Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeStatistical mechanics of continual learning: variational principle and mean-field potential
An obstacle to artificial general intelligence is set by continual learning of multiple tasks of different nature. Recently, various heuristic tricks, both from machine learning and from neuroscience angles, were proposed, but they lack a unified theory ground. Here, we focus on continual learning in single-layered and multi-layered neural networks of binary weights. A variational Bayesian learning setting is thus proposed, where the neural networks are trained in a field-space, rather than gradient-ill-defined discrete-weight space, and furthermore, weight uncertainty is naturally incorporated, and modulates synaptic resources among tasks. From a physics perspective, we translate the variational continual learning into Franz-Parisi thermodynamic potential framework, where previous task knowledge acts as a prior and a reference as well. We thus interpret the continual learning of the binary perceptron in a teacher-student setting as a Franz-Parisi potential computation. The learning performance can then be analytically studied with mean-field order parameters, whose predictions coincide with numerical experiments using stochastic gradient descent methods. Based on the variational principle and Gaussian field approximation of internal preactivations in hidden layers, we also derive the learning algorithm considering weight uncertainty, which solves the continual learning with binary weights using multi-layered neural networks, and performs better than the currently available metaplasticity algorithm. Our proposed principled frameworks also connect to elastic weight consolidation, weight-uncertainty modulated learning, and neuroscience inspired metaplasticity, providing a theory-grounded method for the real-world multi-task learning with deep networks.
The information-theoretic foundation of thermodynamic work extraction
In this paper I apply newly-proposed information-theoretic principles to thermodynamic work extraction. I show that if it is possible to extract work deterministically from a physical system prepared in any one of a set of states, then those states must be distinguishable from one another. This result is formulated independently of scale and of particular dynamical laws; it also provides a novel connection between thermodynamics and information theory, established via the law of conservation of energy (rather than the second law of thermodynamics). Albeit compatible with these conclusions, existing thermodynamics approaches cannot provide a result of such generality, because they are scale-dependent (relying on ensembles or coarse-graining) or tied to particular dynamical laws. This paper thus provides a broader foundation for thermodynamics, with implications for the theory of von Neumann's universal constructor
The role of quantum information in thermodynamics --- a topical review
This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.
Constructor Theory of Thermodynamics
All current formulations of thermodynamics invoke some form of coarse-graining or ensembles as the supposed link between their own laws and the microscopic laws of motion. They deal only with ensemble-averages, expectation values, macroscopic limits, infinite heat baths, etc., not with the details of physical variables of individual microscopic systems. They are consistent with the laws of motion for finite systems only in certain approximations, which improve with increasing scale, given various assumptions about initial conditions which are neither specified precisely nor even thought to hold exactly in nature. Here I propose a new formulation of the zeroth, first and second laws, improving upon the axiomatic approach to thermodynamics (Carath\'eodory, 1909; Lieb & Yngvason, 1999), via the principles of the recently proposed constructor theory. Specifically, I provide a non-approximative, scale-independent formulation of 'adiabatic accessibility'; this in turn provides a non-approximative, scale-independent distinction between work and heat and reveals an unexpected connection between information theory and the first law of thermodynamics (not just the second). It also achieves the long-sought unification of the axiomatic approach with Kelvin's.
Synergistic Fusion of Multi-Source Knowledge via Evidence Theory for High-Entropy Alloy Discovery
Discovering novel high-entropy alloys (HEAs) with desirable properties is challenging due to the vast compositional space and complex phase formation mechanisms. Efficient exploration of this space requires a strategic approach that integrates heterogeneous knowledge sources. Here, we propose a framework that systematically combines knowledge extracted from computational material datasets with domain knowledge distilled from scientific literature using large language models (LLMs). A central feature of this approach is the explicit consideration of element substitutability, identifying chemically similar elements that can be interchanged to potentially stabilize desired HEAs. Dempster-Shafer theory, a mathematical framework for reasoning under uncertainty, is employed to model and combine substitutabilities based on aggregated evidence from multiple sources. The framework predicts the phase stability of candidate HEA compositions and is systematically evaluated on both quaternary alloy systems, demonstrating superior performance compared to baseline machine learning models and methods reliant on single-source evidence in cross-validation experiments. By leveraging multi-source knowledge, the framework retains robust predictive power even when key elements are absent from the training data, underscoring its potential for knowledge transfer and extrapolation. Furthermore, the enhanced interpretability of the methodology offers insights into the fundamental factors governing HEA formation. Overall, this work provides a promising strategy for accelerating HEA discovery by integrating computational and textual knowledge sources, enabling efficient exploration of vast compositional spaces with improved generalization and interpretability.
Physics in Next-token Prediction
We discovered the underlying physics in Next-token Prediction (NTP). We identified the law of information conservation within NTP and proposed the First Law of Information Capacity (IC-1), demonstrating that the essence of intelligence emergence in auto-regressive models is fundamentally a process of information transfer. We also introduced Landauer's Principle into NTP, formulating the Second Law of Information Capacity (IC-2), which establishes the relationship between auto-regressive model training and energy consumption. Additionally, we presented several corollaries, which hold practical significance for production practices. Finally, we validated the compatibility and complementarity of our findings with existing theories.
Knowledge-Aware Procedural Text Understanding with Multi-Stage Training
Procedural text describes dynamic state changes during a step-by-step natural process (e.g., photosynthesis). In this work, we focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process. Although recent approaches have achieved substantial progress, their results are far behind human performance. Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved, which require the incorporation of external knowledge bases. Previous works on external knowledge injection usually rely on noisy web mining tools and heuristic rules with limited applicable scenarios. In this paper, we propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge in this task. Specifically, we retrieve informative knowledge triples from ConceptNet and perform knowledge-aware reasoning while tracking the entities. Besides, we employ a multi-stage training schema which fine-tunes the BERT model over unlabeled data collected from Wikipedia before further fine-tuning it on the final model. Experimental results on two procedural text datasets, ProPara and Recipes, verify the effectiveness of the proposed methods, in which our model achieves state-of-the-art performance in comparison to various baselines.
