Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCan Neural Decompilation Assist Vulnerability Prediction on Binary Code?
Vulnerability prediction is valuable in identifying security issues more efficiently, even though it requires the source code of the target software system, which is a restrictive hypothesis. This paper presents an experimental study to predict vulnerabilities in binary code without source code or complex representations of the binary, leveraging the pivotal idea of decompiling the binary file through neural decompilation and predicting vulnerabilities through deep learning on the decompiled source code. The results outperform the state-of-the-art in both neural decompilation and vulnerability prediction, showing that it is possible to identify vulnerable programs with this approach concerning bi-class (vulnerable/non-vulnerable) and multi-class (type of vulnerability) analysis.
Vulnerability Handling of AI-Generated Code -- Existing Solutions and Open Challenges
The increasing use of generative Artificial Intelligence (AI) in modern software engineering, particularly Large Language Models (LLMs) for code generation, has transformed professional software development by boosting productivity and automating development processes. This adoption, however, has highlighted a significant issue: the introduction of security vulnerabilities into the code. These vulnerabilities result, e.g., from flaws in the training data that propagate into the generated code, creating challenges in disclosing them. Traditional vulnerability handling processes often involve extensive manual review. Applying such traditional processes to AI-generated code is challenging. AI-generated code may include several vulnerabilities, possibly in slightly different forms as developers might not build on already implemented code but prompt similar tasks. In this work, we explore the current state of LLM-based approaches for vulnerability handling, focusing on approaches for vulnerability detection, localization, and repair. We provide an overview of recent progress in this area and highlight open challenges that must be addressed in order to establish a reliable and scalable vulnerability handling process of AI-generated code.
Vulnerability Analysis of Face Morphing Attacks from Landmarks and Generative Adversarial Networks
Morphing attacks is a threat to biometric systems where the biometric reference in an identity document can be altered. This form of attack presents an important issue in applications relying on identity documents such as border security or access control. Research in face morphing attack detection is developing rapidly, however very few datasets with several forms of attacks are publicly available. This paper bridges this gap by providing a new dataset with four different types of morphing attacks, based on OpenCV, FaceMorpher, WebMorph and a generative adversarial network (StyleGAN), generated with original face images from three public face datasets. We also conduct extensive experiments to assess the vulnerability of the state-of-the-art face recognition systems, notably FaceNet, VGG-Face, and ArcFace. The experiments demonstrate that VGG-Face, while being less accurate face recognition system compared to FaceNet, is also less vulnerable to morphing attacks. Also, we observed that na\"ive morphs generated with a StyleGAN do not pose a significant threat.
Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks
Vulnerability identification is crucial to protect the software systems from attacks for cyber security. It is especially important to localize the vulnerable functions among the source code to facilitate the fix. However, it is a challenging and tedious process, and also requires specialized security expertise. Inspired by the work on manually-defined patterns of vulnerabilities from various code representation graphs and the recent advance on graph neural networks, we propose Devign, a general graph neural network based model for graph-level classification through learning on a rich set of code semantic representations. It includes a novel Conv module to efficiently extract useful features in the learned rich node representations for graph-level classification. The model is trained over manually labeled datasets built on 4 diversified large-scale open-source C projects that incorporate high complexity and variety of real source code instead of synthesis code used in previous works. The results of the extensive evaluation on the datasets demonstrate that Devign outperforms the state of the arts significantly with an average of 10.51% higher accuracy and 8.68\% F1 score, increases averagely 4.66% accuracy and 6.37% F1 by the Conv module.
Graph Vulnerability and Robustness: A Survey
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
VECHR: A Dataset for Explainable and Robust Classification of Vulnerability Type in the European Court of Human Rights
Recognizing vulnerability is crucial for understanding and implementing targeted support to empower individuals in need. This is especially important at the European Court of Human Rights (ECtHR), where the court adapts Convention standards to meet actual individual needs and thus ensures effective human rights protection. However, the concept of vulnerability remains elusive at the ECtHR and no prior NLP research has dealt with it. To enable future research in this area, we present VECHR, a novel expert-annotated multi-label dataset comprising of vulnerability type classification and explanation rationale. We benchmark the performance of state-of-the-art models on VECHR from both prediction and explainability perspectives. Our results demonstrate the challenging nature of the task with lower prediction performance and limited agreement between models and experts. Further, we analyze the robustness of these models in dealing with out-of-domain (OOD) data and observe overall limited performance. Our dataset poses unique challenges offering significant room for improvement regarding performance, explainability, and robustness.
Disparate Vulnerability to Membership Inference Attacks
A membership inference attack (MIA) against a machine-learning model enables an attacker to determine whether a given data record was part of the model's training data or not. In this paper, we provide an in-depth study of the phenomenon of disparate vulnerability against MIAs: unequal success rate of MIAs against different population subgroups. We first establish necessary and sufficient conditions for MIAs to be prevented, both on average and for population subgroups, using a notion of distributional generalization. Second, we derive connections of disparate vulnerability to algorithmic fairness and to differential privacy. We show that fairness can only prevent disparate vulnerability against limited classes of adversaries. Differential privacy bounds disparate vulnerability but can significantly reduce the accuracy of the model. We show that estimating disparate vulnerability to MIAs by na\"ively applying existing attacks can lead to overestimation. We then establish which attacks are suitable for estimating disparate vulnerability, and provide a statistical framework for doing so reliably. We conduct experiments on synthetic and real-world data finding statistically significant evidence of disparate vulnerability in realistic settings. The code is available at https://github.com/spring-epfl/disparate-vulnerability
Automated Vulnerability Detection in Source Code Using Deep Representation Learning
Increasing numbers of software vulnerabilities are discovered every year whether they are reported publicly or discovered internally in proprietary code. These vulnerabilities can pose serious risk of exploit and result in system compromise, information leaks, or denial of service. We leveraged the wealth of C and C++ open-source code available to develop a large-scale function-level vulnerability detection system using machine learning. To supplement existing labeled vulnerability datasets, we compiled a vast dataset of millions of open-source functions and labeled it with carefully-selected findings from three different static analyzers that indicate potential exploits. The labeled dataset is available at: https://osf.io/d45bw/. Using these datasets, we developed a fast and scalable vulnerability detection tool based on deep feature representation learning that directly interprets lexed source code. We evaluated our tool on code from both real software packages and the NIST SATE IV benchmark dataset. Our results demonstrate that deep feature representation learning on source code is a promising approach for automated software vulnerability detection.
ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates
Large language models (LLMs) are expected to follow instructions from users and engage in conversations. Techniques to enhance LLMs' instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessarily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We develop two attacks to exploit the ChatBug vulnerability. We demonstrate that a malicious user can exploit the ChatBug vulnerability of eight state-of-the-art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their attack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial training effectively mitigates the ChatBug vulnerability, the victim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Adversarial examples derived from deliberately crafted perturbations on visual inputs can easily harm decision process of deep neural networks. To prevent potential threats, various adversarial training-based defense methods have grown rapidly and become a de facto standard approach for robustness. Despite recent competitive achievements, we observe that adversarial vulnerability varies across targets and certain vulnerabilities remain prevalent. Intriguingly, such peculiar phenomenon cannot be relieved even with deeper architectures and advanced defense methods. To address this issue, in this paper, we introduce a causal approach called Adversarial Double Machine Learning (ADML), which allows us to quantify the degree of adversarial vulnerability for network predictions and capture the effect of treatments on outcome of interests. ADML can directly estimate causal parameter of adversarial perturbations per se and mitigate negative effects that can potentially damage robustness, bridging a causal perspective into the adversarial vulnerability. Through extensive experiments on various CNN and Transformer architectures, we corroborate that ADML improves adversarial robustness with large margins and relieve the empirical observation.
NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
Generalizable Neural Radiance Fields (GNeRF) are one of the most promising real-world solutions for novel view synthesis, thanks to their cross-scene generalization capability and thus the possibility of instant rendering on new scenes. While adversarial robustness is essential for real-world applications, little study has been devoted to understanding its implication on GNeRF. We hypothesize that because GNeRF is implemented by conditioning on the source views from new scenes, which are often acquired from the Internet or third-party providers, there are potential new security concerns regarding its real-world applications. Meanwhile, existing understanding and solutions for neural networks' adversarial robustness may not be applicable to GNeRF, due to its 3D nature and uniquely diverse operations. To this end, we present NeRFool, which to the best of our knowledge is the first work that sets out to understand the adversarial robustness of GNeRF. Specifically, NeRFool unveils the vulnerability patterns and important insights regarding GNeRF's adversarial robustness. Built upon the above insights gained from NeRFool, we further develop NeRFool+, which integrates two techniques capable of effectively attacking GNeRF across a wide range of target views, and provide guidelines for defending against our proposed attacks. We believe that our NeRFool/NeRFool+ lays the initial foundation for future innovations in developing robust real-world GNeRF solutions. Our codes are available at: https://github.com/GATECH-EIC/NeRFool.
Transformer-based Vulnerability Detection in Code at EditTime: Zero-shot, Few-shot, or Fine-tuning?
Software vulnerabilities bear enterprises significant costs. Despite extensive efforts in research and development of software vulnerability detection methods, uncaught vulnerabilities continue to put software owners and users at risk. Many current vulnerability detection methods require that code snippets can compile and build before attempting detection. This, unfortunately, introduces a long latency between the time a vulnerability is injected to the time it is removed, which can substantially increases the cost of fixing a vulnerability. We recognize that the current advances in machine learning can be used to detect vulnerable code patterns on syntactically incomplete code snippets as the developer is writing the code at EditTime. In this paper we present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns to learn complex manifestations of more than 250 vulnerability types and detect vulnerable code patterns at EditTime. We discuss zero-shot, few-shot, and fine-tuning approaches on state of the art pre-trained Large Language Models (LLMs). We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%. We also evaluate our approach to detect vulnerability in auto-generated code by code LLMs. Evaluation on a benchmark of high-risk code scenarios shows a reduction of up to 90% vulnerability reduction.
Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System
Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users into the system's training data to skew the exposure of certain items, known as poisoning attacks. Adversarial training has emerged as a notable defense mechanism against such poisoning attacks within recommender systems. Existing adversarial training methods apply perturbations of the same magnitude across all users to enhance system robustness against attacks. Yet, in reality, we find that attacks often affect only a subset of users who are vulnerable. These perturbations of indiscriminate magnitude make it difficult to balance effective protection for vulnerable users without degrading recommendation quality for those who are not affected. To address this issue, our research delves into understanding user vulnerability. Considering that poisoning attacks pollute the training data, we note that the higher degree to which a recommender system fits users' training data correlates with an increased likelihood of users incorporating attack information, indicating their vulnerability. Leveraging these insights, we introduce the Vulnerability-aware Adversarial Training (VAT), designed to defend against poisoning attacks in recommender systems. VAT employs a novel vulnerability-aware function to estimate users' vulnerability based on the degree to which the system fits them. Guided by this estimation, VAT applies perturbations of adaptive magnitude to each user, not only reducing the success ratio of attacks but also preserving, and potentially enhancing, the quality of recommendations. Comprehensive experiments confirm VAT's superior defensive capabilities across different recommendation models and against various types of attacks.
Automated Code-centric Software Vulnerability Assessment: How Far Are We? An Empirical Study in C/C++
Background: The C and C++ languages hold significant importance in Software Engineering research because of their widespread use in practice. Numerous studies have utilized Machine Learning (ML) and Deep Learning (DL) techniques to detect software vulnerabilities (SVs) in the source code written in these languages. However, the application of these techniques in function-level SV assessment has been largely unexplored. SV assessment is increasingly crucial as it provides detailed information on the exploitability, impacts, and severity of security defects, thereby aiding in their prioritization and remediation. Aims: We conduct the first empirical study to investigate and compare the performance of ML and DL models, many of which have been used for SV detection, for function-level SV assessment in C/C++. Method: Using 9,993 vulnerable C/C++ functions, we evaluated the performance of six multi-class ML models and five multi-class DL models for the SV assessment at the function level based on the Common Vulnerability Scoring System (CVSS). We further explore multi-task learning, which can leverage common vulnerable code to predict all SV assessment outputs simultaneously in a single model, and compare the effectiveness and efficiency of this model type with those of the original multi-class models. Results: We show that ML has matching or even better performance compared to the multi-class DL models for function-level SV assessment with significantly less training time. Employing multi-task learning allows the DL models to perform significantly better, with an average of 8-22% increase in Matthews Correlation Coefficient (MCC). Conclusions: We distill the practices of using data-driven techniques for function-level SV assessment in C/C++, including the use of multi-task DL to balance efficiency and effectiveness. This can establish a strong foundation for future work in this area.
When "Competency" in Reasoning Opens the Door to Vulnerability: Jailbreaking LLMs via Novel Complex Ciphers
Recent advancements in the safety of Large Language Models (LLMs) have primarily focused on mitigating attacks crafted in natural language or in common encryption techniques like Base64. However, new models which often possess better reasoning capabilities, open the door to new attack vectors that were previously non-existent in older models. This seems counter-intuitive at first glance, but these advanced models can decipher more complex cryptic queries that previous models could not, making them susceptible to attacks using such prompts. To exploit this vulnerability, we propose Attacks using Custom Encryptions (ACE), a novel method to jailbreak LLMs by leveraging custom encryption schemes. We evaluate the effectiveness of ACE on four state-of-the-art LLMs, achieving Attack Success Rates (ASR) of up to 66% on close-source models and 88% on open-source models. Building upon this, we introduce Layered Attacks using Custom Encryptions (LACE), which employs multiple layers of encryption through our custom ciphers to further enhance the ASR. Our findings demonstrate that LACE significantly enhances the ability to jailbreak LLMs, increasing the ASR of GPT-4o from 40% to 78%, a 38% improvement. Our results highlight that the advanced capabilities of LLMs introduce unforeseen vulnerabilities to complex attacks. Specifically complex and layered ciphers increase the chance of jailbreaking.
Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models
With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.
LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward
In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.
Efficient Avoidance of Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-constrained Decoding
Auto-completing code enables developers to speed up coding significantly. Recent advances in transformer-based large language model (LLM) technologies have been applied to code synthesis. However, studies show that many of such synthesized codes contain vulnerabilities. We propose a novel vulnerability-constrained decoding approach to reduce the amount of vulnerable code generated by such models. Using a small dataset of labeled vulnerable lines of code, we fine-tune an LLM to include vulnerability labels when generating code, acting as an embedded classifier. Then, during decoding, we deny the model to generate these labels to avoid generating vulnerable code. To evaluate the method, we chose to automatically complete Ethereum Blockchain smart contracts (SCs) as the case study due to the strict requirements of SC security. We first fine-tuned the 6-billion-parameter GPT-J model using 186,397 Ethereum SCs after removing the duplication from 2,217,692 SCs. The fine-tuning took more than one week using ten GPUs. The results showed that our fine-tuned model could synthesize SCs with an average BLEU (BiLingual Evaluation Understudy) score of 0.557. However, many codes in the auto-completed SCs were vulnerable. Using the code before the vulnerable line of 176 SCs containing different types of vulnerabilities to auto-complete the code, we found that more than 70% of the auto-completed codes were insecure. Thus, we further fine-tuned the model on other 941 vulnerable SCs containing the same types of vulnerabilities and applied vulnerability-constrained decoding. The fine-tuning took only one hour with four GPUs. We then auto-completed the 176 SCs again and found that our approach could identify 62% of the code to be generated as vulnerable and avoid generating 67% of them, indicating the approach could efficiently and effectively avoid vulnerabilities in the auto-completed code.
Towards Robust Model Watermark via Reducing Parametric Vulnerability
Deep neural networks are valuable assets considering their commercial benefits and huge demands for costly annotation and computation resources. To protect the copyright of DNNs, backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model by embedding a specific backdoor behavior before releasing it. The defenders (usually the model owners) can identify whether a suspicious third-party model is ``stolen'' from them based on the presence of the behavior. Unfortunately, these watermarks are proven to be vulnerable to removal attacks even like fine-tuning. To further explore this vulnerability, we investigate the parameter space and find there exist many watermark-removed models in the vicinity of the watermarked one, which may be easily used by removal attacks. Inspired by this finding, we propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior. Extensive experiments demonstrate that our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks. The codes for reproducing our main experiments are available at https://github.com/GuanhaoGan/robust-model-watermarking.
Learning to Quantize Vulnerability Patterns and Match to Locate Statement-Level Vulnerabilities
Deep learning (DL) models have become increasingly popular in identifying software vulnerabilities. Prior studies found that vulnerabilities across different vulnerable programs may exhibit similar vulnerable scopes, implicitly forming discernible vulnerability patterns that can be learned by DL models through supervised training. However, vulnerable scopes still manifest in various spatial locations and formats within a program, posing challenges for models to accurately identify vulnerable statements. Despite this challenge, state-of-the-art vulnerability detection approaches fail to exploit the vulnerability patterns that arise in vulnerable programs. To take full advantage of vulnerability patterns and unleash the ability of DL models, we propose a novel vulnerability-matching approach in this paper, drawing inspiration from program analysis tools that locate vulnerabilities based on pre-defined patterns. Specifically, a vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns. During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities within a given program. Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions. The evaluation results show that our approach achieves an F1-score of 94% (6% higher than the previous best) and 82% (19% higher than the previous best) for function and statement-level vulnerability identification, respectively. These substantial enhancements highlight the effectiveness of our approach to identifying vulnerabilities. The training code and pre-trained models are available at https://github.com/optimatch/optimatch.
Exploring the Universal Vulnerability of Prompt-based Learning Paradigm
Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting. However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text. In this paper, we explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text. In both scenarios, we demonstrate that our triggers can totally control or severely decrease the performance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the universal vulnerability of the prompt-based learning paradigm. Further experiments show that adversarial triggers have good transferability among language models. We also find conventional fine-tuning models are not vulnerable to adversarial triggers constructed from pre-trained language models. We conclude by proposing a potential solution to mitigate our attack methods. Code and data are publicly available at https://github.com/leix28/prompt-universal-vulnerability
Featherweight Assisted Vulnerability Discovery
Predicting vulnerable source code helps to focus attention on those parts of the code that need to be examined with more scrutiny. Recent work proposed the use of function names as semantic cues that can be learned by a deep neural network (DNN) to aid in the hunt for vulnerability of functions. Combining identifier splitting, which splits each function name into its constituent words, with a novel frequency-based algorithm, we explore the extent to which the words that make up a function's name can predict potentially vulnerable functions. In contrast to *lightweight* predictions by a DNN that considers only function names, avoiding the use of a DNN provides *featherweight* predictions. The underlying idea is that function names that contain certain "dangerous" words are more likely to accompany vulnerable functions. Of course, this assumes that the frequency-based algorithm can be properly tuned to focus on truly dangerous words. Because it is more transparent than a DNN, the frequency-based algorithm enables us to investigate the inner workings of the DNN. If successful, this investigation into what the DNN does and does not learn will help us train more effective future models. We empirically evaluate our approach on a heterogeneous dataset containing over 73000 functions labeled vulnerable, and over 950000 functions labeled benign. Our analysis shows that words alone account for a significant portion of the DNN's classification ability. We also find that words are of greatest value in the datasets with a more homogeneous vocabulary. Thus, when working within the scope of a given project, where the vocabulary is unavoidably homogeneous, our approach provides a cheaper, potentially complementary, technique to aid in the hunt for source-code vulnerabilities. Finally, this approach has the advantage that it is viable with orders of magnitude less training data.
Deep Learning based Vulnerability Detection: Are We There Yet?
Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a surge of interest in applying DL for automated vulnerability detection. Several recent studies have demonstrated promising results achieving an accuracy of up to 95% at detecting vulnerabilities. In this paper, we ask, "how well do the state-of-the-art DL-based techniques perform in a real-world vulnerability prediction scenario?". To our surprise, we find that their performance drops by more than 50%. A systematic investigation of what causes such precipitous performance drop reveals that existing DL-based vulnerability prediction approaches suffer from challenges with the training data (e.g., data duplication, unrealistic distribution of vulnerable classes, etc.) and with the model choices (e.g., simple token-based models). As a result, these approaches often do not learn features related to the actual cause of the vulnerabilities. Instead, they learn unrelated artifacts from the dataset (e.g., specific variable/function names, etc.). Leveraging these empirical findings, we demonstrate how a more principled approach to data collection and model design, based on realistic settings of vulnerability prediction, can lead to better solutions. The resulting tools perform significantly better than the studied baseline: up to 33.57% boost in precision and 128.38% boost in recall compared to the best performing model in the literature. Overall, this paper elucidates existing DL-based vulnerability prediction systems' potential issues and draws a roadmap for future DL-based vulnerability prediction research. In that spirit, we make available all the artifacts supporting our results: https://git.io/Jf6IA.
Evaluating Graph Vulnerability and Robustness using TIGER
Network robustness plays a crucial role in our understanding of complex interconnected systems such as transportation, communication, and computer networks. While significant research has been conducted in the area of network robustness, no comprehensive open-source toolbox currently exists to assist researchers and practitioners in this important topic. This lack of available tools hinders reproducibility and examination of existing work, development of new research, and dissemination of new ideas. We contribute TIGER, an open-sourced Python toolbox to address these challenges. TIGER contains 22 graph robustness measures with both original and fast approximate versions; 17 failure and attack strategies; 15 heuristic and optimization-based defense techniques; and 4 simulation tools. By democratizing the tools required to study network robustness, our goal is to assist researchers and practitioners in analyzing their own networks; and facilitate the development of new research in the field. TIGER has been integrated into the Nvidia Data Science Teaching Kit available to educators across the world; and Georgia Tech's Data and Visual Analytics class with over 1,000 students. TIGER is open sourced at: https://github.com/safreita1/TIGER
Knowledge Migration Framework for Smart Contract Vulnerability Detection
As a cornerstone of blockchain technology in the 3.0 era, smart contracts play a pivotal role in the evolution of blockchain systems. In order to address the limitations of existing smart contract vulnerability detection models with regard to their generalisation capability, an AF-STip smart contract vulnerability detection framework incorporating efficient knowledge migration is proposed. AF-STip employs the teacher network as the main model and migrates the knowledge processed by the smart contract to the student model using a data-free knowledge distillation method. The student model utilises this knowledge to enhance its vulnerability detection capabilities. The approach markedly enhances the model's capacity for feature extraction and cross-class adaptation, while concurrently reducing computational overhead.In order to further enhance the extraction of vulnerability features, an adaptive fusion module is proposed in this paper, which aims to strengthen the interaction and fusion of feature information.The experimental results demonstrate that the STip model attains an average F1 value detection score of 91.16% for the four vulnerabilities without disclosing the original smart contract data. To validate the viability of the proposed lightweight migration approach, the student model is deployed in a migration learning task targeting a novel vulnerability type, resulting in an accuracy of 91.02% and an F1 score of 90.46%. To the best of our knowledge, AF-STip is the inaugural model to apply data-free knowledge migration to smart contract vulnerability detection. While markedly reducing the computational overhead, the method still demonstrates exceptional performance in detecting novel vulnerabilities.
Code Structure-Aware through Line-level Semantic Learning for Code Vulnerability Detection
Different from the flow semantics of natural languages, programming languages are inherently rigid in structure and grammar. Existing fine-tuning methodologies for code vulnerability detection generally treat code as long text sequences, stripping away structural elements such as newlines ('/n') and whitespace. However, this approach inadvertently results in the loss of crucial structural information, diminishing the distinct characteristics of code and impairing the accuracy of vulnerability detection. To address these challenges, we propose a novel network architecture method based on pre-trained code models, which incorporates structural information awareness. We propose an enhanced code text processing workflow that retains structural elements prior to modeling. This refinement allows the model to retain and exploit line-level structural information and semantic information during the modeling process. Furthermore, we introduce a new network architecture, the Code Structure-Aware Network through Line-level Semantic Learning (CSLS), which integrates three key components: global vulnerability awareness, line-structural awareness, and sensitive-line awareness. We have conducted comprehensive experiments using vulnerability detection datasets from real-world projects. Extensive experiments were conducted on vulnerability detection datasets derived from real-world projects. The results demonstrate that our new code pre-processing flow significantly improves existing baselines (e.g., a 3\% accuracy improvement on the Devign dataset when applied to popular models such as CoderBert and UniXcoder). The proposed network architecture also demonstrates superior accuracy in detecting vulnerabilities, surpassing newly established benchmarks. These findings underscore the importance of structural information in enhancing the efficacy of code vulnerability detection models.
eyeballvul: a future-proof benchmark for vulnerability detection in the wild
Long contexts of recent LLMs have enabled a new use case: asking models to find security vulnerabilities in entire codebases. To evaluate model performance on this task, we introduce eyeballvul: a benchmark designed to test the vulnerability detection capabilities of language models at scale, that is sourced and updated weekly from the stream of published vulnerabilities in open-source repositories. The benchmark consists of a list of revisions in different repositories, each associated with the list of known vulnerabilities present at that revision. An LLM-based scorer is used to compare the list of possible vulnerabilities returned by a model to the list of known vulnerabilities for each revision. As of July 2024, eyeballvul contains 24,000+ vulnerabilities across 6,000+ revisions and 5,000+ repositories, and is around 55GB in size.
