new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

B-PROP: Bootstrapped Pre-training with Representative Words Prediction for Ad-hoc Retrieval

Pre-training and fine-tuning have achieved remarkable success in many downstream natural language processing (NLP) tasks. Recently, pre-training methods tailored for information retrieval (IR) have also been explored, and the latest success is the PROP method which has reached new SOTA on a variety of ad-hoc retrieval benchmarks. The basic idea of PROP is to construct the representative words prediction (ROP) task for pre-training inspired by the query likelihood model. Despite its exciting performance, the effectiveness of PROP might be bounded by the classical unigram language model adopted in the ROP task construction process. To tackle this problem, we propose a bootstrapped pre-training method (namely B-PROP) based on BERT for ad-hoc retrieval. The key idea is to use the powerful contextual language model BERT to replace the classical unigram language model for the ROP task construction, and re-train BERT itself towards the tailored objective for IR. Specifically, we introduce a novel contrastive method, inspired by the divergence-from-randomness idea, to leverage BERT's self-attention mechanism to sample representative words from the document. By further fine-tuning on downstream ad-hoc retrieval tasks, our method achieves significant improvements over baselines without pre-training or with other pre-training methods, and further pushes forward the SOTA on a variety of ad-hoc retrieval tasks.

Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models

While Large Language Models (LLMs) become ever more dominant, classic pre-trained word embeddings sustain their relevance through computational efficiency and nuanced linguistic interpretation. Drawing from recent studies demonstrating that the convergence of GloVe and word2vec optimizations all tend towards log-co-occurrence matrix variants, we construct a novel word representation system called Bit-cipher that eliminates the need of backpropagation while leveraging contextual information and hyper-efficient dimensionality reduction techniques based on unigram frequency, providing strong interpretability, alongside efficiency. We use the bit-cipher algorithm to train word vectors via a two-step process that critically relies on a hyperparameter -- bits -- that controls the vector dimension. While the first step trains the bit-cipher, the second utilizes it under two different aggregation modes -- summation or concatenation -- to produce contextually rich representations from word co-occurrences. We extend our investigation into bit-cipher's efficacy, performing probing experiments on part-of-speech (POS) tagging and named entity recognition (NER) to assess its competitiveness with classic embeddings like word2vec and GloVe. Additionally, we explore its applicability in LM training and fine-tuning. By replacing embedding layers with cipher embeddings, our experiments illustrate the notable efficiency of cipher in accelerating the training process and attaining better optima compared to conventional training paradigms. Experiments on the integration of bit-cipher embedding layers with Roberta, T5, and OPT, prior to or as a substitute for fine-tuning, showcase a promising enhancement to transfer learning, allowing rapid model convergence while preserving competitive performance.

Toward a Theory of Tokenization in LLMs

While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple k^{th}-order Markov processes for k > 1, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from k^{th}-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.

Learn Your Tokens: Word-Pooled Tokenization for Language Modeling

Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.

UniGen: A Unified Framework for Textual Dataset Generation Using Large Language Models

Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents UniGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. UniGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, UniGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by UniGen, and each module within UniGen plays a critical role in this enhancement. Additionally, UniGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that UniGen effectively supports dynamic and evolving benchmarking, and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.

A Survey on Mixture of Experts

Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.

Paramanu: A Family of Novel Efficient Indic Generative Foundation Language Models

We present Gyan AI Paramanu ("atom"), a family of novel language models for Indian languages. It is a collection of auto-regressive monolingual, bilingual, and multilingual Indic language models pretrained from scratch on a single GPU for 10 Indian languages (Assamese, Bangla, Hindi, Konkani, Maithili, Marathi, Odia, Sanskrit, Tamil, Telugu) across 5 scripts (Bangla, Devanagari, Odia, Tamil, Telugu) of varying sizes ranging from 13.29M to 367.5M.The models are pretrained with a context size of 1024 on a single GPU. The models are very efficient, small, fast, and powerful. We have also developed an efficient most advanced Indic tokenizer that can even tokenize unseen languages. In order to avoid the "curse of multi-linguality" in our multilingual mParamanu model, we pretrained on comparable corpora by typological grouping using the same script. We performed human evaluation of our pretrained models for open end text generation on grammar, coherence, creativity, and factuality metrics for Bangla, Hindi, and Sanskrit. Our Bangla, Hindi, and Sanskrit models outperformed GPT-3.5-Turbo (ChatGPT), Bloom 7B, LLaMa-2 7B, OPT 6.7B, GPT-J 6B, GPTNeo 1.3B, GPT2-XL large language models (LLMs) by a large margin despite being smaller in size by 66 to 20 times compared to standard 7B LLMs. To run inference on our pretrained models, CPU is enough, and GPU is not needed. We also instruction-tuned our pretrained Bangla, Hindi, Marathi, Tamil, and Telugu models on 23k instructions in respective languages. Our pretrained and instruction-tuned models which are first of its kind, most powerful efficient small generative language models ever developed for Indic languages, and the various results lead to the conclusion that high quality generative language models are possible without high amount of compute power and humongous number of parameters. We plan to release our models at https://www.bharatgpts.com.

TinyStories: How Small Can Language Models Be and Still Speak Coherent English?

