Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeYuE: Scaling Open Foundation Models for Long-Form Music Generation
We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
SongCreator: Lyrics-based Universal Song Generation
Music is an integral part of human culture, embodying human intelligence and creativity, of which songs compose an essential part. While various aspects of song generation have been explored by previous works, such as singing voice, vocal composition and instrumental arrangement, etc., generating songs with both vocals and accompaniment given lyrics remains a significant challenge, hindering the application of music generation models in the real world. In this light, we propose SongCreator, a song-generation system designed to tackle this challenge. The model features two novel designs: a meticulously designed dual-sequence language model (DSLM) to capture the information of vocals and accompaniment for song generation, and an additional attention mask strategy for DSLM, which allows our model to understand, generate and edit songs, making it suitable for various song-related generation tasks. Extensive experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks. Notably, it surpasses previous works by a large margin in lyrics-to-song and lyrics-to-vocals. Additionally, it is able to independently control the acoustic conditions of the vocals and accompaniment in the generated song through different prompts, exhibiting its potential applicability. Our samples are available at https://songcreator.github.io/.
Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music
Hindustani music is a performance-driven oral tradition that exhibits the rendition of rich melodic patterns. In this paper, we focus on generative modeling of singers' vocal melodies extracted from audio recordings, as the voice is musically prominent within the tradition. Prior generative work in Hindustani music models melodies as coarse discrete symbols which fails to capture the rich expressive melodic intricacies of singing. Thus, we propose to use a finely quantized pitch contour, as an intermediate representation for hierarchical audio modeling. We propose GaMaDHaNi, a modular two-level hierarchy, consisting of a generative model on pitch contours, and a pitch contour to audio synthesis model. We compare our approach to non-hierarchical audio models and hierarchical models that use a self-supervised intermediate representation, through a listening test and qualitative analysis. We also evaluate audio model's ability to faithfully represent the pitch contour input using Pearson correlation coefficient. By using pitch contours as an intermediate representation, we show that our model may be better equipped to listen and respond to musicians in a human-AI collaborative setting by highlighting two potential interaction use cases (1) primed generation, and (2) coarse pitch conditioning.
Constructing a Singing Style Caption Dataset
Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.
SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation
Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .
Singing Voice Data Scaling-up: An Introduction to ACE-Opencpop and KiSing-v2
In singing voice synthesis (SVS), generating singing voices from musical scores faces challenges due to limited data availability, a constraint less common in text-to-speech (TTS). This study proposes a new approach to address this data scarcity. We utilize an existing singing voice synthesizer for data augmentation and apply precise manual tuning to reduce unnatural voice synthesis. Our development of two extensive singing voice corpora, ACE-Opencpop and KiSing-v2, facilitates large-scale, multi-singer voice synthesis. Utilizing pre-trained models derived from these corpora, we achieve notable improvements in voice quality, evident in both in-domain and out-of-domain scenarios. The corpora, pre-trained models, and their related training recipes are publicly available at Muskits-ESPnet (https://github.com/espnet/espnet).
DreamVoice: Text-Guided Voice Conversion
Generative voice technologies are rapidly evolving, offering opportunities for more personalized and inclusive experiences. Traditional one-shot voice conversion (VC) requires a target recording during inference, limiting ease of usage in generating desired voice timbres. Text-guided generation offers an intuitive solution to convert voices to desired "DreamVoices" according to the users' needs. Our paper presents two major contributions to VC technology: (1) DreamVoiceDB, a robust dataset of voice timbre annotations for 900 speakers from VCTK and LibriTTS. (2) Two text-guided VC methods: DreamVC, an end-to-end diffusion-based text-guided VC model; and DreamVG, a versatile text-to-voice generation plugin that can be combined with any one-shot VC models. The experimental results demonstrate that our proposed methods trained on the DreamVoiceDB dataset generate voice timbres accurately aligned with the text prompt and achieve high-quality VC.
Accompanied Singing Voice Synthesis with Fully Text-controlled Melody
Text-to-song (TTSong) is a music generation task that synthesizes accompanied singing voices. Current TTSong methods, inherited from singing voice synthesis (SVS), require melody-related information that can sometimes be impractical, such as music scores or MIDI sequences. We present MelodyLM, the first TTSong model that generates high-quality song pieces with fully text-controlled melodies, achieving minimal user requirements and maximum control flexibility. MelodyLM explicitly models MIDI as the intermediate melody-related feature and sequentially generates vocal tracks in a language model manner, conditioned on textual and vocal prompts. The accompaniment music is subsequently synthesized by a latent diffusion model with hybrid conditioning for temporal alignment. With minimal requirements, users only need to input lyrics and a reference voice to synthesize a song sample. For full control, just input textual prompts or even directly input MIDI. Experimental results indicate that MelodyLM achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://melodylm666.github.io.
Sing-On-Your-Beat: Simple Text-Controllable Accompaniment Generations
Singing is one of the most cherished forms of human entertainment. However, creating a beautiful song requires an accompaniment that complements the vocals and aligns well with the song instruments and genre. With advancements in deep learning, previous research has focused on generating suitable accompaniments but often lacks precise alignment with the desired instrumentation and genre. To address this, we propose a straightforward method that enables control over the accompaniment through text prompts, allowing the generation of music that complements the vocals and aligns with the song instrumental and genre requirements. Through extensive experiments, we successfully generate 10-second accompaniments using vocal input and text control.
TechSinger: Technique Controllable Multilingual Singing Voice Synthesis via Flow Matching
Singing voice synthesis has made remarkable progress in generating natural and high-quality voices. However, existing methods rarely provide precise control over vocal techniques such as intensity, mixed voice, falsetto, bubble, and breathy tones, thus limiting the expressive potential of synthetic voices. We introduce TechSinger, an advanced system for controllable singing voice synthesis that supports five languages and seven vocal techniques. TechSinger leverages a flow-matching-based generative model to produce singing voices with enhanced expressive control over various techniques. To enhance the diversity of training data, we develop a technique detection model that automatically annotates datasets with phoneme-level technique labels. Additionally, our prompt-based technique prediction model enables users to specify desired vocal attributes through natural language, offering fine-grained control over the synthesized singing. Experimental results demonstrate that TechSinger significantly enhances the expressiveness and realism of synthetic singing voices, outperforming existing methods in terms of audio quality and technique-specific control. Audio samples can be found at https://tech-singer.github.io.
DiffRhythm: Blazingly Fast and Embarrassingly Simple End-to-End Full-Length Song Generation with Latent Diffusion
Recent advancements in music generation have garnered significant attention, yet existing approaches face critical limitations. Some current generative models can only synthesize either the vocal track or the accompaniment track. While some models can generate combined vocal and accompaniment, they typically rely on meticulously designed multi-stage cascading architectures and intricate data pipelines, hindering scalability. Additionally, most systems are restricted to generating short musical segments rather than full-length songs. Furthermore, widely used language model-based methods suffer from slow inference speeds. To address these challenges, we propose DiffRhythm, the first latent diffusion-based song generation model capable of synthesizing complete songs with both vocal and accompaniment for durations of up to 4m45s in only ten seconds, maintaining high musicality and intelligibility. Despite its remarkable capabilities, DiffRhythm is designed to be simple and elegant: it eliminates the need for complex data preparation, employs a straightforward model structure, and requires only lyrics and a style prompt during inference. Additionally, its non-autoregressive structure ensures fast inference speeds. This simplicity guarantees the scalability of DiffRhythm. Moreover, we release the complete training code along with the pre-trained model on large-scale data to promote reproducibility and further research.
Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt
Recent singing-voice-synthesis (SVS) methods have achieved remarkable audio quality and naturalness, yet they lack the capability to control the style attributes of the synthesized singing explicitly. We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language. We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation that enables text-conditioned vocal range control while keeping melodic accuracy. Furthermore, we explore various experiment settings, including different types of text representations, text encoder fine-tuning, and introducing speech data to alleviate data scarcity, aiming to facilitate further research. Experiments show that our model achieves favorable controlling ability and audio quality. Audio samples are available at http://prompt-singer.github.io .
SUSing: SU-net for Singing Voice Synthesis
Singing voice synthesis is a generative task that involves multi-dimensional control of the singing model, including lyrics, pitch, and duration, and includes the timbre of the singer and singing skills such as vibrato. In this paper, we proposed SU-net for singing voice synthesis named SUSing. Synthesizing singing voice is treated as a translation task between lyrics and music score and spectrum. The lyrics and music score information is encoded into a two-dimensional feature representation through the convolution layer. The two-dimensional feature and its frequency spectrum are mapped to the target spectrum in an autoregressive manner through a SU-net network. Within the SU-net the stripe pooling method is used to replace the alternate global pooling method to learn the vertical frequency relationship in the spectrum and the changes of frequency in the time domain. The experimental results on the public dataset Kiritan show that the proposed method can synthesize more natural singing voices.
Make-A-Voice: Unified Voice Synthesis With Discrete Representation
Various applications of voice synthesis have been developed independently despite the fact that they generate "voice" as output in common. In addition, the majority of voice synthesis models currently rely on annotated audio data, but it is crucial to scale them to self-supervised datasets in order to effectively capture the wide range of acoustic variations present in human voice, including speaker identity, emotion, and prosody. In this work, we propose Make-A-Voice, a unified framework for synthesizing and manipulating voice signals from discrete representations. Make-A-Voice leverages a "coarse-to-fine" approach to model the human voice, which involves three stages: 1) semantic stage: model high-level transformation between linguistic content and self-supervised semantic tokens, 2) acoustic stage: introduce varying control signals as acoustic conditions for semantic-to-acoustic modeling, and 3) generation stage: synthesize high-fidelity waveforms from acoustic tokens. Make-A-Voice offers notable benefits as a unified voice synthesis framework: 1) Data scalability: the major backbone (i.e., acoustic and generation stage) does not require any annotations, and thus the training data could be scaled up. 2) Controllability and conditioning flexibility: we investigate different conditioning mechanisms and effectively handle three voice synthesis applications, including text-to-speech (TTS), voice conversion (VC), and singing voice synthesis (SVS) by re-synthesizing the discrete voice representations with prompt guidance. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models. Audio samples are available at https://Make-A-Voice.github.io
Drop the beat! Freestyler for Accompaniment Conditioned Rapping Voice Generation
Rap, a prominent genre of vocal performance, remains underexplored in vocal generation. General vocal synthesis depends on precise note and duration inputs, requiring users to have related musical knowledge, which limits flexibility. In contrast, rap typically features simpler melodies, with a core focus on a strong rhythmic sense that harmonizes with accompanying beats. In this paper, we propose Freestyler, the first system that generates rapping vocals directly from lyrics and accompaniment inputs. Freestyler utilizes language model-based token generation, followed by a conditional flow matching model to produce spectrograms and a neural vocoder to restore audio. It allows a 3-second prompt to enable zero-shot timbre control. Due to the scarcity of publicly available rap datasets, we also present RapBank, a rap song dataset collected from the internet, alongside a meticulously designed processing pipeline. Experimental results show that Freestyler produces high-quality rapping voice generation with enhanced naturalness and strong alignment with accompanying beats, both stylistically and rhythmically.
Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings
The virtual world is being established in which digital humans are created indistinguishable from real humans. Producing their audio-related capabilities is crucial since voice conveys extensive personal characteristics. We aim to create a controllable audio-form virtual singer; however, supervised modeling and controlling all different factors of the singing voice, such as timbre, tempo, pitch, and lyrics, is extremely difficult since accurately labeling all such information needs enormous labor work. In this paper, we propose a framework that could digitize a person's voice by simply "listening" to the clean voice recordings of any content in a fully unsupervised manner and predict singing voices even only using speaking recordings. A variational auto-encoder (VAE) based framework is developed, which leverages a set of pre-trained models to encode the audio as various hidden embeddings representing different factors of the singing voice, and further decodes the embeddings into raw audio. By manipulating the hidden embeddings for different factors, the resulting singing voices can be controlled, and new virtual singers can also be further generated by interpolating between timbres. Evaluations of different types of experiments demonstrate the proposed method's effectiveness. The proposed method is the critical technique for producing the AI choir, which empowered the human-AI symbiotic orchestra in Hong Kong in July 2022.
JEN-1 DreamStyler: Customized Musical Concept Learning via Pivotal Parameters Tuning
Large models for text-to-music generation have achieved significant progress, facilitating the creation of high-quality and varied musical compositions from provided text prompts. However, input text prompts may not precisely capture user requirements, particularly when the objective is to generate music that embodies a specific concept derived from a designated reference collection. In this paper, we propose a novel method for customized text-to-music generation, which can capture the concept from a two-minute reference music and generate a new piece of music conforming to the concept. We achieve this by fine-tuning a pretrained text-to-music model using the reference music. However, directly fine-tuning all parameters leads to overfitting issues. To address this problem, we propose a Pivotal Parameters Tuning method that enables the model to assimilate the new concept while preserving its original generative capabilities. Additionally, we identify a potential concept conflict when introducing multiple concepts into the pretrained model. We present a concept enhancement strategy to distinguish multiple concepts, enabling the fine-tuned model to generate music incorporating either individual or multiple concepts simultaneously. Since we are the first to work on the customized music generation task, we also introduce a new dataset and evaluation protocol for the new task. Our proposed Jen1-DreamStyler outperforms several baselines in both qualitative and quantitative evaluations. Demos will be available at https://www.jenmusic.ai/research#DreamStyler.
Melody Is All You Need For Music Generation
We present the Melody Guided Music Generation (MMGen) model, the first novel approach using melody to guide the music generation that, despite a pretty simple method and extremely limited resources, achieves excellent performance. Specifically, we first align the melody with audio waveforms and their associated descriptions using the multimodal alignment module. Subsequently, we condition the diffusion module on the learned melody representations. This allows MMGen to generate music that matches the style of the provided audio while also producing music that reflects the content of the given text description. To address the scarcity of high-quality data, we construct a multi-modal dataset, MusicSet, which includes melody, text, and audio, and will be made publicly available. We conduct extensive experiments which demonstrate the superiority of the proposed model both in terms of experimental metrics and actual performance quality.
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis".
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models
Music generation has attracted growing interest with the advancement of deep generative models. However, generating music conditioned on textual descriptions, known as text-to-music, remains challenging due to the complexity of musical structures and high sampling rate requirements. Despite the task's significance, prevailing generative models exhibit limitations in music quality, computational efficiency, and generalization. This paper introduces JEN-1, a universal high-fidelity model for text-to-music generation. JEN-1 is a diffusion model incorporating both autoregressive and non-autoregressive training. Through in-context learning, JEN-1 performs various generation tasks including text-guided music generation, music inpainting, and continuation. Evaluations demonstrate JEN-1's superior performance over state-of-the-art methods in text-music alignment and music quality while maintaining computational efficiency. Our demos are available at http://futureverse.com/research/jen/demos/jen1
TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control
Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://tcsinger.github.io/.
GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks
The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large Global, multi-Technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.
Audio Conditioning for Music Generation via Discrete Bottleneck Features
While most music generation models use textual or parametric conditioning (e.g. tempo, harmony, musical genre), we propose to condition a language model based music generation system with audio input. Our exploration involves two distinct strategies. The first strategy, termed textual inversion, leverages a pre-trained text-to-music model to map audio input to corresponding "pseudowords" in the textual embedding space. For the second model we train a music language model from scratch jointly with a text conditioner and a quantized audio feature extractor. At inference time, we can mix textual and audio conditioning and balance them thanks to a novel double classifier free guidance method. We conduct automatic and human studies that validates our approach. We will release the code and we provide music samples on https://musicgenstyle.github.io in order to show the quality of our model.
Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model
Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.
StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis
Style transfer for out-of-domain (OOD) singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles (such as timbre, emotion, pronunciation, and articulation skills) derived from reference singing voice samples. However, the endeavor to model the intricate nuances of singing voice styles is an arduous task, as singing voices possess a remarkable degree of expressiveness. Moreover, existing SVS methods encounter a decline in the quality of synthesized singing voices in OOD scenarios, as they rest upon the assumption that the target vocal attributes are discernible during the training phase. To overcome these challenges, we propose StyleSinger, the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples. StyleSinger incorporates two critical approaches for enhanced effectiveness: 1) the Residual Style Adaptor (RSA) which employs a residual quantization module to capture diverse style characteristics in singing voices, and 2) the Uncertainty Modeling Layer Normalization (UMLN) to perturb the style attributes within the content representation during the training phase and thus improve the model generalization. Our extensive evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples. Access to singing voice samples can be found at https://stylesinger.github.io/.
QA-MDT: Quality-aware Masked Diffusion Transformer for Enhanced Music Generation
In recent years, diffusion-based text-to-music (TTM) generation has gained prominence, offering an innovative approach to synthesizing musical content from textual descriptions. Achieving high accuracy and diversity in this generation process requires extensive, high-quality data, including both high-fidelity audio waveforms and detailed text descriptions, which often constitute only a small portion of available datasets. In open-source datasets, issues such as low-quality music waveforms, mislabeling, weak labeling, and unlabeled data significantly hinder the development of music generation models. To address these challenges, we propose a novel paradigm for high-quality music generation that incorporates a quality-aware training strategy, enabling generative models to discern the quality of input music waveforms during training. Leveraging the unique properties of musical signals, we first adapted and implemented a masked diffusion transformer (MDT) model for the TTM task, demonstrating its distinct capacity for quality control and enhanced musicality. Additionally, we address the issue of low-quality captions in TTM with a caption refinement data processing approach. Experiments demonstrate our state-of-the-art (SOTA) performance on MusicCaps and the Song-Describer Dataset. Our demo page can be accessed at https://qa-mdt.github.io/.
Singing voice synthesis based on frame-level sequence-to-sequence models considering vocal timing deviation
This paper proposes singing voice synthesis (SVS) based on frame-level sequence-to-sequence models considering vocal timing deviation. In SVS, it is essential to synchronize the timing of singing with temporal structures represented by scores, taking into account that there are differences between actual vocal timing and note start timing. In many SVS systems including our previous work, phoneme-level score features are converted into frame-level ones on the basis of phoneme boundaries obtained by external aligners to take into account vocal timing deviations. Therefore, the sound quality is affected by the aligner accuracy in this system. To alleviate this problem, we introduce an attention mechanism with frame-level features. In the proposed system, the attention mechanism absorbs alignment errors in phoneme boundaries. Additionally, we evaluate the system with pseudo-phoneme-boundaries defined by heuristic rules based on musical scores when there is no aligner. The experimental results show the effectiveness of the proposed system.
SingVisio: Visual Analytics of Diffusion Model for Singing Voice Conversion
In this study, we present SingVisio, an interactive visual analysis system that aims to explain the diffusion model used in singing voice conversion. SingVisio provides a visual display of the generation process in diffusion models, showcasing the step-by-step denoising of the noisy spectrum and its transformation into a clean spectrum that captures the desired singer's timbre. The system also facilitates side-by-side comparisons of different conditions, such as source content, melody, and target timbre, highlighting the impact of these conditions on the diffusion generation process and resulting conversions. Through comprehensive evaluations, SingVisio demonstrates its effectiveness in terms of system design, functionality, explainability, and user-friendliness. It offers users of various backgrounds valuable learning experiences and insights into the diffusion model for singing voice conversion.
Simple and Controllable Music Generation
We tackle the task of conditional music generation. We introduce MusicGen, a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens. Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns, which eliminates the need for cascading several models, e.g., hierarchically or upsampling. Following this approach, we demonstrate how MusicGen can generate high-quality samples, while being conditioned on textual description or melodic features, allowing better controls over the generated output. We conduct extensive empirical evaluation, considering both automatic and human studies, showing the proposed approach is superior to the evaluated baselines on a standard text-to-music benchmark. Through ablation studies, we shed light over the importance of each of the components comprising MusicGen. Music samples, code, and models are available at https://github.com/facebookresearch/audiocraft.
Text2midi: Generating Symbolic Music from Captions
This paper introduces text2midi, an end-to-end model to generate MIDI files from textual descriptions. Leveraging the growing popularity of multimodal generative approaches, text2midi capitalizes on the extensive availability of textual data and the success of large language models (LLMs). Our end-to-end system harnesses the power of LLMs to generate symbolic music in the form of MIDI files. Specifically, we utilize a pretrained LLM encoder to process captions, which then condition an autoregressive transformer decoder to produce MIDI sequences that accurately reflect the provided descriptions. This intuitive and user-friendly method significantly streamlines the music creation process by allowing users to generate music pieces using text prompts. We conduct comprehensive empirical evaluations, incorporating both automated and human studies, that show our model generates MIDI files of high quality that are indeed controllable by text captions that may include music theory terms such as chords, keys, and tempo. We release the code and music samples on our demo page (https://github.com/AMAAI-Lab/Text2midi) for users to interact with text2midi.
Music ControlNet: Multiple Time-varying Controls for Music Generation
Text-to-music generation models are now capable of generating high-quality music audio in broad styles. However, text control is primarily suitable for the manipulation of global musical attributes like genre, mood, and tempo, and is less suitable for precise control over time-varying attributes such as the positions of beats in time or the changing dynamics of the music. We propose Music ControlNet, a diffusion-based music generation model that offers multiple precise, time-varying controls over generated audio. To imbue text-to-music models with time-varying control, we propose an approach analogous to pixel-wise control of the image-domain ControlNet method. Specifically, we extract controls from training audio yielding paired data, and fine-tune a diffusion-based conditional generative model over audio spectrograms given melody, dynamics, and rhythm controls. While the image-domain Uni-ControlNet method already allows generation with any subset of controls, we devise a new strategy to allow creators to input controls that are only partially specified in time. We evaluate both on controls extracted from audio and controls we expect creators to provide, demonstrating that we can generate realistic music that corresponds to control inputs in both settings. While few comparable music generation models exist, we benchmark against MusicGen, a recent model that accepts text and melody input, and show that our model generates music that is 49% more faithful to input melodies despite having 35x fewer parameters, training on 11x less data, and enabling two additional forms of time-varying control. Sound examples can be found at https://MusicControlNet.github.io/web/.
JEN-1 Composer: A Unified Framework for High-Fidelity Multi-Track Music Generation
With rapid advances in generative artificial intelligence, the text-to-music synthesis task has emerged as a promising direction for music generation from scratch. However, finer-grained control over multi-track generation remains an open challenge. Existing models exhibit strong raw generation capability but lack the flexibility to compose separate tracks and combine them in a controllable manner, differing from typical workflows of human composers. To address this issue, we propose JEN-1 Composer, a unified framework to efficiently model marginal, conditional, and joint distributions over multi-track music via a single model. JEN-1 Composer framework exhibits the capacity to seamlessly incorporate any diffusion-based music generation system, e.g. Jen-1, enhancing its capacity for versatile multi-track music generation. We introduce a curriculum training strategy aimed at incrementally instructing the model in the transition from single-track generation to the flexible generation of multi-track combinations. During the inference, users have the ability to iteratively produce and choose music tracks that meet their preferences, subsequently creating an entire musical composition incrementally following the proposed Human-AI co-composition workflow. Quantitative and qualitative assessments demonstrate state-of-the-art performance in controllable and high-fidelity multi-track music synthesis. The proposed JEN-1 Composer represents a significant advance toward interactive AI-facilitated music creation and composition. Demos will be available at https://jenmusic.ai/audio-demos.