Revisiting the Performance of Deep Learning-Based Vulnerability Detection on Realistic Datasets
The impact of software vulnerabilities on everyday software systems is significant. Despite deep learning models being proposed for vulnerability detection, their reliability is questionable. Prior evaluations show high recall/F1 scores of up to 99%, but these models underperform in practical scenarios, particularly when assessed on entire codebases rather than just the fixing commit. This paper introduces Real-Vul, a comprehensive dataset representing real-world scenarios for evaluating vulnerability detection models. Evaluating DeepWukong, LineVul, ReVeal, and IVDetect shows a significant drop in performance, with precision decreasing by up to 95 percentage points and F1 scores by up to 91 points. Furthermore, Model performance fluctuates based on vulnerability characteristics, with better F1 scores for information leaks or code injection than for path resolution or predictable return values. The results highlight a significant performance gap that needs addressing before deploying deep learning-based vulnerability detection in practical settings. Overfitting is identified as a key issue, and an augmentation technique is proposed, potentially improving performance by up to 30%. Contributions include a dataset creation approach for better model evaluation, Real-Vul dataset, and empirical evidence of deep learning models struggling in real-world settings.
Unveiling Typographic Deceptions: Insights of the Typographic Vulnerability in Large Vision-Language Model
Large Vision-Language Models (LVLMs) rely on vision encoders and Large Language Models (LLMs) to exhibit remarkable capabilities on various multi-modal tasks in the joint space of vision and language. However, the Typographic Attack, which disrupts vision-language models (VLMs) such as Contrastive Language-Image Pretraining (CLIP), has also been expected to be a security threat to LVLMs. Firstly, we verify typographic attacks on current well-known commercial and open-source LVLMs and uncover the widespread existence of this threat. Secondly, to better assess this vulnerability, we propose the most comprehensive and largest-scale Typographic Dataset to date. The Typographic Dataset not only considers the evaluation of typographic attacks under various multi-modal tasks but also evaluates the effects of typographic attacks, influenced by texts generated with diverse factors. Based on the evaluation results, we investigate the causes why typographic attacks may impact VLMs and LVLMs, leading to three highly insightful discoveries. By the examination of our discoveries and experimental validation in the Typographic Dataset, we reduce the performance degradation from 42.07% to 13.90% when LVLMs confront typographic attacks.
Large Language Model-Powered Smart Contract Vulnerability Detection: New Perspectives
This paper provides a systematic analysis of the opportunities, challenges, and potential solutions of harnessing Large Language Models (LLMs) such as GPT-4 to dig out vulnerabilities within smart contracts based on our ongoing research. For the task of smart contract vulnerability detection, achieving practical usability hinges on identifying as many true vulnerabilities as possible while minimizing the number of false positives. Nonetheless, our empirical study reveals contradictory yet interesting findings: generating more answers with higher randomness largely boosts the likelihood of producing a correct answer but inevitably leads to a higher number of false positives. To mitigate this tension, we propose an adversarial framework dubbed GPTLens that breaks the conventional one-stage detection into two synergistic stages - generation and discrimination, for progressive detection and refinement, wherein the LLM plays dual roles, i.e., auditor and critic, respectively. The goal of auditor is to yield a broad spectrum of vulnerabilities with the hope of encompassing the correct answer, whereas the goal of critic that evaluates the validity of identified vulnerabilities is to minimize the number of false positives. Experimental results and illustrative examples demonstrate that auditor and critic work together harmoniously to yield pronounced improvements over the conventional one-stage detection. GPTLens is intuitive, strategic, and entirely LLM-driven without relying on specialist expertise in smart contracts, showcasing its methodical generality and potential to detect a broad spectrum of vulnerabilities. Our code is available at: https://github.com/git-disl/GPTLens.
VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
This paper presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis
Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.
VulDeePecker: A Deep Learning-Based System for Vulnerability Detection
The automatic detection of software vulnerabilities is an important research problem. However, existing solutions to this problem rely on human experts to define features and often miss many vulnerabilities (i.e., incurring high false negative rate). In this paper, we initiate the study of using deep learning-based vulnerability detection to relieve human experts from the tedious and subjective task of manually defining features. Since deep learning is motivated to deal with problems that are very different from the problem of vulnerability detection, we need some guiding principles for applying deep learning to vulnerability detection. In particular, we need to find representations of software programs that are suitable for deep learning. For this purpose, we propose using code gadgets to represent programs and then transform them into vectors, where a code gadget is a number of (not necessarily consecutive) lines of code that are semantically related to each other. This leads to the design and implementation of a deep learning-based vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker). In order to evaluate VulDeePecker, we present the first vulnerability dataset for deep learning approaches. Experimental results show that VulDeePecker can achieve much fewer false negatives (with reasonable false positives) than other approaches. We further apply VulDeePecker to 3 software products (namely Xen, Seamonkey, and Libav) and detect 4 vulnerabilities, which are not reported in the National Vulnerability Database but were "silently" patched by the vendors when releasing later versions of these products; in contrast, these vulnerabilities are almost entirely missed by the other vulnerability detection systems we experimented with.
Benchmarking Large Language Models for Multi-Language Software Vulnerability Detection
Recent advancements in generative AI have led to the widespread adoption of large language models (LLMs) in software engineering, addressing numerous long-standing challenges. However, a comprehensive study examining the capabilities of LLMs in software vulnerability detection (SVD), a crucial aspect of software security, is currently lacking. Existing research primarily focuses on evaluating LLMs using C/C++ datasets. It typically explores only one or two strategies among prompt engineering, instruction tuning, and sequence classification fine-tuning for open-source LLMs. Consequently, there is a significant knowledge gap regarding the effectiveness of diverse LLMs in detecting vulnerabilities across various programming languages. To address this knowledge gap, we present a comprehensive empirical study evaluating the performance of LLMs on the SVD task. We have compiled a comprehensive dataset comprising 8,260 vulnerable functions in Python, 7,505 in Java, and 28,983 in JavaScript. We assess five open-source LLMs using multiple approaches, including prompt engineering, instruction tuning, and sequence classification fine-tuning. These LLMs are benchmarked against five fine-tuned small language models and two open-source static application security testing tools. Furthermore, we explore two avenues to improve LLM performance on SVD: a) Data perspective: Retraining models using downsampled balanced datasets. b) Model perspective: Investigating ensemble learning methods that combine predictions from multiple LLMs. Our comprehensive experiments demonstrate that SVD remains a challenging task for LLMs. This study provides a thorough understanding of the role of LLMs in SVD and offers practical insights for future advancements in leveraging generative AI to enhance software security practices.
Leveraging multi-task learning to improve the detection of SATD and vulnerability
Multi-task learning is a paradigm that leverages information from related tasks to improve the performance of machine learning. Self-Admitted Technical Debt (SATD) are comments in the code that indicate not-quite-right code introduced for short-term needs, i.e., technical debt (TD). Previous research has provided evidence of a possible relationship between SATD and the existence of vulnerabilities in the code. In this work, we investigate if multi-task learning could leverage the information shared between SATD and vulnerabilities to improve the automatic detection of these issues. To this aim, we implemented VulSATD, a deep learner that detects vulnerable and SATD code based on CodeBERT, a pre-trained transformers model. We evaluated VulSATD on MADE-WIC, a fused dataset of functions annotated for TD (through SATD) and vulnerability. We compared the results using single and multi-task approaches, obtaining no significant differences even after employing a weighted loss. Our findings indicate the need for further investigation into the relationship between these two aspects of low-quality code. Specifically, it is possible that only a subset of technical debt is directly associated with security concerns. Therefore, the relationship between different types of technical debt and software vulnerabilities deserves future exploration and a deeper understanding.
Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation
Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGenSecuCoGen has been uploaded as supplemental material and will be made publicly available after publication., a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.
DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection
We propose and release a new vulnerable source code dataset. We curate the dataset by crawling security issue websites, extracting vulnerability-fixing commits and source codes from the corresponding projects. Our new dataset contains 18,945 vulnerable functions spanning 150 CWEs and 330,492 non-vulnerable functions extracted from 7,514 commits. Our dataset covers 295 more projects than all previous datasets combined. Combining our new dataset with previous datasets, we present an analysis of the challenges and promising research directions of using deep learning for detecting software vulnerabilities. We study 11 model architectures belonging to 4 families. Our results show that deep learning is still not ready for vulnerability detection, due to high false positive rate, low F1 score, and difficulty of detecting hard CWEs. In particular, we demonstrate an important generalization challenge for the deployment of deep learning-based models. We show that increasing the volume of training data may not further improve the performance of deep learning models for vulnerability detection, but might be useful to improve the generalization ability to unseen projects. We also identify hopeful future research directions. We demonstrate that large language models (LLMs) are a promising research direction for ML-based vulnerability detection, outperforming Graph Neural Networks (GNNs) with code-structure features in our experiments. Moreover, developing source code specific pre-training objectives is a promising research direction to improve the vulnerability detection performance.
Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability of the Embedding Layers in NLP Models
Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger word inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at https://github.com/lancopku/Embedding-Poisoning.
Constructing a Knowledge Graph from Textual Descriptions of Software Vulnerabilities in the National Vulnerability Database
Knowledge graphs have shown promise for several cybersecurity tasks, such as vulnerability assessment and threat analysis. In this work, we present a new method for constructing a vulnerability knowledge graph from information in the National Vulnerability Database (NVD). Our approach combines named entity recognition (NER), relation extraction (RE), and entity prediction using a combination of neural models, heuristic rules, and knowledge graph embeddings. We demonstrate how our method helps to fix missing entities in knowledge graphs used for cybersecurity and evaluate the performance.
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability
Sketching is one of the most fundamental tools in large-scale machine learning. It enables runtime and memory saving via randomly compressing the original large problem into lower dimensions. In this paper, we propose a novel sketching scheme for the first order method in large-scale distributed learning setting, such that the communication costs between distributed agents are saved while the convergence of the algorithms is still guaranteed. Given gradient information in a high dimension d, the agent passes the compressed information processed by a sketching matrix Rin R^{stimes d} with sll d, and the receiver de-compressed via the de-sketching matrix R^top to ``recover'' the information in original dimension. Using such a framework, we develop algorithms for federated learning with lower communication costs. However, such random sketching does not protect the privacy of local data directly. We show that the gradient leakage problem still exists after applying the sketching technique by presenting a specific gradient attack method. As a remedy, we prove rigorously that the algorithm will be differentially private by adding additional random noises in gradient information, which results in a both communication-efficient and differentially private first order approach for federated learning tasks. Our sketching scheme can be further generalized to other learning settings and might be of independent interest itself.
Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities
Security vulnerabilities in modern software are prevalent and harmful. While automated vulnerability detection tools have made promising progress, their scalability and applicability remain challenging. Recently, Large Language Models (LLMs), such as GPT-4 and CodeLlama, have demonstrated remarkable performance on code-related tasks. However, it is unknown whether such LLMs can do complex reasoning over code. In this work, we explore whether pre-trained LLMs can detect security vulnerabilities and address the limitations of existing tools. We evaluate the effectiveness of pre-trained LLMs on a set of five diverse security benchmarks spanning two languages, Java and C/C++, and including code samples from synthetic and real-world projects. We evaluate the effectiveness of LLMs in terms of their performance, explainability, and robustness. By designing a series of effective prompting strategies, we obtain the best results on the synthetic datasets with GPT-4: F1 scores of 0.79 on OWASP, 0.86 on Juliet Java, and 0.89 on Juliet C/C++. Expectedly, the performance of LLMs drops on the more challenging real-world datasets: CVEFixes Java and CVEFixes C/C++, with GPT-4 reporting F1 scores of 0.48 and 0.62, respectively. We show that LLMs can often perform better than existing static analysis and deep learning-based vulnerability detection tools, especially for certain classes of vulnerabilities. Moreover, LLMs also often provide reliable explanations, identifying the vulnerable data flows in code. We find that fine-tuning smaller LLMs can outperform the larger LLMs on synthetic datasets but provide limited gains on real-world datasets. When subjected to adversarial attacks on code, LLMs show mild degradation, with average accuracy reduction of up to 12.67%. Finally, we share our insights and recommendations for future work on leveraging LLMs for vulnerability detection.