Perovskite-LLM: Knowledge-Enhanced Large Language Models for Perovskite Solar Cell Research
The rapid advancement of perovskite solar cells (PSCs) has led to an exponential growth in research publications, creating an urgent need for efficient knowledge management and reasoning systems in this domain. We present a comprehensive knowledge-enhanced system for PSCs that integrates three key components. First, we develop Perovskite-KG, a domain-specific knowledge graph constructed from 1,517 research papers, containing 23,789 entities and 22,272 relationships. Second, we create two complementary datasets: Perovskite-Chat, comprising 55,101 high-quality question-answer pairs generated through a novel multi-agent framework, and Perovskite-Reasoning, containing 2,217 carefully curated materials science problems. Third, we introduce two specialized large language models: Perovskite-Chat-LLM for domain-specific knowledge assistance and Perovskite-Reasoning-LLM for scientific reasoning tasks. Experimental results demonstrate that our system significantly outperforms existing models in both domain-specific knowledge retrieval and scientific reasoning tasks, providing researchers with effective tools for literature review, experimental design, and complex problem-solving in PSC research.
ClimRetrieve: A Benchmarking Dataset for Information Retrieval from Corporate Climate Disclosures
To handle the vast amounts of qualitative data produced in corporate climate communication, stakeholders increasingly rely on Retrieval Augmented Generation (RAG) systems. However, a significant gap remains in evaluating domain-specific information retrieval - the basis for answer generation. To address this challenge, this work simulates the typical tasks of a sustainability analyst by examining 30 sustainability reports with 16 detailed climate-related questions. As a result, we obtain a dataset with over 8.5K unique question-source-answer pairs labeled by different levels of relevance. Furthermore, we develop a use case with the dataset to investigate the integration of expert knowledge into information retrieval with embeddings. Although we show that incorporating expert knowledge works, we also outline the critical limitations of embeddings in knowledge-intensive downstream domains like climate change communication.
CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims
We introduce CLIMATE-FEVER, a new publicly available dataset for verification of climate change-related claims. By providing a dataset for the research community, we aim to facilitate and encourage work on improving algorithms for retrieving evidential support for climate-specific claims, addressing the underlying language understanding challenges, and ultimately help alleviate the impact of misinformation on climate change. We adapt the methodology of FEVER [1], the largest dataset of artificially designed claims, to real-life claims collected from the Internet. While during this process, we could rely on the expertise of renowned climate scientists, it turned out to be no easy task. We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the fever framework, which we believe provides a valuable challenge for general natural language understanding. We hope that our work will mark the beginning of a new exciting long-term joint effort by the climate science and AI community.
MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities
For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents
We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible framework to capture complex chemical structures. First trained on the QM9 dataset and a series of quantum mechanical properties (e.g. homo, lumo, free energy, heat capacity, etc.), we then generalize the model to study and design key properties of deep eutectic solvents. In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objectives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained jointly in tasks related to the QM9 dataset and deep eutectic solvents (DESs), the model can predict various quantum mechanical properties and critical properties to achieve deep eutectic solvent behavior. Several novel combinations of DESs are proposed based on this framework.
Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws
Scaling laws describe the relationship between the size of language models and their capabilities. Unlike prior studies that evaluate a model's capability via loss or benchmarks, we estimate the number of knowledge bits a model stores. We focus on factual knowledge represented as tuples, such as (USA, capital, Washington D.C.) from a Wikipedia page. Through multiple controlled datasets, we establish that language models can and only can store 2 bits of knowledge per parameter, even when quantized to int8, and such knowledge can be flexibly extracted for downstream applications. Consequently, a 7B model can store 14B bits of knowledge, surpassing the English Wikipedia and textbooks combined based on our estimation. More broadly, we present 12 results on how (1) training duration, (2) model architecture, (3) quantization, (4) sparsity constraints such as MoE, and (5) data signal-to-noise ratio affect a model's knowledge storage capacity. Notable insights include: * The GPT-2 architecture, with rotary embedding, matches or even surpasses LLaMA/Mistral architectures in knowledge storage, particularly over shorter training durations. This arises because LLaMA/Mistral uses GatedMLP, which is less stable and harder to train. * Prepending training data with domain names (e.g., wikipedia.org) significantly increases a model's knowledge capacity. Language models can autonomously identify and prioritize domains rich in knowledge, optimizing their storage capacity.
COPEN: Probing Conceptual Knowledge in Pre-trained Language Models
Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.
Fundamental Principle of Information-to-Energy Conversion
The equivalence of 1 bit of information to entropy was given by Landauer in 1961 as kln2, k the Boltzmann constant. Erasing information implies heat dissipation and the energy of 1 bit would then be (the Landauers limit) kT ln 2, T being the ambient temperature. From a quantum-cosmological point of view the minimum quantum of energy in the universe corresponds today to a temperature of 10^(-29) degrees K, probably forming a cosmic background of a Bose condensate [1]. Then, the bit with minimum energy today in the Universe is a quantum of energy 10^(-45)ergs, with an equivalent mass of 10^(-66)g. Low temperature implies low energy per bit and, of course, this is the way for faster and less energy dissipating computing devices. Our conjecture is this: the possibility of a future access to the CBBC (a coupling/channeling?) would mean a huge jump in the performance of these devices.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering
We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1329 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic---in the context of common knowledge---and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance.
Dynamic processes in superconductors and the laws of thermodynamics
The transition from the superconducting to the normal state in a magnetic field was considered as a irreversible thermodynamic process before 1933 because of Joule heating. But all physicists became to consider this transition as reversible after 1933 because of the obvious contradiction of the Meissner effect with the second law of thermodynamics if this transition is considered as a irreversible process. This radical change of the opinion contradicted logic since the dissipation of the kinetic energy of the surface screening current into Joule heat in the normal state cannot depend on how this current appeared in the superconducting state. The inconsistency of the conventional theory of superconductivity, created in the framework of the equilibrium thermodynamics, with Joule heating, on which Jorge Hirsch draws reader's attention, is a consequence of this history. In order to avoid contradiction with the second law of thermodynamics, physicists postulated in the thirties of the last century that the surface screening current is damped without the generation of Joule heat. This postulate contradicts not only logic and the conventional theory of superconductivity but also experimental results.
LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery
Large Language Models have recently gained significant attention in scientific discovery for their extensive knowledge and advanced reasoning capabilities. However, they encounter challenges in effectively simulating observational feedback and grounding it with language to propel advancements in physical scientific discovery. Conversely, human scientists undertake scientific discovery by formulating hypotheses, conducting experiments, and revising theories through observational analysis. Inspired by this, we propose to enhance the knowledge-driven, abstract reasoning abilities of LLMs with the computational strength of simulations. We introduce Scientific Generative Agent (SGA), a bilevel optimization framework: LLMs act as knowledgeable and versatile thinkers, proposing scientific hypotheses and reason about discrete components, such as physics equations or molecule structures; meanwhile, simulations function as experimental platforms, providing observational feedback and optimizing via differentiability for continuous parts, such as physical parameters. We conduct extensive experiments to demonstrate our framework's efficacy in constitutive law discovery and molecular design, unveiling novel solutions that differ from conventional human expectations yet remain coherent upon analysis.
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
Establishing Knowledge Preference in Language Models
Language models are known to encode a great amount of factual knowledge through pretraining. However, such knowledge might be insufficient to cater to user requests, requiring the model to integrate external knowledge sources and adhere to user-provided specifications. When answering questions about ongoing events, the model should use recent news articles to update its response; when asked to provide recommendations, the model should prioritize user specifications over retrieved product reviews; when some facts are edited in the model, the updated facts should override all prior knowledge learned by the model even if they are conflicting. In all of the cases above, the model faces a decision between its own parametric knowledge, (retrieved) contextual knowledge, and user instruction knowledge. In this paper, we (1) unify such settings into the problem of knowledge preference and define a three-level preference hierarchy over these knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE, and MRQA covering a combination of settings (with/without user specifications, with/without context documents) to systematically evaluate how well models obey the intended knowledge preference; and (3) propose a dataset synthesis method that composes diverse question-answer pairs with user assumptions and related context to directly fine-tune LMs for instilling the hierarchy of knowledge. We demonstrate that a 7B model, fine-tuned on only a few thousand examples automatically generated by our proposed method, effectively achieves superior performance (more than 18% improvement across all evaluation benchmarks) in adhering to the desired knowledge preference hierarchy.
BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials
The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ mathcal V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
Do Large Language Models Know What They Don't Know?
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks. Current research focuses on enhancing their performance within their existing knowledge. Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend. Therefore, the ability to understand their own limitations on the unknows, referred to as self-knowledge, is of paramount importance. This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions. We introduce an automated methodology to detect uncertainty in the responses of these models, providing a novel measure of their self-knowledge. We further introduce a unique dataset, SelfAware, consisting of unanswerable questions from five diverse categories and their answerable counterparts. Our extensive analysis, involving 20 LLMs including GPT-3, InstructGPT, and LLaMA, discovering an intrinsic capacity for self-knowledge within these models. Moreover, we demonstrate that in-context learning and instruction tuning can further enhance this self-knowledge. Despite this promising insight, our findings also highlight a considerable gap between the capabilities of these models and human proficiency in recognizing the limits of their knowledge.
Thermostat: A Large Collection of NLP Model Explanations and Analysis Tools
In the language domain, as in other domains, neural explainability takes an ever more important role, with feature attribution methods on the forefront. Many such methods require considerable computational resources and expert knowledge about implementation details and parameter choices. To facilitate research, we present Thermostat which consists of a large collection of model explanations and accompanying analysis tools. Thermostat allows easy access to over 200k explanations for the decisions of prominent state-of-the-art models spanning across different NLP tasks, generated with multiple explainers. The dataset took over 10k GPU hours (> one year) to compile; compute time that the community now saves. The accompanying software tools allow to analyse explanations instance-wise but also accumulatively on corpus level. Users can investigate and compare models, datasets and explainers without the need to orchestrate implementation details. Thermostat is fully open source, democratizes explainability research in the language domain, circumvents redundant computations and increases comparability and replicability.
Exploring the Abilities of Large Language Models to Solve Proportional Analogies via Knowledge-Enhanced Prompting
Making analogies is fundamental to cognition. Proportional analogies, which consist of four terms, are often used to assess linguistic and cognitive abilities. For instance, completing analogies like "Oxygen is to Gas as <blank> is to <blank>" requires identifying the semantic relationship (e.g., "type of") between the first pair of terms ("Oxygen" and "Gas") and finding a second pair that shares the same relationship (e.g., "Aluminum" and "Metal"). In this work, we introduce a 15K Multiple-Choice Question Answering (MCQA) dataset for proportional analogy completion and evaluate the performance of contemporary Large Language Models (LLMs) in various knowledge-enhanced prompt settings. Specifically, we augment prompts with three types of knowledge: exemplar, structured, and targeted. Our results show that despite extensive training data, solving proportional analogies remains challenging for current LLMs, with the best model achieving an accuracy of 55%. Notably, we find that providing targeted knowledge can better assist models in completing proportional analogies compared to providing exemplars or collections of structured knowledge.
Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.
