7+E9fnujPmNPm75qYoW+imQVvaq9wTwAAAAAAAAAAABo/buP1wi84lMKvCJJbTzjrFw9v1JIvQAAgD8AAIA/zYeMvr+8Lj8/SyG+cdXTvr4De77I5tk9AAAAAAAAAACArS6+9hBPP6o0mz32zry+BvQYvhOl7D0AAAAAAAAAAD1Jnb7riWE/oDJlvqmK0r77b4m+0+qDPAAAAAAAAAAAZvmDPOxxizgTEsAyUbV6sPnir7vi54uzAACAPwAAgD+aReU85mWZPvRxh70xNIa+Nrhwu+hg6rwAAAAAAAAAAAAeM7x27zC84xeJvE9UtTtLtI69y8iVPAAAgD8AAIA/TZxTvmLOTD9Fl6K9wKLOvmweXL5uN/k7AAAAAAAAAAD7loa+3a9OPljQjD6fXYe+8vYQvAqESjsAAAAAAAAAAM1sm72P5nS6VaJENBrnHa/wwMW4S2+QswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD06yOaOPyMAWyUTRwBjAF0lEdAlGrfX5FgD3V9lChoBkdAcSrqvvBrOGgHTXYBaAhHQJRq8UuctoV1fZQoaAZHQHDJ6cVgx8FoB00+AWgIR0CUayTTOPeYdX2UKGgGR0Bx0ZJZntfHaAdNDwFoCEdAlGwBpcophHV9lChoBkdAcPLIKMNtqGgHS/BoCEdAlG1DRhMJyHV9lChoBkdAb/8UeuFHrmgHTQABaAhHQJRvXHaN+9d1fZQoaAZHQHBrdXLeQ+5oB00IAWgIR0CUcGHxjJ+2dX2UKGgGR0ByCamNzbN9aAdNIgFoCEdAlHE4jv/ipHV9lChoBkdAcdCs7+1jRWgHTTYBaAhHQJRxUOby6MB1fZQoaAZHQG6xLAYYR/VoB009AWgIR0CUceLehwl0dX2UKGgGR0Bv7UIZ62ORaAdNEQFoCEdAlHH5w84ginV9lChoBkdAcqhP7vXsgWgHTRUBaAhHQJRykKLKmsN1fZQoaAZHQHCrozzmOlxoB009AmgIR0CUc3x3mmtRdX2UKGgGR0BwF77Lt/nXaAdNEwFoCEdAlHOQudwvQHV9lChoBkdAcNEcpLEk0WgHTT0BaAhHQJR0YLNOdoZ1fZQoaAZHQHAZUGFBY3hoB0v7aAhHQJR0fXJ5miB1fZQoaAZHQHBU0CV8kUtoB00TAWgIR0CUdW/O+qR2dX2UKGgGR0BwkRtIkJKKaAdNHQFoCEdAlHYZtFa0QnV9lChoBkdAcRMyvs7dSGgHTQoBaAhHQJR2uRnvlU91fZQoaAZHQHMP+ZTho/RoB00WAWgIR0CUeKr8R+SbdX2UKGgGR0BxubxkNFz/aAdNLAFoCEdAlHrrxRVIZ3V9lChoBkdAcyD0m+j/MmgHTRYBaAhHQJR6+z7di2F1fZQoaAZHQHIrUMTewcJoB00BAmgIR0CUfJtqYZ2qdX2UKGgGR0Btbth1DBuXaAdNJQFoCEdAlHzHcQAdXHV9lChoBkdAbvMPaL4ve2gHTTgBaAhHQJR86St/4It1fZQoaAZHQG8E1R1oxpNoB003AWgIR0CUfPOrhisodX2UKGgGR0BwTiwdKdxyaAdNEQFoCEdAlH1pFLFn7HV9lChoBkdAbpqWj4593WgHTTABaAhHQJR9ouFpPAR1fZQoaAZHQHDtZv99+gFoB01GAWgIR0CUfc6Rhc7hdX2UKGgGR0BybxQyhzvJaAdNEgFoCEdAlH3o6nzg/HV9lChoBkdAc55SflIVd2gHTSEBaAhHQJR+ULjPv8Z1fZQoaAZHQHGugDFId2hoB007AWgIR0CUfmXe3x4IdX2UKGgGR0Bx2dYNiH6/aAdNFgFoCEdAlH6l9fCyhXV9lChoBkdAcsGUrkKeCmgHTTMBaAhHQJR/pYkmhM91fZQoaAZHQG892/BWPtFoB00PAWgIR0CUgIUornTzdX2UKGgGR0By8MhY/3WXaAdNhAFoCEdAlIJZKBd2PnV9lChoBkdAcXxCBf8dgmgHTSkBaAhHQJSDRV3ljmV1fZQoaAZHQG67o8hcJMRoB0v7aAhHQJSDcd6sySF1fZQoaAZHQHEqxWDHwPRoB01EAWgIR0CUhDxKxs2vdX2UKGgGR0BtDJHy3CsPaAdNAwFoCEdAlIRi4Bmwq3V9lChoBkdAch3P5pJwsGgHTRsBaAhHQJSEXU9ZA6d1fZQoaAZHQHAWAg9vCMxoB00cAWgIR0CUhKWGh24edX2UKGgGR0Bwc2UUwi7kaAdNBQFoCEdAlISwDRtxdnV9lChoBkdAC4QA+6iCa2gHS+RoCEdAlIT0nb7CSHV9lChoBkdAcZUdIXj2jGgHTSIBaAhHQJSFm5kK/mF1fZQoaAZHQGzwEIX0oSdoB00SAWgIR0CUhdlzU7SzdX2UKGgGR0By8P4L1EmZaAdNKAFoCEdAlIXe4wyqMnV9lChoBkdAcr1TsIE8rGgHTSMBaAhHQJSGJiLEUCd1fZQoaAZHQG7UMKkVN6BoB00IAWgIR0CUhuuA7PpqdX2UKGgGR0BxrwPbwjMWaAdNAQFoCEdAlJk5KBd2PnV9lChoBkdAbUkWBSUC72gHTTABaAhHQJSceQMhHLB1fZQoaAZHQGxymx+rlvJoB00FAWgIR0CUnPHDrJKbdX2UKGgGR0BwTzTpgTh6aAdL7WgIR0CUnQCvovBadX2UKGgGR0BxMzZuhsZYaAdNCgFoCEdAlJ2WWdEsrnV9lChoBkdAbjcACnxaxGgHTRYBaAhHQJSdoJdB0IV1fZQoaAZHQHACO01IiC9oB00zAWgIR0CUnbAZKnNxdX2UKGgGR0Bwu0znA6+4aAdNKAFoCEdAlJ5rel9Br3V9lChoBkdAcyHW3jMmnmgHTTQBaAhHQJSegdbPhQ51fZQoaAZHQHFc34bjtHBoB02CAWgIR0CUn8j7ALy+dX2UKGgGR0BuNOw9q1w6aAdNNAFoCEdAlKAYdhiLEXV9lChoBkdAcQLmlImPYGgHTQQBaAhHQJSgIC6pYLd1fZQoaAZHQHIR0xyn1nNoB00zAWgIR0CUoIF0gbIcdX2UKGgGR0BxtEj/uLJkaAdNYQFoCEdAlKFnBLwnY3V9lChoBkdAcDAosI3R5WgHTTQBaAhHQJSi5pAUtZp1fZQoaAZHQGyDb1yvLYBoB0v9aAhHQJSmGT7l7t11fZQoaAZHQG/iQmNR3vBoB03ZAWgIR0CUpyfoRqXXdX2UKGgGR0BwcB2Rq46PaAdL/WgIR0CUp1KzzErHdX2UKGgGR0By28PlMh5gaAdNCAFoCEdAlKex2jfvW3V9lChoBkdAcAzo/RmbsmgHTSwBaAhHQJSn4JY1YQt1fZQoaAZHQHFv/keZG8VoB00DAWgIR0CUqMCWu5jIdX2UKGgGR0BuIpIxxkupaAdNNQFoCEdAlKjiCjDbanV9lChoBkdAclYiB5HEuWgHTUEBaAhHQJSqPXnQpnZ1fZQoaAZHQHBeBQzk6tFoB00OAWgIR0CUq9lp48lpdX2UKGgGR0BxaAIF/x2CaAdNFQFoCEdAlKw31anrIHV9lChoBkdAcSiyEcsDn2gHTScBaAhHQJSsfA8B+4N1fZQoaAZHQG4b1rRBu4xoB01oAWgIR0CUrU6f8MuwdX2UKGgGR0By3qILw4KhaAdNRQFoCEdAlK43wTdtVXV9lChoBkdAVYtCKJl8PWgHTegDaAhHQJSu7AZbY9R1fZQoaAZHQHIzQt8NQTFoB00lAWgIR0CUrw5NoJzDdX2UKGgGR0BwojQ1JlJ6aAdNCwFoCEdAlLBOpXIU8HV9lChoBkdAcCueQ+2VmmgHTQMBaAhHQJSwpuxbB451fZQoaAZHQHCzMkhRqGloB0v7aAhHQJSxcHryDqZ1fZQoaAZHQHMpSrPt2LZoB02rAWgIR0CUsc/s3Q2NdX2UKGgGR0BxCOMtK7I1aAdNBwFoCEdAlLHtU83dbnV9lChoBkdAc5UthuwX7GgHTS8BaAhHQJSyDZf2K2t1fZQoaAZHQG66NkvsZ51oB009AWgIR0CUsroSL61tdX2UKGgGR0ByZaoJiRW+aAdNBQFoCEdAlLO4M8YAKnV9lChoBkdAcgeE6DGtIWgHTWMBaAhHQJSzwO6NEPV1fZQoaAZHQHGxq1og3cZoB00MAWgIR0CUtCMuvlltdX2UKGgGR0Bw6SL4vexfaAdNHgFoCEdAlLTWjwhGIHV9lChoBkdAbL9S2phnamgHS/doCEdAlLYFyvLX+XV9lChoBkdAcbOxMFlkH2gHTYUBaAhHQJS2cGJN0vJ1fZQoaAZHQHDE3Z00WM1oB01KAWgIR0CUtr7eVLSNdX2UKGgGR0BsT0xmCiAUaAdNOQFoCEdAlLcqzeGfw3V9lChoBkdAcZiEOAiFCmgHTSIBaAhHQJS3XaoMrmR1fZQoaAZHQHA6VmBe5WloB00WAWgIR0CUuDpzLfUGdX2UKGgGR0BwXmkqMFUyaAdNBwFoCEdAlLjiF0xM4HV9lChoBkdAcIIM2m51/2gHTQEBaAhHQJS5BNL127p1fZQoaAZHQHJUQu/UONJoB00qAWgIR0CUuRuE25xzdX2UKGgGR0ByIs93bEgoaAdNDQFoCEdAlLluBMBZIXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |