carb_regression_model / handler.py
pinkieseb's picture
Upload handler.py with huggingface_hub
1ef7531 verified
from typing import Dict, List, Any
from transformers import AutoFeatureExtractor, EfficientNetForImageClassification
import torch
from PIL import Image
import io
import base64
class EndpointHandler:
def __init__(self, path=""):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load feature extractor
self.feature_extractor = AutoFeatureExtractor.from_pretrained(path)
# Load model
self.model = EfficientNetForImageClassification.from_pretrained(path)
# Replace the classification head with a regression head
self.model.classifier = torch.nn.Linear(self.model.classifier.in_features, 1)
# Load custom weights
self.model.load_state_dict(torch.load(f"{path}/model.pt", map_location=self.device))
self.model.to(self.device)
self.model.eval()
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
# Get the image data from the request
image_bytes = data.get("inputs", "")
# Decode and open the image
image = Image.open(io.BytesIO(base64.b64decode(image_bytes))).convert('RGB')
# Prepare the image for the model
inputs = self.feature_extractor(images=image, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = self.model(**inputs)
prediction = outputs.logits.item() # For regression, we directly use the output
return [{"prediction": float(prediction)}]