Initial commit with folder contents
Browse files- pyproject.toml +42 -0
- src/main.py +50 -0
- src/pipeline.py +83 -0
- uv.lock +0 -0
pyproject.toml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "8"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.5.1",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"torchao==0.6.1",
|
19 |
+
"hf_transfer==0.1.8",
|
20 |
+
"setuptools==75.2.0",
|
21 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
22 |
+
]
|
23 |
+
|
24 |
+
[[tool.edge-maxxing.models]]
|
25 |
+
repository = "black-forest-labs/FLUX.1-schnell"
|
26 |
+
revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
27 |
+
exclude = ["transformer", "vae", "text_encoder_2"]
|
28 |
+
|
29 |
+
[[tool.edge-maxxing.models]]
|
30 |
+
repository = "passfh/flux_transformer"
|
31 |
+
revision = "3c3bcc511f409569adb6c798da415b3fdc9e927d"
|
32 |
+
|
33 |
+
[[tool.edge-maxxing.models]]
|
34 |
+
repository = "passfh/textenc"
|
35 |
+
revision = "a44db2ac3d729d6cc1243dcb906903e77ba26c45"
|
36 |
+
|
37 |
+
[[tool.edge-maxxing.models]]
|
38 |
+
repository = "passfh/vae"
|
39 |
+
revision = "edd99d452c03a8b836758bb89bc775f2f3c3849a"
|
40 |
+
|
41 |
+
[project.scripts]
|
42 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from multiprocessing.connection import Listener
|
3 |
+
from os import chmod, remove
|
4 |
+
from os.path import abspath, exists
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
+
from pipelines.models import TextToImageRequest
|
9 |
+
|
10 |
+
from pipeline import load_pipeline, infer
|
11 |
+
|
12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
print(f"Loading pipeline")
|
17 |
+
pipeline = load_pipeline()
|
18 |
+
|
19 |
+
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
20 |
+
|
21 |
+
if exists(SOCKET):
|
22 |
+
remove(SOCKET)
|
23 |
+
|
24 |
+
with Listener(SOCKET) as listener:
|
25 |
+
chmod(SOCKET, 0o777)
|
26 |
+
|
27 |
+
print(f"Awaiting connections")
|
28 |
+
with listener.accept() as connection:
|
29 |
+
print(f"Connected")
|
30 |
+
|
31 |
+
while True:
|
32 |
+
try:
|
33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
34 |
+
except EOFError:
|
35 |
+
print(f"Inference socket exiting")
|
36 |
+
|
37 |
+
return
|
38 |
+
|
39 |
+
image = infer(request, pipeline)
|
40 |
+
|
41 |
+
data = BytesIO()
|
42 |
+
image.save(data, format=JpegImageFile.format)
|
43 |
+
|
44 |
+
packet = data.getvalue()
|
45 |
+
|
46 |
+
connection.send_bytes(packet)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
2 |
+
from transformers import T5EncoderModel
|
3 |
+
from torch import Generator
|
4 |
+
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
5 |
+
from PIL.Image import Image
|
6 |
+
from diffusers import AutoencoderTiny
|
7 |
+
from pipelines.models import TextToImageRequest
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import torch._dynamo
|
11 |
+
|
12 |
+
|
13 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
14 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
15 |
+
torch._dynamo.config.suppress_errors = True
|
16 |
+
|
17 |
+
|
18 |
+
Pipeline = None
|
19 |
+
CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
|
20 |
+
REVISION = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
21 |
+
|
22 |
+
class Normalization:
|
23 |
+
|
24 |
+
def __init__(self, model, num_bins=256, scale_factor=1.0):
|
25 |
+
self.model = model
|
26 |
+
self.num_bins = num_bins
|
27 |
+
self.scale_factor = scale_factor
|
28 |
+
|
29 |
+
def apply(self):
|
30 |
+
"""
|
31 |
+
applying different transformations to weights and biases.
|
32 |
+
"""
|
33 |
+
for name, param in self.model.named_parameters():
|
34 |
+
if params.requires_grad:
|
35 |
+
with torch.no_grad():
|
36 |
+
# Normalize weights, apply binning, and rescale
|
37 |
+
param_min = param.min()
|
38 |
+
param_max = param.max()
|
39 |
+
param_ranges = param_max - param_min
|
40 |
+
|
41 |
+
if param_range > 0:
|
42 |
+
# Normalize to [0, 1], apply binning, and rescale
|
43 |
+
normalized = (param - param_min) / param_ranges
|
44 |
+
binned = torch.round(normalized * (self.num_bins - 1)) / (self.num_bins - 1)
|
45 |
+
rescaled = binned * param_range + param_min
|
46 |
+
param.data.copy_(rescaled * self.scale_factor)
|
47 |
+
else:
|
48 |
+
# Handle edge case where param_range is 0
|
49 |
+
param.data.zero_()
|
50 |
+
|
51 |
+
for buffer_name, buffer in self.model.named_buffers():
|
52 |
+
with torch.no_grad():
|
53 |
+
buffer.mul_(self.scale_factor)
|
54 |
+
return self.model
|
55 |
+
|
56 |
+
def load_pipeline() -> Pipeline:
|
57 |
+
text_encoder_2 = T5EncoderModel.from_pretrained("passfh/textenc", revision = "a44db2ac3d729d6cc1243dcb906903e77ba26c45", torch_dtype=torch.bfloat16).to(memory_format=torch.channels_last)
|
58 |
+
transformer = FluxTransformer2DModel.from_pretrained(os.path.join(HF_HUB_CACHE, "models--passfh--flux_transformer/snapshots/3c3bcc511f409569adb6c798da415b3fdc9e927d"), torch_dtype=torch.bfloat16, use_safetensors=False).to(memory_format=torch.channels_last)
|
59 |
+
|
60 |
+
pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", revision="741f7c3ce8b383c54771c7003378a50191e9efe9",
|
61 |
+
vae=AutoencoderTiny.from_pretrained("passfh/vae", revision="edd99d452c03a8b836758bb89bc775f2f3c3849a", torch_dtype=torch.bfloat16),
|
62 |
+
transformer=transformer,
|
63 |
+
text_encoder_2=text_encoder_2,
|
64 |
+
torch_dtype=torch.bfloat16
|
65 |
+
)
|
66 |
+
pipeline.to("cuda")
|
67 |
+
|
68 |
+
for _ in range(3):
|
69 |
+
pipeline(prompt="bluelegs, cunila, carbro, Ammonites, Lollardism, forswearer, skullcap, Juglandales", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
70 |
+
|
71 |
+
return pipeline
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
75 |
+
return pipeline(
|
76 |
+
request.prompt,
|
77 |
+
generator=Generator(pipeline.device).manual_seed(request.seed),
|
78 |
+
guidance_scale=0.0,
|
79 |
+
num_inference_steps=4,
|
80 |
+
max_sequence_length=256,
|
81 |
+
height=request.height,
|
82 |
+
width=request.width,
|
83 |
+
).images[0]
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|