Language models (LMs) are powerful tools for natural language processing, but they often struggle to produce coherent and fluent text when they are small. Models with around 125M parameters such as GPT-Neo (small) or GPT-2 (small) can rarely generate coherent and consistent English text beyond a few words even after extensive training. This raises the question of whether the emergence of the ability to produce coherent English text only occurs at larger scales (with hundreds of millions of parameters or more) and complex architectures (with many layers of global attention). In this work, we introduce TinyStories, a synthetic dataset of short stories that only contain words that a typical 3 to 4-year-olds usually understand, generated by GPT-3.5 and GPT-4. We show that TinyStories can be used to train and evaluate LMs that are much smaller than the state-of-the-art models (below 10 million total parameters), or have much simpler architectures (with only one transformer block), yet still produce fluent and consistent stories with several paragraphs that are diverse and have almost perfect grammar, and demonstrate reasoning capabilities. We also introduce a new paradigm for the evaluation of language models: We suggest a framework which uses GPT-4 to grade the content generated by these models as if those were stories written by students and graded by a (human) teacher. This new paradigm overcomes the flaws of standard benchmarks which often requires the model's output to be very structures, and moreover provides a multidimensional score for the model, providing scores for different capabilities such as grammar, creativity and consistency. We hope that TinyStories can facilitate the development, analysis and research of LMs, especially for low-resource or specialized domains, and shed light on the emergence of language capabilities in LMs.

ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning

Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile.

A Comprehensive Overview of Large Language Models

Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks and beyond. This success of LLMs has led to a large influx of research contributions in this direction. These works encompass diverse topics such as architectural innovations of the underlying neural networks, context length improvements, model alignment, training datasets, benchmarking, efficiency and more. With the rapid development of techniques and regular breakthroughs in LLM research, it has become considerably challenging to perceive the bigger picture of the advances in this direction. Considering the rapidly emerging plethora of literature on LLMs, it is imperative that the research community is able to benefit from a concise yet comprehensive overview of the recent developments in this field. This article provides that overview to the research community. It not only focuses on a systematic treatment of the existing literature on a broad range of LLM related concept, but also pays special attention to providing comprehensive summaries with extensive details about the individual existing models, datasets and major insights. We also pay heed to aligning our overview with the emerging outlook of this research direction by accounting for the other recently materializing reviews of the broader research direction of LLMs. Our self-contained comprehensive overview of LLMs discusses relevant background concepts along with covering the advanced topics at the frontier of this research direction. This review article is intended to not only provide a systematic survey, but also a quick comprehensive reference for the researchers and practitioners to draw insights from extensive informative summaries of the existing works to advance the LLM research direction.

A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4

Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.

A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers

The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing, attracting global attention in both academia and industry. To mitigate potential discrimination and enhance the overall usability and accessibility for diverse language user groups, it is important for the development of language-fair technology. Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient, where a comprehensive survey to summarize recent approaches, developments, limitations, and potential solutions is desirable. To this end, we provide a survey with multiple perspectives on the utilization of LLMs in the multilingual scenario. We first rethink the transitions between previous and current research on pre-trained language models. Then we introduce several perspectives on the multilingualism of LLMs, including training and inference methods, model security, multi-domain with language culture, and usage of datasets. We also discuss the major challenges that arise in these aspects, along with possible solutions. Besides, we highlight future research directions that aim at further enhancing LLMs with multilingualism. The survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.

Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference

As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality. Our code will be publicly available at https://github.com/UCSB-NLP-Chang/ULD.

Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages

The development of Large Language Models (LLMs) relies on extensive text corpora, which are often unevenly distributed across languages. This imbalance results in LLMs performing significantly better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate. Currently, there is a lack of quantitative methods to evaluate the performance of LLMs in these low-resource languages. To address this gap, we propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations. By comparing the LLM's internal representation of various languages against a baseline derived from English, we can assess the model's multilingual capabilities in a robust and language-agnostic manner. Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores, underscoring the effectiveness of our metric in assessing language-specific capabilities. Besides, the experiments show that there is a strong correlation between the LLM's performance in different languages and the proportion of those languages in its pre-training corpus. These insights underscore the efficacy of the Language Ranker as a tool for evaluating LLM performance across different languages, particularly those with limited resources.

Effective Self-Mining of In-Context Examples for Unsupervised Machine Translation with LLMs

Large Language Models (LLMs) have demonstrated impressive performance on a wide range of natural language processing (NLP) tasks, primarily through in-context learning (ICL). In ICL, the LLM is provided with examples that represent a given task such that it learns to generate answers for test inputs. However, access to these in-context examples is not guaranteed especially for low-resource or massively multilingual tasks. In this work, we propose an unsupervised approach to mine in-context examples for machine translation (MT), enabling unsupervised MT (UMT) across different languages. Our approach begins with word-level mining to acquire word translations that are then used to perform sentence-level mining. As the quality of mined parallel pairs may not be optimal due to noise or mistakes, we introduce a filtering criterion to select the optimal in-context examples from a pool of unsupervised parallel sentences. We evaluate our approach using two multilingual LLMs on 288 directions from the FLORES-200 dataset and analyze the impact of various linguistic features on performance. Our findings demonstrate the effectiveness of our unsupervised approach in mining in-context examples for MT, leading to better or comparable translation performance as translation with regular in-context samples (extracted from human-annotated data), while also outperforming the other state-of-the-art UMT methods by an average of 7 BLEU points.

Marco-LLM: Bridging Languages via Massive Multilingual Training for Cross-Lingual Enhancement

Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages.

Transcending Scaling Laws with 0.1% Extra Compute

Scaling language models improves performance but comes with significant computational costs. This paper proposes UL2R, a method that substantially improves existing language models and their scaling curves with a relatively tiny amount of extra compute. The key idea is to continue training a state-of-the-art large language model (e.g., PaLM) on a few more steps with UL2's mixture-of-denoiser objective. We show that, with almost negligible extra computational costs and no new sources of data, we are able to substantially improve the scaling properties of large language models on downstream metrics. In this paper, we continue training PaLM with UL2R, introducing a new set of models at 8B, 62B, and 540B scale which we call U-PaLM. Impressively, at 540B scale, we show an approximately 2x computational savings rate where U-PaLM achieves the same performance as the final PaLM 540B model at around half its computational budget (i.e., saving sim4.4 million TPUv4 hours). We further show that this improved scaling curve leads to 'emergent abilities' on challenging BIG-Bench tasks -- for instance, U-PaLM does much better than PaLM on some tasks or demonstrates better quality at much smaller scale (62B as opposed to 540B). Overall, we show that U-PaLM outperforms PaLM on many few-shot setups, i.e., English NLP tasks (e.g., commonsense reasoning, question answering), reasoning tasks with chain-of-thought (e.g., GSM8K), multilingual tasks (MGSM, TydiQA), MMLU and challenging BIG-Bench tasks. Finally, we provide qualitative examples showing the new capabilities of U-PaLM for single and multi-span infilling.

