Upload 4 files
Browse files- __init__.py +0 -0
- artifact.metadata +60 -0
- colbert_configuration.py +412 -0
- tokenization_utils.py +191 -0
__init__.py
ADDED
|
File without changes
|
artifact.metadata
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"query_token_id": "[unused0]",
|
| 3 |
+
"doc_token_id": "[unused1]",
|
| 4 |
+
"query_token": "[Q]",
|
| 5 |
+
"doc_token": "[D]",
|
| 6 |
+
"ncells": null,
|
| 7 |
+
"centroid_score_threshold": null,
|
| 8 |
+
"ndocs": null,
|
| 9 |
+
"load_index_with_mmap": false,
|
| 10 |
+
"index_path": null,
|
| 11 |
+
"index_bsize": 64,
|
| 12 |
+
"nbits": 1,
|
| 13 |
+
"kmeans_niters": 4,
|
| 14 |
+
"resume": false,
|
| 15 |
+
"similarity": "cosine",
|
| 16 |
+
"bsize": 2,
|
| 17 |
+
"accumsteps": 2,
|
| 18 |
+
"lr": 1e-5,
|
| 19 |
+
"maxsteps": 500000,
|
| 20 |
+
"save_every": null,
|
| 21 |
+
"warmup": 20000,
|
| 22 |
+
"warmup_bert": null,
|
| 23 |
+
"relu": false,
|
| 24 |
+
"nway": 64,
|
| 25 |
+
"use_ib_negatives": true,
|
| 26 |
+
"reranker": false,
|
| 27 |
+
"distillation_alpha": 1.0,
|
| 28 |
+
"ignore_scores": false,
|
| 29 |
+
"model_name": null,
|
| 30 |
+
"query_maxlen": 32,
|
| 31 |
+
"attend_to_mask_tokens": false,
|
| 32 |
+
"interaction": "colbert",
|
| 33 |
+
"dim": 128,
|
| 34 |
+
"doc_maxlen": 250,
|
| 35 |
+
"mask_punctuation": true,
|
| 36 |
+
"checkpoint": "bert-base-uncased",
|
| 37 |
+
"triples": ".\/examples.json",
|
| 38 |
+
"collection": ".\/collection.tsv",
|
| 39 |
+
"queries": ".\/queries.train.tsv",
|
| 40 |
+
"index_name": null,
|
| 41 |
+
"overwrite": false,
|
| 42 |
+
"root": "",
|
| 43 |
+
"experiment": "default",
|
| 44 |
+
"index_root": null,
|
| 45 |
+
"name": "2024-06\/30\/19.56.27",
|
| 46 |
+
"rank": 0,
|
| 47 |
+
"nranks": 8,
|
| 48 |
+
"amp": true,
|
| 49 |
+
"gpus": 8,
|
| 50 |
+
"avoid_fork_if_possible": false,
|
| 51 |
+
"meta": {
|
| 52 |
+
"hostname": "",
|
| 53 |
+
"git_branch": "main",
|
| 54 |
+
"git_hash": "",
|
| 55 |
+
"git_commit_datetime": "2024-06-26 12:50:22+00:00",
|
| 56 |
+
"current_datetime": "Jul 04, 2024 ; 3:51AM UTC (+0000)",
|
| 57 |
+
"cmd": "train.py",
|
| 58 |
+
"version": "colbert-v0.4"
|
| 59 |
+
}
|
| 60 |
+
}
|
colbert_configuration.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
|
| 3 |
+
import __main__
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import ujson
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
import dataclasses
|
| 9 |
+
import datetime
|
| 10 |
+
from typing import Any
|
| 11 |
+
from dataclasses import dataclass, fields
|
| 12 |
+
import socket
|
| 13 |
+
import git
|
| 14 |
+
import time
|
| 15 |
+
import torch
|
| 16 |
+
import sys
|
| 17 |
+
|
| 18 |
+
def torch_load_dnn(path):
|
| 19 |
+
if path.startswith("http:") or path.startswith("https:"):
|
| 20 |
+
dnn = torch.hub.load_state_dict_from_url(path, map_location='cpu')
|
| 21 |
+
else:
|
| 22 |
+
dnn = torch.load(path, map_location='cpu')
|
| 23 |
+
|
| 24 |
+
return dnn
|
| 25 |
+
|
| 26 |
+
class dotdict(dict):
|
| 27 |
+
"""
|