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
Audiobox: Unified Audio Generation with Natural Language Prompts
Audio is an essential part of our life, but creating it often requires expertise and is time-consuming. Research communities have made great progress over the past year advancing the performance of large scale audio generative models for a single modality (speech, sound, or music) through adopting more powerful generative models and scaling data. However, these models lack controllability in several aspects: speech generation models cannot synthesize novel styles based on text description and are limited on domain coverage such as outdoor environments; sound generation models only provide coarse-grained control based on descriptions like "a person speaking" and would only generate mumbling human voices. This paper presents Audiobox, a unified model based on flow-matching that is capable of generating various audio modalities. We design description-based and example-based prompting to enhance controllability and unify speech and sound generation paradigms. We allow transcript, vocal, and other audio styles to be controlled independently when generating speech. To improve model generalization with limited labels, we adapt a self-supervised infilling objective to pre-train on large quantities of unlabeled audio. Audiobox sets new benchmarks on speech and sound generation (0.745 similarity on Librispeech for zero-shot TTS; 0.77 FAD on AudioCaps for text-to-sound) and unlocks new methods for generating audio with novel vocal and acoustic styles. We further integrate Bespoke Solvers, which speeds up generation by over 25 times compared to the default ODE solver for flow-matching, without loss of performance on several tasks. Our demo is available at https://audiobox.metademolab.com/
MusicGen-Chord: Advancing Music Generation through Chord Progressions and Interactive Web-UI
MusicGen is a music generation language model (LM) that can be conditioned on textual descriptions and melodic features. We introduce MusicGen-Chord, which extends this capability by incorporating chord progression features. This model modifies one-hot encoded melody chroma vectors into multi-hot encoded chord chroma vectors, enabling the generation of music that reflects both chord progressions and textual descriptions. Furthermore, we developed MusicGen-Remixer, an application utilizing MusicGen-Chord to generate remixes of input music conditioned on textual descriptions. Both models are integrated into Replicate's web-UI using cog, facilitating broad accessibility and user-friendly controllable interaction for creating and experiencing AI-generated music.
MusicMagus: Zero-Shot Text-to-Music Editing via Diffusion Models
Recent advances in text-to-music generation models have opened new avenues in musical creativity. However, music generation usually involves iterative refinements, and how to edit the generated music remains a significant challenge. This paper introduces a novel approach to the editing of music generated by such models, enabling the modification of specific attributes, such as genre, mood and instrument, while maintaining other aspects unchanged. Our method transforms text editing to latent space manipulation while adding an extra constraint to enforce consistency. It seamlessly integrates with existing pretrained text-to-music diffusion models without requiring additional training. Experimental results demonstrate superior performance over both zero-shot and certain supervised baselines in style and timbre transfer evaluations. Additionally, we showcase the practical applicability of our approach in real-world music editing scenarios.
ChoralSynth: Synthetic Dataset of Choral Singing
Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research.
InstrumentGen: Generating Sample-Based Musical Instruments From Text
We introduce the text-to-instrument task, which aims at generating sample-based musical instruments based on textual prompts. Accordingly, we propose InstrumentGen, a model that extends a text-prompted generative audio framework to condition on instrument family, source type, pitch (across an 88-key spectrum), velocity, and a joint text/audio embedding. Furthermore, we present a differentiable loss function to evaluate the intra-instrument timbral consistency of sample-based instruments. Our results establish a foundational text-to-instrument baseline, extending research in the domain of automatic sample-based instrument generation.
NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers
Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://speechresearch.github.io/naturalspeech2.
MIDI-GPT: A Controllable Generative Model for Computer-Assisted Multitrack Music Composition
We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
Retrieval Augmented Generation of Symbolic Music with LLMs
We explore the use of large language models (LLMs) for music generation using a retrieval system to select relevant examples. We find promising initial results for music generation in a dialogue with the user, especially considering the ease with which such a system can be implemented. The code is available online.
SingMOS: An extensive Open-Source Singing Voice Dataset for MOS Prediction
In speech generation tasks, human subjective ratings, usually referred to as the opinion score, are considered the "gold standard" for speech quality evaluation, with the mean opinion score (MOS) serving as the primary evaluation metric. Due to the high cost of human annotation, several MOS prediction systems have emerged in the speech domain, demonstrating good performance. These MOS prediction models are trained using annotations from previous speech-related challenges. However, compared to the speech domain, the singing domain faces data scarcity and stricter copyright protections, leading to a lack of high-quality MOS-annotated datasets for singing. To address this, we propose SingMOS, a high-quality and diverse MOS dataset for singing, covering a range of Chinese and Japanese datasets. These synthesized vocals are generated using state-of-the-art models in singing synthesis, conversion, or resynthesis tasks and are rated by professional annotators alongside real vocals. Data analysis demonstrates the diversity and reliability of our dataset. Additionally, we conduct further exploration on SingMOS, providing insights for singing MOS prediction and guidance for the continued expansion of SingMOS.
Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion
Singing voice conversion (SVC) is a technique to enable an arbitrary singer to sing an arbitrary song. To achieve that, it is important to obtain speaker-agnostic representations from source audio, which is a challenging task. A common solution is to extract content-based features (e.g., PPGs) from a pretrained acoustic model. However, the choices for acoustic models are vast and varied. It is yet to be explored what characteristics of content features from different acoustic models are, and whether integrating multiple content features can help each other. Motivated by that, this study investigates three distinct content features, sourcing from WeNet, Whisper, and ContentVec, respectively. We explore their complementary roles in intelligibility, prosody, and conversion similarity for SVC. By integrating the multiple content features with a diffusion-based SVC model, our SVC system achieves superior conversion performance on both objective and subjective evaluation in comparison to a single source of content features. Our demo page and code can be available https://www.zhangxueyao.com/data/MultipleContentsSVC/index.html.
Learning the Beauty in Songs: Neural Singing Voice Beautifier
We are interested in a novel task, singing voice beautifying (SVB). Given the singing voice of an amateur singer, SVB aims to improve the intonation and vocal tone of the voice, while keeping the content and vocal timbre. Current automatic pitch correction techniques are immature, and most of them are restricted to intonation but ignore the overall aesthetic quality. Hence, we introduce Neural Singing Voice Beautifier (NSVB), the first generative model to solve the SVB task, which adopts a conditional variational autoencoder as the backbone and learns the latent representations of vocal tone. In NSVB, we propose a novel time-warping approach for pitch correction: Shape-Aware Dynamic Time Warping (SADTW), which ameliorates the robustness of existing time-warping approaches, to synchronize the amateur recording with the template pitch curve. Furthermore, we propose a latent-mapping algorithm in the latent space to convert the amateur vocal tone to the professional one. To achieve this, we also propose a new dataset containing parallel singing recordings of both amateur and professional versions. Extensive experiments on both Chinese and English songs demonstrate the effectiveness of our methods in terms of both objective and subjective metrics. Audio samples are available at~https://neuralsvb.github.io. Codes: https://github.com/MoonInTheRiver/NeuralSVB.
M2M-Gen: A Multimodal Framework for Automated Background Music Generation in Japanese Manga Using Large Language Models
This paper introduces M2M Gen, a multi modal framework for generating background music tailored to Japanese manga. The key challenges in this task are the lack of an available dataset or a baseline. To address these challenges, we propose an automated music generation pipeline that produces background music for an input manga book. Initially, we use the dialogues in a manga to detect scene boundaries and perform emotion classification using the characters faces within a scene. Then, we use GPT4o to translate this low level scene information into a high level music directive. Conditioned on the scene information and the music directive, another instance of GPT 4o generates page level music captions to guide a text to music model. This produces music that is aligned with the mangas evolving narrative. The effectiveness of M2M Gen is confirmed through extensive subjective evaluations, showcasing its capability to generate higher quality, more relevant and consistent music that complements specific scenes when compared to our baselines.
Moûsai: Text-to-Music Generation with Long-Context Latent Diffusion
Recent years have seen the rapid development of large generative models for text; however, much less research has explored the connection between text and another "language" of communication -- music. Music, much like text, can convey emotions, stories, and ideas, and has its own unique structure and syntax. In our work, we bridge text and music via a text-to-music generation model that is highly efficient, expressive, and can handle long-term structure. Specifically, we develop Mo\^usai, a cascading two-stage latent diffusion model that can generate multiple minutes of high-quality stereo music at 48kHz from textual descriptions. Moreover, our model features high efficiency, which enables real-time inference on a single consumer GPU with a reasonable speed. Through experiments and property analyses, we show our model's competence over a variety of criteria compared with existing music generation models. Lastly, to promote the open-source culture, we provide a collection of open-source libraries with the hope of facilitating future work in the field. We open-source the following: Codes: https://github.com/archinetai/audio-diffusion-pytorch; music samples for this paper: http://bit.ly/44ozWDH; all music samples for all models: https://bit.ly/audio-diffusion.
Opencpop: A High-Quality Open Source Chinese Popular Song Corpus for Singing Voice Synthesis
This paper introduces Opencpop, a publicly available high-quality Mandarin singing corpus designed for singing voice synthesis (SVS). The corpus consists of 100 popular Mandarin songs performed by a female professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100 Hz and the corresponding lyrics and musical scores are provided. All singing recordings have been phonetically annotated with phoneme boundaries and syllable (note) boundaries. To demonstrate the reliability of the released data and to provide a baseline for future research, we built baseline deep neural network-based SVS models and evaluated them with both objective metrics and subjective mean opinion score (MOS) measure. Experimental results show that the best SVS model trained on our database achieves 3.70 MOS, indicating the reliability of the provided corpus. Opencpop is released to the open-source community WeNet, and the corpus, as well as synthesized demos, can be found on the project homepage.
neural concatenative singing voice conversion: rethinking concatenation-based approach for one-shot singing voice conversion
Any-to-any singing voice conversion is confronted with a significant challenge of ``timbre leakage'' issue caused by inadequate disentanglement between the content and the speaker timbre. To address this issue, this study introduces a novel neural concatenative singing voice conversion (NeuCoSVC) framework. The NeuCoSVC framework comprises a self-supervised learning (SSL) representation extractor, a neural harmonic signal generator, and a waveform synthesizer. Specifically, the SSL extractor condenses the audio into a sequence of fixed-dimensional SSL features. The harmonic signal generator produces both raw and filtered harmonic signals as the pitch information by leveraging a linear time-varying (LTV) filter. Finally, the audio generator reconstructs the audio waveform based on the SSL features, as well as the harmonic signals and the loudness information. During inference, the system performs voice conversion by substituting source SSL features with their nearest counterparts from a matching pool, which comprises SSL representations extracted from the target audio, while the raw harmonic signals and the loudness are extracted from the source audio and are kept unchanged. Since the utilized SSL features in the conversion stage are directly from the target audio, the proposed framework has great potential to address the ``timbre leakage'' issue caused by previous disentanglement-based approaches. Experimental results confirm that the proposed system delivers much better performance than the speaker embedding approach (disentanglement-based) in the context of one-shot SVC across intra-language, cross-language, and cross-domain evaluations.
