1 Pulsed Schlieren Imaging of Ultrasonic Haptics and Levitation using Phased Arrays Ultrasonic acoustic fields have recently been used to generate haptic effects on the human skin as well as to levitate small sub-wavelength size particles. Schlieren imaging and background-oriented schlieren techniques can be used for acoustic wave pattern and beam shape visualization. These techniques exploit variations in the refractive index of a propagation medium by applying refractive optics or cross-correlation algorithms of photographs of illuminated background patterns. Here both background-oriented and traditional schlieren systems are used to visualize the regions of the acoustic power involved in creating dynamic haptic sensations and dynamic levitation traps. We demonstrate for the first time the application of back-ground-oriented schlieren for imaging ultrasonic fields in air. We detail our imaging apparatus and present improved algorithms used to visualize these phenomena that we have produced using multiple phased arrays. Moreover, to improve imaging, we leverage an electronically controlled, high-output LED which is pulsed in synchrony with the ultrasonic carrier frequency. 5 authors · Sep 29, 2018
- Temperature dependence of nonlinear elastic moduli of polystyrene Nonlinear elastic properties of polymers and polymeric composites are essential for accurate prediction of their response to dynamic loads, which is crucial in a wide range of applications. These properties can be affected by strain rate, temperature, and pressure. The temperature susceptibility of nonlinear elastic moduli of polymers remains poorly understood. We have recently observed a significant frequency dependence of the nonlinear elastic (Murnaghan) moduli of polystyrene. In this paper we expand this analysis by the temperature dependence. The measurement methodology was based on the acousto-elastic effect, and involved analysis of the dependencies of velocities of longitudinal and shear single-frequency ultrasonic waves in the sample on the applied static pressure. Measurements were performed at different temperatures in the range of 25-65 {\deg}C and at different frequencies in the range of 0.75-3 MHz. The temperature susceptibility of the nonlinear moduli l and m was found to be two orders of magnitude larger than that of linear moduli lambda and mu. At the same time, the observed variations of n modulus with temperature were low and within the measurement tolerance. The observed tendencies can be explained by different influence of pressure on relaxation processes in the material at different temperatures. 4 authors · Feb 3
- Breast Ultrasound Report Generation using LangChain Breast ultrasound (BUS) is a critical diagnostic tool in the field of breast imaging, aiding in the early detection and characterization of breast abnormalities. Interpreting breast ultrasound images commonly involves creating comprehensive medical reports, containing vital information to promptly assess the patient's condition. However, the ultrasound imaging system necessitates capturing multiple images of various parts to compile a single report, presenting a time-consuming challenge. To address this problem, we propose the integration of multiple image analysis tools through a LangChain using Large Language Models (LLM), into the breast reporting process. Through a combination of designated tools and text generation through LangChain, our method can accurately extract relevant features from ultrasound images, interpret them in a clinical context, and produce comprehensive and standardized reports. This approach not only reduces the burden on radiologists and healthcare professionals but also enhances the consistency and quality of reports. The extensive experiments shows that each tools involved in the proposed method can offer qualitatively and quantitatively significant results. Furthermore, clinical evaluation on the generated reports demonstrates that the proposed method can make report in clinically meaningful way. 3 authors · Dec 4, 2023
- Trapped acoustic waves and raindrops: high-order accurate integral equation method for localized excitation of a periodic staircase We present a high-order boundary integral equation (BIE) method for the frequency-domain acoustic scattering of a point source by a singly-periodic, infinite, corrugated boundary. We apply it to the accurate numerical study of acoustic radiation in the neighborhood of a sound-hard two-dimensional staircase modeled after the El Castillo pyramid. Such staircases support trapped waves which travel along the surface and decay exponentially away from it. We use the array scanning method (Floquet--Bloch transform) to recover the scattered field as an integral over the family of quasiperiodic solutions parameterized by their on-surface wavenumber. Each such BIE solution requires the quasiperiodic Green's function, which we evaluate using an efficient integral representation of lattice sum coefficients. We avoid the singularities and branch cuts present in the array scanning integral by complex contour deformation. For each frequency, this enables a solution accurate to around 10 digits in a couple of seconds. We propose a residue method to extract the limiting powers carried by trapped modes far from the source. Finally, by computing the trapped mode dispersion relation, we use a simple ray model to explain an observed acoustic "raindrop" effect (chirp-like time-domain response). 2 authors · Oct 19, 2023