Emerging Vulnerabilities in Frontier Models: Multi-Turn Jailbreak Attacks
Large language models (LLMs) are improving at an exceptional rate. However, these models are still susceptible to jailbreak attacks, which are becoming increasingly dangerous as models become increasingly powerful. In this work, we introduce a dataset of jailbreaks where each example can be input in both a single or a multi-turn format. We show that while equivalent in content, they are not equivalent in jailbreak success: defending against one structure does not guarantee defense against the other. Similarly, LLM-based filter guardrails also perform differently depending on not just the input content but the input structure. Thus, vulnerabilities of frontier models should be studied in both single and multi-turn settings; this dataset provides a tool to do so.
Unveiling Safety Vulnerabilities of Large Language Models
As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, which we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions - input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model's responses. Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.
Instructions as Backdoors: Backdoor Vulnerabilities of Instruction Tuning for Large Language Models
Instruction-tuned models are trained on crowdsourcing datasets with task instructions to achieve superior performance. However, in this work we raise security concerns about this training paradigm. Our studies demonstrate that an attacker can inject backdoors by issuing very few malicious instructions among thousands of gathered data and control model behavior through data poisoning, without even the need of modifying data instances or labels themselves. Through such instruction attacks, the attacker can achieve over 90% attack success rate across four commonly used NLP datasets, and cause persistent backdoors that are easily transferred to 15 diverse datasets zero-shot. In this way, the attacker can directly apply poisoned instructions designed for one dataset on many other datasets. Moreover, the poisoned model cannot be cured by continual learning. Lastly, instruction attacks show resistance to existing inference-time defense. These findings highlight the need for more robust defenses against data poisoning attacks in instructiontuning models and underscore the importance of ensuring data quality in instruction crowdsourcing.
Exploring Backdoor Vulnerabilities of Chat Models
Recent researches have shown that Large Language Models (LLMs) are susceptible to a security threat known as Backdoor Attack. The backdoored model will behave well in normal cases but exhibit malicious behaviours on inputs inserted with a specific backdoor trigger. Current backdoor studies on LLMs predominantly focus on instruction-tuned LLMs, while neglecting another realistic scenario where LLMs are fine-tuned on multi-turn conversational data to be chat models. Chat models are extensively adopted across various real-world scenarios, thus the security of chat models deserves increasing attention. Unfortunately, we point out that the flexible multi-turn interaction format instead increases the flexibility of trigger designs and amplifies the vulnerability of chat models to backdoor attacks. In this work, we reveal and achieve a novel backdoor attacking method on chat models by distributing multiple trigger scenarios across user inputs in different rounds, and making the backdoor be triggered only when all trigger scenarios have appeared in the historical conversations. Experimental results demonstrate that our method can achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while successfully maintaining the normal capabilities of chat models on providing helpful responses to benign user requests. Also, the backdoor can not be easily removed by the downstream re-alignment, highlighting the importance of continued research and attention to the security concerns of chat models. Warning: This paper may contain toxic content.
A Repository-Level Dataset For Detecting, Classifying and Repairing Software Vulnerabilities
Open-Source Software (OSS) vulnerabilities bring great challenges to the software security and pose potential risks to our society. Enormous efforts have been devoted into automated vulnerability detection, among which deep learning (DL)-based approaches have proven to be the most effective. However, the current labeled data present the following limitations: (1) Tangled Patches: Developers may submit code changes unrelated to vulnerability fixes within patches, leading to tangled patches. (2) Lacking Inter-procedural Vulnerabilities: The existing vulnerability datasets typically contain function-level and file-level vulnerabilities, ignoring the relations between functions, thus rendering the approaches unable to detect the inter-procedural vulnerabilities. (3) Outdated Patches: The existing datasets usually contain outdated patches, which may bias the model during training. To address the above limitations, in this paper, we propose an automated data collection framework and construct the first repository-level high-quality vulnerability dataset named ReposVul. The proposed framework mainly contains three modules: (1) A vulnerability untangling module, aiming at distinguishing vulnerability-fixing related code changes from tangled patches, in which the Large Language Models (LLMs) and static analysis tools are jointly employed. (2) A multi-granularity dependency extraction module, aiming at capturing the inter-procedural call relationships of vulnerabilities, in which we construct multiple-granularity information for each vulnerability patch, including repository-level, file-level, function-level, and line-level. (3) A trace-based filtering module, aiming at filtering the outdated patches, which leverages the file path trace-based filter and commit time trace-based filter to construct an up-to-date dataset.
Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks
Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows. This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs, a subfield of trustworthy ML, combining the perspectives of Natural Language Processing and Security. Prior work has shown that even safety-aligned LLMs (via instruction tuning and reinforcement learning through human feedback) can be susceptible to adversarial attacks, which exploit weaknesses and mislead AI systems, as evidenced by the prevalence of `jailbreak' attacks on models like ChatGPT and Bard. In this survey, we first provide an overview of large language models, describe their safety alignment, and categorize existing research based on various learning structures: textual-only attacks, multi-modal attacks, and additional attack methods specifically targeting complex systems, such as federated learning or multi-agent systems. We also offer comprehensive remarks on works that focus on the fundamental sources of vulnerabilities and potential defenses. To make this field more accessible to newcomers, we present a systematic review of existing works, a structured typology of adversarial attack concepts, and additional resources, including slides for presentations on related topics at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24).
CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software
Data-driven research on the automated discovery and repair of security vulnerabilities in source code requires comprehensive datasets of real-life vulnerable code and their fixes. To assist in such research, we propose a method to automatically collect and curate a comprehensive vulnerability dataset from Common Vulnerabilities and Exposures (CVE) records in the public National Vulnerability Database (NVD). We implement our approach in a fully automated dataset collection tool and share an initial release of the resulting vulnerability dataset named CVEfixes. The CVEfixes collection tool automatically fetches all available CVE records from the NVD, gathers the vulnerable code and corresponding fixes from associated open-source repositories, and organizes the collected information in a relational database. Moreover, the dataset is enriched with meta-data such as programming language, and detailed code and security metrics at five levels of abstraction. The collection can easily be repeated to keep up-to-date with newly discovered or patched vulnerabilities. The initial release of CVEfixes spans all published CVEs up to 9 June 2021, covering 5365 CVE records for 1754 open-source projects that were addressed in a total of 5495 vulnerability fixing commits. CVEfixes supports various types of data-driven software security research, such as vulnerability prediction, vulnerability classification, vulnerability severity prediction, analysis of vulnerability-related code changes, and automated vulnerability repair.
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
Recent research finds CNN models for image classification demonstrate overlapped adversarial vulnerabilities: adversarial attacks can mislead CNN models with small perturbations, which can effectively transfer between different models trained on the same dataset. Adversarial training, as a general robustness improvement technique, eliminates the vulnerability in a single model by forcing it to learn robust features. The process is hard, often requires models with large capacity, and suffers from significant loss on clean data accuracy. Alternatively, ensemble methods are proposed to induce sub-models with diverse outputs against a transfer adversarial example, making the ensemble robust against transfer attacks even if each sub-model is individually non-robust. Only small clean accuracy drop is observed in the process. However, previous ensemble training methods are not efficacious in inducing such diversity and thus ineffective on reaching robust ensemble. We propose DVERGE, which isolates the adversarial vulnerability in each sub-model by distilling non-robust features, and diversifies the adversarial vulnerability to induce diverse outputs against a transfer attack. The novel diversity metric and training procedure enables DVERGE to achieve higher robustness against transfer attacks comparing to previous ensemble methods, and enables the improved robustness when more sub-models are added to the ensemble. The code of this work is available at https://github.com/zjysteven/DVERGE
Built-in Vulnerabilities to Imperceptible Adversarial Perturbations
Designing models that are robust to small adversarial perturbations of their inputs has proven remarkably difficult. In this work we show that the reverse problem---making models more vulnerable---is surprisingly easy. After presenting some proofs of concept on MNIST, we introduce a generic tilting attack that injects vulnerabilities into the linear layers of pre-trained networks by increasing their sensitivity to components of low variance in the training data without affecting their performance on test data. We illustrate this attack on a multilayer perceptron trained on SVHN and use it to design a stand-alone adversarial module which we call a steganogram decoder. Finally, we show on CIFAR-10 that a poisoning attack with a poisoning rate as low as 0.1% can induce vulnerabilities to chosen imperceptible backdoor signals in state-of-the-art networks. Beyond their practical implications, these different results shed new light on the nature of the adversarial example phenomenon.
Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future.
Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition
Large Language Models (LLMs) are increasingly being deployed in interactive contexts that involve direct user engagement, such as chatbots and writing assistants. These deployments are increasingly plagued by prompt injection and jailbreaking (collectively, prompt hacking), in which models are manipulated to ignore their original instructions and instead follow potentially malicious ones. Although widely acknowledged as a significant security threat, there is a dearth of large-scale resources and quantitative studies on prompt hacking. To address this lacuna, we launch a global prompt hacking competition, which allows for free-form human input attacks. We elicit 600K+ adversarial prompts against three state-of-the-art LLMs. We describe the dataset, which empirically verifies that current LLMs can indeed be manipulated via prompt hacking. We also present a comprehensive taxonomical ontology of the types of adversarial prompts.
How Effective Are Neural Networks for Fixing Security Vulnerabilities
Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.
Activation Approximations Can Incur Safety Vulnerabilities Even in Aligned LLMs: Comprehensive Analysis and Defense
Large Language Models (LLMs) have showcased remarkable capabilities across various domains. Accompanying the evolving capabilities and expanding deployment scenarios of LLMs, their deployment challenges escalate due to their sheer scale and the advanced yet complex activation designs prevalent in notable model series, such as Llama, Gemma, and Mistral. These challenges have become particularly pronounced in resource-constrained deployment scenarios, where mitigating inference efficiency bottlenecks is imperative. Among various recent efforts, activation approximation has emerged as a promising avenue for pursuing inference efficiency, sometimes considered indispensable in applications such as private inference. Despite achieving substantial speedups with minimal impact on utility, even appearing sound and practical for real-world deployment, the safety implications of activation approximations remain unclear. In this work, we fill this critical gap in LLM safety by conducting the first systematic safety evaluation of activation approximations. Our safety vetting spans seven sota techniques across three popular categories, revealing consistent safety degradation across ten safety-aligned LLMs.
Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities). In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 15 real-world vulnerabilities and show that our team of agents improve over prior work by up to 4.5times.
Automating the Detection of Code Vulnerabilities by Analyzing GitHub Issues
In today's digital landscape, the importance of timely and accurate vulnerability detection has significantly increased. This paper presents a novel approach that leverages transformer-based models and machine learning techniques to automate the identification of software vulnerabilities by analyzing GitHub issues. We introduce a new dataset specifically designed for classifying GitHub issues relevant to vulnerability detection. We then examine various classification techniques to determine their effectiveness. The results demonstrate the potential of this approach for real-world application in early vulnerability detection, which could substantially reduce the window of exploitation for software vulnerabilities. This research makes a key contribution to the field by providing a scalable and computationally efficient framework for automated detection, enabling the prevention of compromised software usage before official notifications. This work has the potential to enhance the security of open-source software ecosystems.
LLM Agents can Autonomously Exploit One-day Vulnerabilities
LLMs have becoming increasingly powerful, both in their benign and malicious uses. With the increase in capabilities, researchers have been increasingly interested in their ability to exploit cybersecurity vulnerabilities. In particular, recent work has conducted preliminary studies on the ability of LLM agents to autonomously hack websites. However, these studies are limited to simple vulnerabilities. In this work, we show that LLM agents can autonomously exploit one-day vulnerabilities in real-world systems. To show this, we collected a dataset of 15 one-day vulnerabilities that include ones categorized as critical severity in the CVE description. When given the CVE description, GPT-4 is capable of exploiting 87% of these vulnerabilities compared to 0% for every other model we test (GPT-3.5, open-source LLMs) and open-source vulnerability scanners (ZAP and Metasploit). Fortunately, our GPT-4 agent requires the CVE description for high performance: without the description, GPT-4 can exploit only 7% of the vulnerabilities. Our findings raise questions around the widespread deployment of highly capable LLM agents.
