Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +97 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.71 +/- 0.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e06778d608c31488e37763096009625f91c5eb335f60a46ede7abf87fc7464a7
|
3 |
+
size 109565
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1a54039f70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1a54037fc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"num_timesteps": 400000,
|
25 |
+
"_total_timesteps": 400000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1681844207113003370,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIF5pPFzUl7288UU/IF5pPFzUl7288UU/IF5pPFzUl7288UU/IF5pPFzUl7288UU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATsJwvyiTpb5gUzc+P6F8vzT2B7/HQK4/BHW+vwFmQD8kqKe+yEarP4xhwr+6eP4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAgXmk8XNSXvbzxRT9jwio9JA95OmxRlT0gXmk8XNSXvbzxRT9jwio9JA95OmxRlT0gXmk8XNSXvbzxRT9jwio9JA95OmxRlT0gXmk8XNSXvbzxRT9jwio9JA95OmxRlT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[ 0.01424363 -0.07413551 0.7732198 ]\n [ 0.01424363 -0.07413551 0.7732198 ]\n [ 0.01424363 -0.07413551 0.7732198 ]\n [ 0.01424363 -0.07413551 0.7732198 ]]",
|
40 |
+
"desired_goal": "[[-0.94046485 -0.32338834 0.17902899]\n [-0.9868354 -0.5311005 1.3613518 ]\n [-1.487946 0.75155646 -0.3274547 ]\n [ 1.3380976 -1.5186019 0.49701482]]",
|
41 |
+
"observation": "[[ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]\n [ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]\n [ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]\n [ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]]"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS4SnvddWMD0S3DM+hOURvSwiAD6LpQ8+yjJtvQ/iZL3YCZ89MoE6vH85TL204Is+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.0817953 0.04305157 0.17564419]\n [-0.03561927 0.12513036 0.14027993]\n [-0.05790976 -0.05587965 0.07765549]\n [-0.01138334 -0.04985952 0.27319872]]",
|
52 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
+
},
|
54 |
+