| 28 |
+
dot.notation access to dictionary attributes
|
| 29 |
+
Credit: derek73 @ https://stackoverflow.com/questions/2352181
|
| 30 |
+
"""
|
| 31 |
+
__getattr__ = dict.__getitem__
|
| 32 |
+
__setattr__ = dict.__setitem__
|
| 33 |
+
__delattr__ = dict.__delitem__
|
| 34 |
+
|
| 35 |
+
def get_metadata_only():
|
| 36 |
+
args = dotdict()
|
| 37 |
+
|
| 38 |
+
args.hostname = socket.gethostname()
|
| 39 |
+
try:
|
| 40 |
+
args.git_branch = git.Repo(search_parent_directories=True).active_branch.name
|
| 41 |
+
args.git_hash = git.Repo(search_parent_directories=True).head.object.hexsha
|
| 42 |
+
args.git_commit_datetime = str(git.Repo(search_parent_directories=True).head.object.committed_datetime)
|
| 43 |
+
except git.exc.InvalidGitRepositoryError as e:
|
| 44 |
+
pass
|
| 45 |
+
args.current_datetime = time.strftime('%b %d, %Y ; %l:%M%p %Z (%z)')
|
| 46 |
+
args.cmd = ' '.join(sys.argv)
|
| 47 |
+
|
| 48 |
+
return args
|
| 49 |
+
|
| 50 |
+
def timestamp(daydir=False):
|
| 51 |
+
format_str = f"%Y-%m{'/' if daydir else '-'}%d{'/' if daydir else '_'}%H.%M.%S"
|
| 52 |
+
result = datetime.datetime.now().strftime(format_str)
|
| 53 |
+
return result
|
| 54 |
+
|
| 55 |
+
@dataclass
|
| 56 |
+
class DefaultVal:
|
| 57 |
+
val: Any
|
| 58 |
+
|
| 59 |
+
def __hash__(self):
|
| 60 |
+
return hash(repr(self.val))
|
| 61 |
+
|
| 62 |
+
def __eq__(self, other):
|
| 63 |
+
self.val == other.val
|
| 64 |
+
|
| 65 |
+
@dataclass
|
| 66 |
+
class RunSettings:
|
| 67 |
+
"""
|
| 68 |
+
The defaults here have a special status in Run(), which initially calls assign_defaults(),
|
| 69 |
+
so these aren't soft defaults in that specific context.
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
overwrite: bool = DefaultVal(False)
|
| 73 |
+
|
| 74 |
+
root: str = DefaultVal(os.path.join(os.getcwd(), 'experiments'))
|
| 75 |
+
experiment: str = DefaultVal('default')
|
| 76 |
+
|
| 77 |
+
index_root: str = DefaultVal(None)
|
| 78 |
+
name: str = DefaultVal(timestamp(daydir=True))
|
| 79 |
+
|
| 80 |
+
rank: int = DefaultVal(0)
|
| 81 |
+
nranks: int = DefaultVal(1)
|
| 82 |
+
amp: bool = DefaultVal(True)
|
| 83 |
+
|
| 84 |
+
total_visible_gpus = torch.cuda.device_count()
|
| 85 |
+
gpus: int = DefaultVal(total_visible_gpus)
|
| 86 |
+
|
| 87 |
+
avoid_fork_if_possible: bool = DefaultVal(False)
|
| 88 |
+
|
| 89 |
+
@property
|
| 90 |
+
def gpus_(self):
|
| 91 |
+
value = self.gpus
|
| 92 |
+
|
| 93 |
+
if isinstance(value, int):
|
| 94 |
+
value = list(range(value))
|
| 95 |
+
|
| 96 |
+
if isinstance(value, str):
|
| 97 |
+
value = value.split(',')
|
| 98 |
+
|
| 99 |
+
value = list(map(int, value))
|
| 100 |
+
value = sorted(list(set(value)))
|
| 101 |
+
|
| 102 |
+
assert all(device_idx in range(0, self.total_visible_gpus) for device_idx in value), value
|
| 103 |
+
|
| 104 |
+
return value
|
| 105 |
+
|
| 106 |
+
@property
|
| 107 |
+
def index_root_(self):
|
| 108 |
+
return self.index_root or os.path.join(self.root, self.experiment, 'indexes/')
|