SirLLM: Streaming Infinite Retentive LLM

As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM

IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench -- a human-translated benchmark dataset for 16 typologically-diverse low-resource African languages covering three tasks: natural language inference~(AfriXNLI), mathematical reasoning~(AfriMGSM), and multi-choice knowledge-based QA~(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings~(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages~(such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58\% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like LLaMa 3 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.

Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research

Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.

Adaptive Draft-Verification for Efficient Large Language Model Decoding

Large language model (LLM) decoding involves generating a sequence of tokens based on a given context, where each token is predicted one at a time using the model's learned probabilities. The typical autoregressive decoding method requires a separate forward pass through the model for each token generated, which is computationally inefficient and poses challenges for deploying LLMs in latency-sensitive scenarios. The main limitations of current decoding methods stem from their inefficiencies and resource demands. Existing approaches either necessitate fine-tuning smaller models, which is resource-intensive, or rely on fixed retrieval schemes to construct drafts for the next tokens, which lack adaptability and fail to generalize across different models and contexts. To address these issues, we introduce a novel methodology called ADED, which accelerates LLM decoding without requiring fine-tuning. Our approach involves an adaptive draft-verification process that evolves over time to improve efficiency. We utilize a tri-gram matrix-based LLM representation to dynamically approximate the output distribution of the LLM, allowing the model to adjust to changing token probabilities during the decoding process. Additionally, we implement a draft construction mechanism that effectively balances exploration and exploitation, ensuring that the drafts generated are both diverse and close to the true output distribution of the LLM. The importance of this design lies in its ability to optimize the draft distribution adaptively, leading to faster and more accurate decoding. Through extensive experiments on various benchmark datasets and LLM architectures, we demonstrate that ADED significantly accelerates the decoding process while maintaining high accuracy, making it suitable for deployment in a wide range of practical applications.

Achieving Peak Performance for Large Language Models: A Systematic Review

In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.

TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models

The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TransliCo, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available.

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.

UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model

Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM.

Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan

Multilingual language models have been a crucial breakthrough as they considerably reduce the need of data for under-resourced languages. Nevertheless, the superiority of language-specific models has already been proven for languages having access to large amounts of data. In this work, we focus on Catalan with the aim to explore to what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models. For this, we: (1) build a clean, high-quality textual Catalan corpus (CaText), the largest to date (but only a fraction of the usual size of the previous work in monolingual language models), (2) train a Transformer-based language model for Catalan (BERTa), and (3) devise a thorough evaluation in a diversity of settings, comprising a complete array of downstream tasks, namely, Part of Speech Tagging, Named Entity Recognition and Classification, Text Classification, Question Answering, and Semantic Textual Similarity, with most of the corresponding datasets being created ex novo. The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource, together with the clean textual corpus, the language model, and the cleaning pipeline. Using state-of-the-art multilingual models and a monolingual model trained only on Wikipedia as baselines, we consistently observe the superiority of our model across tasks and settings.

The Languini Kitchen: Enabling Language Modelling Research at Different Scales of Compute

The Languini Kitchen serves as both a research collective and codebase designed to empower researchers with limited computational resources to contribute meaningfully to the field of language modelling. We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours. The number of tokens on which a model is trained is defined by the model's throughput and the chosen compute class. Notably, this approach avoids constraints on critical hyperparameters which affect total parameters or floating-point operations. For evaluation, we pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length. On it, we compare methods based on their empirical scaling trends which are estimated through experiments at various levels of compute. This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput. While the GPT baseline achieves better perplexity throughout all our levels of compute, our LSTM baseline exhibits a predictable and more favourable scaling law. This is due to the improved throughput and the need for fewer training tokens to achieve the same decrease in test perplexity. Extrapolating the scaling laws leads of both models results in an intersection at roughly 50,000 accelerator hours. We hope this work can serve as the foundation for meaningful and reproducible language modelling research.

A Survey of Large Language Models

Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.

CodeGen2: Lessons for Training LLMs on Programming and Natural Languages

Large language models (LLMs) have demonstrated remarkable abilities in representation learning for program synthesis and understanding tasks. The quality of the learned representations appears to be dictated by the neural scaling laws as a function of the number of model parameters and observations, while imposing upper bounds on the model performance by the amount of available data and compute, which is costly. In this study, we attempt to render the training of LLMs for program synthesis more efficient by unifying four key components: (1) model architectures, (2) learning methods, (3) infill sampling, and, (4) data distributions. Specifically, for the model architecture, we attempt to unify encoder and decoder-based models into a single prefix-LM. For learning methods, (i) causal language modeling, (ii) span corruption, (iii) infilling are unified into a simple learning algorithm. For infill sampling, we explore the claim of a "free lunch" hypothesis. For data distributions, the effect of a mixture distribution of programming and natural languages on model performance is explored. We conduct a comprehensive series of empirical experiments on 1B LLMs, for which failures and successes of this exploration are distilled into four lessons. We will provide a final recipe for training and release CodeGen2 models in size 1B, 3.7B, 7B, and, 16B parameters, along with the training framework as open-source: https://github.com/salesforce/CodeGen2.