SONICS: Synthetic Or Not -- Identifying Counterfeit Songs
The recent surge in AI-generated songs presents exciting possibilities and challenges. While these tools democratize music creation, they also necessitate the ability to distinguish between human-composed and AI-generated songs for safeguarding artistic integrity and content curation. Existing research and datasets in fake song detection only focus on singing voice deepfake detection (SVDD), where the vocals are AI-generated but the instrumental music is sourced from real songs. However, this approach is inadequate for contemporary end-to-end AI-generated songs where all components (vocals, lyrics, music, and style) could be AI-generated. Additionally, existing datasets lack lyrics-music diversity, long-duration songs, and open fake songs. To address these gaps, we introduce SONICS, a novel dataset for end-to-end Synthetic Song Detection (SSD), comprising over 97k songs with over 49k synthetic songs from popular platforms like Suno and Udio. Furthermore, we highlight the importance of modeling long-range temporal dependencies in songs for effective authenticity detection, an aspect overlooked in existing methods. To capture these patterns, we propose a novel model, SpecTTTra, that is up to 3 times faster and 6 times more memory efficient compared to popular CNN and Transformer-based models while maintaining competitive performance. Finally, we offer both AI-based and Human evaluation benchmarks, addressing another deficiency in current research.
UniAudio: An Audio Foundation Model Toward Universal Audio Generation
Language models (LMs) have demonstrated the capability to handle a variety of generative tasks. This paper presents the UniAudio system, which, unlike prior task-specific approaches, leverages LMs techniques to generate multiple types of audio (including speech, sounds, music, and singing) with given input conditions. UniAudio 1) first tokenizes all types of target audio along with other condition modalities, 2) concatenates source-target pair as a single sequence, and 3) performs next-token prediction using LMs. Also, a multi-scale Transformer model is proposed to handle the overly long sequences caused by the residual vector quantization based neural codec in tokenization. Training of UniAudio is scaled up to 165K hours of audio and 1B parameters, based on all generative tasks, aiming to obtain sufficient prior knowledge not only in the intrinsic properties of audio but also the inter-relationship between audio and other modalities. Therefore, the trained UniAudio model has the potential to become a foundation model for universal audio generation: it shows strong capability in all trained tasks and can seamlessly support new audio generation tasks after simple fine-tuning. Experiments demonstrate that UniAudio achieves state-of-the-art or at least competitive results on most of the 11 tasks. Demo and code are released at https://github.com/yangdongchao/UniAudio
SaMoye: Zero-shot Singing Voice Conversion Based on Feature Disentanglement and Synthesis
Singing voice conversion (SVC) aims to convert a singer's voice in a given music piece to another singer while keeping the original content. We propose an end-to-end feature disentanglement-based model, which we named SaMoye, to enable zero-shot many-to-many singing voice conversion. SaMoye disentangles the features of the singing voice into content features, timbre features, and pitch features respectively. The content features are enhanced using a GPT-based model to perform cross-prediction with the phoneme of the lyrics. SaMoye can generate the music with converted voice by replacing the timbre features with the target singer. We also establish an unparalleled large-scale dataset to guarantee zero-shot performance. The dataset consists of 1500k pure singing vocal clips containing at least 10,000 singers.
On The Open Prompt Challenge In Conditional Audio Generation
Text-to-audio generation (TTA) produces audio from a text description, learning from pairs of audio samples and hand-annotated text. However, commercializing audio generation is challenging as user-input prompts are often under-specified when compared to text descriptions used to train TTA models. In this work, we treat TTA models as a ``blackbox'' and address the user prompt challenge with two key insights: (1) User prompts are generally under-specified, leading to a large alignment gap between user prompts and training prompts. (2) There is a distribution of audio descriptions for which TTA models are better at generating higher quality audio, which we refer to as ``audionese''. To this end, we rewrite prompts with instruction-tuned models and propose utilizing text-audio alignment as feedback signals via margin ranking learning for audio improvements. On both objective and subjective human evaluations, we observed marked improvements in both text-audio alignment and music audio quality.
Musika! Fast Infinite Waveform Music Generation
Fast and user-controllable music generation could enable novel ways of composing or performing music. However, state-of-the-art music generation systems require large amounts of data and computational resources for training, and are slow at inference. This makes them impractical for real-time interactive use. In this work, we introduce Musika, a music generation system that can be trained on hundreds of hours of music using a single consumer GPU, and that allows for much faster than real-time generation of music of arbitrary length on a consumer CPU. We achieve this by first learning a compact invertible representation of spectrogram magnitudes and phases with adversarial autoencoders, then training a Generative Adversarial Network (GAN) on this representation for a particular music domain. A latent coordinate system enables generating arbitrarily long sequences of excerpts in parallel, while a global context vector allows the music to remain stylistically coherent through time. We perform quantitative evaluations to assess the quality of the generated samples and showcase options for user control in piano and techno music generation. We release the source code and pretrained autoencoder weights at github.com/marcoppasini/musika, such that a GAN can be trained on a new music domain with a single GPU in a matter of hours.
Noise2Music: Text-conditioned Music Generation with Diffusion Models
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music
MusicHiFi: Fast High-Fidelity Stereo Vocoding
Diffusion-based audio and music generation models commonly generate music by constructing an image representation of audio (e.g., a mel-spectrogram) and then converting it to audio using a phase reconstruction model or vocoder. Typical vocoders, however, produce monophonic audio at lower resolutions (e.g., 16-24 kHz), which limits their effectiveness. We propose MusicHiFi -- an efficient high-fidelity stereophonic vocoder. Our method employs a cascade of three generative adversarial networks (GANs) that convert low-resolution mel-spectrograms to audio, upsamples to high-resolution audio via bandwidth expansion, and upmixes to stereophonic audio. Compared to previous work, we propose 1) a unified GAN-based generator and discriminator architecture and training procedure for each stage of our cascade, 2) a new fast, near downsampling-compatible bandwidth extension module, and 3) a new fast downmix-compatible mono-to-stereo upmixer that ensures the preservation of monophonic content in the output. We evaluate our approach using both objective and subjective listening tests and find our approach yields comparable or better audio quality, better spatialization control, and significantly faster inference speed compared to past work. Sound examples are at https://MusicHiFi.github.io/web/.
MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies
Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.
HiddenSinger: High-Quality Singing Voice Synthesis via Neural Audio Codec and Latent Diffusion Models
Recently, denoising diffusion models have demonstrated remarkable performance among generative models in various domains. However, in the speech domain, the application of diffusion models for synthesizing time-varying audio faces limitations in terms of complexity and controllability, as speech synthesis requires very high-dimensional samples with long-term acoustic features. To alleviate the challenges posed by model complexity in singing voice synthesis, we propose HiddenSinger, a high-quality singing voice synthesis system using a neural audio codec and latent diffusion models. To ensure high-fidelity audio, we introduce an audio autoencoder that can encode audio into an audio codec as a compressed representation and reconstruct the high-fidelity audio from the low-dimensional compressed latent vector. Subsequently, we use the latent diffusion models to sample a latent representation from a musical score. In addition, our proposed model is extended to an unsupervised singing voice learning framework, HiddenSinger-U, to train the model using an unlabeled singing voice dataset. Experimental results demonstrate that our model outperforms previous models in terms of audio quality. Furthermore, the HiddenSinger-U can synthesize high-quality singing voices of speakers trained solely on unlabeled data.
DDSP: Differentiable Digital Signal Processing
Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and perceived. A third approach (vocoders/synthesizers) successfully incorporates strong domain knowledge of signal processing and perception, but has been less actively researched due to limited expressivity and difficulty integrating with modern auto-differentiation-based machine learning methods. In this paper, we introduce the Differentiable Digital Signal Processing (DDSP) library, which enables direct integration of classic signal processing elements with deep learning methods. Focusing on audio synthesis, we achieve high-fidelity generation without the need for large autoregressive models or adversarial losses, demonstrating that DDSP enables utilizing strong inductive biases without losing the expressive power of neural networks. Further, we show that combining interpretable modules permits manipulation of each separate model component, with applications such as independent control of pitch and loudness, realistic extrapolation to pitches not seen during training, blind dereverberation of room acoustics, transfer of extracted room acoustics to new environments, and transformation of timbre between disparate sources. In short, DDSP enables an interpretable and modular approach to generative modeling, without sacrificing the benefits of deep learning. The library is publicly available at https://github.com/magenta/ddsp and we welcome further contributions from the community and domain experts.
DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generation
Diffusion models have recently been shown to be relevant for high-quality speech generation. Most work has been focused on generating spectrograms, and as such, they further require a subsequent model to convert the spectrogram to a waveform (i.e., a vocoder). This work proposes a diffusion probabilistic end-to-end model for generating a raw speech waveform. The proposed model is autoregressive, generating overlapping frames sequentially, where each frame is conditioned on a portion of the previously generated one. Hence, our model can effectively synthesize an unlimited speech duration while preserving high-fidelity synthesis and temporal coherence. We implemented the proposed model for unconditional and conditional speech generation, where the latter can be driven by an input sequence of phonemes, amplitudes, and pitch values. Working on the waveform directly has some empirical advantages. Specifically, it allows the creation of local acoustic behaviors, like vocal fry, which makes the overall waveform sounds more natural. Furthermore, the proposed diffusion model is stochastic and not deterministic; therefore, each inference generates a slightly different waveform variation, enabling abundance of valid realizations. Experiments show that the proposed model generates speech with superior quality compared with other state-of-the-art neural speech generation systems.
Jukebox: A Generative Model for Music
We introduce Jukebox, a model that generates music with singing in the raw audio domain. We tackle the long context of raw audio using a multi-scale VQ-VAE to compress it to discrete codes, and modeling those using autoregressive Transformers. We show that the combined model at scale can generate high-fidelity and diverse songs with coherence up to multiple minutes. We can condition on artist and genre to steer the musical and vocal style, and on unaligned lyrics to make the singing more controllable. We are releasing thousands of non cherry-picked samples at https://jukebox.openai.com, along with model weights and code at https://github.com/openai/jukebox
Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning
Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.
A Survey of AI Music Generation Tools and Models
In this work, we provide a comprehensive survey of AI music generation tools, including both research projects and commercialized applications. To conduct our analysis, we classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes. Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users, from regular listeners to professional musicians. We observed that each tool has its own set of advantages and limitations. As a result, we have compiled a comprehensive list of these factors that should be considered during the tool selection process. Moreover, our survey offers critical insights into the underlying mechanisms and challenges of AI music generation.
Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale
Large-scale generative models such as GPT and DALL-E have revolutionized the research community. These models not only generate high fidelity outputs, but are also generalists which can solve tasks not explicitly taught. In contrast, speech generative models are still primitive in terms of scale and task generalization. In this paper, we present Voicebox, the most versatile text-guided generative model for speech at scale. Voicebox is a non-autoregressive flow-matching model trained to infill speech, given audio context and text, trained on over 50K hours of speech that are not filtered or enhanced. Similar to GPT, Voicebox can perform many different tasks through in-context learning, but is more flexible as it can also condition on future context. Voicebox can be used for mono or cross-lingual zero-shot text-to-speech synthesis, noise removal, content editing, style conversion, and diverse sample generation. In particular, Voicebox outperforms the state-of-the-art zero-shot TTS model VALL-E on both intelligibility (5.9% vs 1.9% word error rates) and audio similarity (0.580 vs 0.681) while being up to 20 times faster. Audio samples can be found in https://voicebox.metademolab.com.
Deep Performer: Score-to-Audio Music Performance Synthesis
Music performance synthesis aims to synthesize a musical score into a natural performance. In this paper, we borrow recent advances in text-to-speech synthesis and present the Deep Performer -- a novel system for score-to-audio music performance synthesis. Unlike speech, music often contains polyphony and long notes. Hence, we propose two new techniques for handling polyphonic inputs and providing a fine-grained conditioning in a transformer encoder-decoder model. To train our proposed system, we present a new violin dataset consisting of paired recordings and scores along with estimated alignments between them. We show that our proposed model can synthesize music with clear polyphony and harmonic structures. In a listening test, we achieve competitive quality against the baseline model, a conditional generative audio model, in terms of pitch accuracy, timbre and noise level. Moreover, our proposed model significantly outperforms the baseline on an existing piano dataset in overall quality.