ChroKnowledge: Unveiling Chronological Knowledge of Language Models in Multiple Domains
Large language models (LLMs) have significantly impacted many aspects of our lives. However, assessing and ensuring their chronological knowledge remains challenging. Existing approaches fall short in addressing the accumulative nature of knowledge, often relying on a single time stamp. To overcome this, we introduce ChroKnowBench, a benchmark dataset designed to evaluate chronologically accumulated knowledge across three key aspects: multiple domains, time dependency, temporal state. Our benchmark distinguishes between knowledge that evolves (e.g., scientific discoveries, amended laws) and knowledge that remain constant (e.g., mathematical truths, commonsense facts). Building on this benchmark, we present ChroKnowledge (Chronological Categorization of Knowledge), a novel sampling-based framework for evaluating and updating LLMs' non-parametric chronological knowledge. Our evaluation shows: (1) The ability of eliciting temporal knowledge varies depending on the data format that model was trained on. (2) LLMs partially recall knowledge or show a cut-off at temporal boundaries rather than recalling all aspects of knowledge correctly. Thus, we apply our ChroKnowPrompt, an in-depth prompting to elicit chronological knowledge by traversing step-by-step through the surrounding time spans. We observe that our framework successfully updates the overall knowledge across the entire timeline in both the biomedical domain (+11.9%) and the general domain (+2.8%), demonstrating its effectiveness in refining temporal knowledge. This non-parametric approach also enables knowledge updates not only in open-source models but also in proprietary LLMs, ensuring comprehensive applicability across model types. We perform a comprehensive analysis based on temporal characteristics of ChroKnowPrompt and validate the potential of various models to elicit intrinsic temporal knowledge through our method.
Swing Distillation: A Privacy-Preserving Knowledge Distillation Framework
Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.
KnowTuning: Knowledge-aware Fine-tuning for Large Language Models
Despite their success at many natural language processing (NLP) tasks, large language models (LLMs) still struggle to effectively leverage knowledge for knowledge-intensive tasks, manifesting limitations such as generating incomplete, non-factual, or illogical answers. These limitations stem from inadequate knowledge awareness of LLMs during vanilla fine-tuning. To address these problems, we propose a knowledge-aware fine-tuning (KnowTuning) method to explicitly and implicitly improve the knowledge awareness of LLMs. We devise an explicit knowledge-aware generation stage to train LLMs to explicitly identify knowledge triples in answers. We also propose an implicit knowledge-aware comparison stage to train LLMs to implicitly distinguish between reliable and unreliable knowledge, in three aspects: completeness, factuality, and logicality. Extensive experiments on both generic and medical question answering (QA) datasets confirm the effectiveness of KnowTuning, through automatic and human evaluations, across various sizes of LLMs. Finally, we demonstrate that the improvements of KnowTuning generalize to unseen QA datasets.
Talking Models: Distill Pre-trained Knowledge to Downstream Models via Interactive Communication
Many recent breakthroughs in machine learning have been enabled by the pre-trained foundation models. By scaling up model parameters, training data, and computation resources, foundation models have significantly advanced the state-of-the-art in many applications. However, it is still an open question of how to use these models to perform downstream tasks efficiently. Knowledge distillation (KD) has been explored to tackle this challenge. KD transfers knowledge from a large teacher model to a smaller student model. While KD has been successful in improving student model performance, recent research has discovered that a powerful teacher does not necessarily lead to a powerful student, due to their huge capacity gap. In addition, the potential distribution shifts between the pre-training data and downstream tasks can make knowledge transfer in KD sub-optimal for improving downstream task performance. In this paper, we extend KD with an interactive communication process to help students of downstream tasks learn effectively from pre-trained foundation models. Our design is inspired by the way humans learn from teachers who can explain knowledge in a way that meets the students' needs. Specifically, we let each model (i.e., student and teacher) train two components: (1) an encoder encoding the model's hidden states to a message and (2) a decoder decoding any messages to its own hidden states. With encoder and decoder, not only can the teacher transfer rich information by encoding its hidden states, but also the student can send messages with information of downstream tasks to the teacher. Therefore, knowledge passing from teacher to student can be tailored to the student's capacity and downstream tasks' distributions. We conducted experiments on benchmark datasets to show that our communication mechanism outperforms state-of-the-art distillation techniques.
PIQA: Reasoning about Physical Commonsense in Natural Language
To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems. While recent pretrained models (such as BERT) have made progress on question answering over more abstract domains - such as news articles and encyclopedia entries, where text is plentiful - in more physical domains, text is inherently limited due to reporting bias. Can AI systems learn to reliably answer physical common-sense questions without experiencing the physical world? In this paper, we introduce the task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA. Though humans find the dataset easy (95% accuracy), large pretrained models struggle (77%). We provide analysis about the dimensions of knowledge that existing models lack, which offers significant opportunities for future research.
The Life Cycle of Knowledge in Big Language Models: A Survey
Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.
Structured Chemistry Reasoning with Large Language Models
This paper studies the problem of solving complex chemistry problems with large language models (LLMs). Despite the extensive general knowledge in LLMs (such as GPT-4), they struggle with chemistry reasoning that requires faithful grounded reasoning with diverse chemical knowledge and an integrative understanding of chemical interactions. We propose InstructChem, a new structured reasoning approach that substantially boosts the LLMs' chemical reasoning capabilities. InstructChem explicitly decomposes the reasoning into three critical phrases, including chemical formulae generation by LLMs that offers the basis for subsequent grounded reasoning, step-by-step reasoning that makes multi-step derivations with the identified formulae for a preliminary answer, and iterative review-and-refinement that steers LLMs to progressively revise the previous phases for increasing confidence, leading to the final high-confidence answer. We conduct extensive experiments on four different chemistry challenges, including quantum chemistry, quantum mechanics, physical chemistry, and chemistry kinetics. Our approach significantly enhances GPT-4 on chemistry reasoning, yielding an 8% average absolute improvement and a 30% peak improvement. We further use the generated reasoning by GPT-4 to fine-tune smaller LMs (e.g., Vicuna) and observe strong improvement of the smaller LMs. This validates our approach and enables LLMs to generate high-quality reasoning.
Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation
Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.
Knowledge Infused Decoding
Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.
Do generative video models learn physical principles from watching videos?