An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models

Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages. This problem is commonly tackled by continually pre-training and fine-tuning these models for said languages. A significant issue in this process is the limited vocabulary coverage in the original model's tokenizer, leading to inadequate representation of new languages and necessitating an expansion of the tokenizer. The initialization of the embeddings corresponding to new vocabulary items presents a further challenge. Current strategies require cross-lingual embeddings and lack a solid theoretical foundation as well as comparisons with strong baselines. In this paper, we first establish theoretically that initializing within the convex hull of existing embeddings is a good initialization, followed by a novel but simple approach, Constrained Word2Vec (CW2V), which does not require cross-lingual embeddings. Our study evaluates different initialization methods for expanding RoBERTa and LLaMA 2 across four languages and five tasks. The results show that CW2V performs equally well or even better than more advanced techniques. Additionally, simpler approaches like multivariate initialization perform on par with these advanced methods indicating that efficient large-scale multilingual continued pretraining can be achieved even with simpler initialization methods.

Advancing the Evaluation of Traditional Chinese Language Models: Towards a Comprehensive Benchmark Suite

The evaluation of large language models is an essential task in the field of language understanding and generation. As language models continue to advance, the need for effective benchmarks to assess their performance has become imperative. In the context of Traditional Chinese, there is a scarcity of comprehensive and diverse benchmarks to evaluate the capabilities of language models, despite the existence of certain benchmarks such as DRCD, TTQA, CMDQA, and FGC dataset. To address this gap, we propose a novel set of benchmarks that leverage existing English datasets and are tailored to evaluate language models in Traditional Chinese. These benchmarks encompass a wide range of tasks, including contextual question-answering, summarization, classification, and table understanding. The proposed benchmarks offer a comprehensive evaluation framework, enabling the assessment of language models' capabilities across different tasks. In this paper, we evaluate the performance of GPT-3.5, Taiwan-LLaMa-v1.0, and Model 7-C, our proprietary model, on these benchmarks. The evaluation results highlight that our model, Model 7-C, achieves performance comparable to GPT-3.5 with respect to a part of the evaluated capabilities. In an effort to advance the evaluation of language models in Traditional Chinese and stimulate further research in this field, we have open-sourced our benchmark and opened the model for trial.

Lexinvariant Language Models

Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

Romanization-based Large-scale Adaptation of Multilingual Language Models

Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages.

MUSE: Machine Unlearning Six-Way Evaluation for Language Models

Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content. Data owners may request the removal of their data from a trained model due to privacy or copyright concerns. However, exactly unlearning only these datapoints (i.e., retraining with the data removed) is intractable in modern-day models. This has led to the development of many approximate unlearning algorithms. The evaluation of the efficacy of these algorithms has traditionally been narrow in scope, failing to precisely quantify the success and practicality of the algorithm from the perspectives of both the model deployers and the data owners. We address this issue by proposing MUSE, a comprehensive machine unlearning evaluation benchmark that enumerates six diverse desirable properties for unlearned models: (1) no verbatim memorization, (2) no knowledge memorization, (3) no privacy leakage, (4) utility preservation on data not intended for removal, (5) scalability with respect to the size of removal requests, and (6) sustainability over sequential unlearning requests. Using these criteria, we benchmark how effectively eight popular unlearning algorithms on 7B-parameter LMs can unlearn Harry Potter books and news articles. Our results demonstrate that most algorithms can prevent verbatim memorization and knowledge memorization to varying degrees, but only one algorithm does not lead to severe privacy leakage. Furthermore, existing algorithms fail to meet deployer's expectations because they often degrade general model utility and also cannot sustainably accommodate successive unlearning requests or large-scale content removal. Our findings identify key issues with the practicality of existing unlearning algorithms on language models, and we release our benchmark to facilitate further evaluations: muse-bench.github.io

One QuantLLM for ALL: Fine-tuning Quantized LLMs Once for Efficient Deployments

Large Language Models (LLMs) have advanced rapidly but face significant memory demands. While quantization has shown promise for LLMs, current methods typically require lengthy training to alleviate the performance degradation from quantization loss. However, deploying LLMs across diverse scenarios with different resource constraints, e.g., servers and personal computers, requires repeated training per application, which amplifies the lengthy training problem. Given that, it is advantageous to train a once-for-all (OFA) supernet capable of yielding diverse optimal subnets for downstream applications through one-shot training. Nonetheless, the scale of current language models impedes efficiency and amplifies interference from weight sharing between subnets. We make an initial attempt to extend the once-for-all framework to large language models. Specifically, we decouple shared weights to eliminate the interference and incorporate Low-Rank adapters for training efficiency. Furthermore, we observe the imbalance allocation of training resources from the traditional uniform sampling. A non-parametric scheduler is introduced to adjust the sampling rate for each quantization configuration, achieving a more balanced allocation among subnets with varying demands. We validate the approach on LLaMA2 families, and downstream evaluation confirms our ability to maintain high performance while significantly reducing deployment time faced with multiple scenarios.

Multilingual Large Language Models: A Systematic Survey

This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.

MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series

Large Language Models (LLMs) have made great strides in recent years to achieve unprecedented performance across different tasks. However, due to commercial interest, the most competitive models like GPT, Gemini, and Claude have been gated behind proprietary interfaces without disclosing the training details. Recently, many institutions have open-sourced several strong LLMs like LLaMA-3, comparable to existing closed-source LLMs. However, only the model's weights are provided with most details (e.g., intermediate checkpoints, pre-training corpus, and training code, etc.) being undisclosed. To improve the transparency of LLMs, the research community has formed to open-source truly open LLMs (e.g., Pythia, Amber, OLMo), where more details (e.g., pre-training corpus and training code) are being provided. These models have greatly advanced the scientific study of these large models including their strengths, weaknesses, biases and risks. However, we observe that the existing truly open LLMs on reasoning, knowledge, and coding tasks are still inferior to existing state-of-the-art LLMs with similar model sizes. To this end, we open-source MAP-Neo, a highly capable and transparent bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens. Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs. Moreover, we open-source all details to reproduce our MAP-Neo, where the cleaned pre-training corpus, data cleaning pipeline, checkpoints, and well-optimized training/evaluation framework are provided. Finally, we hope our MAP-Neo will enhance and strengthen the open research community and inspire more innovations and creativities to facilitate the further improvements of LLMs.

Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models

Large language models (LLM) have prioritized expanding the context window from which models can incorporate more information. However, training models to handle long contexts presents significant challenges. These include the scarcity of high-quality natural long-context data, the potential for performance degradation on short-context tasks, and the reduced training efficiency associated with attention mechanisms. In this paper, we introduce Untie the Knots (UtK), a novel data augmentation strategy employed during the continue pre-training phase, designed to efficiently enable LLMs to gain long-context capabilities without the need to modify the existing data mixture. In particular, we chunk the documents, shuffle the chunks, and create a complex and knotted structure of long texts; LLMs are then trained to untie these knots and identify relevant segments within seemingly chaotic token sequences. This approach greatly improves the model's performance by accurately attending to relevant information in long context and the training efficiency is also largely increased. We conduct extensive experiments on models with 7B and 72B parameters, trained on 20 billion tokens, demonstrating that UtK achieves 75\% and 84.5\% accurracy on RULER at 128K context length, significantly outperforming other long context strategies. The trained models will open-source for further research.

Holistic Evaluation of Language Models

Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and metrics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on coverage and feasibility, noting what's missing or underrepresented (e.g. question answering for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency) for each of 16 core scenarios when possible (87.5% of the time). This ensures metrics beyond accuracy don't fall to the wayside, and that trade-offs are clearly exposed. We also perform 7 targeted evaluations, based on 26 targeted scenarios, to analyze specific aspects (e.g. reasoning, disinformation). Third, we conduct a large-scale evaluation of 30 prominent language models (spanning open, limited-access, and closed models) on all 42 scenarios, 21 of which were not previously used in mainstream LM evaluation. Prior to HELM, models on average were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: now all 30 models have been densely benchmarked on the same core scenarios and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly for further analysis, as well as a general modular toolkit. We intend for HELM to be a living benchmark for the community, continuously updated with new scenarios, metrics, and models.

WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models

Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.

Aligning Large Language Models with Human: A Survey

Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect (hallucinated) information. Hence, aligning LLMs with human expectations has become an active area of interest within the research community. This survey presents a comprehensive overview of these alignment technologies, including the following aspects. (1) Data collection: the methods for effectively collecting high-quality instructions for LLM alignment, including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. (2) Training methodologies: a detailed review of the prevailing training methods employed for LLM alignment. Our exploration encompasses Supervised Fine-tuning, both Online and Offline human preference training, along with parameter-efficient training mechanisms. (3) Model Evaluation: the methods for evaluating the effectiveness of these human-aligned LLMs, presenting a multifaceted approach towards their assessment. In conclusion, we collate and distill our findings, shedding light on several promising future research avenues in the field. This survey, therefore, serves as a valuable resource for anyone invested in understanding and advancing the alignment of LLMs to better suit human-oriented tasks and expectations. An associated GitHub link collecting the latest papers is available at https://github.com/GaryYufei/AlignLLMHumanSurvey.

An Efficient Multilingual Language Model Compression through Vocabulary Trimming

Multilingual language model (LM) have become a powerful tool in NLP especially for non-English languages. Nevertheless, model parameters of multilingual LMs remain large due to the larger embedding matrix of the vocabulary covering tokens in different languages. On the contrary, monolingual LMs can be trained in a target language with the language-specific vocabulary only, but this requires a large budget and availability of reliable corpora to achieve a high-quality LM from scratch. In this paper, we propose vocabulary-trimming (VT), a method to reduce a multilingual LM vocabulary to a target language by deleting irrelevant tokens from its vocabulary. In theory, VT can compress any existing multilingual LM to build monolingual LMs in any language covered by the multilingual LM. In our experiments, we show that VT can retain the original performance of the multilingual LM, while being smaller in size (in general around 50% of the original vocabulary size is enough) than the original multilingual LM. The evaluation is performed over four NLP tasks (two generative and two classification tasks) among four widely used multilingual LMs in seven languages. Finally, we show that this methodology can keep the best of both monolingual and multilingual worlds by keeping a small size as monolingual models without the need for specifically retraining them, and even limiting potentially harmful social biases.

SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines

Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.

LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback

To democratize large language models (LLMs) to most natural languages, it is imperative to make these models capable of understanding and generating texts in many languages, in particular low-resource ones. While recent multilingual LLMs demonstrate remarkable performance in such capabilities, these LLMs still support a limited number of human languages due to the lack of training data for low-resource languages. Moreover, these LLMs are not yet aligned with human preference for downstream tasks, which is crucial for the success of LLMs in English. In this paper, we introduce xLLaMA-100 and xBLOOM-100 (collectively xLLMs-100), which scale the multilingual capabilities of LLaMA and BLOOM to 100 languages. To do so, we construct two datasets: a multilingual instruction dataset including 100 languages, which represents the largest language coverage to date, and a cross-lingual human feedback dataset encompassing 30 languages. We perform multilingual instruction tuning on the constructed instruction data and further align the LLMs with human feedback using the DPO algorithm on our cross-lingual human feedback dataset. We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks. Experimental results show that xLLMs-100 consistently outperforms its peers across the benchmarks by considerable margins, defining a new state-of-the-art multilingual LLM that supports 100 languages.