| 109 |
+
|
| 110 |
+
@property
|
| 111 |
+
def script_name_(self):
|
| 112 |
+
if '__file__' in dir(__main__):
|
| 113 |
+
cwd = os.path.abspath(os.getcwd())
|
| 114 |
+
script_path = os.path.abspath(__main__.__file__)
|
| 115 |
+
root_path = os.path.abspath(self.root)
|
| 116 |
+
|
| 117 |
+
if script_path.startswith(cwd):
|
| 118 |
+
script_path = script_path[len(cwd):]
|
| 119 |
+
|
| 120 |
+
else:
|
| 121 |
+
try:
|
| 122 |
+
commonpath = os.path.commonpath([script_path, root_path])
|
| 123 |
+
script_path = script_path[len(commonpath):]
|
| 124 |
+
except:
|
| 125 |
+
pass
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
assert script_path.endswith('.py')
|
| 129 |
+
script_name = script_path.replace('/', '.').strip('.')[:-3]
|
| 130 |
+
|
| 131 |
+
assert len(script_name) > 0, (script_name, script_path, cwd)
|
| 132 |
+
|
| 133 |
+
return script_name
|
| 134 |
+
|
| 135 |
+
return 'none'
|
| 136 |
+
|
| 137 |
+
@property
|
| 138 |
+
def path_(self):
|
| 139 |
+
return os.path.join(self.root, self.experiment, self.script_name_, self.name)
|
| 140 |
+
|
| 141 |
+
@property
|
| 142 |
+
def device_(self):
|
| 143 |
+
return self.gpus_[self.rank % self.nranks]
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@dataclass
|
| 147 |
+
class TokenizerSettings:
|
| 148 |
+
query_token_id: str = DefaultVal("[unused0]")
|
| 149 |
+
doc_token_id: str = DefaultVal("[unused1]")
|
| 150 |
+
query_token: str = DefaultVal("[Q]")
|
| 151 |
+
doc_token: str = DefaultVal("[D]")
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
@dataclass
|
| 155 |
+
class ResourceSettings:
|
| 156 |
+
checkpoint: str = DefaultVal(None)
|
| 157 |
+
triples: str = DefaultVal(None)
|
| 158 |
+
collection: str = DefaultVal(None)
|
| 159 |
+
queries: str = DefaultVal(None)
|
| 160 |
+
index_name: str = DefaultVal(None)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
@dataclass
|
| 164 |
+
class DocSettings:
|
| 165 |
+
dim: int = DefaultVal(128)
|
| 166 |
+
doc_maxlen: int = DefaultVal(220)
|
| 167 |
+
mask_punctuation: bool = DefaultVal(True)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@dataclass
|
| 171 |
+
class QuerySettings:
|
| 172 |
+
query_maxlen: int = DefaultVal(32)
|
| 173 |
+
attend_to_mask_tokens : bool = DefaultVal(False)
|
| 174 |
+
interaction: str = DefaultVal('colbert')
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@dataclass
|
| 178 |
+
class TrainingSettings:
|
| 179 |
+
similarity: str = DefaultVal('cosine')
|
| 180 |
+
|
| 181 |
+
bsize: int = DefaultVal(32)
|
| 182 |
+
|
| 183 |
+
accumsteps: int = DefaultVal(1)
|
| 184 |
+
|
| 185 |
+
lr: float = DefaultVal(3e-06)
|
| 186 |
+
|
| 187 |
+
maxsteps: int = DefaultVal(500_000)
|
| 188 |
+
|
| 189 |
+
save_every: int = DefaultVal(None)
|
| 190 |
+
|
| 191 |
+
resume: bool = DefaultVal(False)
|
| 192 |
+
|
| 193 |
+
## NEW:
|
| 194 |
+
warmup: int = DefaultVal(None)
|
| 195 |
+
|
| 196 |
+
warmup_bert: int = DefaultVal(None)
|
| 197 |
+
|
| 198 |
+
relu: bool = DefaultVal(False)