NLP-based Cross-Layer 5G Vulnerabilities Detection via Fuzzing Generated Run-Time Profiling
The effectiveness and efficiency of 5G software stack vulnerability and unintended behavior detection are essential for 5G assurance, especially for its applications in critical infrastructures. Scalability and automation are the main challenges in testing approaches and cybersecurity research. In this paper, we propose an innovative approach for automatically detecting vulnerabilities, unintended emergent behaviors, and performance degradation in 5G stacks via run-time profiling documents corresponding to fuzz testing in code repositories. Piloting on srsRAN, we map the run-time profiling via Logging Information (LogInfo) generated by fuzzing test to a high dimensional metric space first and then construct feature spaces based on their timestamp information. Lastly, we further leverage machine learning-based classification algorithms, including Logistic Regression, K-Nearest Neighbors, and Random Forest to categorize the impacts on performance and security attributes. The performance of the proposed approach has high accuracy, ranging from 93.4 % to 95.9 % , in detecting the fuzzing impacts. In addition, the proof of concept could identify and prioritize real-time vulnerabilities on 5G infrastructures and critical applications in various verticals.
An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models
End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning.
Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
The large-scale deployment of Solidity smart contracts on the Ethereum mainnet has increasingly attracted financially-motivated attackers in recent years. A few now-infamous attacks in Ethereum's history includes DAO attack in 2016 (50 million dollars lost), Parity Wallet hack in 2017 (146 million dollars locked), Beautychain's token BEC in 2018 (900 million dollars market value fell to 0), and NFT gaming blockchain breach in 2022 ($600 million in Ether stolen). This paper presents a comprehensive investigation of the use of large language models (LLMs) and their capabilities in detecting OWASP Top Ten vulnerabilities in Solidity. We introduce a novel, class-balanced, structured, and labeled dataset named VulSmart, which we use to benchmark and compare the performance of open-source LLMs such as CodeLlama, Llama2, CodeT5 and Falcon, alongside closed-source models like GPT-3.5 Turbo and GPT-4o Mini. Our proposed SmartVD framework is rigorously tested against these models through extensive automated and manual evaluations, utilizing BLEU and ROUGE metrics to assess the effectiveness of vulnerability detection in smart contracts. We also explore three distinct prompting strategies-zero-shot, few-shot, and chain-of-thought-to evaluate the multi-class classification and generative capabilities of the SmartVD framework. Our findings reveal that SmartVD outperforms its open-source counterparts and even exceeds the performance of closed-source base models like GPT-3.5 and GPT-4 Mini. After fine-tuning, the closed-source models, GPT-3.5 Turbo and GPT-4o Mini, achieved remarkable performance with 99% accuracy in detecting vulnerabilities, 94% in identifying their types, and 98% in determining severity. Notably, SmartVD performs best with the `chain-of-thought' prompting technique, whereas the fine-tuned closed-source models excel with the `zero-shot' prompting approach.
Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models
In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data will be publicly released.
A Hybrid Graph Neural Network Approach for Detecting PHP Vulnerabilities
This paper presents DeepTective, a deep learning approach to detect vulnerabilities in PHP source code. Our approach implements a novel hybrid technique that combines Gated Recurrent Units and Graph Convolutional Networks to detect SQLi, XSS and OSCI vulnerabilities leveraging both syntactic and semantic information. We evaluate DeepTective and compare it to the state of the art on an established synthetic dataset and on a novel real-world dataset collected from GitHub. Experimental results show that DeepTective achieves near perfect classification on the synthetic dataset, and an F1 score of 88.12% on the realistic dataset, outperforming related approaches. We validate DeepTective in the wild by discovering 4 novel vulnerabilities in established WordPress plugins.
Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.
How (un)ethical are instruction-centric responses of LLMs? Unveiling the vulnerabilities of safety guardrails to harmful queries
In this study, we tackle a growing concern around the safety and ethical use of large language models (LLMs). Despite their potential, these models can be tricked into producing harmful or unethical content through various sophisticated methods, including 'jailbreaking' techniques and targeted manipulation. Our work zeroes in on a specific issue: to what extent LLMs can be led astray by asking them to generate responses that are instruction-centric such as a pseudocode, a program or a software snippet as opposed to vanilla text. To investigate this question, we introduce TechHazardQA, a dataset containing complex queries which should be answered in both text and instruction-centric formats (e.g., pseudocodes), aimed at identifying triggers for unethical responses. We query a series of LLMs -- Llama-2-13b, Llama-2-7b, Mistral-V2 and Mistral 8X7B -- and ask them to generate both text and instruction-centric responses. For evaluation we report the harmfulness score metric as well as judgements from GPT-4 and humans. Overall, we observe that asking LLMs to produce instruction-centric responses enhances the unethical response generation by ~2-38% across the models. As an additional objective, we investigate the impact of model editing using the ROME technique, which further increases the propensity for generating undesirable content. In particular, asking edited LLMs to generate instruction-centric responses further increases the unethical response generation by ~3-16% across the different models.
AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities
Many ML-based approaches have been proposed to automatically detect, localize, and repair software vulnerabilities. While ML-based methods are more effective than program analysis-based vulnerability analysis tools, few have been integrated into modern IDEs, hindering practical adoption. To bridge this critical gap, we propose AIBugHunter, a novel ML-based software vulnerability analysis tool for C/C++ languages that is integrated into Visual Studio Code. AIBugHunter helps software developers to achieve real-time vulnerability detection, explanation, and repairs during programming. In particular, AIBugHunter scans through developers' source code to (1) locate vulnerabilities, (2) identify vulnerability types, (3) estimate vulnerability severity, and (4) suggest vulnerability repairs. In this article, we propose a novel multi-objective optimization (MOO)-based vulnerability classification approach and a transformer-based estimation approach to help AIBugHunter accurately identify vulnerability types and estimate severity. Our empirical experiments on a large dataset consisting of 188K+ C/C++ functions confirm that our proposed approaches are more accurate than other state-of-the-art baseline methods for vulnerability classification and estimation. Furthermore, we conduct qualitative evaluations including a survey study and a user study to obtain software practitioners' perceptions of our AIBugHunter tool and assess the impact that AIBugHunter may have on developers' productivity in security aspects. Our survey study shows that our AIBugHunter is perceived as useful where 90% of the participants consider adopting our AIBugHunter. Last but not least, our user study shows that our AIBugHunter could possibly enhance developers' productivity in combating cybersecurity issues during software development.
Why Are Web AI Agents More Vulnerable Than Standalone LLMs? A Security Analysis
Recent advancements in Web AI agents have demonstrated remarkable capabilities in addressing complex web navigation tasks. However, emerging research shows that these agents exhibit greater vulnerability compared to standalone Large Language Models (LLMs), despite both being built upon the same safety-aligned models. This discrepancy is particularly concerning given the greater flexibility of Web AI Agent compared to standalone LLMs, which may expose them to a wider range of adversarial user inputs. To build a scaffold that addresses these concerns, this study investigates the underlying factors that contribute to the increased vulnerability of Web AI agents. Notably, this disparity stems from the multifaceted differences between Web AI agents and standalone LLMs, as well as the complex signals - nuances that simple evaluation metrics, such as success rate, often fail to capture. To tackle these challenges, we propose a component-level analysis and a more granular, systematic evaluation framework. Through this fine-grained investigation, we identify three critical factors that amplify the vulnerability of Web AI agents; (1) embedding user goals into the system prompt, (2) multi-step action generation, and (3) observational capabilities. Our findings highlights the pressing need to enhance security and robustness in AI agent design and provide actionable insights for targeted defense strategies.
ProphetFuzz: Fully Automated Prediction and Fuzzing of High-Risk Option Combinations with Only Documentation via Large Language Model
Vulnerabilities related to option combinations pose a significant challenge in software security testing due to their vast search space. Previous research primarily addressed this challenge through mutation or filtering techniques, which inefficiently treated all option combinations as having equal potential for vulnerabilities, thus wasting considerable time on non-vulnerable targets and resulting in low testing efficiency. In this paper, we utilize carefully designed prompt engineering to drive the large language model (LLM) to predict high-risk option combinations (i.e., more likely to contain vulnerabilities) and perform fuzz testing automatically without human intervention. We developed a tool called ProphetFuzz and evaluated it on a dataset comprising 52 programs collected from three related studies. The entire experiment consumed 10.44 CPU years. ProphetFuzz successfully predicted 1748 high-risk option combinations at an average cost of only \$8.69 per program. Results show that after 72 hours of fuzzing, ProphetFuzz discovered 364 unique vulnerabilities associated with 12.30\% of the predicted high-risk option combinations, which was 32.85\% higher than that found by state-of-the-art in the same timeframe. Additionally, using ProphetFuzz, we conducted persistent fuzzing on the latest versions of these programs, uncovering 140 vulnerabilities, with 93 confirmed by developers and 21 awarded CVE numbers.
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks. A range of defense methods have been proposed to train adversarially robust DNNs, among which adversarial training has demonstrated promising results. However, despite preliminary understandings developed for adversarial training, it is still not clear, from the architectural perspective, what configurations can lead to more robust DNNs. In this paper, we address this gap via a comprehensive investigation on the impact of network width and depth on the robustness of adversarially trained DNNs. Specifically, we make the following key observations: 1) more parameters (higher model capacity) does not necessarily help adversarial robustness; 2) reducing capacity at the last stage (the last group of blocks) of the network can actually improve adversarial robustness; and 3) under the same parameter budget, there exists an optimal architectural configuration for adversarial robustness. We also provide a theoretical analysis explaning why such network configuration can help robustness. These architectural insights can help design adversarially robust DNNs. Code is available at https://github.com/HanxunH/RobustWRN.
Exploiting Novel GPT-4 APIs
Language model attacks typically assume one of two extreme threat models: full white-box access to model weights, or black-box access limited to a text generation API. However, real-world APIs are often more flexible than just text generation: these APIs expose ``gray-box'' access leading to new threat vectors. To explore this, we red-team three new functionalities exposed in the GPT-4 APIs: fine-tuning, function calling and knowledge retrieval. We find that fine-tuning a model on as few as 15 harmful examples or 100 benign examples can remove core safeguards from GPT-4, enabling a range of harmful outputs. Furthermore, we find that GPT-4 Assistants readily divulge the function call schema and can be made to execute arbitrary function calls. Finally, we find that knowledge retrieval can be hijacked by injecting instructions into retrieval documents. These vulnerabilities highlight that any additions to the functionality exposed by an API can create new vulnerabilities.
Crypto Miner Attack: GPU Remote Code Execution Attacks
Remote Code Execution (RCE) exploits pose a significant threat to AI and ML systems, particularly in GPU-accelerated environments where the computational power of GPUs can be misused for malicious purposes. This paper focuses on RCE attacks leveraging deserialization vulnerabilities and custom layers, such as TensorFlow Lambda layers, which are often overlooked due to the complexity of monitoring GPU workloads. These vulnerabilities enable attackers to execute arbitrary code, blending malicious activity seamlessly into expected model behavior and exploiting GPUs for unauthorized tasks such as cryptocurrency mining. Unlike traditional CPU-based attacks, the parallel processing nature of GPUs and their high resource utilization make runtime detection exceptionally challenging. In this work, we provide a comprehensive examination of RCE exploits targeting GPUs, demonstrating an attack that utilizes these vulnerabilities to deploy a crypto miner on a GPU. We highlight the technical intricacies of such attacks, emphasize their potential for significant financial and computational costs, and propose strategies for mitigation. By shedding light on this underexplored attack vector, we aim to raise awareness and encourage the adoption of robust security measures in GPU-driven AI and ML systems, with an emphasis on static and model scanning as an easier way to detect exploits.
An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation
AI-powered coding assistants such as GitHub Copilot and OpenAI ChatGPT have achieved notable success in automating code generation. However, these tools rely on pre-trained Large Language Models (LLMs) that are typically trained on human-written code sourced from open-source project hosting sites like GitHub, which often contains inherent security vulnerabilities. These vulnerabilities may then be mirrored in the code generated by these LLMs, a critical risk revealed and highlighted by recent empirical studies. In this work, we present an exploratory study on whether fine-tuning pre-trained LLMs on datasets of vulnerability-fixing commits can promote secure code generation. We explored two parameter-efficient fine-tuning techniques (LoRa and IA3) on two pre-trained LLMs for code generation. We crawled a fine-tuning dataset (14,622 C and C++ files) for secure code generation by collecting code fixes of confirmed vulnerabilities from open-source repositories. Our evaluation dataset comprises 52 vulnerability scenarios designed to cover the top most dangerous C and C++ Common Weakness Enumerations (CWEs). Each scenario is a prompt that may induce LLMs to generate vulnerable code. Our exploration reveals that fine-tuning LLMs can improve secure code generation by 6.4% in C language and 5.4% in C++ language. We further experimented with fine-tuning LLMs using different versions of the collected secure code dataset (block, function, and line). We found that fine-tuning with function-level and block-level datasets achieves the best secure code generation performance, compared to the alternatives (file-level and line-level).