MuRIL: Multilingual Representations for Indian Languages

India is a multilingual society with 1369 rationalized languages and dialects being spoken across the country (INDIA, 2011). Of these, the 22 scheduled languages have a staggering total of 1.17 billion speakers and 121 languages have more than 10,000 speakers (INDIA, 2011). India also has the second largest (and an ever growing) digital footprint (Statista, 2020). Despite this, today's state-of-the-art multilingual systems perform suboptimally on Indian (IN) languages. This can be explained by the fact that multilingual language models (LMs) are often trained on 100+ languages together, leading to a small representation of IN languages in their vocabulary and training data. Multilingual LMs are substantially less effective in resource-lean scenarios (Wu and Dredze, 2020; Lauscher et al., 2020), as limited data doesn't help capture the various nuances of a language. One also commonly observes IN language text transliterated to Latin or code-mixed with English, especially in informal settings (for example, on social media platforms) (Rijhwani et al., 2017). This phenomenon is not adequately handled by current state-of-the-art multilingual LMs. To address the aforementioned gaps, we propose MuRIL, a multilingual LM specifically built for IN languages. MuRIL is trained on significantly large amounts of IN text corpora only. We explicitly augment monolingual text corpora with both translated and transliterated document pairs, that serve as supervised cross-lingual signals in training. MuRIL significantly outperforms multilingual BERT (mBERT) on all tasks in the challenging cross-lingual XTREME benchmark (Hu et al., 2020). We also present results on transliterated (native to Latin script) test sets of the chosen datasets and demonstrate the efficacy of MuRIL in handling transliterated data.

UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems

Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.

A Benchmark for Learning to Translate a New Language from One Grammar Book

Large language models (LLMs) can perform impressive feats with in-context learning or lightweight finetuning. It is natural to wonder how well these models adapt to genuinely new tasks, but how does one find tasks that are unseen in internet-scale training sets? We turn to a field that is explicitly motivated and bottlenecked by a scarcity of web data: low-resource languages. In this paper, we introduce MTOB (Machine Translation from One Book), a benchmark for learning to translate between English and Kalamang -- a language with less than 200 speakers and therefore virtually no presence on the web -- using several hundred pages of field linguistics reference materials. This task framing is novel in that it asks a model to learn a language from a single human-readable book of grammar explanations, rather than a large mined corpus of in-domain data, more akin to L2 learning than L1 acquisition. We demonstrate that baselines using current LLMs are promising but fall short of human performance, achieving 44.7 chrF on Kalamang to English translation and 45.8 chrF on English to Kalamang translation, compared to 51.6 and 57.0 chrF by a human who learned Kalamang from the same reference materials. We hope that MTOB will help measure LLM capabilities along a new dimension, and that the methods developed to solve it could help expand access to language technology for underserved communities by leveraging qualitatively different kinds of data than traditional machine translation.

Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following

Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.

Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~Working in progress.\url{https://github.com/wbbeyourself/SCM4LLMs}

A Survey on Large Language Models for Recommendation

Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration. We have also created a GitHub repository to index relevant papers on LLMs for recommendation, https://github.com/WLiK/LLM4Rec.

Unified Model for Image, Video, Audio and Language Tasks

Large Language Models (LLMs) have made the ambitious quest for generalist agents significantly far from being a fantasy. A key hurdle for building such general models is the diversity and heterogeneity of tasks and modalities. A promising solution is unification, allowing the support of a myriad of tasks and modalities within one unified framework. While few large models (e.g., Flamingo (Alayrac et al., 2022), trained on massive datasets, can support more than two modalities, current small to mid-scale unified models are still limited to 2 modalities, usually image-text or video-text. The question that we ask is: is it possible to build efficiently a unified model that can support all modalities? To answer this, we propose UnIVAL, a step further towards this ambitious goal. Without relying on fancy datasets sizes or models with billions of parameters, the ~ 0.25B parameter UnIVAL model goes beyond two modalities and unifies text, images, video, and audio into a single model. Our model is efficiently pretrained on many tasks, based on task balancing and multimodal curriculum learning. UnIVAL shows competitive performance to existing state-of-the-art approaches, across image and video-text tasks. The feature representations learned from image and video-text modalities, allows the model to achieve competitive performance when finetuned on audio-text tasks, despite not being pretrained on audio. Thanks to the unified model, we propose a novel study on multimodal model merging via weight interpolation of models trained on different multimodal tasks, showing their benefits in particular for out-of-distribution generalization. Finally, we motivate unification by showing the synergy between tasks. The model weights and code are released here: https://github.com/mshukor/UnIVAL.

Who's Harry Potter? Approximate Unlearning in LLMs

Large language models (LLMs) are trained on massive internet corpora that often contain copyrighted content. This poses legal and ethical challenges for the developers and users of these models, as well as the original authors and publishers. In this paper, we propose a novel technique for unlearning a subset of the training data from a LLM, without having to retrain it from scratch. We evaluate our technique on the task of unlearning the Harry Potter books from the Llama2-7b model (a generative language model recently open-sourced by Meta). While the model took over 184K GPU-hours to pretrain, we show that in about 1 GPU hour of finetuning, we effectively erase the model's ability to generate or recall Harry Potter-related content, while its performance on common benchmarks (such as Winogrande, Hellaswag, arc, boolq and piqa) remains almost unaffected. We make our fine-tuned model publicly available on HuggingFace for community evaluation. To the best of our knowledge, this is the first paper to present an effective technique for unlearning in generative language models. Our technique consists of three main components: First, we use a reinforced model that is further trained on the target data to identify the tokens that are most related to the unlearning target, by comparing its logits with those of a baseline model. Second, we replace idiosyncratic expressions in the target data with generic counterparts, and leverage the model's own predictions to generate alternative labels for every token. These labels aim to approximate the next-token predictions of a model that has not been trained on the target data. Third, we finetune the model on these alternative labels, which effectively erases the original text from the model's memory whenever it is prompted with its context.