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn ``world models'' that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
MatKB: Semantic Search for Polycrystalline Materials Synthesis Procedures
In this paper, we present a novel approach to knowledge extraction and retrieval using Natural Language Processing (NLP) techniques for material science. Our goal is to automatically mine structured knowledge from millions of research articles in the field of polycrystalline materials and make it easily accessible to the broader community. The proposed method leverages NLP techniques such as entity recognition and document classification to extract relevant information and build an extensive knowledge base, from a collection of 9.5 Million publications. The resulting knowledge base is integrated into a search engine, which enables users to search for information about specific materials, properties, and experiments with greater precision than traditional search engines like Google. We hope our results can enable material scientists quickly locate desired experimental procedures, compare their differences, and even inspire them to design new experiments. Our website will be available at Github https://github.com/Xianjun-Yang/PcMSP.git soon.
Thrust: Adaptively Propels Large Language Models with External Knowledge
Although large-scale pre-trained language models (PTLMs) are shown to encode rich knowledge in their model parameters, the inherent knowledge in PTLMs can be opaque or static, making external knowledge necessary. However, the existing information retrieval techniques could be costly and may even introduce noisy and sometimes misleading knowledge. To address these challenges, we propose the instance-level adaptive propulsion of external knowledge (IAPEK), where we only conduct the retrieval when necessary. To achieve this goal, we propose measuring whether a PTLM contains enough knowledge to solve an instance with a novel metric, Thrust, which leverages the representation distribution of a small number of seen instances. Extensive experiments demonstrate that thrust is a good measurement of PTLM models' instance-level knowledgeability. Moreover, we can achieve significantly higher cost-efficiency with the Thrust score as the retrieval indicator than the naive usage of external knowledge on 88% of the evaluated tasks with 26% average performance improvement. Such findings shed light on the real-world practice of knowledge-enhanced LMs with a limited knowledge-seeking budget due to computation latency or costs.
KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models
We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability.
Thermodynamic Natural Gradient Descent
Second-order training methods have better convergence properties than gradient descent but are rarely used in practice for large-scale training due to their computational overhead. This can be viewed as a hardware limitation (imposed by digital computers). Here we show that natural gradient descent (NGD), a second-order method, can have a similar computational complexity per iteration to a first-order method, when employing appropriate hardware. We present a new hybrid digital-analog algorithm for training neural networks that is equivalent to NGD in a certain parameter regime but avoids prohibitively costly linear system solves. Our algorithm exploits the thermodynamic properties of an analog system at equilibrium, and hence requires an analog thermodynamic computer. The training occurs in a hybrid digital-analog loop, where the gradient and Fisher information matrix (or any other positive semi-definite curvature matrix) are calculated at given time intervals while the analog dynamics take place. We numerically demonstrate the superiority of this approach over state-of-the-art digital first- and second-order training methods on classification tasks and language model fine-tuning tasks.
Understanding and Improving Knowledge Distillation
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from student's compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student model's training dynamics remains under-explored. In this paper, we categorize teacher's knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe', where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to student's logit layer geometry; and (3) instance specific knowledge, where teacher rescales student model's per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
Born Again Neural Networks
Knowledge Distillation (KD) consists of transferring “knowledge” from one machine learning model (the teacher) to another (the student). Commonly, the teacher is a high-capacity model with formidable performance, while the student is more compact. By transferring knowledge, one hopes to benefit from the student’s compactness, without sacrificing too much performance. We study KD from a new perspective: rather than compressing models, we train students parameterized identically to their teachers. Surprisingly, these Born-Again Networks (BANs), outperform their teachers significantly, both on computer vision and language modeling tasks. Our experiments with BANs based on DenseNets demonstrate state-of-the-art performance on the CIFAR-10 (3.5%) and CIFAR-100 (15.5%) datasets, by validation error. Additional experiments explore two distillation objectives: (i) Confidence-Weighted by Teacher Max (CWTM) and (ii) Dark Knowledge with Permuted Predictions (DKPP). Both methods elucidate the essential components of KD, demonstrating the effect of the teacher outputs on both predicted and non-predicted classes.
Symbolic Knowledge Distillation: from General Language Models to Commonsense Models
The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
1.5 million materials narratives generated by chatbots
The advent of artificial intelligence (AI) has enabled a comprehensive exploration of materials for various applications. However, AI models often prioritize frequently encountered materials in the scientific literature, limiting the selection of suitable candidates based on inherent physical and chemical properties. To address this imbalance, we have generated a dataset of 1,494,017 natural language-material paragraphs based on combined OQMD, Materials Project, JARVIS, COD and AFLOW2 databases, which are dominated by ab initio calculations and tend to be much more evenly distributed on the periodic table. The generated text narratives were then polled and scored by both human experts and ChatGPT-4, based on three rubrics: technical accuracy, language and structure, and relevance and depth of content, showing similar scores but with human-scored depth of content being the most lagging. The merger of multi-modality data sources and large language model (LLM) holds immense potential for AI frameworks to help the exploration and discovery of solid-state materials for specific applications.
SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models
The burgeoning utilization of Large Language Models (LLMs) in scientific research necessitates advanced benchmarks capable of evaluating their understanding and application of scientific knowledge comprehensively. To address this need, we introduce the SciKnowEval benchmark, a novel framework that systematically evaluates LLMs across five progressive levels of scientific knowledge: studying extensively, inquiring earnestly, thinking profoundly, discerning clearly, and practicing assiduously. These levels aim to assess the breadth and depth of scientific knowledge in LLMs, including knowledge coverage, inquiry and exploration capabilities, reflection and reasoning abilities, ethic and safety considerations, as well as practice proficiency. Specifically, we take biology and chemistry as the two instances of SciKnowEval and construct a dataset encompassing 50K multi-level scientific problems and solutions. By leveraging this dataset, we benchmark 20 leading open-source and proprietary LLMs using zero-shot and few-shot prompting strategies. The results reveal that despite achieving state-of-the-art performance, the proprietary LLMs still have considerable room for improvement, particularly in addressing scientific computations and applications. We anticipate that SciKnowEval will establish a comprehensive standard for benchmarking LLMs in science research and discovery, and promote the development of LLMs that integrate scientific knowledge with strong safety awareness. The dataset and code are publicly available at https://github.com/hicai-zju/sciknoweval .