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
+
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": 0.0,
|
58 |
+
"_stats_window_size": 100,
|
59 |
+
"ep_info_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI51Hxf0dU1r+UhpRSlIwBbJRLMowBdJRHQJOhcvoNd7h1fZQoaAZoCWgPQwjkh0ojZvbXv5SGlFKUaBVLMmgWR0CToLbI91U3dX2UKGgGaAloD0MIWoEhq1s97L+UhpRSlGgVSzJoFkdAk5/gB1cMVnV9lChoBmgJaA9DCODyWDMyyOC/lIaUUpRoFUsyaBZHQJOfOsny/bl1fZQoaAZoCWgPQwiYFvVJ7jDhv5SGlFKUaBVLMmgWR0CTpFz3AVO9dX2UKGgGaAloD0MI86rOaoE947+UhpRSlGgVSzJoFkdAk6Oi7f51vHV9lChoBmgJaA9DCHEhj+BGytS/lIaUUpRoFUsyaBZHQJOizbBXS0B1fZQoaAZoCWgPQwh1sWmlEMjzv5SGlFKUaBVLMmgWR0CToipUPxx2dX2UKGgGaAloD0MIEwoRcAgV9r+UhpRSlGgVSzJoFkdAk6fUornTzHV9lChoBmgJaA9DCHbAdcWMcOO/lIaUUpRoFUsyaBZHQJOnGkZaV2R1fZQoaAZoCWgPQwjwUuqScYzov5SGlFKUaBVLMmgWR0CTpkTdcjZ+dX2UKGgGaAloD0MIVS5U/rW88r+UhpRSlGgVSzJoFkdAk6WiCz1K5HV9lChoBmgJaA9DCIhGdxA7U92/lIaUUpRoFUsyaBZHQJOrN70Fr2x1fZQoaAZoCWgPQwhODTSfczfqv5SGlFKUaBVLMmgWR0CTqoEB8x9HdX2UKGgGaAloD0MIxoUDIVlA+b+UhpRSlGgVSzJoFkdAk6mrxmTTv3V9lChoBmgJaA9DCEI+6Nmsuvm/lIaUUpRoFUsyaBZHQJOpEQnQY1p1fZQoaAZoCWgPQwgHmWTkLCzzv5SGlFKUaBVLMmgWR0CTrvJV81GcdX2UKGgGaAloD0MIDM11Gmmp67+UhpRSlGgVSzJoFkdAk644aHbh33V9lChoBmgJaA9DCPiJA+j3fe6/lIaUUpRoFUsyaBZHQJOtYxagVXV1fZQoaAZoCWgPQwis4SL3dPXwv5SGlFKUaBVLMmgWR0CTrMIUJv5ydX2UKGgGaAloD0MIN/3ZjxSR7b+UhpRSlGgVSzJoFkdAk7K2IsRQJ3V9lChoBmgJaA9DCLCqXn6nyeS/lIaUUpRoFUsyaBZHQJOx/Dbah6B1fZQoaAZoCWgPQwhpAkUsYljuv5SGlFKUaBVLMmgWR0CTsSdu5z5odX2UKGgGaAloD0MIOX8TChHw6b+UhpRSlGgVSzJoFkdAk7CETURWcXV9lChoBmgJaA9DCAFRMGMK1va/lIaUUpRoFUsyaBZHQJO2eMHbAUN1fZQoaAZoCWgPQwjjGTT0T3DZv5SGlFKUaBVLMmgWR0CTtb5ooNNKdX2UKGgGaAloD0MIxXQhVn8E47+UhpRSlGgVSzJoFkdAk7TpPykKu3V9lChoBmgJaA9DCIOieQCLfOi/lIaUUpRoFUsyaBZHQJO0RnPE87p1fZQoaAZoCWgPQwiSs7CnHf78v5SGlFKUaBVLMmgWR0CTuN79Q40edX2UKGgGaAloD0MICi5W1GCa8L+UhpRSlGgVSzJoFkdAk7gi6H0sfHV9lChoBmgJaA9DCIffTbfskPS/lIaUUpRoFUsyaBZHQJO3TBHkLhJ1fZQoaAZoCWgPQwj9v+rIkU74v5SGlFKUaBVLMmgWR0CTtqdDIBBBdX2UKGgGaAloD0MIwvo/h/ny5r+UhpRSlGgVSzJoFkdAk7r7wvxpc3V9lChoBmgJaA9DCESkpl1Mc/G/lIaUUpRoFUsyaBZHQJO6P5Jsfq51fZQoaAZoCWgPQwjXijbHuc3hv5SGlFKUaBVLMmgWR0CTuWgs9SuRdX2UKGgGaAloD0MIoPzdO2oM8b+UhpRSlGgVSzJoFkdAk7jDMFEApHV9lChoBmgJaA9DCOoENBE2vOG/lIaUUpRoFUsyaBZHQJO9ia5PM0R1fZQoaAZoCWgPQwhnKsQj8fL2v5SGlFKUaBVLMmgWR0CTvM+S8rZrdX2UKGgGaAloD0MIGHjuPVyy9b+UhpRSlGgVSzJoFkdAk7v4nrpqynV9lChoBmgJaA9DCJiIt86/Xe2/lIaUUpRoFUsyaBZHQJO7U6uGKyh1fZQoaAZoCWgPQwgiqBq9GiDzv5SGlFKUaBVLMmgWR0CTv6M2FWXDdX2UKGgGaAloD0MIM4ekFkrm8r+UhpRSlGgVSzJoFkdAk77nL3bmEHV9lChoBmgJaA9DCOfkRSbgF/a/lIaUUpRoFUsyaBZHQJO+EV1wHZ91fZQoaAZoCWgPQwhxkBDlCxr5v5SGlFKUaBVLMmgWR0CTvW5UcXFcdX2UKGgGaAloD0MIVgxXB0Dc4r+UhpRSlGgVSzJoFkdAk8HVw5vLo3V9lChoBmgJaA9DCEPnNXaJauy/lIaUUpRoFUsyaBZHQJPBGbLEDQt1fZQoaAZoCWgPQwj/s+bHX1rvv5SGlFKUaBVLMmgWR0CTwEKkl/pddX2UKGgGaAloD0MI2PSgoBSt8L+UhpRSlGgVSzJoFkdAk7+doexOcnV9lChoBmgJaA9DCMnnFU89UvW/lIaUUpRoFUsyaBZHQJPD8QlKK511fZQoaAZoCWgPQwjoFORnI9fhv5SGlFKUaBVLMmgWR0CTwzUr08NhdX2UKGgGaAloD0MI275H/fVK8r+UhpRSlGgVSzJoFkdAk8JeJcgQpXV9lChoBmgJaA9DCE6XxcTmY+O/lIaUUpRoFUsyaBZHQJPBuQOnVG11fZQoaAZoCWgPQwjBHahTHh32v5SGlFKUaBVLMmgWR0CTxhudwvQGdX2UKGgGaAloD0MIxyk6ksv/8r+UhpRSlGgVSzJoFkdAk8Vf7JnxrnV9lChoBmgJaA9DCFrXaDnQQ+W/lIaUUpRoFUsyaBZHQJPEiOKfnOl1fZQoaAZoCWgPQwjL1voioS3pv5SGlFKUaBVLMmgWR0CTw+PZqVQidX2UKGgGaAloD0MIe0ljtI6q7b+UhpRSlGgVSzJoFkdAk8g4BV+7UXV9lChoBmgJaA9DCIv7j0yHzui/lIaUUpRoFUsyaBZHQJPHe/8EV351fZQoaAZoCWgPQwjQ8dHijOHvv5SGlFKUaBVLMmgWR0CTxqSqU/wBdX2UKGgGaAloD0MIukp319mQ7L+UhpRSlGgVSzJoFkdAk8X/7BO58XV9lChoBmgJaA9DCAwDllzF4uy/lIaUUpRoFUsyaBZHQJPKTeIl+mZ1fZQoaAZoCWgPQwjxZg3eV2Xnv5SGlFKUaBVLMmgWR0CTyZHxz7uVdX2UKGgGaAloD0MIswdagSGr6L+UhpRSlGgVSzJoFkdAk8i6+WWyDHV9lChoBmgJaA9DCE0vMZbpV/C/lIaUUpRoFUsyaBZHQJPIFYzSCvp1fZQoaAZoCWgPQwgtBaT9D7Ddv5SGlFKUaBVLMmgWR0CTzG8V58jSdX2UKGgGaAloD0MI7rH0oQvq6r+UhpRSlGgVSzJoFkdAk8uyfL9uP3V9lChoBmgJaA9DCJm4VRAD3eS/lIaUUpRoFUsyaBZHQJPK2yVv/BF1fZQoaAZoCWgPQwjpX5LKFPPxv5SGlFKUaBVLMmgWR0CTyjWEK3NLdX2UKGgGaAloD0MISYJwBRTq8L+UhpRSlGgVSzJoFkdAk86Vgx8D0XV9lChoBmgJaA9DCLCuCtRicOy/lIaUUpRoFUsyaBZHQJPN2ZBsyi51fZQoaAZoCWgPQwhgdeRIZ+Dlv5SGlFKUaBVLMmgWR0CTzQKKYRdydX2UKGgGaAloD0MIeCrgnudP1b+UhpRSlGgVSzJoFkdAk8xdpyp71XV9lChoBmgJaA9DCMSXiSKk7uW/lIaUUpRoFUsyaBZHQJPQsEt/WlN1fZQoaAZoCWgPQwj4xhAAHHviv5SGlFKUaBVLMmgWR0CTz/TdtVJddX2UKGgGaAloD0MIrYpwk1Fl3L+UhpRSlGgVSzJoFkdAk88ePmxMWXV9lChoBmgJaA9DCDbJj/gV6+W/lIaUUpRoFUsyaBZHQJPOePdVNpN1fZQoaAZoCWgPQwjVWwNbJdjjv5SGlFKUaBVLMmgWR0CT0r8eS0SidX2UKGgGaAloD0MIRnu8kA6P5b+UhpRSlGgVSzJoFkdAk9IDAzpHJHV9lChoBmgJaA9DCO1kcJS8uu6/lIaUUpRoFUsyaBZHQJPRK4Wk8A91fZQoaAZoCWgPQwgyk6gXfJrZv5SGlFKUaBVLMmgWR0CT0IbBXS0CdX2UKGgGaAloD0MIigESTaAI5r+UhpRSlGgVSzJoFkdAk9TuhbnoxHV9lChoBmgJaA9DCE4oRMAh1Oy/lIaUUpRoFUsyaBZHQJPUMrupjtp1fZQoaAZoCWgPQwgJjWDj+nfXv5SGlFKUaBVLMmgWR0CT01vzvqkedX2UKGgGaAloD0MIO/w1WaMe67+UhpRSlGgVSzJoFkdAk9K2dRR/E3V9lChoBmgJaA9DCNpU3SObq9q/lIaUUpRoFUsyaBZHQJPW+CXhOxl1fZQoaAZoCWgPQwhYb9QK03fiv5SGlFKUaBVLMmgWR0CT1jxj8UEgdX2UKGgGaAloD0MIb/PGSWHezb+UhpRSlGgVSzJoFkdAk9Vlm8M/hXV9lChoBmgJaA9DCKlMMQdBx+a/lIaUUpRoFUsyaBZHQJPUwG4ZuQ91fZQoaAZoCWgPQwjOxkrMs5Lbv5SGlFKUaBVLMmgWR0CT2QhZQpF1dX2UKGgGaAloD0MIFOeoo+Nq3b+UhpRSlGgVSzJoFkdAk9hMSf16FHV9lChoBmgJaA9DCCB7vfvjveC/lIaUUpRoFUsyaBZHQJPXdTFVDKJ1fZQoaAZoCWgPQwikUuxoHOrev5SGlFKUaBVLMmgWR0CT1tACnxaxdX2UKGgGaAloD0MIIM8u3/ow6L+UhpRSlGgVSzJoFkdAk9txikO7QXV9lChoBmgJaA9DCKp/EMmQ4+K/lIaUUpRoFUsyaBZHQJPatSl3yI51fZQoaAZoCWgPQwgttHOaBVrhv5SGlFKUaBVLMmgWR0CT2d4VRDTjdX2UKGgGaAloD0MI1LfM6bKY7L+UhpRSlGgVSzJoFkdAk9k7E1l5GHV9lChoBmgJaA9DCIjX9Qt2w9m/lIaUUpRoFUsyaBZHQJPdlX/5tWN1fZQoaAZoCWgPQwjRd7eyRGfkv5SGlFKUaBVLMmgWR0CT3NnL7oB8dX2UKGgGaAloD0MIZ9Xnaiv23r+UhpRSlGgVSzJoFkdAk9wCs4ku6HV9lChoBmgJaA9DCEyOO6WD9e6/lIaUUpRoFUsyaBZHQJPbXXjENvx1ZS4="
|
62 |
+
},
|
63 |
+
"ep_success_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
+
},
|
67 |
+
"_n_updates": 12500,
|
68 |
+
"n_steps": 8,
|
69 |
+
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
+
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
+
"max_grad_norm": 0.5,
|
74 |
+
"normalize_advantage": false,
|
75 |
+
"observation_space": {
|
76 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
77 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
78 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