On the Design and Analysis of LLM-Based Algorithms

We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.

Few-Shot Detection of Machine-Generated Text using Style Representations

The advent of instruction-tuned language models that convincingly mimic human writing poses a significant risk of abuse. However, such abuse may be counteracted with the ability to detect whether a piece of text was composed by a language model rather than a human author. Some previous approaches to this problem have relied on supervised methods by training on corpora of confirmed human- and machine- written documents. Unfortunately, model under-specification poses an unavoidable challenge for neural network-based detectors, making them brittle in the face of data shifts, such as the release of newer language models producing still more fluent text than the models used to train the detectors. Other approaches require access to the models that may have generated a document in question, which is often impractical. In light of these challenges, we pursue a fundamentally different approach not relying on samples from language models of concern at training time. Instead, we propose to leverage representations of writing style estimated from human-authored text. Indeed, we find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors, including state-of-the-art large language models like Llama-2, ChatGPT, and GPT-4. Furthermore, given a handful of examples composed by each of several specific language models of interest, our approach affords the ability to predict which model generated a given document. The code and data to reproduce our experiments are available at https://github.com/LLNL/LUAR/tree/main/fewshot_iclr2024.

Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for EnglishrightarrowFrench and surpasses state-of-the-art results for EnglishrightarrowGerman. Similarly, a single multilingual model surpasses state-of-the-art results for FrenchrightarrowEnglish and GermanrightarrowEnglish on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.

Contextual Code Switching for Machine Translation using Language Models

Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years. Their demonstrated state-of-the-art performance is achieved through methodologies such as zero-shot or few-shot prompting. These models undergo training on extensive datasets that encompass segments of the Internet and subsequently undergo fine-tuning tailored to specific tasks. Notably, they exhibit proficiency in tasks such as translation, summarization, question answering, and creative writing, even in the absence of explicit training for those particular tasks. While they have shown substantial improvement in the multilingual tasks their performance in the code switching, especially for machine translation remains relatively uncharted. In this paper, we present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs. Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task. We posit that the efficacy of multilingual large language models in contextual code switching is constrained by their training methodologies. In contrast, relatively smaller models, when trained and fine-tuned on bespoke datasets, may yield superior results in comparison to the majority of multilingual models.

Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models

The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.

Improving Translation Faithfulness of Large Language Models via Augmenting Instructions

Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.

Most Language Models can be Poets too: An AI Writing Assistant and Constrained Text Generation Studio

Despite rapid advancement in the field of Constrained Natural Language Generation, little time has been spent on exploring the potential of language models which have had their vocabularies lexically, semantically, and/or phonetically constrained. We find that most language models generate compelling text even under significant constraints. We present a simple and universally applicable technique for modifying the output of a language model by compositionally applying filter functions to the language models vocabulary before a unit of text is generated. This approach is plug-and-play and requires no modification to the model. To showcase the value of this technique, we present an easy to use AI writing assistant called Constrained Text Generation Studio (CTGS). CTGS allows users to generate or choose from text with any combination of a wide variety of constraints, such as banning a particular letter, forcing the generated words to have a certain number of syllables, and/or forcing the words to be partial anagrams of another word. We introduce a novel dataset of prose that omits the letter e. We show that our method results in strictly superior performance compared to fine-tuning alone on this dataset. We also present a Huggingface space web-app presenting this technique called Gadsby. The code is available to the public here: https://github.com/Hellisotherpeople/Constrained-Text-Generation-Studio

Improving Probability-based Prompt Selection Through Unified Evaluation and Analysis

Large Language Models (LLMs) have demonstrated great capabilities in solving a wide range of tasks in a resource-efficient manner through prompting, which does not require task-specific training, but suffers from performance fluctuation when there are multiple prompt candidates. Previous works have introduced gradient-free probability-based prompt selection methods that aim to choose the optimal prompt among the candidates for a given task but fail to provide a comprehensive and fair comparison between each other. In this paper, we propose a unified framework to interpret and evaluate the existing probability-based prompt selection methods by performing extensive experiments on 13 common NLP tasks. We find that all existing methods can be unified into some variant of the method that maximizes the mutual information between the input and the corresponding model output (denoted as MI). Using the finding, we develop several variants of MI and increases the effectiveness of the best prompt selection method from 87.79% to 94.98%, measured as the ratio of the performance of the selected prompt to that of the optimal oracle prompt. Furthermore, we propose a novel calibration method called Calibration by Marginalization (CBM) that is orthogonal to existing methods and helps increase the prompt selection effectiveness of the best method by 99.44%. The code and datasets used in our work will be released at https://github.com/soheeyang/unified-prompt-selection.

FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs

Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment due to their substantial memory requirements. Furthermore, the latest generative models suffer from high inference costs caused by the memory bandwidth bottleneck in the auto-regressive decoding process. To address these issues, we propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs. To ensure minimal quality degradation, we introduce a simple and effective heuristic approach that utilizes only the model weights of a pre-trained model. This approach is applicable to both Mixture-of-Experts (MoE) and dense models without requiring additional fine-tuning. To demonstrate the effectiveness of our proposed method, we first analyze the challenges and issues associated with LLM quantization. Subsequently, we present our heuristic approach, which adaptively finds the granularity of quantization, effectively addressing these problems. Furthermore, we implement highly efficient GPU GEMMs that perform on-the-fly matrix multiplication and dequantization, supporting the multiplication of fp16 or bf16 activations with int8 or int4 weights. We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput on the same number of GPUs.

