Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Vaccine Stock-Out Prediction Models
|
| 2 |
+
|
| 3 |
+
A comprehensive machine learning system for predicting vaccine stock-out risks across multiple countries and supply chain levels.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
This model collection provides stock-out risk predictions for 8 different vaccine types used in immunization programs worldwide. The models are trained on historical data from multiple countries and can predict stock-out risks at different supply chain levels (Central, Subnational, Local Distribution).
|
| 8 |
+
|
| 9 |
+
## Supported Vaccines
|
| 10 |
+
|
| 11 |
+
- **BCG** (Bacille Calmette-Guérin) - Tuberculosis vaccine
|
| 12 |
+
- **HepB** (Hepatitis B) - Hepatitis B vaccine
|
| 13 |
+
- **bOPV** (bivalent Oral Polio Vaccine) - Polio vaccine
|
| 14 |
+
- **Penta** (Pentavalent) - Combined vaccine (DTP + HepB + Hib)
|
| 15 |
+
- **PCV** (Pneumococcal Conjugate Vaccine) - Pneumococcal disease vaccine
|
| 16 |
+
- **Rota** (Rotavirus) - Rotavirus vaccine
|
| 17 |
+
- **IPV** (Inactivated Polio Vaccine) - Injectable polio vaccine
|
| 18 |
+
- **TT/Td/DT** (Tetanus Toxoid/Tetanus-Diphtheria) - Tetanus and diphtheria vaccines
|
| 19 |
+
|
| 20 |
+
## Features
|
| 21 |
+
|
| 22 |
+
- **Multi-country support**: Models trained on data from multiple countries
|
| 23 |
+
- **Supply chain levels**: Supports Central, Subnational, and Local Distribution levels
|
| 24 |
+
- **Population-based**: Considers population size and demographics
|
| 25 |
+
- **Geographic factors**: Incorporates latitude, longitude, and distance metrics
|
| 26 |
+
- **Utilization patterns**: Uses historical utilization data for predictions
|
| 27 |
+
- **Risk assessment**: Provides both binary risk classification and probability scores
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
### Basic Usage
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
from vaccine_stockout_predictor import VaccineStockoutPredictor
|
| 35 |
+
|
| 36 |
+
# Initialize the predictor
|
| 37 |
+
predictor = VaccineStockoutPredictor()
|
| 38 |
+
|
| 39 |
+
# Make a prediction
|
| 40 |
+
result = predictor.predict_stockout_risk(
|
| 41 |
+
country_name="Afghanistan",
|
| 42 |
+
sc_level="Subnational",
|
| 43 |
+
store_name="Kabul",
|
| 44 |
+
vaccine_type="BCG",
|
| 45 |
+
current_stock=50000
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
print(result)
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### Example Output
|
| 52 |
+
|
| 53 |
+
```json
|
| 54 |
+
{
|
| 55 |
+
"vaccine_type": "BCG",
|
| 56 |
+
"country": "Afghanistan",
|
| 57 |
+
"sc_level": "Subnational",
|
| 58 |
+
"store": "Kabul",
|
| 59 |
+
"current_stock": 50000,
|
| 60 |
+
"min_stock": 71980,
|
| 61 |
+
"max_stock": 863763,
|
| 62 |
+
"utilization": 0.063,
|
| 63 |
+
"stockout_risk": 0,
|
| 64 |
+
"risk_probability": 0.12,
|
| 65 |
+
"risk_level": "Low",
|
| 66 |
+
"recommendation": "Stock level adequate. Monitor regularly."