79 |
+
"_shape": null,
|
80 |
+
"dtype": null,
|
81 |
+
"_np_random": null
|
82 |
+
},
|
83 |
+
"action_space": {
|
84 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
85 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
86 |
+
"dtype": "float32",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"bounded_below": "[ True True True]",
|
93 |
+
"bounded_above": "[ True True True]",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4
|
97 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b7faa93f3061cdd84d5dd8c28fd75a0ea95abc7ce92715a29902a8c2376ee18
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:134ac3e000e0b089204f5bea2de8d3ecdec56cfa466a9dd84b280d4970921ff5
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1a54039f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1a54037fc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 400000, "_total_timesteps": 400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681844207113003370, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIF5pPFzUl7288UU/IF5pPFzUl7288UU/IF5pPFzUl7288UU/IF5pPFzUl7288UU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATsJwvyiTpb5gUzc+P6F8vzT2B7/HQK4/BHW+vwFmQD8kqKe+yEarP4xhwr+6eP4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAgXmk8XNSXvbzxRT9jwio9JA95OmxRlT0gXmk8XNSXvbzxRT9jwio9JA95OmxRlT0gXmk8XNSXvbzxRT9jwio9JA95OmxRlT0gXmk8XNSXvbzxRT9jwio9JA95OmxRlT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.01424363 -0.07413551 0.7732198 ]\n [ 0.01424363 -0.07413551 0.7732198 ]\n [ 0.01424363 -0.07413551 0.7732198 ]\n [ 0.01424363 -0.07413551 0.7732198 ]]", "desired_goal": "[[-0.94046485 -0.32338834 0.17902899]\n [-0.9868354 -0.5311005 1.3613518 ]\n [-1.487946 0.75155646 -0.3274547 ]\n [ 1.3380976 -1.5186019 0.49701482]]", "observation": "[[ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]\n [ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]\n [ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]\n [ 0.01424363 -0.07413551 0.7732198 0.04168929 0.00095009 