|
| 199 |
+
|
| 200 |
+
nway: int = DefaultVal(2)
|
| 201 |
+
|
| 202 |
+
use_ib_negatives: bool = DefaultVal(False)
|
| 203 |
+
|
| 204 |
+
reranker: bool = DefaultVal(False)
|
| 205 |
+
|
| 206 |
+
distillation_alpha: float = DefaultVal(1.0)
|
| 207 |
+
|
| 208 |
+
ignore_scores: bool = DefaultVal(False)
|
| 209 |
+
|
| 210 |
+
model_name: str = DefaultVal(None) # DefaultVal('bert-base-uncased')
|
| 211 |
+
|
| 212 |
+
@dataclass
|
| 213 |
+
class IndexingSettings:
|
| 214 |
+
index_path: str = DefaultVal(None)
|
| 215 |
+
|
| 216 |
+
index_bsize: int = DefaultVal(64)
|
| 217 |
+
|
| 218 |
+
nbits: int = DefaultVal(1)
|
| 219 |
+
|
| 220 |
+
kmeans_niters: int = DefaultVal(4)
|
| 221 |
+
|
| 222 |
+
resume: bool = DefaultVal(False)
|
| 223 |
+
|
| 224 |
+
@property
|
| 225 |
+
def index_path_(self):
|
| 226 |
+
return self.index_path or os.path.join(self.index_root_, self.index_name)
|
| 227 |
+
|
| 228 |
+
@dataclass
|
| 229 |
+
class SearchSettings:
|
| 230 |
+
ncells: int = DefaultVal(None)
|
| 231 |
+
centroid_score_threshold: float = DefaultVal(None)
|
| 232 |
+
ndocs: int = DefaultVal(None)
|
| 233 |
+
load_index_with_mmap: bool = DefaultVal(False)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
@dataclass
|
| 237 |
+
class CoreConfig:
|
| 238 |
+
def __post_init__(self):
|
| 239 |
+
"""
|
| 240 |
+
Source: https://stackoverflow.com/a/58081120/1493011
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
self.assigned = {}
|
| 244 |
+
|
| 245 |
+
for field in fields(self):
|
| 246 |
+
field_val = getattr(self, field.name)
|
| 247 |
+
|
| 248 |
+
if isinstance(field_val, DefaultVal) or field_val is None:
|
| 249 |
+
setattr(self, field.name, field.default.val)
|
| 250 |
+
|
| 251 |
+
if not isinstance(field_val, DefaultVal):
|
| 252 |
+
self.assigned[field.name] = True
|
| 253 |
+
|
| 254 |
+
def assign_defaults(self):
|
| 255 |
+
for field in fields(self):
|
| 256 |
+
setattr(self, field.name, field.default.val)
|
| 257 |
+
self.assigned[field.name] = True
|
| 258 |
+
|
| 259 |
+
def configure(self, ignore_unrecognized=True, **kw_args):
|
| 260 |
+
ignored = set()
|
| 261 |
+
|
| 262 |
+
for key, value in kw_args.items():
|
| 263 |
+
self.set(key, value, ignore_unrecognized) or ignored.update({key})
|
| 264 |
+
|
| 265 |
+
return ignored
|
| 266 |
+
|
| 267 |
+
"""
|
| 268 |
+
# TODO: Take a config object, not kw_args.
|
| 269 |
+
|
| 270 |
+
for key in config.assigned:
|
| 271 |
+
value = getattr(config, key)
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
def set(self, key, value, ignore_unrecognized=False):
|
| 275 |
+
if hasattr(self, key):
|
| 276 |
+
setattr(self, key, value)
|
| 277 |
+
self.assigned[key] = True
|
| 278 |
+
return True
|
| 279 |
+
|
| 280 |
+
if not ignore_unrecognized:
|
| 281 |
+
raise Exception(f"Unrecognized key `{key}` for {type(self)}")
|
| 282 |
+
|
| 283 |
+
def help(self):
|
| 284 |
+
print(ujson.dumps(self.export(), indent=4))
|
| 285 |
+
|
| 286 |
+
def __export_value(self, v):
|
| 287 |
