4 Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models This report introduces EEVE-Korean-v1.0, a Korean adaptation of large language models that exhibit remarkable capabilities across English and Korean text understanding. Building on recent highly capable but English-centric LLMs, such as SOLAR-10.7B and Phi-2, where non-English texts are inefficiently processed with English-centric tokenizers, we present an efficient and effective vocabulary expansion (EEVE) method, which encompasses parameter freezing and subword initialization. In contrast to previous efforts that believe new embeddings require trillions of training tokens, we show that our method can significantly boost non-English proficiency within just 2 billion tokens. Surpassing most instruction-tuned LLMs on the Open Ko-LLM Leaderboard, as of January 2024, our model EEVE-Korean-10.8B-v1.0 ranks as the leading Korean pre-trained model in the open-source community, according to Hugging Face's leaderboard. We open-source our models on Huggingface to empower the open research community in various languages. 3 authors · Feb 22, 2024
1 WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available. 3 authors · Dec 13, 2021
- IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization We present IndoBERTweet, the first large-scale pretrained model for Indonesian Twitter that is trained by extending a monolingually-trained Indonesian BERT model with additive domain-specific vocabulary. We focus in particular on efficient model adaptation under vocabulary mismatch, and benchmark different ways of initializing the BERT embedding layer for new word types. We find that initializing with the average BERT subword embedding makes pretraining five times faster, and is more effective than proposed methods for vocabulary adaptation in terms of extrinsic evaluation over seven Twitter-based datasets. 3 authors · Sep 9, 2021
- Empowering Character-level Text Infilling by Eliminating Sub-Tokens In infilling tasks, sub-tokens, representing instances where a complete token is segmented into two parts, often emerge at the boundaries of prefixes, middles, and suffixes. Traditional methods focused on training models at the token level, leading to sub-optimal performance in character-level infilling tasks during the inference stage. Alternately, some approaches considered character-level infilling, but they relied on predicting sub-tokens in inference, yet this strategy diminished ability in character-level infilling tasks due to the large perplexity of the model on sub-tokens. In this paper, we introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints. The proposed method addresses character-level infilling tasks by utilizing a line-level format to avoid predicting any sub-token in inference. In addition, we incorporate two special tokens to signify the rest of the incomplete lines, thereby enhancing generation guidance. Extensive experiments demonstrate that our proposed approach surpasses previous methods, offering a significant advantage. Code is available at https://github.com/SenseLLM/FIM-SE. 4 authors · May 27, 2024
1 Assessing the Importance of Frequency versus Compositionality for Subword-based Tokenization in NMT Subword tokenization is the de facto standard for tokenization in neural language models and machine translation systems. Three advantages are frequently cited in favor of subwords: shorter encoding of frequent tokens, compositionality of subwords, and ability to deal with unknown words. As their relative importance is not entirely clear yet, we propose a tokenization approach that enables us to separate frequency (the first advantage) from compositionality. The approach uses Huffman coding to tokenize words, by order of frequency, using a fixed amount of symbols. Experiments with CS-DE, EN-FR and EN-DE NMT show that frequency alone accounts for 90%-95% of the scores reached by BPE, hence compositionality has less importance than previously thought. 5 authors · Jun 2, 2023
- A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task Learning Subword tokenization is a commonly used input pre-processing step in most recent NLP models. However, it limits the models' ability to leverage end-to-end task learning. Its frequency-based vocabulary creation compromises tokenization in low-resource languages, leading models to produce suboptimal representations. Additionally, the dependency on a fixed vocabulary limits the subword models' adaptability across languages and domains. In this work, we propose a vocabulary-free neural tokenizer by distilling segmentation information from heuristic-based subword tokenization. We pre-train our character-based tokenizer by processing unique words from multilingual corpus, thereby extensively increasing word diversity across languages. Unlike the predefined and fixed vocabularies in subword methods, our tokenizer allows end-to-end task learning, resulting in optimal task-specific tokenization. The experimental results show that replacing the subword tokenizer with our neural tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks, with larger gains in low-resource languages. Additionally, our neural tokenizer exhibits a robust performance on downstream tasks when adversarial noise is present (typos and misspelling), further increasing the initial improvements over statistical subword tokenizers. 6 authors · Apr 22, 2022
- Analyzing Cognitive Plausibility of Subword Tokenization Subword tokenization has become the de-facto standard for tokenization, although comparative evaluations of subword vocabulary quality across languages are scarce. Existing evaluation studies focus on the effect of a tokenization algorithm on the performance in downstream tasks, or on engineering criteria such as the compression rate. We present a new evaluation paradigm that focuses on the cognitive plausibility of subword tokenization. We analyze the correlation of the tokenizer output with the response time and accuracy of human performance on a lexical decision task. We compare three tokenization algorithms across several languages and vocabulary sizes. Our results indicate that the UnigramLM algorithm yields less cognitively plausible tokenization behavior and a worse coverage of derivational morphemes, in contrast with prior work. 2 authors · Oct 20, 2023
- Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates Subword units are an effective way to alleviate the open vocabulary problems in neural machine translation (NMT). While sentences are usually converted into unique subword sequences, subword segmentation is potentially ambiguous and multiple segmentations are possible even with the same vocabulary. The question addressed in this paper is whether it is possible to harness the segmentation ambiguity as a noise to improve the robustness of NMT. We present a simple regularization method, subword regularization, which trains the model with multiple subword segmentations probabilistically sampled during training. In addition, for better subword sampling, we propose a new subword segmentation algorithm based on a unigram language model. We experiment with multiple corpora and report consistent improvements especially on low resource and out-of-domain settings. 1 authors · Apr 29, 2018