0.07290921]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS4SnvddWMD0S3DM+hOURvSwiAD6LpQ8+yjJtvQ/iZL3YCZ89MoE6vH85TL204Is+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0817953 0.04305157 0.17564419]\n [-0.03561927 0.12513036 0.14027993]\n [-0.05790976 -0.05587965 0.07765549]\n [-0.01138334 -0.04985952 0.27319872]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI51Hxf0dU1r+UhpRSlIwBbJRLMowBdJRHQJOhcvoNd7h1fZQoaAZoCWgPQwjkh0ojZvbXv5SGlFKUaBVLMmgWR0CToLbI91U3dX2UKGgGaAloD0MIWoEhq1s97L+UhpRSlGgVSzJoFkdAk5/gB1cMVnV9lChoBmgJaA9DCODyWDMyyOC/lIaUUpRoFUsyaBZHQJOfOsny/bl1fZQoaAZoCWgPQwiYFvVJ7jDhv5SGlFKUaBVLMmgWR0CTpFz3AVO9dX2UKGgGaAloD0MI86rOaoE947+UhpRSlGgVSzJoFkdAk6Oi7f51vHV9lChoBmgJaA9DCHEhj+BGytS/lIaUUpRoFUsyaBZHQJOizbBXS0B1fZQoaAZoCWgPQwh1sWmlEMjzv5SGlFKUaBVLMmgWR0CToipUPxx2dX2UKGgGaAloD0MIEwoRcAgV9r+UhpRSlGgVSzJoFkdAk6fUornTzHV9lChoBmgJaA9DCHbAdcWMcOO/lIaUUpRoFUsyaBZHQJOnGkZaV2R1fZQoaAZoCWgPQwjwUuqScYzov5SGlFKUaBVLMmgWR0CTpkTdcjZ+dX2UKGgGaAloD0MIVS5U/rW88r+UhpRSlGgVSzJoFkdAk6WiCz1K5HV9lChoBmgJaA9DCIhGdxA7U92/lIaUUpRoFUsyaBZHQJOrN70Fr2x1fZQoaAZoCWgPQwhODTSfczfqv5SGlFKUaBVLMmgWR0CTqoEB8x9HdX2UKGgGaAloD0MIxoUDIVlA+b+UhpRSlGgVSzJoFkdAk6mrxmTTv3V9lChoBmgJaA9DCEI+6Nmsuvm/lIaUUpRoFUsyaBZHQJOpEQnQY1p1fZQoaAZoCWgPQwgHmWTkLCzzv5SGlFKUaBVLMmgWR0CTrvJV81GcdX2UKGgGaAloD0MIDM11Gmmp67+UhpRSlGgVSzJoFkdAk644aHbh33V9lChoBmgJaA9DCPiJA+j3fe6/lIaUUpRoFUsyaBZHQJOtYxagVXV1fZQoaAZoCWgPQwis4SL3dPXwv5SGlFKUaBVLMmgWR0CTrMIUJv5ydX2UKGgGaAloD0MIN/3ZjxSR7b+UhpRSlGgVSzJoFkdAk7K2IsRQJ3V9lChoBmgJaA9DCLCqXn6nyeS/lIaUUpRoFUsyaBZHQJOx/Dbah6B1fZQoaAZoCWgPQwhpAkUsYljuv5SGlFKUaBVLMmgWR0CTsSdu5z5odX2UKGgGaAloD0MIOX8TChHw6b+UhpRSlGgVSzJoFkdAk7CETURWcXV9lChoBmgJaA9DCAFRMGMK1va/lIaUUpRoFUsyaBZHQJO2eMHbAUN1fZQoaAZoCWgPQwjjGTT0T3DZv5SGlFKUaBVLMmgWR0CTtb5ooNNKdX2UKGgGaAloD0MIxXQhVn8E47+UhpRSlGgVSzJoFkdAk7TpPykKu3V9lChoBmgJaA9DCIOieQCLfOi/lIaUUpRoFUsyaBZHQJO0RnPE87p1fZQoaAZoCWgPQwiSs7CnHf78v5SGlFKUaBVLMmgWR0CTuN79Q40edX2UKGgGaAloD0MICi5W1GCa8L+UhpRSlGgVSzJoFkdAk7gi6H0sfHV9lChoBmgJaA9DCIffTbfskPS/lIaUUpRoFUsyaBZHQJO3TBHkLhJ1fZQoaAZoCWgPQwj9v+rIkU74v5SGlFKUaBVLMmgWR0CTtqdDIBBBdX2UKGgGaAloD0MIwvo/h/ny5r+UhpRSlGgVSzJoFkdAk7r7wvxpc3V9lChoBmgJaA9DCESkpl1Mc/G/lIaUUpRoFUsyaBZHQJO6P5Jsfq51fZQoaAZoCWgPQwjXijbHuc3hv5SGlFKUaBVLMmgWR0CTuWgs9SuRdX2UKGgGaAloD0MIoPzdO2oM8b+UhpRSlGgVSzJoFkdAk7jDMFEApHV9lChoBmgJaA9DCOoENBE2vOG/lIaUUpRoFUsyaBZHQJO9ia5PM0R1fZQoaAZoCWgPQwhnKsQj8fL2v5SGlFKUaBVLMmgWR0CTvM+S8rZrdX2UKGgGaAloD0MIGHjuPVyy9b+UhpRSlGgVSzJoFkdAk7v4nrpqynV9lChoBmgJaA9DCJiIt86/Xe2/lIaUUpRoFUsyaBZHQJO7U6uGKyh1fZQoaAZoCWgPQwgiqBq9GiDzv5SGlFKUaBVLMmgWR0CTv6M2FWXDdX2UKGgGaAloD0MIM4ekFkrm8r+UhpRSlGgVSzJoFkdAk77nL3bmEHV9lChoBmgJaA9DCOfkRSbgF/a/lIaUUpRoFUsyaBZHQJO+EV1wHZ91fZQoaAZoCWgPQwhxkBDlCxr5v5SGlFKUaBVLMmgWR0CTvW5UcXFcdX2UKGgGaAloD0MIVgxXB0Dc4r+UhpRSlGgVSzJoFkdAk8HVw5vLo3V9lChoBmgJaA9DCEPnNXaJauy/lIaUUpRoFUsyaBZHQJPBGbLEDQt1fZQoaAZoCWgPQwj/s+bHX1rvv5SGlFKUaBVLMmgWR0CTwEKkl/pddX2UKGgGaAloD0MI2PSgoBSt8L+UhpRSlGgVSzJoFkdAk7+doexOcnV9lChoBmgJaA9DCMnnFU89UvW/lIaUUpRoFUsyaBZHQJPD8QlKK511fZQoaAZoCWgPQwjoFORnI9fhv5SGlFKUaBVLMmgWR0CTwzUr08NhdX2UKGgGaAloD0MI275H/fVK8r+UhpRSlGgVSzJoFkdAk8JeJcgQpXV9lChoBmgJaA9DCE6XxcTmY+O/lIaUUpRoFUsyaBZHQJPBuQOnVG11fZQoaAZoCWgPQwjBHahTHh32v5SGlFKUaBVLMmgWR0CTxhudwvQGdX2UKGgGaAloD0MIxyk6ksv/8r+UhpRSlGgVSzJoFkdAk8Vf7JnxrnV9lChoBmgJaA9DCFrXaDnQQ+W/lIaUUpRoFUsyaBZHQJPEiOKfnOl1fZQoaAZoCWgPQwjL1voioS3pv5SGlFKUaBVLMmgWR0CTw+PZqVQidX2UKGgGaAloD0MIe0ljtI6q7b+UhpRSlGgVSzJoFkdAk8g4BV+7UXV9lChoBmgJaA9DCIv7j0yHzui/lIaUUpRoFUsyaBZHQJPHe/8EV351fZQoaAZoCWgPQwjQ8dHijOHvv5SGlFKUaBVLMmgWR0CTxqSqU/wBdX2UKGgGaAloD0MIukp319mQ7L+UhpRSlGgVSzJoFkdAk8X/7BO58XV9lChoBmgJaA9DCAwDllzF4uy/lIaUUpRoFUsyaBZHQJPKTeIl+mZ1fZQoaAZoCWgPQwjxZg3eV2Xnv5SGlFKUaBVLMmgWR0CTyZHxz7uVdX2UKGgGaAloD0MIswdagSGr6L+UhpRSlGgVSzJoFkdAk8i6+WWyDHV9lChoBmgJaA9DCE0vMZbpV/C/lIaUUpRoFUsyaBZHQJPIFYzSCvp1fZQoaAZoCWgPQwgtBaT9D7Ddv5SGlFKUaBVLMmgWR0CTzG8V58jSdX2UKGgGaAloD0MI7rH0oQvq6r+UhpRSlGgVSzJoFkdAk8uyfL9uP3V9lChoBmgJaA9DCJm4VRAD3eS/lIaUUpRoFUsyaBZHQJPK2yVv/BF1fZQoaAZoCWgPQwjpX5LKFPPxv5SGlFKUaBVLMmgWR0CTyjWEK3NLdX2UKGgGaAloD0MISYJwBRTq8L+UhpRSlGgVSzJoFkdAk86Vgx8D0