+
v = v.provenance() if hasattr(v, 'provenance') else v
|
| 288 |
+
|
| 289 |
+
if isinstance(v, list) and len(v) > 100:
|
| 290 |
+
v = (f"list with {len(v)} elements starting with...", v[:3])
|
| 291 |
+
|
| 292 |
+
if isinstance(v, dict) and len(v) > 100:
|
| 293 |
+
v = (f"dict with {len(v)} keys starting with...", list(v.keys())[:3])
|
| 294 |
+
|
| 295 |
+
return v
|
| 296 |
+
|
| 297 |
+
def export(self):
|
| 298 |
+
d = dataclasses.asdict(self)
|
| 299 |
+
|
| 300 |
+
for k, v in d.items():
|
| 301 |
+
d[k] = self.__export_value(v)
|
| 302 |
+
|
| 303 |
+
return d
|
| 304 |
+
|
| 305 |
+
@dataclass
|
| 306 |
+
class BaseConfig(CoreConfig):
|
| 307 |
+
@classmethod
|
| 308 |
+
def from_existing(cls, *sources):
|
| 309 |
+
kw_args = {}
|
| 310 |
+
|
| 311 |
+
for source in sources:
|
| 312 |
+
if source is None:
|
| 313 |
+
continue
|
| 314 |
+
|
| 315 |
+
local_kw_args = dataclasses.asdict(source)
|
| 316 |
+
local_kw_args = {k: local_kw_args[k] for k in source.assigned}
|
| 317 |
+
kw_args = {**kw_args, **local_kw_args}
|
| 318 |
+
|
| 319 |
+
obj = cls(**kw_args)
|
| 320 |
+
|
| 321 |
+
return obj
|
| 322 |
+
|
| 323 |
+
@classmethod
|
| 324 |
+
def from_deprecated_args(cls, args):
|
| 325 |
+
obj = cls()
|
| 326 |
+
ignored = obj.configure(ignore_unrecognized=True, **args)
|
| 327 |
+
|
| 328 |
+
return obj, ignored
|
| 329 |
+
|
| 330 |
+
@classmethod
|
| 331 |
+
def from_path(cls, name):
|
| 332 |
+
with open(name) as f:
|
| 333 |
+
args = ujson.load(f)
|
| 334 |
+
|
| 335 |
+
if "config" in args:
|
| 336 |
+
args = args["config"]
|
| 337 |
+
|
| 338 |
+
return cls.from_deprecated_args(
|
| 339 |
+
args
|
| 340 |
+
) # the new, non-deprecated version functions the same at this level.
|
| 341 |
+
|
| 342 |
+
@classmethod
|
| 343 |
+
def load_from_checkpoint(cls, checkpoint_path):
|
| 344 |
+
if checkpoint_path.endswith(".dnn"):
|
| 345 |
+
dnn = torch_load_dnn(checkpoint_path)
|
| 346 |
+
config, _ = cls.from_deprecated_args(dnn.get("arguments", {}))
|
| 347 |
+
|
| 348 |
+
# TODO: FIXME: Decide if the line below will have any unintended consequences. We don't want to overwrite those!
|
| 349 |
+
config.set("checkpoint", checkpoint_path)
|
| 350 |
+
|
| 351 |
+
return config
|
| 352 |
+
|
| 353 |
+
try:
|
| 354 |
+
checkpoint_path = hf_hub_download(
|
| 355 |
+
repo_id=checkpoint_path, filename="artifact.metadata"
|
| 356 |
+
).split("artifact")[0]
|
| 357 |
+
except Exception:
|
| 358 |
+
pass
|
| 359 |
+
loaded_config_path = os.path.join(checkpoint_path, "artifact.metadata")
|
| 360 |
+
if os.path.exists(loaded_config_path):
|
| 361 |
+
loaded_config, _ = cls.from_path(loaded_config_path)
|
| 362 |
+
loaded_config.set("checkpoint", checkpoint_path)
|
| 363 |
+
|
| 364 |
+
return loaded_config
|
| 365 |
+
|
| 366 |
+
return (
|
| 367 |
+
None # can happen if checkpoint_path is something like 'bert-base-uncased'
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
@classmethod
|
| 371 |
+
def load_from_index(cls, index_path):