Can Language Models Act as Knowledge Bases at Scale?
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating responses to complex queries through large-scale pre-training. However, the efficacy of these models in memorizing and reasoning among large-scale structured knowledge, especially world knowledge that explicitly covers abundant factual information remains questionable. Addressing this gap, our research investigates whether LLMs can effectively store, recall, and reason with knowledge on a large scale comparable to latest knowledge bases (KBs) such as Wikidata. Specifically, we focus on three crucial aspects to study the viability: (1) the efficiency of LLMs with different sizes in memorizing the exact knowledge in the large-scale KB; (2) the flexibility of recalling the memorized knowledge in response to natural language queries; (3) the capability to infer new knowledge through reasoning. Our findings indicate that while LLMs hold promise as large-scale KBs capable of retrieving and responding with flexibility, enhancements in their reasoning capabilities are necessary to fully realize their potential.
Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering
Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems.
ScienceWorld: Is your Agent Smarter than a 5th Grader?
We present ScienceWorld, a benchmark to test agents' scientific reasoning abilities in a new interactive text environment at the level of a standard elementary school science curriculum. Despite the transformer-based progress seen in question-answering and scientific text processing, we find that current models cannot reason about or explain learned science concepts in novel contexts. For instance, models can easily answer what the conductivity of a known material is but struggle when asked how they would conduct an experiment in a grounded environment to find the conductivity of an unknown material. This begs the question of whether current models are simply retrieving answers by way of seeing a large number of similar examples or if they have learned to reason about concepts in a reusable manner. We hypothesize that agents need to be grounded in interactive environments to achieve such reasoning capabilities. Our experiments provide empirical evidence supporting this hypothesis -- showing that a 1.5 million parameter agent trained interactively for 100k steps outperforms a 11 billion parameter model statically trained for scientific question-answering and reasoning from millions of expert demonstrations.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
Large Language Models (LLMs) demonstrate promising capabilities in solving simple scientific problems but often produce hallucinations for complex ones. While integrating LLMs with tools can increase reliability, this approach typically results in over-reliance on tools, diminishing the model's ability to solve simple problems through basic reasoning. In contrast, human experts first assess problem complexity using domain knowledge before choosing an appropriate solution approach. Inspired by this human problem-solving process, we propose a novel two-component fine-tuning method. In the first component World Knowledge Distillation (WKD), LLMs learn directly from solutions generated using tool's information to internalize domain knowledge. In the second component Tool Usage Adaptation (TUA), we partition problems into easy and hard categories based on the model's direct answering accuracy. While maintaining the same alignment target for easy problems as in WKD, we train the model to intelligently switch to tool usage for more challenging problems. We validate our method on six scientific benchmark datasets, spanning mathematics, climate science and epidemiology. On average, our models demonstrate a 28.18% improvement in answer accuracy and a 13.89% increase in tool usage precision across all datasets, surpassing state-of-the-art models including GPT-4o and Claude-3.5.
Towards unearthing neglected climate innovations from scientific literature using Large Language Models
Climate change poses an urgent global threat, needing the rapid identification and deployment of innovative solutions. We hypothesise that many of these solutions already exist within scientific literature but remain underutilised. To address this gap, this study employs a curated dataset sourced from OpenAlex, a comprehensive repository of scientific papers. Utilising Large Language Models (LLMs), such as GPT4-o from OpenAI, we evaluate title-abstract pairs from scientific papers on seven dimensions, covering climate change mitigation potential, stage of technological development, and readiness for deployment. The outputs of the language models are then compared with human evaluations to assess their effectiveness in identifying promising yet overlooked climate innovations. Our findings suggest that these LLM-based models can effectively augment human expertise, uncovering climate solutions that are potentially impactful but with far greater speed, throughput and consistency. Here, we focused on UK-based solutions, but the workflow is region-agnostic. This work contributes to the discovery of neglected innovations in scientific literature and demonstrates the potential of AI in enhancing climate action strategies.
Self-Evolution Knowledge Distillation for LLM-based Machine Translation
Knowledge distillation (KD) has shown great promise in transferring knowledge from larger teacher models to smaller student models. However, existing KD strategies for large language models often minimize output distributions between student and teacher models indiscriminately for each token. This overlooks the imbalanced nature of tokens and their varying transfer difficulties. In response, we propose a distillation strategy called Self-Evolution KD. The core of this approach involves dynamically integrating teacher distribution and one-hot distribution of ground truth into the student distribution as prior knowledge, which promotes the distillation process. It adjusts the ratio of prior knowledge based on token learning difficulty, fully leveraging the teacher model's potential. Experimental results show our method brings an average improvement of approximately 1.4 SacreBLEU points across four translation directions in the WMT22 test sets. Further analysis indicates that the improvement comes from better knowledge transfer from teachers, confirming our hypothesis.
Are large language models superhuman chemists?
Large language models (LLMs) have gained widespread interest due to their ability to process human language and perform tasks on which they have not been explicitly trained. This is relevant for the chemical sciences, which face the problem of small and diverse datasets that are frequently in the form of text. LLMs have shown promise in addressing these issues and are increasingly being harnessed to predict chemical properties, optimize reactions, and even design and conduct experiments autonomously. However, we still have only a very limited systematic understanding of the chemical reasoning capabilities of LLMs, which would be required to improve models and mitigate potential harms. Here, we introduce "ChemBench," an automated framework designed to rigorously evaluate the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of human chemists. We curated more than 7,000 question-answer pairs for a wide array of subfields of the chemical sciences, evaluated leading open and closed-source LLMs, and found that the best models outperformed the best human chemists in our study on average. The models, however, struggle with some chemical reasoning tasks that are easy for human experts and provide overconfident, misleading predictions, such as about chemicals' safety profiles. These findings underscore the dual reality that, although LLMs demonstrate remarkable proficiency in chemical tasks, further research is critical to enhancing their safety and utility in chemical sciences. Our findings also indicate a need for adaptations to chemistry curricula and highlight the importance of continuing to develop evaluation frameworks to improve safe and useful LLMs.