XV9lChoBmgJaA9DCLCuCtRicOy/lIaUUpRoFUsyaBZHQJPN2ZBsyi51fZQoaAZoCWgPQwhgdeRIZ+Dlv5SGlFKUaBVLMmgWR0CTzQKKYRdydX2UKGgGaAloD0MIeCrgnudP1b+UhpRSlGgVSzJoFkdAk8xdpyp71XV9lChoBmgJaA9DCMSXiSKk7uW/lIaUUpRoFUsyaBZHQJPQsEt/WlN1fZQoaAZoCWgPQwj4xhAAHHviv5SGlFKUaBVLMmgWR0CTz/TdtVJddX2UKGgGaAloD0MIrYpwk1Fl3L+UhpRSlGgVSzJoFkdAk88ePmxMWXV9lChoBmgJaA9DCDbJj/gV6+W/lIaUUpRoFUsyaBZHQJPOePdVNpN1fZQoaAZoCWgPQwjVWwNbJdjjv5SGlFKUaBVLMmgWR0CT0r8eS0SidX2UKGgGaAloD0MIRnu8kA6P5b+UhpRSlGgVSzJoFkdAk9IDAzpHJHV9lChoBmgJaA9DCO1kcJS8uu6/lIaUUpRoFUsyaBZHQJPRK4Wk8A91fZQoaAZoCWgPQwgyk6gXfJrZv5SGlFKUaBVLMmgWR0CT0IbBXS0CdX2UKGgGaAloD0MIigESTaAI5r+UhpRSlGgVSzJoFkdAk9TuhbnoxHV9lChoBmgJaA9DCE4oRMAh1Oy/lIaUUpRoFUsyaBZHQJPUMrupjtp1fZQoaAZoCWgPQwgJjWDj+nfXv5SGlFKUaBVLMmgWR0CT01vzvqkedX2UKGgGaAloD0MIO/w1WaMe67+UhpRSlGgVSzJoFkdAk9K2dRR/E3V9lChoBmgJaA9DCNpU3SObq9q/lIaUUpRoFUsyaBZHQJPW+CXhOxl1fZQoaAZoCWgPQwhYb9QK03fiv5SGlFKUaBVLMmgWR0CT1jxj8UEgdX2UKGgGaAloD0MIb/PGSWHezb+UhpRSlGgVSzJoFkdAk9Vlm8M/hXV9lChoBmgJaA9DCKlMMQdBx+a/lIaUUpRoFUsyaBZHQJPUwG4ZuQ91fZQoaAZoCWgPQwjOxkrMs5Lbv5SGlFKUaBVLMmgWR0CT2QhZQpF1dX2UKGgGaAloD0MIFOeoo+Nq3b+UhpRSlGgVSzJoFkdAk9hMSf16FHV9lChoBmgJaA9DCCB7vfvjveC/lIaUUpRoFUsyaBZHQJPXdTFVDKJ1fZQoaAZoCWgPQwikUuxoHOrev5SGlFKUaBVLMmgWR0CT1tACnxaxdX2UKGgGaAloD0MIIM8u3/ow6L+UhpRSlGgVSzJoFkdAk9txikO7QXV9lChoBmgJaA9DCKp/EMmQ4+K/lIaUUpRoFUsyaBZHQJPatSl3yI51fZQoaAZoCWgPQwgttHOaBVrhv5SGlFKUaBVLMmgWR0CT2d4VRDTjdX2UKGgGaAloD0MI1LfM6bKY7L+UhpRSlGgVSzJoFkdAk9k7E1l5GHV9lChoBmgJaA9DCIjX9Qt2w9m/lIaUUpRoFUsyaBZHQJPdlX/5tWN1fZQoaAZoCWgPQwjRd7eyRGfkv5SGlFKUaBVLMmgWR0CT3NnL7oB8dX2UKGgGaAloD0MIZ9Xnaiv23r+UhpRSlGgVSzJoFkdAk9wCs4ku6HV9lChoBmgJaA9DCEyOO6WD9e6/lIaUUpRoFUsyaBZHQJPbXXjENvx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (259 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.7118706171633675, "std_reward": 0.2635581606750517, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T19:17:55.209783"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42ade98297090fcc4d20ad0dfbe7366ef39e44641f3a07f15754a57bf0030783
|
3 |
+
size 2381
|