|
| 372 |
+
# FIXME: We should start here with initial_config = ColBERTConfig(config, Run().config).
|
| 373 |
+
# This should allow us to say initial_config.index_root. Then, below, set config = Config(..., initial_c)
|
| 374 |
+
|
| 375 |
+
# default_index_root = os.path.join(Run().root, Run().experiment, 'indexes/')
|
| 376 |
+
# index_path = os.path.join(default_index_root, index_path)
|
| 377 |
+
|
| 378 |
+
# CONSIDER: No more plan/metadata.json. Only metadata.json to avoid weird issues when loading an index.
|
| 379 |
+
|
| 380 |
+
try:
|
| 381 |
+
metadata_path = os.path.join(index_path, "metadata.json")
|
| 382 |
+
loaded_config, _ = cls.from_path(metadata_path)
|
| 383 |
+
except:
|
| 384 |
+
metadata_path = os.path.join(index_path, "plan.json")
|
| 385 |
+
loaded_config, _ = cls.from_path(metadata_path)
|
| 386 |
+
|
| 387 |
+
return loaded_config
|
| 388 |
+
|
| 389 |
+
def save(self, path, overwrite=False):
|
| 390 |
+
assert overwrite or not os.path.exists(path), path
|
| 391 |
+
|
| 392 |
+
with open(path, "w") as f:
|
| 393 |
+
args = self.export() # dict(self.__config)
|
| 394 |
+
args["meta"] = get_metadata_only()
|
| 395 |
+
args["meta"]["version"] = "colbert-v0.4"
|
| 396 |
+
# TODO: Add git_status details.. It can't be too large! It should be a path that Runs() saves on exit, maybe!
|
| 397 |
+
|
| 398 |
+
f.write(ujson.dumps(args, indent=4) + "\n")
|
| 399 |
+
|
| 400 |
+
def save_for_checkpoint(self, checkpoint_path):
|
| 401 |
+
assert not checkpoint_path.endswith(
|
| 402 |
+
".dnn"
|
| 403 |
+
), f"{checkpoint_path}: We reserve *.dnn names for the deprecated checkpoint format."
|
| 404 |
+
|
| 405 |
+
output_config_path = os.path.join(checkpoint_path, "artifact.metadata")
|
| 406 |
+
self.save(output_config_path, overwrite=True)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
@dataclass
|
| 410 |
+
class ColBERTConfig(RunSettings, ResourceSettings, DocSettings, QuerySettings, TrainingSettings,
|
| 411 |
+
IndexingSettings, SearchSettings, BaseConfig, TokenizerSettings):
|
| 412 |
+
pass
|
tokenization_utils.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from constbert.colbert_configuration import ColBERTConfig
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
|
| 5 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 6 |
+
|
| 7 |
+
def _split_into_batches(ids, mask, bsize):
|
| 8 |
+
batches = []
|
| 9 |
+
for offset in range(0, ids.size(0), bsize):
|
| 10 |
+
batches.append((ids[offset:offset+bsize], mask[offset:offset+bsize]))
|
| 11 |
+
|
| 12 |
+
return batches
|
| 13 |
+
|
| 14 |
+
def _sort_by_length(ids, mask, bsize):
|
| 15 |
+
if ids.size(0) <= bsize:
|
| 16 |
+
return ids, mask, torch.arange(ids.size(0))
|
| 17 |
+
|
| 18 |
+
indices = mask.sum(-1).sort().indices
|
| 19 |
+
reverse_indices = indices.sort().indices
|
| 20 |
+
|
| 21 |
+
return ids[indices], mask[indices], reverse_indices
|
| 22 |
+
|
| 23 |
+
class QueryTokenizer():
|
| 24 |
+
def __init__(self, config: ColBERTConfig, verbose: int = 3):
|
| 25 |
+
self.tok = AutoTokenizer.from_pretrained(config.checkpoint)
|
| 26 |
+
self.tok.base = config.checkpoint
|
| 27 |
+
self.verbose = verbose
|
| 28 |
+
|
| 29 |
+
self.config = config
|
| 30 |
+
self.query_maxlen = config.query_maxlen
|
| 31 |
+
self.background_maxlen = 512 - self.query_maxlen + 1 # FIXME: Make this configurable
|
| 32 |
+
|
| 33 |
+
self.Q_marker_token, self.Q_marker_token_id = config.query_token, self.tok.convert_tokens_to_ids(config.query_token_id)
|
| 34 |
+
self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id
|
| 35 |
+
self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id
|
| 36 |
+
self.mask_token, self.mask_token_id = self.tok.mask_token, self.tok.mask_token_id
|
| 37 |
+
self.pad_token,self.pad_token_id = self.tok.pad_token,self.tok.pad_token_id
|
| 38 |
+
self.used = False
|
| 39 |
+
|
| 40 |
+
def tokenize(self, batch_text, add_special_tokens=False):
|
| 41 |
+
assert type(batch_text) in [list, tuple], (type(batch_text))
|
| 42 |
+
|
| 43 |
+
tokens = [self.tok.tokenize(x, add_special_tokens=False) for x in batch_text]
|
| 44 |
+
|
| 45 |
+
if not add_special_tokens:
|
| 46 |
+
return tokens
|
| 47 |
+
|
| 48 |
+
prefix, suffix = [self.cls_token, self.Q_marker_token], [self.sep_token]
|
| 49 |
+
tokens = [prefix + lst + suffix + [self.mask_token] * (self.query_maxlen - (len(lst)+3)) for lst in tokens]
|
| 50 |
+
|
| 51 |
+
return tokens
|
| 52 |
+
|
| 53 |
+
def encode(self, batch_text, add_special_tokens=False):
|
| 54 |
+
assert type(batch_text) in [list, tuple], (type(batch_text))
|
| 55 |
+
|
| 56 |
+
ids = self.tok(batch_text, add_special_tokens=False).to(DEVICE)['input_ids']
|
| 57 |
+
|
| 58 |
+
if not add_special_tokens:
|
| 59 |
+
return ids
|
| 60 |
+
|
| 61 |
+
prefix, suffix = [self.cls_token_id, self.Q_marker_token_id], [self.sep_token_id]
|
| 62 |
+
ids = [prefix + lst + suffix + [self.mask_token_id] * (self.query_maxlen - (len(lst)+3)) for lst in ids]
|
| 63 |
+
|
| 64 |
+
return ids
|
| 65 |
+
|
| 66 |
+
def tensorize(self, batch_text, bsize=None, context=None, full_length_search=False):
|
| 67 |
+
assert type(batch_text) in [list, tuple], (type(batch_text))
|
| 68 |
+
|
| 69 |
+
# add placehold for the [Q] marker
|
| 70 |
+
batch_text = ['. ' + x for x in batch_text]
|
| 71 |
+
|
| 72 |
+
# Full length search is only available for single inference (for now)
|
| 73 |
+
# Batched full length search requires far deeper changes to the code base
|
| 74 |
+
assert(full_length_search == False or (type(batch_text) == list and len(batch_text) == 1))
|
| 75 |
+
|
| 76 |
+
if full_length_search:
|
| 77 |
+
# Tokenize each string in the batch
|
| 78 |
+
un_truncated_ids = self.tok(batch_text, add_special_tokens=False).to(DEVICE)['input_ids']
|
| 79 |
+
# Get the longest length in the batch
|
| 80 |
+
max_length_in_batch = max(len(x) for x in un_truncated_ids)
|
| 81 |
+
# Set the max length
|
| 82 |
+
max_length = self.max_len(max_length_in_batch)
|
| 83 |
+
else:
|
| 84 |
+
# Max length is the default max length from the config
|
| 85 |
+
max_length = self.query_maxlen
|
| 86 |
+
|
| 87 |
+
obj = self.tok(batch_text, padding='max_length', truncation=True,
|
| 88 |
+
return_tensors='pt', max_length=max_length).to(DEVICE)
|
| 89 |
+
|
| 90 |
+
ids, mask = obj['input_ids'], obj['attention_mask']
|
| 91 |
+
|
| 92 |
+
# postprocess for the [Q] marker and the [MASK] augmentation
|
| 93 |
+
ids[:, 1] = self.Q_marker_token_id
|
| 94 |
+
ids[ids == self.pad_token_id] = self.mask_token_id
|
| 95 |
+
|
| 96 |
+
if context is not None:
|
| 97 |
+
assert len(context) == len(batch_text), (len(context), len(batch_text))
|
| 98 |
+
|
| 99 |
+
obj_2 = self.tok(context, padding='longest', truncation=True,
|
| 100 |
+
return_tensors='pt', max_length=self.background_maxlen).to(DEVICE)
|
| 101 |
+
|
| 102 |
+
ids_2, mask_2 = obj_2['input_ids'][:, 1:], obj_2['attention_mask'][:, 1:] # Skip the first [SEP]
|
| 103 |
+
|
| 104 |
+
ids = torch.cat((ids, ids_2), dim=-1)
|
| 105 |
+
mask = torch.cat((mask, mask_2), dim=-1)
|
| 106 |
+
|
| 107 |
+
if self.config.attend_to_mask_tokens:
