--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.174 --- # resnet-50-finetuned This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2785 - Accuracy: 0.174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3027 | 0.14 | 10 | 2.3039 | 0.104 | | 2.2956 | 0.28 | 20 | 2.2954 | 0.112 | | 2.2918 | 0.43 | 30 | 2.2899 | 0.141 | | 2.2881 | 0.57 | 40 | 2.2824 | 0.163 | | 2.2835 | 0.71 | 50 | 2.2861 | 0.181 | | 2.2785 | 0.85 | 60 | 2.2820 | 0.169 | | 2.2783 | 0.99 | 70 | 2.2785 | 0.174 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1 - Datasets 2.14.6 - Tokenizers 0.14.1