Tamper-Resistant Safeguards for Open-Weight LLMs
Rapid advances in the capabilities of large language models (LLMs) have raised widespread concerns regarding their potential for malicious use. Open-weight LLMs present unique challenges, as existing safeguards lack robustness to tampering attacks that modify model weights. For example, recent works have demonstrated that refusal and unlearning safeguards can be trivially removed with a few steps of fine-tuning. These vulnerabilities necessitate new approaches for enabling the safe release of open-weight LLMs. We develop a method, called TAR, for building tamper-resistant safeguards into open-weight LLMs such that adversaries cannot remove the safeguards even after thousands of steps of fine-tuning. In extensive evaluations and red teaming analyses, we find that our method greatly improves tamper-resistance while preserving benign capabilities. Our results demonstrate that tamper-resistance is a tractable problem, opening up a promising new avenue to improve the safety and security of open-weight LLMs.
AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases
LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.
The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio
Recent advancements in large multimodal models (LMMs) have significantly enhanced performance across diverse tasks, with ongoing efforts to further integrate additional modalities such as video and audio. However, most existing LMMs remain vulnerable to hallucinations, the discrepancy between the factual multimodal input and the generated textual output, which has limited their applicability in various real-world scenarios. This paper presents the first systematic investigation of hallucinations in LMMs involving the three most common modalities: language, visual, and audio. Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations. To address these challenges, we introduce the benchmark The Curse of Multi-Modalities (CMM), which comprehensively evaluates hallucinations in LMMs, providing a detailed analysis of their underlying issues. Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning and enhanced hallucination mitigation strategies. Based on our observations and findings, we suggest potential research directions that could enhance the reliability of LMMs.
Jailbroken: How Does LLM Safety Training Fail?
Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes.
WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.
Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions
Despite extensive safety alignment efforts, large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior. While existing studies predominantly focus on attack methods that require technical expertise, two critical questions remain underexplored: (1) Are jailbroken responses truly useful in enabling average users to carry out harmful actions? (2) Do safety vulnerabilities exist in more common, simple human-LLM interactions? In this paper, we demonstrate that LLM responses most effectively facilitate harmful actions when they are both actionable and informative--two attributes easily elicited in multi-step, multilingual interactions. Using this insight, we propose HarmScore, a jailbreak metric that measures how effectively an LLM response enables harmful actions, and Speak Easy, a simple multi-step, multilingual attack framework. Notably, by incorporating Speak Easy into direct request and jailbreak baselines, we see an average absolute increase of 0.319 in Attack Success Rate and 0.426 in HarmScore in both open-source and proprietary LLMs across four safety benchmarks. Our work reveals a critical yet often overlooked vulnerability: Malicious users can easily exploit common interaction patterns for harmful intentions.
Indiana Jones: There Are Always Some Useful Ancient Relics
This paper introduces Indiana Jones, an innovative approach to jailbreaking Large Language Models (LLMs) by leveraging inter-model dialogues and keyword-driven prompts. Through orchestrating interactions among three specialised LLMs, the method achieves near-perfect success rates in bypassing content safeguards in both white-box and black-box LLMs. The research exposes systemic vulnerabilities within contemporary models, particularly their susceptibility to producing harmful or unethical outputs when guided by ostensibly innocuous prompts framed in historical or contextual contexts. Experimental evaluations highlight the efficacy and adaptability of Indiana Jones, demonstrating its superiority over existing jailbreak methods. These findings emphasise the urgent need for enhanced ethical safeguards and robust security measures in the development of LLMs. Moreover, this work provides a critical foundation for future studies aimed at fortifying LLMs against adversarial exploitation while preserving their utility and flexibility.
Deep Learning Model Security: Threats and Defenses
Deep learning has transformed AI applications but faces critical security challenges, including adversarial attacks, data poisoning, model theft, and privacy leakage. This survey examines these vulnerabilities, detailing their mechanisms and impact on model integrity and confidentiality. Practical implementations, including adversarial examples, label flipping, and backdoor attacks, are explored alongside defenses such as adversarial training, differential privacy, and federated learning, highlighting their strengths and limitations. Advanced methods like contrastive and self-supervised learning are presented for enhancing robustness. The survey concludes with future directions, emphasizing automated defenses, zero-trust architectures, and the security challenges of large AI models. A balanced approach to performance and security is essential for developing reliable deep learning systems.
Well, that escalated quickly: The Single-Turn Crescendo Attack (STCA)
This paper introduces a new method for adversarial attacks on large language models (LLMs) called the Single-Turn Crescendo Attack (STCA). Building on the multi-turn crescendo attack method introduced by Russinovich, Salem, and Eldan (2024), which gradually escalates the context to provoke harmful responses, the STCA achieves similar outcomes in a single interaction. By condensing the escalation into a single, well-crafted prompt, the STCA bypasses typical moderation filters that LLMs use to prevent inappropriate outputs. This technique reveals vulnerabilities in current LLMs and emphasizes the importance of stronger safeguards in responsible AI (RAI). The STCA offers a novel method that has not been previously explored.
Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs). These attacks may extract private information or coerce the model into producing harmful outputs. In real-world deployments, LLMs are often part of a larger agentic pipeline including memory systems, retrieval, web access, and API calling. Such additional components introduce vulnerabilities that make these LLM-powered agents much easier to attack than isolated LLMs, yet relatively little work focuses on the security of LLM agents. In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents. We first provide a taxonomy of attacks categorized by threat actors, objectives, entry points, attacker observability, attack strategies, and inherent vulnerabilities of agent pipelines. We then conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities. Notably, our attacks are trivial to implement and require no understanding of machine learning.
Universal Adversarial Attack on Aligned Multimodal LLMs
We propose a universal adversarial attack on multimodal Large Language Models (LLMs) that leverages a single optimized image to override alignment safeguards across diverse queries and even multiple models. By backpropagating through the vision encoder and language head, we craft a synthetic image that forces the model to respond with a targeted phrase (e.g., ''Sure, here it is'') or otherwise unsafe content-even for harmful prompts. In experiments on the SafeBench benchmark, our method achieves significantly higher attack success rates than existing baselines, including text-only universal prompts (e.g., up to 93% on certain models). We further demonstrate cross-model transferability by training on several multimodal LLMs simultaneously and testing on unseen architectures. Additionally, a multi-answer variant of our approach produces more natural-sounding (yet still malicious) responses. These findings underscore critical vulnerabilities in current multimodal alignment and call for more robust adversarial defenses. We will release code and datasets under the Apache-2.0 license. Warning: some content generated by Multimodal LLMs in this paper may be offensive to some readers.
Document Screenshot Retrievers are Vulnerable to Pixel Poisoning Attacks
Recent advancements in dense retrieval have introduced vision-language model (VLM)-based retrievers, such as DSE and ColPali, which leverage document screenshots embedded as vectors to enable effective search and offer a simplified pipeline over traditional text-only methods. In this study, we propose three pixel poisoning attack methods designed to compromise VLM-based retrievers and evaluate their effectiveness under various attack settings and parameter configurations. Our empirical results demonstrate that injecting even a single adversarial screenshot into the retrieval corpus can significantly disrupt search results, poisoning the top-10 retrieved documents for 41.9% of queries in the case of DSE and 26.4% for ColPali. These vulnerability rates notably exceed those observed with equivalent attacks on text-only retrievers. Moreover, when targeting a small set of known queries, the attack success rate raises, achieving complete success in certain cases. By exposing the vulnerabilities inherent in vision-language models, this work highlights the potential risks associated with their deployment.
AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents
Vision Language Models (VLMs) have revolutionized the creation of generalist web agents, empowering them to autonomously complete diverse tasks on real-world websites, thereby boosting human efficiency and productivity. However, despite their remarkable capabilities, the safety and security of these agents against malicious attacks remain critically underexplored, raising significant concerns about their safe deployment. To uncover and exploit such vulnerabilities in web agents, we provide AdvWeb, a novel black-box attack framework designed against web agents. AdvWeb trains an adversarial prompter model that generates and injects adversarial prompts into web pages, misleading web agents into executing targeted adversarial actions such as inappropriate stock purchases or incorrect bank transactions, actions that could lead to severe real-world consequences. With only black-box access to the web agent, we train and optimize the adversarial prompter model using DPO, leveraging both successful and failed attack strings against the target agent. Unlike prior approaches, our adversarial string injection maintains stealth and control: (1) the appearance of the website remains unchanged before and after the attack, making it nearly impossible for users to detect tampering, and (2) attackers can modify specific substrings within the generated adversarial string to seamlessly change the attack objective (e.g., purchasing stocks from a different company), enhancing attack flexibility and efficiency. We conduct extensive evaluations, demonstrating that AdvWeb achieves high success rates in attacking SOTA GPT-4V-based VLM agent across various web tasks. Our findings expose critical vulnerabilities in current LLM/VLM-based agents, emphasizing the urgent need for developing more reliable web agents and effective defenses. Our code and data are available at https://ai-secure.github.io/AdvWeb/ .
LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models
Phishing attacks pose a significant threat to Internet users, with cybercriminals elaborately replicating the visual appearance of legitimate websites to deceive victims. Visual similarity-based detection systems have emerged as an effective countermeasure, but their effectiveness and robustness in real-world scenarios have been underexplored. In this paper, we comprehensively scrutinize and evaluate the effectiveness and robustness of popular visual similarity-based anti-phishing models using a large-scale dataset of 451k real-world phishing websites. Our analyses of the effectiveness reveal that while certain visual similarity-based models achieve high accuracy on curated datasets in the experimental settings, they exhibit notably low performance on real-world datasets, highlighting the importance of real-world evaluation. Furthermore, we find that the attackers evade the detectors mainly in three ways: (1) directly attacking the model pipelines, (2) mimicking benign logos, and (3) employing relatively simple strategies such as eliminating logos from screenshots. To statistically assess the resilience and robustness of existing models against adversarial attacks, we categorize the strategies attackers employ into visible and perturbation-based manipulations and apply them to website logos. We then evaluate the models' robustness using these adversarial samples. Our findings reveal potential vulnerabilities in several models, emphasizing the need for more robust visual similarity techniques capable of withstanding sophisticated evasion attempts. We provide actionable insights for enhancing the security of phishing defense systems, encouraging proactive actions.
Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls
In the current cybersecurity landscape, protecting military devices such as communication and battlefield management systems against sophisticated cyber attacks is crucial. Malware exploits vulnerabilities through stealth methods, often evading traditional detection mechanisms such as software signatures. The application of ML/DL in vulnerability detection has been extensively explored in the literature. However, current ML/DL vulnerability detection methods struggle with understanding the context and intent behind complex attacks. Integrating large language models (LLMs) with system call analysis offers a promising approach to enhance malware detection. This work presents a novel framework leveraging LLMs to classify malware based on system call data. The framework uses transfer learning to adapt pre-trained LLMs for malware detection. By retraining LLMs on a dataset of benign and malicious system calls, the models are refined to detect signs of malware activity. Experiments with a dataset of over 1TB of system calls demonstrate that models with larger context sizes, such as BigBird and Longformer, achieve superior accuracy and F1-Score of approximately 0.86. The results highlight the importance of context size in improving detection rates and underscore the trade-offs between computational complexity and performance. This approach shows significant potential for real-time detection in high-stakes environments, offering a robust solution to evolving cyber threats.
$\text{R}^2$-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations
Referring perception, which aims at grounding visual objects with multimodal referring guidance, is essential for bridging the gap between humans, who provide instructions, and the environment where intelligent systems perceive. Despite progress in this field, the robustness of referring perception models (RPMs) against disruptive perturbations is not well explored. This work thoroughly assesses the resilience of RPMs against various perturbations in both general and specific contexts. Recognizing the complex nature of referring perception tasks, we present a comprehensive taxonomy of perturbations, and then develop a versatile toolbox for synthesizing and evaluating the effects of composite disturbances. Employing this toolbox, we construct R^2-Bench, a benchmark for assessing the Robustness of Referring perception models under noisy conditions across five key tasks. Moreover, we propose the R^2-Agent, an LLM-based agent that simplifies and automates model evaluation via natural language instructions. Our investigation uncovers the vulnerabilities of current RPMs to various perturbations and provides tools for assessing model robustness, potentially promoting the safe and resilient integration of intelligent systems into complex real-world scenarios.
Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack
Recent developments in balancing the usefulness and safety of Large Language Models (LLMs) have raised a critical question: Are mainstream NLP tasks adequately aligned with safety consideration? Our study, focusing on safety-sensitive documents obtained through adversarial attacks, reveals significant disparities in the safety alignment of various NLP tasks. For instance, LLMs can effectively summarize malicious long documents but often refuse to translate them. This discrepancy highlights a previously unidentified vulnerability: attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integraty of tasks traditionally deemed more robust, such as translation and question-answering (QA). Moreover, the concurrent use of multiple NLP tasks with lesser safety alignment increases the risk of LLMs inadvertently processing harmful content. We demonstrate these vulnerabilities in various safety-aligned LLMs, particularly Llama2 models and GPT-4, indicating an urgent need for strengthening safety alignments across a broad spectrum of NLP tasks.
Jailbreaking Black Box Large Language Models in Twenty Queries
There is growing interest in ensuring that large language models (LLMs) align with human values. However, the alignment of such models is vulnerable to adversarial jailbreaks, which coax LLMs into overriding their safety guardrails. The identification of these vulnerabilities is therefore instrumental in understanding inherent weaknesses and preventing future misuse. To this end, we propose Prompt Automatic Iterative Refinement (PAIR), an algorithm that generates semantic jailbreaks with only black-box access to an LLM. PAIR -- which is inspired by social engineering attacks -- uses an attacker LLM to automatically generate jailbreaks for a separate targeted LLM without human intervention. In this way, the attacker LLM iteratively queries the target LLM to update and refine a candidate jailbreak. Empirically, PAIR often requires fewer than twenty queries to produce a jailbreak, which is orders of magnitude more efficient than existing algorithms. PAIR also achieves competitive jailbreaking success rates and transferability on open and closed-source LLMs, including GPT-3.5/4, Vicuna, and PaLM-2.
CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model
This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.
VertexSerum: Poisoning Graph Neural Networks for Link Inference
Graph neural networks (GNNs) have brought superb performance to various applications utilizing graph structural data, such as social analysis and fraud detection. The graph links, e.g., social relationships and transaction history, are sensitive and valuable information, which raises privacy concerns when using GNNs. To exploit these vulnerabilities, we propose VertexSerum, a novel graph poisoning attack that increases the effectiveness of graph link stealing by amplifying the link connectivity leakage. To infer node adjacency more accurately, we propose an attention mechanism that can be embedded into the link detection network. Our experiments demonstrate that VertexSerum significantly outperforms the SOTA link inference attack, improving the AUC scores by an average of 9.8% across four real-world datasets and three different GNN structures. Furthermore, our experiments reveal the effectiveness of VertexSerum in both black-box and online learning settings, further validating its applicability in real-world scenarios.
PSOFuzz: Fuzzing Processors with Particle Swarm Optimization
Hardware security vulnerabilities in computing systems compromise the security defenses of not only the hardware but also the software running on it. Recent research has shown that hardware fuzzing is a promising technique to efficiently detect such vulnerabilities in large-scale designs such as modern processors. However, the current fuzzing techniques do not adjust their strategies dynamically toward faster and higher design space exploration, resulting in slow vulnerability detection, evident through their low design coverage. To address this problem, we propose PSOFuzz, which uses particle swarm optimization (PSO) to schedule the mutation operators and to generate initial input programs dynamically with the objective of detecting vulnerabilities quickly. Unlike traditional PSO, which finds a single optimal solution, we use a modified PSO that dynamically computes the optimal solution for selecting mutation operators required to explore new design regions in hardware. We also address the challenge of inefficient initial seed generation by employing PSO-based seed generation. Including these optimizations, our final formulation outperforms fuzzers without PSO. Experiments show that PSOFuzz achieves up to 15.25times speedup for vulnerability detection and up to 2.22times speedup for coverage compared to the state-of-the-art simulation-based hardware fuzzer.
Attacks Against Security Context in 5G Network
The security context used in 5G authentication is generated during the Authentication and Key Agreement (AKA) procedure and stored in both the user equipment (UE) and the network sides for the subsequent fast registration procedure. Given its importance, it is imperative to formally analyze the security mechanism of the security context. The security context in the UE can be stored in the Universal Subscriber Identity Module (USIM) card or in the baseband chip. In this work, we present a comprehensive and formal verification of the fast registration procedure based on the security context under the two scenarios in ProVerif. Our analysis identifies two vulnerabilities, including one that has not been reported before. Specifically, the security context stored in the USIM card can be read illegally, and the validity checking mechanism of the security context in the baseband chip can be bypassed. Moreover, these vulnerabilities also apply to 4G networks. As a consequence, an attacker can exploit these vulnerabilities to register to the network with the victim's identity and then launch other attacks, including one-tap authentication bypass leading to privacy disclosure, location spoofing, etc. To ensure that these attacks are indeed realizable in practice, we have responsibly confirmed them through experimentation in three operators. Our analysis reveals that these vulnerabilities stem from design flaws of the standard and unsafe practices by operators. We finally propose several potential countermeasures to prevent these attacks. We have reported our findings to the GSMA and received a coordinated vulnerability disclosure (CVD) number CVD-2022-0057.
Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting
Federated learning has exhibited vulnerabilities to Byzantine attacks, where the Byzantine attackers can send arbitrary gradients to a central server to destroy the convergence and performance of the global model. A wealth of robust AGgregation Rules (AGRs) have been proposed to defend against Byzantine attacks. However, Byzantine clients can still circumvent robust AGRs when data is non-Identically and Independently Distributed (non-IID). In this paper, we first reveal the root causes of performance degradation of current robust AGRs in non-IID settings: the curse of dimensionality and gradient heterogeneity. In order to address this issue, we propose GAS, a \shorten approach that can successfully adapt existing robust AGRs to non-IID settings. We also provide a detailed convergence analysis when the existing robust AGRs are combined with GAS. Experiments on various real-world datasets verify the efficacy of our proposed GAS. The implementation code is provided in https://github.com/YuchenLiu-a/byzantine-gas.
Attacking Cooperative Multi-Agent Reinforcement Learning by Adversarial Minority Influence
This study probes the vulnerabilities of cooperative multi-agent reinforcement learning (c-MARL) under adversarial attacks, a critical determinant of c-MARL's worst-case performance prior to real-world implementation. Current observation-based attacks, constrained by white-box assumptions, overlook c-MARL's complex multi-agent interactions and cooperative objectives, resulting in impractical and limited attack capabilities. To address these shortcomes, we propose Adversarial Minority Influence (AMI), a practical and strong for c-MARL. AMI is a practical black-box attack and can be launched without knowing victim parameters. AMI is also strong by considering the complex multi-agent interaction and the cooperative goal of agents, enabling a single adversarial agent to unilaterally misleads majority victims to form targeted worst-case cooperation. This mirrors minority influence phenomena in social psychology. To achieve maximum deviation in victim policies under complex agent-wise interactions, our unilateral attack aims to characterize and maximize the impact of the adversary on the victims. This is achieved by adapting a unilateral agent-wise relation metric derived from mutual information, thereby mitigating the adverse effects of victim influence on the adversary. To lead the victims into a jointly detrimental scenario, our targeted attack deceives victims into a long-term, cooperatively harmful situation by guiding each victim towards a specific target, determined through a trial-and-error process executed by a reinforcement learning agent. Through AMI, we achieve the first successful attack against real-world robot swarms and effectively fool agents in simulated environments into collectively worst-case scenarios, including Starcraft II and Multi-agent Mujoco. The source code and demonstrations can be found at: https://github.com/DIG-Beihang/AMI.
Secure Aggregation Is Not All You Need: Mitigating Privacy Attacks with Noise Tolerance in Federated Learning
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
Online Adversarial Attacks
Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.
Practical No-box Adversarial Attacks against DNNs
The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
Adversarial Defense Framework for Graph Neural Network
Graph neural network (GNN), as a powerful representation learning model on graph data, attracts much attention across various disciplines. However, recent studies show that GNN is vulnerable to adversarial attacks. How to make GNN more robust? What are the key vulnerabilities in GNN? How to address the vulnerabilities and defense GNN against the adversarial attacks? In this paper, we propose DefNet, an effective adversarial defense framework for GNNs. In particular, we first investigate the latent vulnerabilities in every layer of GNNs and propose corresponding strategies including dual-stage aggregation and bottleneck perceptron. Then, to cope with the scarcity of training data, we propose an adversarial contrastive learning method to train the GNN in a conditional GAN manner by leveraging the high-level graph representation. Extensive experiments on three public datasets demonstrate the effectiveness of DefNet in improving the robustness of popular GNN variants, such as Graph Convolutional Network and GraphSAGE, under various types of adversarial attacks.
Model-tuning Via Prompts Makes NLP Models Adversarially Robust
In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token's hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but these models remain brittle, even to mild adversarial perturbations. In this work, we demonstrate surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP), an alternative method of adapting to downstream tasks. Rather than appending an MLP head to make output prediction, MVP appends a prompt template to the input, and makes prediction via text infilling/completion. Across 5 NLP datasets, 4 adversarial attacks, and 3 different models, MVP improves performance against adversarial substitutions by an average of 8% over standard methods and even outperforms adversarial training-based state-of-art defenses by 3.5%. By combining MVP with adversarial training, we achieve further improvements in adversarial robustness while maintaining performance on unperturbed examples. Finally, we conduct ablations to investigate the mechanism underlying these gains. Notably, we find that the main causes of vulnerability of MLP-FT can be attributed to the misalignment between pre-training and fine-tuning tasks, and the randomly initialized MLP parameters.
Model evaluation for extreme risks
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through "dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through "alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts
As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to user inputs is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem, and uses open-ended search to generate prompts that are both effective and diverse. It can uncover a model's vulnerabilities across a broad range of domains including, in this paper, safety, question answering, and cybersecurity. We also demonstrate that fine-tuning on synthetic data generated by Rainbow Teaming improves the safety of state-of-the-art LLMs without hurting their general capabilities and helpfulness, paving the path to open-ended self-improvement.
Communicative Agents for Software Development
Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.
Cross-Modality Safety Alignment
As Artificial General Intelligence (AGI) becomes increasingly integrated into various facets of human life, ensuring the safety and ethical alignment of such systems is paramount. Previous studies primarily focus on single-modality threats, which may not suffice given the integrated and complex nature of cross-modality interactions. We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment. Specifically, it considers cases where single modalities are safe independently but could potentially lead to unsafe or unethical outputs when combined. To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations. Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, such as GPT-4V and LLaVA, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues
This study exposes the safety vulnerabilities of Large Language Models (LLMs) in multi-turn interactions, where malicious users can obscure harmful intents across several queries. We introduce ActorAttack, a novel multi-turn attack method inspired by actor-network theory, which models a network of semantically linked actors as attack clues to generate diverse and effective attack paths toward harmful targets. ActorAttack addresses two main challenges in multi-turn attacks: (1) concealing harmful intents by creating an innocuous conversation topic about the actor, and (2) uncovering diverse attack paths towards the same harmful target by leveraging LLMs' knowledge to specify the correlated actors as various attack clues. In this way, ActorAttack outperforms existing single-turn and multi-turn attack methods across advanced aligned LLMs, even for GPT-o1. We will publish a dataset called SafeMTData, which includes multi-turn adversarial prompts and safety alignment data, generated by ActorAttack. We demonstrate that models safety-tuned using our safety dataset are more robust to multi-turn attacks. Code is available at https://github.com/renqibing/ActorAttack.
Generative AI and Large Language Models for Cyber Security: All Insights You Need
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.
Forbidden Science: Dual-Use AI Challenge Benchmark and Scientific Refusal Tests
The development of robust safety benchmarks for large language models requires open, reproducible datasets that can measure both appropriate refusal of harmful content and potential over-restriction of legitimate scientific discourse. We present an open-source dataset and testing framework for evaluating LLM safety mechanisms across mainly controlled substance queries, analyzing four major models' responses to systematically varied prompts. Our results reveal distinct safety profiles: Claude-3.5-sonnet demonstrated the most conservative approach with 73% refusals and 27% allowances, while Mistral attempted to answer 100% of queries. GPT-3.5-turbo showed moderate restriction with 10% refusals and 90% allowances, and Grok-2 registered 20% refusals and 80% allowances. Testing prompt variation strategies revealed decreasing response consistency, from 85% with single prompts to 65% with five variations. This publicly available benchmark enables systematic evaluation of the critical balance between necessary safety restrictions and potential over-censorship of legitimate scientific inquiry, while providing a foundation for measuring progress in AI safety implementation. Chain-of-thought analysis reveals potential vulnerabilities in safety mechanisms, highlighting the complexity of implementing robust safeguards without unduly restricting desirable and valid scientific discourse.