|
| 108 |
+
mask[ids == self.mask_token_id] = 1
|
| 109 |
+
assert mask.sum().item() == mask.size(0) * mask.size(1), mask
|
| 110 |
+
|
| 111 |
+
if bsize:
|
| 112 |
+
batches = _split_into_batches(ids, mask, bsize)
|
| 113 |
+
return batches
|
| 114 |
+
|
| 115 |
+
if self.used is False:
|
| 116 |
+
self.used = True
|
| 117 |
+
|
| 118 |
+
firstbg = (context is None) or context[0]
|
| 119 |
+
if self.verbose > 1:
|
| 120 |
+
print()
|
| 121 |
+
print("#> QueryTokenizer.tensorize(batch_text[0], batch_background[0], bsize) ==")
|
| 122 |
+
print(f"#> Input: {batch_text[0]}, \t\t {firstbg}, \t\t {bsize}")
|
| 123 |
+
print(f"#> Output IDs: {ids[0].size()}, {ids[0]}")
|
| 124 |
+
print(f"#> Output Mask: {mask[0].size()}, {mask[0]}")
|
| 125 |
+
print()
|
| 126 |
+
|
| 127 |
+
return ids, mask
|
| 128 |
+
|
| 129 |
+
# Ensure that query_maxlen <= length <= 500 tokens
|
| 130 |
+
def max_len(self, length):
|
| 131 |
+
return min(500, max(self.query_maxlen, length))
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class DocTokenizer():
|
| 135 |
+
def __init__(self, config: ColBERTConfig):
|
| 136 |
+
self.tok = AutoTokenizer.from_pretrained(config.checkpoint)
|
| 137 |
+
self.tok.base = config.checkpoint
|
| 138 |
+
|
| 139 |
+
self.config = config
|
| 140 |
+
self.doc_maxlen = config.doc_maxlen
|
| 141 |
+
|
| 142 |
+
self.D_marker_token, self.D_marker_token_id = self.config.doc_token, self.tok.convert_tokens_to_ids(self.config.doc_token_id)
|
| 143 |
+
self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id
|
| 144 |
+
self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id
|
| 145 |
+
|
| 146 |
+
def tokenize(self, batch_text, add_special_tokens=False):
|
| 147 |
+
assert type(batch_text) in [list, tuple], (type(batch_text))
|
| 148 |
+
|
| 149 |
+
tokens = [self.tok.tokenize(x, add_special_tokens=False).to(DEVICE) for x in batch_text]
|
| 150 |
+
|
| 151 |
+
if not add_special_tokens:
|
| 152 |
+
return tokens
|
| 153 |
+
|
| 154 |
+
prefix, suffix = [self.cls_token, self.D_marker_token], [self.sep_token]
|
| 155 |
+
tokens = [prefix + lst + suffix for lst in tokens]
|
| 156 |
+
|
| 157 |
+
return tokens
|
| 158 |
+
|
| 159 |
+
def encode(self, batch_text, add_special_tokens=False):
|
| 160 |
+
assert type(batch_text) in [list, tuple], (type(batch_text))
|
| 161 |
+
|
| 162 |
+
ids = self.tok(batch_text, add_special_tokens=False).to(DEVICE)['input_ids']
|
| 163 |
+
|
| 164 |
+
if not add_special_tokens:
|
| 165 |
+
return ids
|
| 166 |
+
|
| 167 |
+
prefix, suffix = [self.cls_token_id, self.D_marker_token_id], [self.sep_token_id]
|
| 168 |
+
ids = [prefix + lst + suffix for lst in ids]
|
| 169 |
+
|
| 170 |
+
return ids
|
| 171 |
+
|
| 172 |
+
def tensorize(self, batch_text, bsize=None):
|
| 173 |
+
assert type(batch_text) in [list, tuple], (type(batch_text))
|
| 174 |
+
|
| 175 |
+
# add placehold for the [D] marker
|
| 176 |
+
batch_text = ['. ' + x for x in batch_text]
|
| 177 |
+
|
| 178 |
+
obj = self.tok(batch_text, padding='max_length', truncation='longest_first',
|
| 179 |
+
return_tensors='pt', max_length=self.doc_maxlen).to(DEVICE)
|
| 180 |
+
|
| 181 |
+
ids, mask = obj['input_ids'], obj['attention_mask']
|
| 182 |
+
|
| 183 |
+
# postprocess for the [D] marker
|
| 184 |
+
ids[:, 1] = self.D_marker_token_id
|
| 185 |
+
|
| 186 |
+
if bsize:
|
| 187 |
+
ids, mask, reverse_indices = _sort_by_length(ids, mask, bsize)
|
| 188 |
+
batches = _split_into_batches(ids, mask, bsize)
|
| 189 |
+
return batches, reverse_indices
|
| 190 |
+
|
| 191 |
+
return ids, mask
|