|
| 67 |
+
}
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Batch Predictions
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
# Multiple predictions
|
| 74 |
+
predictions = [
|
| 75 |
+
{
|
| 76 |
+
"country_name": "Afghanistan",
|
| 77 |
+
"sc_level": "Subnational",
|
| 78 |
+
"store_name": "Kabul",
|
| 79 |
+
"vaccine_type": "BCG",
|
| 80 |
+
"current_stock": 50000
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"country_name": "Angola",
|
| 84 |
+
"sc_level": "Central",
|
| 85 |
+
"store_name": "Luanda",
|
| 86 |
+
"vaccine_type": "HepB",
|
| 87 |
+
"current_stock": 10000
|
| 88 |
+
}
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
results = predictor.batch_predict(predictions)
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## Model Information
|
| 95 |
+
|
| 96 |
+
### Training Data
|
| 97 |
+
- **Countries**: Multiple countries including Afghanistan, Angola, and others
|
| 98 |
+
- **Time period**: Historical data covering multiple years
|
| 99 |
+
- **Features**: Population, geographic location, utilization patterns, supply chain metrics
|
| 100 |
+
- **Target**: Binary classification (0 = Low risk, 1 = High risk of stock-out)
|
| 101 |
+
|
| 102 |
+
### Model Performance
|
| 103 |
+
- **Algorithm**: Machine learning models optimized for each vaccine type
|
| 104 |
+
- **Validation**: Cross-validated performance metrics
|
| 105 |
+
- **Features**: Population, distance, utilization, geographic coordinates
|
| 106 |
+
|
| 107 |
+
## Installation
|
| 108 |
+
|
| 109 |
+
```bash
|
| 110 |
+
pip install -r requirements.txt
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## Data Requirements
|
| 114 |
+
|
| 115 |
+
The models require the following information for predictions:
|
| 116 |
+
|
| 117 |
+
- **Country Name**: Must match available countries in reference data
|
| 118 |
+
- **Supply Chain Level**: Central, Subnational, or LD (Local Distribution)
|
| 119 |
+
- **Store Name**: Must exist in the reference database
|
| 120 |
+
- **Vaccine Type**: One of the 8 supported vaccine types
|
| 121 |
+
- **Current Stock**: Current inventory level
|
| 122 |
+
|
| 123 |
+
## Available Data
|
| 124 |
+
|
| 125 |
+
Use the following methods to explore available data:
|
| 126 |
+
|
| 127 |
+
```python
|
| 128 |
+
predictor = VaccineStockoutPredictor()
|
| 129 |
+
|
| 130 |
+
# Get available vaccines
|
| 131 |
+
vaccines = predictor.get_available_vaccines()
|
| 132 |
+
print(f"Available vaccines: {vaccines}")
|
| 133 |
+
|
| 134 |
+
# Get available countries
|
| 135 |
+
countries = predictor.get_available_countries()
|
| 136 |
+
print(f"Available countries: {countries}")
|
| 137 |
+
|
| 138 |
+
# Get stores in a country
|
| 139 |
+
stores = predictor.get_available_stores("Afghanistan", "Subnational")
|
| 140 |
+
print(f"Stores in Afghanistan (Subnational): {stores[:5]}")
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
## Risk Levels
|
| 144 |
+
|
| 145 |
+
- **Low Risk (0)**: Adequate stock levels, low probability of stock-out
|
| 146 |
+
- **High Risk (1)**: Insufficient stock levels, high probability of stock-out
|
| 147 |
+
|
| 148 |
+
## Recommendations
|
| 149 |
+
|
| 150 |
+
The system provides automated recommendations based on:
|
| 151 |
+
- Current stock levels vs. minimum/maximum thresholds
|
| 152 |
+
- Predicted risk probability
|
| 153 |
+
- Historical utilization patterns
|
| 154 |
+
|
| 155 |
+
## Limitations
|
| 156 |
+
|
| 157 |
+
- Models are trained on historical data and may not account for sudden changes
|
| 158 |
+
- Predictions assume normal supply chain operations
|
| 159 |
+
- Geographic and demographic factors may vary over time
|
| 160 |
+
- Emergency situations may require manual intervention
|
| 161 |
+
|
| 162 |
+
## Contributing
|
| 163 |
+
|
| 164 |
+
This model collection is designed for public health applications. For improvements or additional features, please ensure compatibility with existing immunization programs.
|
| 165 |
+
|
| 166 |
+
## License
|
| 167 |
+
|
| 168 |
+
This project is intended for public health and immunization program support.
|
| 169 |
+
|
| 170 |
+
## Citation
|
| 171 |
+
|
| 172 |
+
If you use this model in your research or applications, please cite:
|
| 173 |
+
|
| 174 |
+
```
|
| 175 |
+
Vaccine Stock-Out Prediction Models (2024)
|
| 176 |
+
Multi-country machine learning models for immunization supply chain management
|
| 177 |
+
```
|