RedCode: Risky Code Execution and Generation Benchmark for Code Agents
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding, safety concerns, such as generating or executing risky code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, a benchmark for risky code execution and generation: (1) RedCode-Exec provides challenging prompts that could lead to risky code execution, aiming to evaluate code agents' ability to recognize and handle unsafe code. We provide a total of 4,050 risky test cases in Python and Bash tasks with diverse input formats including code snippets and natural text. They covers 25 types of critical vulnerabilities spanning 8 domains (e.g., websites, file systems). We provide Docker environments and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents' vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing risky operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Risky operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen show that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are available at https://github.com/AI-secure/RedCode.
Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy
Large Language Models (LLMs) are susceptible to security and safety threats, such as prompt injection, prompt extraction, and harmful requests. One major cause of these vulnerabilities is the lack of an instruction hierarchy. Modern LLM architectures treat all inputs equally, failing to distinguish between and prioritize various types of instructions, such as system messages, user prompts, and data. As a result, lower-priority user prompts may override more critical system instructions, including safety protocols. Existing approaches to achieving instruction hierarchy, such as delimiters and instruction-based training, do not address this issue at the architectural level. We introduce the Instructional Segment Embedding (ISE) technique, inspired by BERT, to modern large language models, which embeds instruction priority information directly into the model. This approach enables models to explicitly differentiate and prioritize various instruction types, significantly improving safety against malicious prompts that attempt to override priority rules. Our experiments on the Structured Query and Instruction Hierarchy benchmarks demonstrate an average robust accuracy increase of up to 15.75% and 18.68%, respectively. Furthermore, we observe an improvement in instruction-following capability of up to 4.1% evaluated on AlpacaEval. Overall, our approach offers a promising direction for enhancing the safety and effectiveness of LLM architectures.
Security Attacks on LLM-based Code Completion Tools
The rapid development of large language models (LLMs) has significantly advanced code completion capabilities, giving rise to a new generation of LLM-based Code Completion Tools (LCCTs). Unlike general-purpose LLMs, these tools possess unique workflows, integrating multiple information sources as input and prioritizing code suggestions over natural language interaction, which introduces distinct security challenges. Additionally, LCCTs often rely on proprietary code datasets for training, raising concerns about the potential exposure of sensitive data. This paper exploits these distinct characteristics of LCCTs to develop targeted attack methodologies on two critical security risks: jailbreaking and training data extraction attacks. Our experimental results expose significant vulnerabilities within LCCTs, including a 99.4% success rate in jailbreaking attacks on GitHub Copilot and a 46.3% success rate on Amazon Q. Furthermore, We successfully extracted sensitive user data from GitHub Copilot, including 54 real email addresses and 314 physical addresses associated with GitHub usernames. Our study also demonstrates that these code-based attack methods are effective against general-purpose LLMs, such as the GPT series, highlighting a broader security misalignment in the handling of code by modern LLMs. These findings underscore critical security challenges associated with LCCTs and suggest essential directions for strengthening their security frameworks. The example code and attack samples from our research are provided at https://github.com/Sensente/Security-Attacks-on-LCCTs.
SEAS: Self-Evolving Adversarial Safety Optimization for Large Language Models
As large language models (LLMs) continue to advance in capability and influence, ensuring their security and preventing harmful outputs has become crucial. A promising approach to address these concerns involves training models to automatically generate adversarial prompts for red teaming. However, the evolving subtlety of vulnerabilities in LLMs challenges the effectiveness of current adversarial methods, which struggle to specifically target and explore the weaknesses of these models. To tackle these challenges, we introduce the Self-Evolving Adversarial Safety (SEAS) optimization framework, which enhances security by leveraging data generated by the model itself. SEAS operates through three iterative stages: Initialization, Attack, and Adversarial Optimization, refining both the Red Team and Target models to improve robustness and safety. This framework reduces reliance on manual testing and significantly enhances the security capabilities of LLMs. Our contributions include a novel adversarial framework, a comprehensive safety dataset, and after three iterations, the Target model achieves a security level comparable to GPT-4, while the Red Team model shows a marked increase in attack success rate (ASR) against advanced models.
Benchmarking the Robustness of Image Watermarks
This paper investigates the weaknesses of image watermarking techniques. We present WAVES (Watermark Analysis Via Enhanced Stress-testing), a novel benchmark for assessing watermark robustness, overcoming the limitations of current evaluation methods.WAVES integrates detection and identification tasks, and establishes a standardized evaluation protocol comprised of a diverse range of stress tests. The attacks in WAVES range from traditional image distortions to advanced and novel variations of adversarial, diffusive, and embedding-based attacks. We introduce a normalized score of attack potency which incorporates several widely used image quality metrics and allows us to produce of an ordered ranking of attacks. Our comprehensive evaluation over reveals previously undetected vulnerabilities of several modern watermarking algorithms. WAVES is envisioned as a toolkit for the future development of robust watermarking systems.
SAGA: Spectral Adversarial Geometric Attack on 3D Meshes
A triangular mesh is one of the most popular 3D data representations. As such, the deployment of deep neural networks for mesh processing is widely spread and is increasingly attracting more attention. However, neural networks are prone to adversarial attacks, where carefully crafted inputs impair the model's functionality. The need to explore these vulnerabilities is a fundamental factor in the future development of 3D-based applications. Recently, mesh attacks were studied on the semantic level, where classifiers are misled to produce wrong predictions. Nevertheless, mesh surfaces possess complex geometric attributes beyond their semantic meaning, and their analysis often includes the need to encode and reconstruct the geometry of the shape. We propose a novel framework for a geometric adversarial attack on a 3D mesh autoencoder. In this setting, an adversarial input mesh deceives the autoencoder by forcing it to reconstruct a different geometric shape at its output. The malicious input is produced by perturbing a clean shape in the spectral domain. Our method leverages the spectral decomposition of the mesh along with additional mesh-related properties to obtain visually credible results that consider the delicacy of surface distortions. Our code is publicly available at https://github.com/StolikTomer/SAGA.
AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving
Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. Our benchmark is publicly available at https://github.com/taco-group/AutoTrust, and the leaderboard is released at https://taco-group.github.io/AutoTrust/.
Combinational Backdoor Attack against Customized Text-to-Image Models
Recently, Text-to-Image (T2I) synthesis technology has made tremendous strides. Numerous representative T2I models have emerged and achieved promising application outcomes, such as DALL-E, Stable Diffusion, Imagen, etc. In practice, it has become increasingly popular for model developers to selectively adopt various pre-trained text encoders and conditional diffusion models from third-party platforms, integrating them to build customized (personalized) T2I models. However, such an adoption approach is vulnerable to backdoor attacks. In this work, we propose a Combinational Backdoor Attack against Customized T2I models (CBACT2I) targeting this application scenario. Different from previous backdoor attacks against T2I models, CBACT2I embeds the backdoor into the text encoder and the conditional diffusion model separately. The customized T2I model exhibits backdoor behaviors only when the backdoor text encoder is used in combination with the backdoor conditional diffusion model. These properties make CBACT2I more stealthy and flexible than prior backdoor attacks against T2I models. Extensive experiments demonstrate the effectiveness of CBACT2I with different backdoor triggers and different backdoor targets on the open-sourced Stable Diffusion model. This work reveals the backdoor vulnerabilities of customized T2I models and urges countermeasures to mitigate backdoor threats in this scenario.
Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents
Although LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 23 different types of attack/defense methods, and 8 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, a mixed attack, and 10 corresponding defenses across 13 LLM backbones with nearly 90,000 testing cases in total. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30\%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. Our code can be found at https://github.com/agiresearch/ASB.
Flooding Spread of Manipulated Knowledge in LLM-Based Multi-Agent Communities
The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.
Is poisoning a real threat to LLM alignment? Maybe more so than you think
Recent advancements in Reinforcement Learning with Human Feedback (RLHF) have significantly impacted the alignment of Large Language Models (LLMs). The sensitivity of reinforcement learning algorithms such as Proximal Policy Optimization (PPO) has led to new line work on Direct Policy Optimization (DPO), which treats RLHF in a supervised learning framework. The increased practical use of these RLHF methods warrants an analysis of their vulnerabilities. In this work, we investigate the vulnerabilities of DPO to poisoning attacks under different scenarios and compare the effectiveness of preference poisoning, a first of its kind. We comprehensively analyze DPO's vulnerabilities under different types of attacks, i.e., backdoor and non-backdoor attacks, and different poisoning methods across a wide array of language models, i.e., LLama 7B, Mistral 7B, and Gemma 7B. We find that unlike PPO-based methods, which, when it comes to backdoor attacks, require at least 4\% of the data to be poisoned to elicit harmful behavior, we exploit the true vulnerabilities of DPO more simply so we can poison the model with only as much as 0.5\% of the data. We further investigate the potential reasons behind the vulnerability and how well this vulnerability translates into backdoor vs non-backdoor attacks.
Safety Alignment Should Be Made More Than Just a Few Tokens Deep
The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.
Cross-Modality Jailbreak and Mismatched Attacks on Medical Multimodal Large Language Models
Security concerns related to Large Language Models (LLMs) have been extensively explored, yet the safety implications for Multimodal Large Language Models (MLLMs), particularly in medical contexts (MedMLLMs), remain insufficiently studied. This paper delves into the underexplored security vulnerabilities of MedMLLMs, especially when deployed in clinical environments where the accuracy and relevance of question-and-answer interactions are critically tested against complex medical challenges. By combining existing clinical medical data with atypical natural phenomena, we redefine two types of attacks: mismatched malicious attack (2M-attack) and optimized mismatched malicious attack (O2M-attack). Using our own constructed voluminous 3MAD dataset, which covers a wide range of medical image modalities and harmful medical scenarios, we conduct a comprehensive analysis and propose the MCM optimization method, which significantly enhances the attack success rate on MedMLLMs. Evaluations with this dataset and novel attack methods, including white-box attacks on LLaVA-Med and transfer attacks on four other state-of-the-art models, indicate that even MedMLLMs designed with enhanced security features are vulnerable to security breaches. Our work underscores the urgent need for a concerted effort to implement robust security measures and enhance the safety and efficacy of open-source MedMLLMs, particularly given the potential severity of jailbreak attacks and other malicious or clinically significant exploits in medical settings. For further research and replication, anonymous access to our code is available at https://github.com/dirtycomputer/O2M_attack. Warning: Medical large model jailbreaking may generate content that includes unverified diagnoses and treatment recommendations. Always consult professional medical advice.
Can Large Language Models Find And Fix Vulnerable Software?
In this study, we evaluated the capability of Large Language Models (LLMs), particularly OpenAI's GPT-4, in detecting software vulnerabilities, comparing their performance against traditional static code analyzers like Snyk and Fortify. Our analysis covered numerous repositories, including those from NASA and the Department of Defense. GPT-4 identified approximately four times the vulnerabilities than its counterparts. Furthermore, it provided viable fixes for each vulnerability, demonstrating a low rate of false positives. Our tests encompassed 129 code samples across eight programming languages, revealing the highest vulnerabilities in PHP and JavaScript. GPT-4's code corrections led to a 90% reduction in vulnerabilities, requiring only an 11% increase in code lines. A critical insight was LLMs' ability to self-audit, suggesting fixes for their identified vulnerabilities and underscoring their precision. Future research should explore system-level vulnerabilities and integrate multiple static code analyzers for a holistic perspective on LLMs' potential.
Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection
Large Language Models (LLMs) are increasingly being integrated into various applications. The functionalities of recent LLMs can be flexibly modulated via natural language prompts. This renders them susceptible to targeted adversarial prompting, e.g., Prompt Injection (PI) attacks enable attackers to override original instructions and employed controls. So far, it was assumed that the user is directly prompting the LLM. But, what if it is not the user prompting? We argue that LLM-Integrated Applications blur the line between data and instructions. We reveal new attack vectors, using Indirect Prompt Injection, that enable adversaries to remotely (without a direct interface) exploit LLM-integrated applications by strategically injecting prompts into data likely to be retrieved. We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities, including data theft, worming, information ecosystem contamination, and other novel security risks. We demonstrate our attacks' practical viability against both real-world systems, such as Bing's GPT-4 powered Chat and code-completion engines, and synthetic applications built on GPT-4. We show how processing retrieved prompts can act as arbitrary code execution, manipulate the application's functionality, and control how and if other APIs are called. Despite the increasing integration and reliance on LLMs, effective mitigations of these emerging threats are currently lacking. By raising awareness of these vulnerabilities and providing key insights into their implications, we aim to promote the safe and responsible deployment of these powerful models and the development of robust defenses that protect users and systems from potential attacks.