ZMM-TTS: Zero-shot Multilingual and Multispeaker Speech Synthesis Conditioned on Self-supervised Discrete Speech Representations
Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language.
PeriodGrad: Towards Pitch-Controllable Neural Vocoder Based on a Diffusion Probabilistic Model
This paper presents a neural vocoder based on a denoising diffusion probabilistic model (DDPM) incorporating explicit periodic signals as auxiliary conditioning signals. Recently, DDPM-based neural vocoders have gained prominence as non-autoregressive models that can generate high-quality waveforms. The neural vocoders based on DDPM have the advantage of training with a simple time-domain loss. In practical applications, such as singing voice synthesis, there is a demand for neural vocoders to generate high-fidelity speech waveforms with flexible pitch control. However, conventional DDPM-based neural vocoders struggle to generate speech waveforms under such conditions. Our proposed model aims to accurately capture the periodic structure of speech waveforms by incorporating explicit periodic signals. Experimental results show that our model improves sound quality and provides better pitch control than conventional DDPM-based neural vocoders.
MidiCaps -- A large-scale MIDI dataset with text captions
Generative models guided by text prompts are increasingly becoming more popular. However, no text-to-MIDI models currently exist, mostly due to the lack of a captioned MIDI dataset. This work aims to enable research that combines LLMs with symbolic music by presenting the first large-scale MIDI dataset with text captions that is openly available: MidiCaps. MIDI (Musical Instrument Digital Interface) files are a widely used format for encoding musical information. Their structured format captures the nuances of musical composition and has practical applications by music producers, composers, musicologists, as well as performers. Inspired by recent advancements in captioning techniques applied to various domains, we present a large-scale curated dataset of over 168k MIDI files accompanied by textual descriptions. Each MIDI caption succinctly describes the musical content, encompassing tempo, chord progression, time signature, instruments present, genre and mood; thereby facilitating multi-modal exploration and analysis. The dataset contains a mix of various genres, styles, and complexities, offering a rich source for training and evaluating models for tasks such as music information retrieval, music understanding and cross-modal translation. We provide detailed statistics about the dataset and have assessed the quality of the captions in an extensive listening study. We anticipate that this resource will stimulate further research in the intersection of music and natural language processing, fostering advancements in both fields.
Long-form music generation with latent diffusion
Audio-based generative models for music have seen great strides recently, but so far have not managed to produce full-length music tracks with coherent musical structure. We show that by training a generative model on long temporal contexts it is possible to produce long-form music of up to 4m45s. Our model consists of a diffusion-transformer operating on a highly downsampled continuous latent representation (latent rate of 21.5Hz). It obtains state-of-the-art generations according to metrics on audio quality and prompt alignment, and subjective tests reveal that it produces full-length music with coherent structure.
Pheme: Efficient and Conversational Speech Generation
In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.
Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer
Attention-based Transformer models have been increasingly employed for automatic music generation. To condition the generation process of such a model with a user-specified sequence, a popular approach is to take that conditioning sequence as a priming sequence and ask a Transformer decoder to generate a continuation. However, this prompt-based conditioning cannot guarantee that the conditioning sequence would develop or even simply repeat itself in the generated continuation. In this paper, we propose an alternative conditioning approach, called theme-based conditioning, that explicitly trains the Transformer to treat the conditioning sequence as a thematic material that has to manifest itself multiple times in its generation result. This is achieved with two main technical contributions. First, we propose a deep learning-based approach that uses contrastive representation learning and clustering to automatically retrieve thematic materials from music pieces in the training data. Second, we propose a novel gated parallel attention module to be used in a sequence-to-sequence (seq2seq) encoder/decoder architecture to more effectively account for a given conditioning thematic material in the generation process of the Transformer decoder. We report on objective and subjective evaluations of variants of the proposed Theme Transformer and the conventional prompt-based baseline, showing that our best model can generate, to some extent, polyphonic pop piano music with repetition and plausible variations of a given condition.
AudioGen: Textually Guided Audio Generation
We tackle the problem of generating audio samples conditioned on descriptive text captions. In this work, we propose AaudioGen, an auto-regressive generative model that generates audio samples conditioned on text inputs. AudioGen operates on a learnt discrete audio representation. The task of text-to-audio generation poses multiple challenges. Due to the way audio travels through a medium, differentiating ``objects'' can be a difficult task (e.g., separating multiple people simultaneously speaking). This is further complicated by real-world recording conditions (e.g., background noise, reverberation, etc.). Scarce text annotations impose another constraint, limiting the ability to scale models. Finally, modeling high-fidelity audio requires encoding audio at high sampling rate, leading to extremely long sequences. To alleviate the aforementioned challenges we propose an augmentation technique that mixes different audio samples, driving the model to internally learn to separate multiple sources. We curated 10 datasets containing different types of audio and text annotations to handle the scarcity of text-audio data points. For faster inference, we explore the use of multi-stream modeling, allowing the use of shorter sequences while maintaining a similar bitrate and perceptual quality. We apply classifier-free guidance to improve adherence to text. Comparing to the evaluated baselines, AudioGen outperforms over both objective and subjective metrics. Finally, we explore the ability of the proposed method to generate audio continuation conditionally and unconditionally. Samples: https://felixkreuk.github.io/audiogen
CONTUNER: Singing Voice Beautifying with Pitch and Expressiveness Condition
Singing voice beautifying is a novel task that has application value in people's daily life, aiming to correct the pitch of the singing voice and improve the expressiveness without changing the original timbre and content. Existing methods rely on paired data or only concentrate on the correction of pitch. However, professional songs and amateur songs from the same person are hard to obtain, and singing voice beautifying doesn't only contain pitch correction but other aspects like emotion and rhythm. Since we propose a fast and high-fidelity singing voice beautifying system called ConTuner, a diffusion model combined with the modified condition to generate the beautified Mel-spectrogram, where the modified condition is composed of optimized pitch and expressiveness. For pitch correction, we establish a mapping relationship from MIDI, spectrum envelope to pitch. To make amateur singing more expressive, we propose the expressiveness enhancer in the latent space to convert amateur vocal tone to professional. ConTuner achieves a satisfactory beautification effect on both Mandarin and English songs. Ablation study demonstrates that the expressiveness enhancer and generator-based accelerate method in ConTuner are effective.
Audiobox TTA-RAG: Improving Zero-Shot and Few-Shot Text-To-Audio with Retrieval-Augmented Generation
Current leading Text-To-Audio (TTA) generation models suffer from degraded performance on zero-shot and few-shot settings. It is often challenging to generate high-quality audio for audio events that are unseen or uncommon in the training set. Inspired by the success of Retrieval-Augmented Generation (RAG) in Large Language Model (LLM)-based knowledge-intensive tasks, we extend the TTA process with additional conditioning contexts. We propose Audiobox TTA-RAG, a novel retrieval-augmented TTA approach based on Audiobox, a conditional flow-matching audio generation model. Unlike the vanilla Audiobox TTA solution which generates audio conditioned on text, we augmented the conditioning input with retrieved audio samples that provide additional acoustic information to generate the target audio. Our retrieval method does not require the external database to have labeled audio, offering more practical use cases. To evaluate our proposed method, we curated test sets in zero-shot and few-shot settings. Our empirical results show that the proposed model can effectively leverage the retrieved audio samples and significantly improve zero-shot and few-shot TTA performance, with large margins on multiple evaluation metrics, while maintaining the ability to generate semantically aligned audio for the in-domain setting. In addition, we investigate the effect of different retrieval methods and data sources.
Joint Audio and Symbolic Conditioning for Temporally Controlled Text-to-Music Generation
We present JASCO, a temporally controlled text-to-music generation model utilizing both symbolic and audio-based conditions. JASCO can generate high-quality music samples conditioned on global text descriptions along with fine-grained local controls. JASCO is based on the Flow Matching modeling paradigm together with a novel conditioning method. This allows music generation controlled both locally (e.g., chords) and globally (text description). Specifically, we apply information bottleneck layers in conjunction with temporal blurring to extract relevant information with respect to specific controls. This allows the incorporation of both symbolic and audio-based conditions in the same text-to-music model. We experiment with various symbolic control signals (e.g., chords, melody), as well as with audio representations (e.g., separated drum tracks, full-mix). We evaluate JASCO considering both generation quality and condition adherence, using both objective metrics and human studies. Results suggest that JASCO is comparable to the evaluated baselines considering generation quality while allowing significantly better and more versatile controls over the generated music. Samples are available on our demo page https://pages.cs.huji.ac.il/adiyoss-lab/JASCO.
Whisper-GPT: A Hybrid Representation Audio Large Language Model
We propose WHISPER-GPT: A generative large language model (LLM) for speech and music that allows us to work with continuous audio representations and discrete tokens simultaneously as part of a single architecture. There has been a huge surge in generative audio, speech, and music models that utilize discrete audio tokens derived from neural compression algorithms, e.g. ENCODEC. However, one of the major drawbacks of this approach is handling the context length. It blows up for high-fidelity generative architecture if one has to account for all the audio contents at various frequencies for the next token prediction. By combining continuous audio representation like the spectrogram and discrete acoustic tokens, we retain the best of both worlds: Have all the information needed from the audio at a specific time instance in a single token, yet allow LLM to predict the future token to allow for sampling and other benefits discrete space provides. We show how our architecture improves the perplexity and negative log-likelihood scores for the next token prediction compared to a token-based LLM for speech and music.
Diversity-Rewarded CFG Distillation
Generative models are transforming creative domains such as music generation, with inference-time strategies like Classifier-Free Guidance (CFG) playing a crucial role. However, CFG doubles inference cost while limiting originality and diversity across generated contents. In this paper, we introduce diversity-rewarded CFG distillation, a novel finetuning procedure that distills the strengths of CFG while addressing its limitations. Our approach optimises two training objectives: (1) a distillation objective, encouraging the model alone (without CFG) to imitate the CFG-augmented predictions, and (2) an RL objective with a diversity reward, promoting the generation of diverse outputs for a given prompt. By finetuning, we learn model weights with the ability to generate high-quality and diverse outputs, without any inference overhead. This also unlocks the potential of weight-based model merging strategies: by interpolating between the weights of two models (the first focusing on quality, the second on diversity), we can control the quality-diversity trade-off at deployment time, and even further boost performance. We conduct extensive experiments on the MusicLM (Agostinelli et al., 2023) text-to-music generative model, where our approach surpasses CFG in terms of quality-diversity Pareto optimality. According to human evaluators, our finetuned-then-merged model generates samples with higher quality-diversity than the base model augmented with CFG. Explore our generations at https://google-research.github.io/seanet/musiclm/diverse_music/.
Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization
Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.
BiSinger: Bilingual Singing Voice Synthesis
Although Singing Voice Synthesis (SVS) has made great strides with Text-to-Speech (TTS) techniques, multilingual singing voice modeling remains relatively unexplored. This paper presents BiSinger, a bilingual pop SVS system for English and Chinese Mandarin. Current systems require separate models per language and cannot accurately represent both Chinese and English, hindering code-switch SVS. To address this gap, we design a shared representation between Chinese and English singing voices, achieved by using the CMU dictionary with mapping rules. We fuse monolingual singing datasets with open-source singing voice conversion techniques to generate bilingual singing voices while also exploring the potential use of bilingual speech data. Experiments affirm that our language-independent representation and incorporation of related datasets enable a single model with enhanced performance in English and code-switch SVS while maintaining Chinese song performance. Audio samples are available at https://bisinger-svs.github.io.
SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond
Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods.As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios.
GETMusic: Generating Any Music Tracks with a Unified Representation and Diffusion Framework
Symbolic music generation aims to create musical notes, which can help users compose music, such as generating target instrumental tracks from scratch, or based on user-provided source tracks. Considering the diverse and flexible combination between source and target tracks, a unified model capable of generating any arbitrary tracks is of crucial necessity. Previous works fail to address this need due to inherent constraints in music representations and model architectures. To address this need, we propose a unified representation and diffusion framework named GETMusic (`GET' stands for GEnerate music Tracks), which includes a novel music representation named GETScore, and a diffusion model named GETDiff. GETScore represents notes as tokens and organizes them in a 2D structure, with tracks stacked vertically and progressing horizontally over time. During training, tracks are randomly selected as either the target or source. In the forward process, target tracks are corrupted by masking their tokens, while source tracks remain as ground truth. In the denoising process, GETDiff learns to predict the masked target tokens, conditioning on the source tracks. With separate tracks in GETScore and the non-autoregressive behavior of the model, GETMusic can explicitly control the generation of any target tracks from scratch or conditioning on source tracks. We conduct experiments on music generation involving six instrumental tracks, resulting in a total of 665 combinations. GETMusic provides high-quality results across diverse combinations and surpasses prior works proposed for some specific combinations.
Generating Sample-Based Musical Instruments Using Neural Audio Codec Language Models
In this paper, we propose and investigate the use of neural audio codec language models for the automatic generation of sample-based musical instruments based on text or reference audio prompts. Our approach extends a generative audio framework to condition on pitch across an 88-key spectrum, velocity, and a combined text/audio embedding. We identify maintaining timbral consistency within the generated instruments as a major challenge. To tackle this issue, we introduce three distinct conditioning schemes. We analyze our methods through objective metrics and human listening tests, demonstrating that our approach can produce compelling musical instruments. Specifically, we introduce a new objective metric to evaluate the timbral consistency of the generated instruments and adapt the average Contrastive Language-Audio Pretraining (CLAP) score for the text-to-instrument case, noting that its naive application is unsuitable for assessing this task. Our findings reveal a complex interplay between timbral consistency, the quality of generated samples, and their correspondence to the input prompt.
Song Form-aware Full-Song Text-to-Lyrics Generation with Multi-Level Granularity Syllable Count Control
Lyrics generation presents unique challenges, particularly in achieving precise syllable control while adhering to song form structures such as verses and choruses. Conventional line-by-line approaches often lead to unnatural phrasing, underscoring the need for more granular syllable management. We propose a framework for lyrics generation that enables multi-level syllable control at the word, phrase, line, and paragraph levels, aware of song form. Our approach generates complete lyrics conditioned on input text and song form, ensuring alignment with specified syllable constraints. Generated lyrics samples are available at: https://tinyurl.com/lyrics9999
AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called language of audio (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate new state-of-the-art or competitive performance to previous approaches. Our demo and code are available at https://audioldm.github.io/audioldm2.
M^{2}UGen: Multi-modal Music Understanding and Generation with the Power of Large Language Models
The current landscape of research leveraging large language models (LLMs) is experiencing a surge. Many works harness the powerful reasoning capabilities of these models to comprehend various modalities, such as text, speech, images, videos, etc. They also utilize LLMs to understand human intention and generate desired outputs like images, videos, and music. However, research that combines both understanding and generation using LLMs is still limited and in its nascent stage. To address this gap, we introduce a Multi-modal Music Understanding and Generation (M^{2}UGen) framework that integrates LLM's abilities to comprehend and generate music for different modalities. The M^{2}UGen framework is purpose-built to unlock creative potential from diverse sources of inspiration, encompassing music, image, and video through the use of pretrained MERT, ViT, and ViViT models, respectively. To enable music generation, we explore the use of AudioLDM 2 and MusicGen. Bridging multi-modal understanding and music generation is accomplished through the integration of the LLaMA 2 model. Furthermore, we make use of the MU-LLaMA model to generate extensive datasets that support text/image/video-to-music generation, facilitating the training of our M^{2}UGen framework. We conduct a thorough evaluation of our proposed framework. The experimental results demonstrate that our model achieves or surpasses the performance of the current state-of-the-art models.
Expressive Neural Voice Cloning
Voice cloning is the task of learning to synthesize the voice of an unseen speaker from a few samples. While current voice cloning methods achieve promising results in Text-to-Speech (TTS) synthesis for a new voice, these approaches lack the ability to control the expressiveness of synthesized audio. In this work, we propose a controllable voice cloning method that allows fine-grained control over various style aspects of the synthesized speech for an unseen speaker. We achieve this by explicitly conditioning the speech synthesis model on a speaker encoding, pitch contour and latent style tokens during training. Through both quantitative and qualitative evaluations, we show that our framework can be used for various expressive voice cloning tasks using only a few transcribed or untranscribed speech samples for a new speaker. These cloning tasks include style transfer from a reference speech, synthesizing speech directly from text, and fine-grained style control by manipulating the style conditioning variables during inference.
Enhance audio generation controllability through representation similarity regularization
This paper presents an innovative approach to enhance control over audio generation by emphasizing the alignment between audio and text representations during model training. In the context of language model-based audio generation, the model leverages input from both textual and audio token representations to predict subsequent audio tokens. However, the current configuration lacks explicit regularization to ensure the alignment between the chosen text representation and the language model's predictions. Our proposal involves the incorporation of audio and text representation regularization, particularly during the classifier-free guidance (CFG) phase, where the text condition is excluded from cross attention during language model training. The aim of this proposed representation regularization is to minimize discrepancies in audio and text similarity compared to other samples within the same training batch. Experimental results on both music and audio generation tasks demonstrate that our proposed methods lead to improvements in objective metrics for both audio and music generation, as well as an enhancement in the human perception for audio generation.
PromptTTS 2: Describing and Generating Voices with Text Prompt
Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2.
V2Meow: Meowing to the Visual Beat via Music Generation
Generating high quality music that complements the visual content of a video is a challenging task. Most existing visual conditioned music generation systems generate symbolic music data, such as MIDI files, instead of raw audio waveform. Given the limited availability of symbolic music data, such methods can only generate music for a few instruments or for specific types of visual input. In this paper, we propose a novel approach called V2Meow that can generate high-quality music audio that aligns well with the visual semantics of a diverse range of video input types. Specifically, the proposed music generation system is a multi-stage autoregressive model which is trained with a number of O(100K) music audio clips paired with video frames, which are mined from in-the-wild music videos, and no parallel symbolic music data is involved. V2Meow is able to synthesize high-fidelity music audio waveform solely conditioned on pre-trained visual features extracted from an arbitrary silent video clip, and it also allows high-level control over the music style of generation examples via supporting text prompts in addition to the video frames conditioning. Through both qualitative and quantitative evaluations, we demonstrate that our model outperforms several existing music generation systems in terms of both visual-audio correspondence and audio quality.
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion
We present an unsupervised non-parallel many-to-many voice conversion (VC) method using a generative adversarial network (GAN) called StarGAN v2. Using a combination of adversarial source classifier loss and perceptual loss, our model significantly outperforms previous VC models. Although our model is trained only with 20 English speakers, it generalizes to a variety of voice conversion tasks, such as any-to-many, cross-lingual, and singing conversion. Using a style encoder, our framework can also convert plain reading speech into stylistic speech, such as emotional and falsetto speech. Subjective and objective evaluation experiments on a non-parallel many-to-many voice conversion task revealed that our model produces natural sounding voices, close to the sound quality of state-of-the-art text-to-speech (TTS) based voice conversion methods without the need for text labels. Moreover, our model is completely convolutional and with a faster-than-real-time vocoder such as Parallel WaveGAN can perform real-time voice conversion.
HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling
Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: https://anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity.
A Comparative Study of Voice Conversion Models with Large-Scale Speech and Singing Data: The T13 Systems for the Singing Voice Conversion Challenge 2023
This paper presents our systems (denoted as T13) for the singing voice conversion challenge (SVCC) 2023. For both in-domain and cross-domain English singing voice conversion (SVC) tasks (Task 1 and Task 2), we adopt a recognition-synthesis approach with self-supervised learning-based representation. To achieve data-efficient SVC with a limited amount of target singer/speaker's data (150 to 160 utterances for SVCC 2023), we first train a diffusion-based any-to-any voice conversion model using publicly available large-scale 750 hours of speech and singing data. Then, we finetune the model for each target singer/speaker of Task 1 and Task 2. Large-scale listening tests conducted by SVCC 2023 show that our T13 system achieves competitive naturalness and speaker similarity for the harder cross-domain SVC (Task 2), which implies the generalization ability of our proposed method. Our objective evaluation results show that using large datasets is particularly beneficial for cross-domain SVC.
Generative Pre-training for Speech with Flow Matching
Generative models have gained more and more attention in recent years for their remarkable success in tasks that required estimating and sampling data distribution to generate high-fidelity synthetic data. In speech, text-to-speech synthesis and neural vocoder are good examples where generative models have shined. While generative models have been applied to different applications in speech, there exists no general-purpose generative model that models speech directly. In this work, we take a step toward this direction by showing a single pre-trained generative model can be adapted to different downstream tasks with strong performance. Specifically, we pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions. Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis. Our work suggested a foundational model for generation tasks in speech can be built with generative pre-training.
MusiConGen: Rhythm and Chord Control for Transformer-Based Text-to-Music Generation
Existing text-to-music models can produce high-quality audio with great diversity. However, textual prompts alone cannot precisely control temporal musical features such as chords and rhythm of the generated music. To address this challenge, we introduce MusiConGen, a temporally-conditioned Transformer-based text-to-music model that builds upon the pretrained MusicGen framework. Our innovation lies in an efficient finetuning mechanism, tailored for consumer-grade GPUs, that integrates automatically-extracted rhythm and chords as the condition signal. During inference, the condition can either be musical features extracted from a reference audio signal, or be user-defined symbolic chord sequence, BPM, and textual prompts. Our performance evaluation on two datasets -- one derived from extracted features and the other from user-created inputs -- demonstrates that MusiConGen can generate realistic backing track music that aligns well with the specified conditions. We open-source the code and model checkpoints, and provide audio examples online, https://musicongen.github.io/musicongen_demo/.
ItôTTS and ItôWave: Linear Stochastic Differential Equation Is All You Need For Audio Generation
In this paper, we propose to unify the two aspects of voice synthesis, namely text-to-speech (TTS) and vocoder, into one framework based on a pair of forward and reverse-time linear stochastic differential equations (SDE). The solutions of this SDE pair are two stochastic processes, one of which turns the distribution of mel spectrogram (or wave), that we want to generate, into a simple and tractable distribution. The other is the generation procedure that turns this tractable simple signal into the target mel spectrogram (or wave). The model that generates mel spectrogram is called It\^oTTS, and the model that generates wave is called It\^oWave. It\^oTTS and It\^oWave use the Wiener process as a driver to gradually subtract the excess signal from the noise signal to generate realistic corresponding meaningful mel spectrogram and audio respectively, under the conditional inputs of original text or mel spectrogram. The results of the experiment show that the mean opinion scores (MOS) of It\^oTTS and It\^oWave can exceed the current state-of-the-art methods, and reached 3.925pm0.160 and 4.35pm0.115 respectively. The generated audio samples are available at https://wushoule.github.io/ItoAudio/. All authors contribute equally to this work.