Head-to-Tail: How Knowledgeable are Large Language Models (LLM)? A.K.A. Will LLMs Replace Knowledge Graphs?
Since the recent prosperity of Large Language Models (LLMs), there have been interleaved discussions regarding how to reduce hallucinations from LLM responses, how to increase the factuality of LLMs, and whether Knowledge Graphs (KGs), which store the world knowledge in a symbolic form, will be replaced with LLMs. In this paper, we try to answer these questions from a new angle: How knowledgeable are LLMs? To answer this question, we constructed Head-to-Tail, a benchmark that consists of 18K question-answer (QA) pairs regarding head, torso, and tail facts in terms of popularity. We designed an automated evaluation method and a set of metrics that closely approximate the knowledge an LLM confidently internalizes. Through a comprehensive evaluation of 14 publicly available LLMs, we show that existing LLMs are still far from being perfect in terms of their grasp of factual knowledge, especially for facts of torso-to-tail entities.
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
The free energy principle, and its corollary active inference, constitute a bio-inspired theory that assumes biological agents act to remain in a restricted set of preferred states of the world, i.e., they minimize their free energy. Under this principle, biological agents learn a generative model of the world and plan actions in the future that will maintain the agent in an homeostatic state that satisfies its preferences. This framework lends itself to being realized in silico, as it comprehends important aspects that make it computationally affordable, such as variational inference and amortized planning. In this work, we investigate the tool of deep learning to design and realize artificial agents based on active inference, presenting a deep-learning oriented presentation of the free energy principle, surveying works that are relevant in both machine learning and active inference areas, and discussing the design choices that are involved in the implementation process. This manuscript probes newer perspectives for the active inference framework, grounding its theoretical aspects into more pragmatic affairs, offering a practical guide to active inference newcomers and a starting point for deep learning practitioners that would like to investigate implementations of the free energy principle.
Benchmarking Knowledge-driven Zero-shot Learning
External knowledge (a.k.a. side information) plays a critical role in zero-shot learning (ZSL) which aims to predict with unseen classes that have never appeared in training data. Several kinds of external knowledge, such as text and attribute, have been widely investigated, but they alone are limited with incomplete semantics. Some very recent studies thus propose to use Knowledge Graph (KG) due to its high expressivity and compatibility for representing kinds of knowledge. However, the ZSL community is still in short of standard benchmarks for studying and comparing different external knowledge settings and different KG-based ZSL methods. In this paper, we proposed six resources covering three tasks, i.e., zero-shot image classification (ZS-IMGC), zero-shot relation extraction (ZS-RE), and zero-shot KG completion (ZS-KGC). Each resource has a normal ZSL benchmark and a KG containing semantics ranging from text to attribute, from relational knowledge to logical expressions. We have clearly presented these resources including their construction, statistics, data formats and usage cases w.r.t. different ZSL methods. More importantly, we have conducted a comprehensive benchmarking study, with two general and state-of-the-art methods, two setting-specific methods and one interpretable method. We discussed and compared different ZSL paradigms w.r.t. different external knowledge settings, and found that our resources have great potential for developing more advanced ZSL methods and more solutions for applying KGs for augmenting machine learning. All the resources are available at https://github.com/China-UK-ZSL/Resources_for_KZSL.
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolving by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs, in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
SynKB: Semantic Search for Synthetic Procedures
In this paper we present SynKB, an open-source, automatically extracted knowledge base of chemical synthesis protocols. Similar to proprietary chemistry databases such as Reaxsys, SynKB allows chemists to retrieve structured knowledge about synthetic procedures. By taking advantage of recent advances in natural language processing for procedural texts, SynKB supports more flexible queries about reaction conditions, and thus has the potential to help chemists search the literature for conditions used in relevant reactions as they design new synthetic routes. Using customized Transformer models to automatically extract information from 6 million synthesis procedures described in U.S. and EU patents, we show that for many queries, SynKB has higher recall than Reaxsys, while maintaining high precision. We plan to make SynKB available as an open-source tool; in contrast, proprietary chemistry databases require costly subscriptions.
Knowledge Mechanisms in Large Language Models: A Survey and Perspective
Understanding knowledge mechanisms in Large Language Models (LLMs) is crucial for advancing towards trustworthy AGI. This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution. Knowledge utilization delves into the mechanism of memorization, comprehension and application, and creation. Knowledge evolution focuses on the dynamic progression of knowledge within individual and group LLMs. Moreover, we discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address. We hope this work can help understand knowledge in LLMs and provide insights for future research.
Are LLMs Aware that Some Questions are not Open-ended?
Large Language Models (LLMs) have shown the impressive capability of answering questions in a wide range of scenarios. However, when LLMs face different types of questions, it is worth exploring whether LLMs are aware that some questions have limited answers and need to respond more deterministically but some do not. We refer to this as question awareness of LLMs. The lack of question awareness in LLMs leads to two phenomena that LLMs are: (1) too casual to answer non-open-ended questions or (2) too boring to answer open-ended questions. In this paper, we first evaluate the question awareness in LLMs. The experimental results show that LLMs have the issues of lacking awareness of questions in certain domains, e.g. factual knowledge, resulting in hallucinations during the generation. To mitigate these, we propose a method called Question Awareness Temperature Sampling (QuATS). This method enhances the question awareness of LLMs by adaptively adjusting the output distributions based on question features. The automatic adjustment in QuATS eliminates the need for manual temperature tuning in text generation and consistently improves model performance in various benchmarks.