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.

Augmenting Language Models with Long-Term Memory

Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents. Our code is open-sourced at https://aka.ms/LongMem.

Lessons learned from the evaluation of Spanish Language Models

Given the impact of language models on the field of Natural Language Processing, a number of Spanish encoder-only masked language models (aka BERTs) have been trained and released. These models were developed either within large projects using very large private corpora or by means of smaller scale academic efforts leveraging freely available data. In this paper we present a comprehensive head-to-head comparison of language models for Spanish with the following results: (i) Previously ignored multilingual models from large companies fare better than monolingual models, substantially changing the evaluation landscape of language models in Spanish; (ii) Results across the monolingual models are not conclusive, with supposedly smaller and inferior models performing competitively. Based on these empirical results, we argue for the need of more research to understand the factors underlying them. In this sense, the effect of corpus size, quality and pre-training techniques need to be further investigated to be able to obtain Spanish monolingual models significantly better than the multilingual ones released by large private companies, specially in the face of rapid ongoing progress in the field. The recent activity in the development of language technology for Spanish is to be welcomed, but our results show that building language models remains an open, resource-heavy problem which requires to marry resources (monetary and/or computational) with the best research expertise and practice.

Decoding the Diversity: A Review of the Indic AI Research Landscape

This review paper provides a comprehensive overview of large language model (LLM) research directions within Indic languages. Indic languages are those spoken in the Indian subcontinent, including India, Pakistan, Bangladesh, Sri Lanka, Nepal, and Bhutan, among others. These languages have a rich cultural and linguistic heritage and are spoken by over 1.5 billion people worldwide. With the tremendous market potential and growing demand for natural language processing (NLP) based applications in diverse languages, generative applications for Indic languages pose unique challenges and opportunities for research. Our paper deep dives into the recent advancements in Indic generative modeling, contributing with a taxonomy of research directions, tabulating 84 recent publications. Research directions surveyed in this paper include LLM development, fine-tuning existing LLMs, development of corpora, benchmarking and evaluation, as well as publications around specific techniques, tools, and applications. We found that researchers across the publications emphasize the challenges associated with limited data availability, lack of standardization, and the peculiar linguistic complexities of Indic languages. This work aims to serve as a valuable resource for researchers and practitioners working in the field of NLP, particularly those focused on Indic languages, and contributes to the development of more accurate and efficient LLM applications for these languages.

LLM in a flash: Efficient Large Language Model Inference with Limited Memory

Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks. However, their intensive computational and memory requirements present challenges, especially for devices with limited DRAM capacity. This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity by storing the model parameters on flash memory but bringing them on demand to DRAM. Our method involves constructing an inference cost model that harmonizes with the flash memory behavior, guiding us to optimize in two critical areas: reducing the volume of data transferred from flash and reading data in larger, more contiguous chunks. Within this flash memory-informed framework, we introduce two principal techniques. First, "windowing'" strategically reduces data transfer by reusing previously activated neurons, and second, "row-column bundling", tailored to the sequential data access strengths of flash memory, increases the size of data chunks read from flash memory. These methods collectively enable running models up to twice the size of the available DRAM, with a 4-5x and 20-25x increase in inference speed compared to naive loading approaches in CPU and GPU, respectively. Our integration of sparsity awareness, context-adaptive loading, and a hardware-oriented design paves the way for effective inference of LLMs on devices with limited memory.

Large Language Models as Data Preprocessors

Large Language Models (LLMs), typified by OpenAI's GPT series and Meta's LLaMA variants, have marked a significant advancement in artificial intelligence. Trained on vast amounts of text data, LLMs are capable of understanding and generating human-like text across a diverse range of topics. This study expands on the applications of LLMs, exploring their potential in data preprocessing, a critical stage in data mining and analytics applications. We delve into the applicability of state-of-the-art LLMs such as GPT-3.5, GPT-4, and Vicuna-13B for error detection, data imputation, schema matching, and entity matching tasks. Alongside showcasing the inherent capabilities of LLMs, we highlight their limitations, particularly in terms of computational expense and inefficiency. We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques, coupled with traditional methods like contextualization and feature selection, to improve the performance and efficiency of these models. The effectiveness of LLMs in data preprocessing is evaluated through an experimental study spanning 12 datasets. GPT-4 emerged as a standout, achieving 100\% accuracy or F1 score on 4 datasets, suggesting LLMs' immense potential in these tasks. Despite certain limitations, our study underscores the promise of LLMs in this domain and anticipates future developments to overcome current hurdles.

Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens

Are n-gram language models still relevant in this era of neural large language models (LLMs)? Our answer is yes, and we show their values in both text analysis and improving neural LLMs. Yet this necessitates modernizing n-gram models in two aspects. First, we train them at the same data scale as neural LLMs -- 1.4 trillion tokens. This is the largest n-gram model ever built. Second, existing n-gram models use small n which hinders their performance; we instead allow n to be arbitrarily large, by introducing a new infty-gram LM with backoff. Instead of pre-computing n-gram count tables (which would be very expensive), we develop an engine named infini-gram -- powered by suffix arrays -- that can compute infty-gram (as well as n-gram with arbitrary n) probabilities with millisecond-level latency. The infty-gram framework and infini-gram engine enable us to conduct many novel and interesting analyses of human-written and machine-generated text: we find that the infty-gram LM has fairly high accuracy for next-token prediction (47%), and can complement neural LLMs to greatly reduce their language modeling perplexities. When analyzing machine-generated text, we also observe irregularities in the machine--infty-gram agreement level with respect to the suffix length, which indicates deficiencies in neural LLM pretraining and the positional embeddings of Transformers. We open-source our infini-gram engine in the hopes of enabling more study on how to best use verbatim information retrieved from large text corpora.