Efficient Neural Music Generation
Recent progress in music generation has been remarkably advanced by the state-of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the MusicLM requires processing through these LMs one by one to obtain the fine-grained acoustic tokens, making it computationally expensive and prohibitive for a real-time generation. Efficient music generation with a quality on par with MusicLM remains a significant challenge. In this paper, we present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion model that generates music audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform. DPD is proposed to simultaneously model the coarse and fine acoustics by incorporating the semantic information into segments of latents effectively via cross-attention at each denoising step. Our experimental results suggest the superiority of MeLoDy, not only in its practical advantages on sampling speed and infinitely continuable generation, but also in its state-of-the-art musicality, audio quality, and text correlation. Our samples are available at https://Efficient-MeLoDy.github.io/.
MMM : Exploring Conditional Multi-Track Music Generation with the Transformer
We propose the Multi-Track Music Machine (MMM), a generative system based on the Transformer architecture that is capable of generating multi-track music. In contrast to previous work, which represents musical material as a single time-ordered sequence, where the musical events corresponding to different tracks are interleaved, we create a time-ordered sequence of musical events for each track and concatenate several tracks into a single sequence. This takes advantage of the Transformer's attention-mechanism, which can adeptly handle long-term dependencies. We explore how various representations can offer the user a high degree of control at generation time, providing an interactive demo that accommodates track-level and bar-level inpainting, and offers control over track instrumentation and note density.
MusicLM: Generating Music From Text
We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.
Equipping Pretrained Unconditional Music Transformers with Instrument and Genre Controls
The ''pretraining-and-finetuning'' paradigm has become a norm for training domain-specific models in natural language processing and computer vision. In this work, we aim to examine this paradigm for symbolic music generation through leveraging the largest ever symbolic music dataset sourced from the MuseScore forum. We first pretrain a large unconditional transformer model using 1.5 million songs. We then propose a simple technique to equip this pretrained unconditional music transformer model with instrument and genre controls by finetuning the model with additional control tokens. Our proposed representation offers improved high-level controllability and expressiveness against two existing representations. The experimental results show that the proposed model can successfully generate music with user-specified instruments and genre. In a subjective listening test, the proposed model outperforms the pretrained baseline model in terms of coherence, harmony, arrangement and overall quality.
TunesFormer: Forming Tunes with Control Codes
In recent years, deep learning techniques have been applied to music generation systems with promising results. However, one of the main challenges in this field has been the lack of annotated datasets, making it difficult for models to learn musical forms in compositions. To address this issue, we present TunesFormer, a Transformer-based melody generation system that is trained on a large dataset of 285,449 ABC tunes. By utilizing specific symbols commonly found in ABC notation to indicate section boundaries, TunesFormer can understand and generate melodies with given musical forms based on control codes. Our objective evaluations demonstrate the effectiveness of the control codes in achieving controlled musical forms, and subjective experiments show that the generated melodies are of comparable quality to human compositions. Our results also provide insights into the optimal placement of control codes and their impact on the generated melodies. TunesFormer presents a promising approach for generating melodies with desired musical forms through the use of deep learning techniques.
ChatMusician: Understanding and Generating Music Intrinsically with LLM
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion
Deep generative models can generate high-fidelity audio conditioned on various types of representations (e.g., mel-spectrograms, Mel-frequency Cepstral Coefficients (MFCC)). Recently, such models have been used to synthesize audio waveforms conditioned on highly compressed representations. Although such methods produce impressive results, they are prone to generate audible artifacts when the conditioning is flawed or imperfect. An alternative modeling approach is to use diffusion models. However, these have mainly been used as speech vocoders (i.e., conditioned on mel-spectrograms) or generating relatively low sampling rate signals. In this work, we propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality (e.g., speech, music, environmental sounds) from low-bitrate discrete representations. At equal bit rate, the proposed approach outperforms state-of-the-art generative techniques in terms of perceptual quality. Training and, evaluation code, along with audio samples, are available on the facebookresearch/audiocraft Github page.
DITTO-2: Distilled Diffusion Inference-Time T-Optimization for Music Generation
Controllable music generation methods are critical for human-centered AI-based music creation, but are currently limited by speed, quality, and control design trade-offs. Diffusion Inference-Time T-optimization (DITTO), in particular, offers state-of-the-art results, but is over 10x slower than real-time, limiting practical use. We propose Distilled Diffusion Inference-Time T -Optimization (or DITTO-2), a new method to speed up inference-time optimization-based control and unlock faster-than-real-time generation for a wide-variety of applications such as music inpainting, outpainting, intensity, melody, and musical structure control. Our method works by (1) distilling a pre-trained diffusion model for fast sampling via an efficient, modified consistency or consistency trajectory distillation process (2) performing inference-time optimization using our distilled model with one-step sampling as an efficient surrogate optimization task and (3) running a final multi-step sampling generation (decoding) using our estimated noise latents for best-quality, fast, controllable generation. Through thorough evaluation, we find our method not only speeds up generation over 10-20x, but simultaneously improves control adherence and generation quality all at once. Furthermore, we apply our approach to a new application of maximizing text adherence (CLAP score) and show we can convert an unconditional diffusion model without text inputs into a model that yields state-of-the-art text control. Sound examples can be found at https://ditto-music.github.io/ditto2/.
CM-TTS: Enhancing Real Time Text-to-Speech Synthesis Efficiency through Weighted Samplers and Consistency Models
Neural Text-to-Speech (TTS) systems find broad applications in voice assistants, e-learning, and audiobook creation. The pursuit of modern models, like Diffusion Models (DMs), holds promise for achieving high-fidelity, real-time speech synthesis. Yet, the efficiency of multi-step sampling in Diffusion Models presents challenges. Efforts have been made to integrate GANs with DMs, speeding up inference by approximating denoising distributions, but this introduces issues with model convergence due to adversarial training. To overcome this, we introduce CM-TTS, a novel architecture grounded in consistency models (CMs). Drawing inspiration from continuous-time diffusion models, CM-TTS achieves top-quality speech synthesis in fewer steps without adversarial training or pre-trained model dependencies. We further design weighted samplers to incorporate different sampling positions into model training with dynamic probabilities, ensuring unbiased learning throughout the entire training process. We present a real-time mel-spectrogram generation consistency model, validated through comprehensive evaluations. Experimental results underscore CM-TTS's superiority over existing single-step speech synthesis systems, representing a significant advancement in the field.
Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music Generation Task
Benefiting from large-scale datasets and pre-trained models, the field of generative models has recently gained significant momentum. However, most datasets for symbolic music are very small, which potentially limits the performance of data-driven multimodal models. An intuitive solution to this problem is to leverage pre-trained models from other modalities (e.g., natural language) to improve the performance of symbolic music-related multimodal tasks. In this paper, we carry out the first study of generating complete and semantically consistent symbolic music scores from text descriptions, and explore the efficacy of using publicly available checkpoints (i.e., BERT, GPT-2, and BART) for natural language processing in the task of text-to-music generation. Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity. We analyse the capabilities and limitations of our model to better understand the potential of language-music models.
Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm
This research presents Muskits-ESPnet, a versatile toolkit that introduces new paradigms to Singing Voice Synthesis (SVS) through the application of pretrained audio models in both continuous and discrete approaches. Specifically, we explore discrete representations derived from SSL models and audio codecs and offer significant advantages in versatility and intelligence, supporting multi-format inputs and adaptable data processing workflows for various SVS models. The toolkit features automatic music score error detection and correction, as well as a perception auto-evaluation module to imitate human subjective evaluating scores. Muskits-ESPnet is available at https://github.com/espnet/espnet.
Better speech synthesis through scaling
In recent years, the field of image generation has been revolutionized by the application of autoregressive transformers and DDPMs. These approaches model the process of image generation as a step-wise probabilistic processes and leverage large amounts of compute and data to learn the image distribution. This methodology of improving performance need not be confined to images. This paper describes a way to apply advances in the image generative domain to speech synthesis. The result is TorToise -- an expressive, multi-voice text-to-speech system. All model code and trained weights have been open-sourced at https://github.com/neonbjb/tortoise-tts.
SongMASS: Automatic Song Writing with Pre-training and Alignment Constraint
Automatic song writing aims to compose a song (lyric and/or melody) by machine, which is an interesting topic in both academia and industry. In automatic song writing, lyric-to-melody generation and melody-to-lyric generation are two important tasks, both of which usually suffer from the following challenges: 1) the paired lyric and melody data are limited, which affects the generation quality of the two tasks, considering a lot of paired training data are needed due to the weak correlation between lyric and melody; 2) Strict alignments are required between lyric and melody, which relies on specific alignment modeling. In this paper, we propose SongMASS to address the above challenges, which leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling for lyric-to-melody and melody-to-lyric generation. Specifically, 1) we extend the original sentence-level MASS pre-training to song level to better capture long contextual information in music, and use a separate encoder and decoder for each modality (lyric or melody); 2) we leverage sentence-level attention mask and token-level attention constraint during training to enhance the alignment between lyric and melody. During inference, we use a dynamic programming strategy to obtain the alignment between each word/syllable in lyric and note in melody. We pre-train SongMASS on unpaired lyric and melody datasets, and both objective and subjective evaluations demonstrate that SongMASS generates lyric and melody with significantly better quality than the baseline method without pre-training or alignment constraint.
Stable Audio Open
Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.
MuseCoco: Generating Symbolic Music from Text
Generating music from text descriptions is a user-friendly mode since the text is a relatively easy interface for user engagement. While some approaches utilize texts to control music audio generation, editing musical elements in generated audio is challenging for users. In contrast, symbolic music offers ease of editing, making it more accessible for users to manipulate specific musical elements. In this paper, we propose MuseCoco, which generates symbolic music from text descriptions with musical attributes as the bridge to break down the task into text-to-attribute understanding and attribute-to-music generation stages. MuseCoCo stands for Music Composition Copilot that empowers musicians to generate music directly from given text descriptions, offering a significant improvement in efficiency compared to creating music entirely from scratch. The system has two main advantages: Firstly, it is data efficient. In the attribute-to-music generation stage, the attributes can be directly extracted from music sequences, making the model training self-supervised. In the text-to-attribute understanding stage, the text is synthesized and refined by ChatGPT based on the defined attribute templates. Secondly, the system can achieve precise control with specific attributes in text descriptions and offers multiple control options through attribute-conditioned or text-conditioned approaches. MuseCoco outperforms baseline systems in terms of musicality, controllability, and overall score by at least 1.27, 1.08, and 1.32 respectively. Besides, there is a notable enhancement of about 20% in objective control accuracy. In addition, we have developed a robust large-scale model with 1.2 billion parameters, showcasing exceptional controllability and musicality.
Metis: A Foundation Speech Generation Model with Masked Generative Pre-training
We introduce Metis, a foundation model for unified speech generation. Unlike previous task-specific or multi-task models, Metis follows a pre-training and fine-tuning paradigm. It is pre-trained on large-scale unlabeled speech data using masked generative modeling and then fine-tuned to adapt to diverse speech generation tasks. Specifically, 1) Metis utilizes two discrete speech representations: SSL tokens derived from speech self-supervised learning (SSL) features, and acoustic tokens directly quantized from waveforms. 2) Metis performs masked generative pre-training on SSL tokens, utilizing 300K hours of diverse speech data, without any additional condition. 3) Through fine-tuning with task-specific conditions, Metis achieves efficient adaptation to various speech generation tasks while supporting multimodal input, even when using limited data and trainable parameters. Experiments demonstrate that Metis can serve as a foundation model for unified speech generation: Metis outperforms state-of-the-art task-specific or multi-task systems across five speech generation tasks, including zero-shot text-to-speech, voice conversion, target speaker extraction, speech enhancement, and lip-to-speech, even with fewer than 20M trainable parameters or 300 times less training data. Audio samples are are available at https://metis-demo.github.io/.