Quantifying the Rise and Fall of Complexity in Closed Systems: The Coffee Automaton
In contrast to entropy, which increases monotonically, the "complexity" or "interestingness" of closed systems seems intuitively to increase at first and then decrease as equilibrium is approached. For example, our universe lacked complex structures at the Big Bang and will also lack them after black holes evaporate and particles are dispersed. This paper makes an initial attempt to quantify this pattern. As a model system, we use a simple, two-dimensional cellular automaton that simulates the mixing of two liquids ("coffee" and "cream"). A plausible complexity measure is then the Kolmogorov complexity of a coarse-grained approximation of the automaton's state, which we dub the "apparent complexity." We study this complexity measure, and show analytically that it never becomes large when the liquid particles are non-interacting. By contrast, when the particles do interact, we give numerical evidence that the complexity reaches a maximum comparable to the "coffee cup's" horizontal dimension. We raise the problem of proving this behavior analytically.
Galactica: A Large Language Model for Science
Information overload is a major obstacle to scientific progress. The explosive growth in scientific literature and data has made it ever harder to discover useful insights in a large mass of information. Today scientific knowledge is accessed through search engines, but they are unable to organize scientific knowledge alone. In this paper we introduce Galactica: a large language model that can store, combine and reason about scientific knowledge. We train on a large scientific corpus of papers, reference material, knowledge bases and many other sources. We outperform existing models on a range of scientific tasks. On technical knowledge probes such as LaTeX equations, Galactica outperforms the latest GPT-3 by 68.2% versus 49.0%. Galactica also performs well on reasoning, outperforming Chinchilla on mathematical MMLU by 41.3% to 35.7%, and PaLM 540B on MATH with a score of 20.4% versus 8.8%. It also sets a new state-of-the-art on downstream tasks such as PubMedQA and MedMCQA dev of 77.6% and 52.9%. And despite not being trained on a general corpus, Galactica outperforms BLOOM and OPT-175B on BIG-bench. We believe these results demonstrate the potential for language models as a new interface for science. We open source the model for the benefit of the scientific community.
Pair Programming with Large Language Models for Sampling and Estimation of Copulas
Without writing a single line of code by a human, an example Monte Carlo simulation based application for stochastic dependence modeling with copulas is developed using a state-of-the-art large language model (LLM) fine-tuned for conversations. This includes interaction with ChatGPT in natural language and using mathematical formalism, which, under careful supervision by a human-expert, led to producing a working code in MATLAB, Python and R for sampling from a given copula model, evaluation of the model's density, performing maximum likelihood estimation, optimizing the code for parallel computing for CPUs as well as for GPUs, and visualization of the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human-expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a solution that is correct. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
Metacognitive knowledge refers to humans' intuitive knowledge of their own thinking and reasoning processes. Today's best LLMs clearly possess some reasoning processes. The paper gives evidence that they also have metacognitive knowledge, including ability to name skills and procedures to apply given a task. We explore this primarily in context of math reasoning, developing a prompt-guided interaction procedure to get a powerful LLM to assign sensible skill labels to math questions, followed by having it perform semantic clustering to obtain coarser families of skill labels. These coarse skill labels look interpretable to humans. To validate that these skill labels are meaningful and relevant to the LLM's reasoning processes we perform the following experiments. (a) We ask GPT-4 to assign skill labels to training questions in math datasets GSM8K and MATH. (b) When using an LLM to solve the test questions, we present it with the full list of skill labels and ask it to identify the skill needed. Then it is presented with randomly selected exemplar solved questions associated with that skill label. This improves accuracy on GSM8k and MATH for several strong LLMs, including code-assisted models. The methodology presented is domain-agnostic, even though this article applies it to math problems.
Physics of Language Models: Part 3.2, Knowledge Manipulation
Language models can store vast amounts of factual knowledge, but their ability to use this knowledge for logical reasoning remains questionable. This paper explores a language model's ability to manipulate its stored knowledge during inference. We focus on four manipulation types: retrieval (e.g., "What is person A's attribute X"), classification (e.g., "Is A's attribute X even or odd?"), comparison (e.g., "Is A greater than B in attribute X?") and inverse search (e.g., "Which person's attribute X equals T?") We observe that pre-trained language models like GPT2/3/4 excel in knowledge retrieval but struggle with simple classification or comparison tasks unless Chain of Thoughts (CoTs) are employed during both training and inference. They also perform poorly in inverse knowledge search, irrespective of the prompts. Our primary contribution is a synthetic dataset for a controlled experiment that confirms these inherent weaknesses: a language model cannot efficiently manipulate knowledge from pre-training data, even when such knowledge is perfectly stored and fully extractable in the models, and despite adequate instruct fine-tuning.
FACT: Learning Governing Abstractions Behind Integer Sequences
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
When to Speak, When to Abstain: Contrastive Decoding with Abstention
Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust.
Can a student Large Language Model perform as well as it's teacher?
The burgeoning complexity of contemporary deep learning models, while achieving unparalleled accuracy, has inadvertently introduced deployment challenges in resource-constrained environments. Knowledge distillation, a technique aiming to transfer knowledge from a high-capacity "teacher" model to a streamlined "student" model, emerges as a promising solution to this dilemma. This paper provides a comprehensive overview of the knowledge distillation paradigm, emphasizing its foundational principles such as the utility of soft labels and the significance of temperature scaling. Through meticulous examination, we elucidate the critical determinants of successful distillation, including the architecture of the student model, the caliber of the teacher, and the delicate balance of hyperparameters. While acknowledging its profound advantages, we also delve into the complexities and challenges inherent in the process. Our exploration underscores knowledge distillation's potential as a pivotal technique in optimizing the trade-off between model performance and deployment efficiency.
The Path to Autonomous Learners
In this paper, we present a new theoretical approach for enabling domain knowledge acquisition by intelligent systems. We introduce a hybrid model that starts with minimal input knowledge in the form of an upper ontology of concepts, stores and reasons over this knowledge through a knowledge graph database and learns new information through a Logic Neural Network. We study the behavior of this architecture when handling new data and show that the final system is capable of enriching its current knowledge as well as extending it to new domains.