AudioLM: a Language Modeling Approach to Audio Generation
We introduce AudioLM, a framework for high-quality audio generation with long-term consistency. AudioLM maps the input audio to a sequence of discrete tokens and casts audio generation as a language modeling task in this representation space. We show how existing audio tokenizers provide different trade-offs between reconstruction quality and long-term structure, and we propose a hybrid tokenization scheme to achieve both objectives. Namely, we leverage the discretized activations of a masked language model pre-trained on audio to capture long-term structure and the discrete codes produced by a neural audio codec to achieve high-quality synthesis. By training on large corpora of raw audio waveforms, AudioLM learns to generate natural and coherent continuations given short prompts. When trained on speech, and without any transcript or annotation, AudioLM generates syntactically and semantically plausible speech continuations while also maintaining speaker identity and prosody for unseen speakers. Furthermore, we demonstrate how our approach extends beyond speech by generating coherent piano music continuations, despite being trained without any symbolic representation of music.
XMusic: Towards a Generalized and Controllable Symbolic Music Generation Framework
In recent years, remarkable advancements in artificial intelligence-generated content (AIGC) have been achieved in the fields of image synthesis and text generation, generating content comparable to that produced by humans. However, the quality of AI-generated music has not yet reached this standard, primarily due to the challenge of effectively controlling musical emotions and ensuring high-quality outputs. This paper presents a generalized symbolic music generation framework, XMusic, which supports flexible prompts (i.e., images, videos, texts, tags, and humming) to generate emotionally controllable and high-quality symbolic music. XMusic consists of two core components, XProjector and XComposer. XProjector parses the prompts of various modalities into symbolic music elements (i.e., emotions, genres, rhythms and notes) within the projection space to generate matching music. XComposer contains a Generator and a Selector. The Generator generates emotionally controllable and melodious music based on our innovative symbolic music representation, whereas the Selector identifies high-quality symbolic music by constructing a multi-task learning scheme involving quality assessment, emotion recognition, and genre recognition tasks. In addition, we build XMIDI, a large-scale symbolic music dataset that contains 108,023 MIDI files annotated with precise emotion and genre labels. Objective and subjective evaluations show that XMusic significantly outperforms the current state-of-the-art methods with impressive music quality. Our XMusic has been awarded as one of the nine Highlights of Collectibles at WAIC 2023. The project homepage of XMusic is https://xmusic-project.github.io.
Rock Guitar Tablature Generation via Natural Language Processing
Deep learning has recently empowered and democratized generative modeling of images and text, with additional concurrent works exploring the possibility of generating more complex forms of data, such as audio. However, the high dimensionality, long-range dependencies, and lack of standardized datasets currently makes generative modeling of audio and music very challenging. We propose to model music as a series of discrete notes upon which we can use autoregressive natural language processing techniques for successful generative modeling. While previous works used similar pipelines on data such as sheet music and MIDI, we aim to extend such approaches to the under-studied medium of guitar tablature. Specifically, we develop the first work to our knowledge that models one specific genre as guitar tablature: heavy rock. Unlike other works in guitar tablature generation, we have a freely available public demo at https://huggingface.co/spaces/josuelmet/Metal_Music_Interpolator
SongComposer: A Large Language Model for Lyric and Melody Composition in Song Generation
We present SongComposer, an innovative LLM designed for song composition. It could understand and generate melodies and lyrics in symbolic song representations, by leveraging the capability of LLM. Existing music-related LLM treated the music as quantized audio signals, while such implicit encoding leads to inefficient encoding and poor flexibility. In contrast, we resort to symbolic song representation, the mature and efficient way humans designed for music, and enable LLM to explicitly compose songs like humans. In practice, we design a novel tuple design to format lyric and three note attributes (pitch, duration, and rest duration) in the melody, which guarantees the correct LLM understanding of musical symbols and realizes precise alignment between lyrics and melody. To impart basic music understanding to LLM, we carefully collected SongCompose-PT, a large-scale song pretraining dataset that includes lyrics, melodies, and paired lyrics-melodies in either Chinese or English. After adequate pre-training, 10K carefully crafted QA pairs are used to empower the LLM with the instruction-following capability and solve diverse tasks. With extensive experiments, SongComposer demonstrates superior performance in lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation, outperforming advanced LLMs like GPT-4.
CoMoSVC: Consistency Model-based Singing Voice Conversion
The diffusion-based Singing Voice Conversion (SVC) methods have achieved remarkable performances, producing natural audios with high similarity to the target timbre. However, the iterative sampling process results in slow inference speed, and acceleration thus becomes crucial. In this paper, we propose CoMoSVC, a consistency model-based SVC method, which aims to achieve both high-quality generation and high-speed sampling. A diffusion-based teacher model is first specially designed for SVC, and a student model is further distilled under self-consistency properties to achieve one-step sampling. Experiments on a single NVIDIA GTX4090 GPU reveal that although CoMoSVC has a significantly faster inference speed than the state-of-the-art (SOTA) diffusion-based SVC system, it still achieves comparable or superior conversion performance based on both subjective and objective metrics. Audio samples and codes are available at https://comosvc.github.io/.
Chord-Conditioned Melody Harmonization with Controllable Harmonicity
Melody harmonization has long been closely associated with chorales composed by Johann Sebastian Bach. Previous works rarely emphasised chorale generation conditioned on chord progressions, and there has been a lack of focus on assistive compositional tools. In this paper, we first designed a music representation that encoded chord symbols for chord conditioning, and then proposed DeepChoir, a melody harmonization system that can generate a four-part chorale for a given melody conditioned on a chord progression. With controllable harmonicity, users can control the extent of harmonicity for generated chorales. Experimental results reveal the effectiveness of the music representation and the controllability of DeepChoir.
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.
Fast Timing-Conditioned Latent Audio Diffusion
Generating long-form 44.1kHz stereo audio from text prompts can be computationally demanding. Further, most previous works do not tackle that music and sound effects naturally vary in their duration. Our research focuses on the efficient generation of long-form, variable-length stereo music and sounds at 44.1kHz using text prompts with a generative model. Stable Audio is based on latent diffusion, with its latent defined by a fully-convolutional variational autoencoder. It is conditioned on text prompts as well as timing embeddings, allowing for fine control over both the content and length of the generated music and sounds. Stable Audio is capable of rendering stereo signals of up to 95 sec at 44.1kHz in 8 sec on an A100 GPU. Despite its compute efficiency and fast inference, it is one of the best in two public text-to-music and -audio benchmarks and, differently from state-of-the-art models, can generate music with structure and stereo sounds.
TRBLLmaker -- Transformer Reads Between Lyrics Lines maker
Even for us, it can be challenging to comprehend the meaning of songs. As part of this project, we explore the process of generating the meaning of songs. Despite the widespread use of text-to-text models, few attempts have been made to achieve a similar objective. Songs are primarily studied in the context of sentiment analysis. This involves identifying opinions and emotions in texts, evaluating them as positive or negative, and utilizing these evaluations to make music recommendations. In this paper, we present a generative model that offers implicit meanings for several lines of a song. Our model uses a decoder Transformer architecture GPT-2, where the input is the lyrics of a song. Furthermore, we compared the performance of this architecture with that of the encoder-decoder Transformer architecture of the T5 model. We also examined the effect of different prompt types with the option of appending additional information, such as the name of the artist and the title of the song. Moreover, we tested different decoding methods with different training parameters and evaluated our results using ROUGE. In order to build our dataset, we utilized the 'Genious' API, which allowed us to acquire the lyrics of songs and their explanations, as well as their rich metadata.
YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument. This task is challenging for modeling as it requires simultaneously identifying multiple instruments and transcribing their pitch and precise timing, and the lack of fully annotated data adds to the training difficulties. This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription based on the recent language token decoding approach of MT3. We enhance its encoder by adopting a hierarchical attention transformer in the time-frequency domain and integrating a mixture of experts. To address data limitations, we introduce a new multi-channel decoding method for training with incomplete annotations and propose intra- and cross-stem augmentation for dataset mixing. Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors. Benchmarks across ten public datasets show our models' competitiveness with, or superiority to, existing transcription models. Further testing on pop music recordings highlights the limitations of current models. Fully reproducible code and datasets are available with demos at https://github.com/mimbres/YourMT3.
DrawSpeech: Expressive Speech Synthesis Using Prosodic Sketches as Control Conditions
Controlling text-to-speech (TTS) systems to synthesize speech with the prosodic characteristics expected by users has attracted much attention. To achieve controllability, current studies focus on two main directions: (1) using reference speech as prosody prompt to guide speech synthesis, and (2) using natural language descriptions to control the generation process. However, finding reference speech that exactly contains the prosody that users want to synthesize takes a lot of effort. Description-based guidance in TTS systems can only determine the overall prosody, which has difficulty in achieving fine-grained prosody control over the synthesized speech. In this paper, we propose DrawSpeech, a sketch-conditioned diffusion model capable of generating speech based on any prosody sketches drawn by users. Specifically, the prosody sketches are fed to DrawSpeech to provide a rough indication of the expected prosody trends. DrawSpeech then recovers the detailed pitch and energy contours based on the coarse sketches and synthesizes the desired speech. Experimental results show that DrawSpeech can generate speech with a wide variety of prosody and can precisely control the fine-grained prosody in a user-friendly manner. Our implementation and audio samples are publicly available.
Fast Diffusion GAN Model for Symbolic Music Generation Controlled by Emotions
Diffusion models have shown promising results for a wide range of generative tasks with continuous data, such as image and audio synthesis. However, little progress has been made on using diffusion models to generate discrete symbolic music because this new class of generative models are not well suited for discrete data while its iterative sampling process is computationally expensive. In this work, we propose a diffusion model combined with a Generative Adversarial Network, aiming to (i) alleviate one of the remaining challenges in algorithmic music generation which is the control of generation towards a target emotion, and (ii) mitigate the slow sampling drawback of diffusion models applied to symbolic music generation. We first used a trained Variational Autoencoder to obtain embeddings of a symbolic music dataset with emotion labels and then used those to train a diffusion model. Our results demonstrate the successful control of our diffusion model to generate symbolic music with a desired emotion. Our model achieves several orders of magnitude improvement in computational cost, requiring merely four time steps to denoise while the steps required by current state-of-the-art diffusion models for symbolic music generation is in the order of thousands.
Audio Prompt Adapter: Unleashing Music Editing Abilities for Text-to-Music with Lightweight Finetuning
Text-to-music models allow users to generate nearly realistic musical audio with textual commands. However, editing music audios remains challenging due to the conflicting desiderata of performing fine-grained alterations on the audio while maintaining a simple user interface. To address this challenge, we propose Audio Prompt Adapter (or AP-Adapter), a lightweight addition to pretrained text-to-music models. We utilize AudioMAE to extract features from the input audio, and construct attention-based adapters to feedthese features into the internal layers of AudioLDM2, a diffusion-based text-to-music model. With 22M trainable parameters, AP-Adapter empowers users to harness both global (e.g., genre and timbre) and local (e.g., melody) aspects of music, using the original audio and a short text as inputs. Through objective and subjective studies, we evaluate AP-Adapter on three tasks: timbre transfer, genre transfer, and accompaniment generation. Additionally, we demonstrate its effectiveness on out-of-domain audios containing unseen instruments during training.