- An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages. This problem is commonly tackled by continually pre-training and fine-tuning these models for said languages. A significant issue in this process is the limited vocabulary coverage in the original model's tokenizer, leading to inadequate representation of new languages and necessitating an expansion of the tokenizer. The initialization of the embeddings corresponding to new vocabulary items presents a further challenge. Current strategies require cross-lingual embeddings and lack a solid theoretical foundation as well as comparisons with strong baselines. In this paper, we first establish theoretically that initializing within the convex hull of existing embeddings is a good initialization, followed by a novel but simple approach, Constrained Word2Vec (CW2V), which does not require cross-lingual embeddings. Our study evaluates different initialization methods for expanding RoBERTa and LLaMA 2 across four languages and five tasks. The results show that CW2V performs equally well or even better than more advanced techniques. Additionally, simpler approaches like multivariate initialization perform on par with these advanced methods indicating that efficient large-scale multilingual continued pretraining can be achieved even with simpler initialization methods. 6 authors · Jul 8, 2024
- Tokenization Is More Than Compression Tokenization is a foundational step in Natural Language Processing (NLP) tasks, bridging raw text and language models. Existing tokenization approaches like Byte-Pair Encoding (BPE) originate from the field of data compression, and it has been suggested that the effectiveness of BPE stems from its ability to condense text into a relatively small number of tokens. We test the hypothesis that fewer tokens lead to better downstream performance by introducing PathPiece, a new tokenizer that segments a document's text into the minimum number of tokens for a given vocabulary. Through extensive experimentation we find this hypothesis not to be the case, casting doubt on the understanding of the reasons for effective tokenization. To examine which other factors play a role, we evaluate design decisions across all three phases of tokenization: pre-tokenization, vocabulary construction, and segmentation, offering new insights into the design of effective tokenizers. Specifically, we illustrate the importance of pre-tokenization and the benefits of using BPE to initialize vocabulary construction. We train 64 language models with varying tokenization, ranging in size from 350M to 2.4B parameters, all of which are made publicly available. 7 authors · Feb 28, 2024 1
- A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained Models Recent work on tokenizer-free multilingual pretrained models show promising results in improving cross-lingual transfer and reducing engineering overhead (Clark et al., 2022; Xue et al., 2022). However, these works mainly focus on reporting accuracy on a limited set of tasks and data settings, placing less emphasis on other important factors when tuning and deploying the models in practice, such as memory usage, inference speed, and fine-tuning data robustness. We attempt to fill this gap by performing a comprehensive empirical comparison of multilingual tokenizer-free and subword-based models considering these various dimensions. Surprisingly, we find that subword-based models might still be the most practical choice in many settings, achieving better performance for lower inference latency and memory usage. Based on these results, we encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models. 4 authors · Oct 13, 2022
- What do tokens know about their characters and how do they know it? Pre-trained language models (PLMs) that use subword tokenization schemes can succeed at a variety of language tasks that require character-level information, despite lacking explicit access to the character composition of tokens. Here, studying a range of models (e.g., GPT- J, BERT, RoBERTa, GloVe), we probe what word pieces encode about character-level information by training classifiers to predict the presence or absence of a particular alphabetical character in a token, based on its embedding (e.g., probing whether the model embedding for "cat" encodes that it contains the character "a"). We find that these models robustly encode character-level information and, in general, larger models perform better at the task. We show that these results generalize to characters from non-Latin alphabets (Arabic, Devanagari, and Cyrillic). Then, through a series of experiments and analyses, we investigate the mechanisms through which PLMs acquire English-language character information during training and argue that this knowledge is acquired through multiple phenomena, including a systematic relationship between particular characters and particular parts of speech, as well as natural variability in the tokenization of related strings. 2 authors · Jun 6, 2022
- Lexically Grounded Subword Segmentation We present three innovations in tokenization and subword segmentation. First, we propose to use unsupervised morphological analysis with Morfessor as pre-tokenization. Second, we present an algebraic method for obtaining subword embeddings grounded in a word embedding space. Based on that, we design a novel subword segmentation algorithm that uses the embeddings, ensuring that the procedure considers lexical meaning. Third, we introduce an efficient segmentation algorithm based on a subword bigram model that can be initialized with the lexically aware segmentation method to avoid using Morfessor and large embedding tables at inference time. We evaluate the proposed approaches using two intrinsic metrics and measure their performance on two downstream tasks: part-of-speech tagging and machine translation. Our experiments show significant improvements in the morphological plausibility of the segmentation when evaluated using segmentation precision on morpheme boundaries and improved R\'enyi efficiency in 8 languages. Although the proposed tokenization methods do not have a large impact on automatic translation quality, we observe consistent performance gains in the arguably more morphological task of part-of-speech tagging. 2 authors · Jun 19, 2024
22 Scaling Smart: Accelerating Large Language Model Pre-training with Small Model Initialization The pre-training phase of language models often begins with randomly initialized parameters. With the current trends in scaling models, training their large number of parameters can be extremely slow and costly. In contrast, small language models are less expensive to train, but they often cannot achieve the accuracy of large models. In this paper, we explore an intriguing idea to connect these two different regimes: Can we develop a method to initialize large language models using smaller pre-trained models? Will such initialization bring any benefits in terms of training time and final accuracy? In this paper, we introduce HyperCloning, a method that can expand the parameters of a pre-trained language model to those of a larger model with increased hidden dimensions. Our method ensures that the larger model retains the functionality of the smaller model. As a result, the larger model already inherits the predictive power and accuracy of the smaller model before the training starts. We demonstrate that training such an initialized model results in significant savings in terms of GPU hours required for pre-training large language models. 8 authors · Sep 19, 2024 5
1 Review of Unsupervised POS Tagging and Its Implications on Language Acquisition An ability that underlies human syntactic knowledge is determining which words can appear in the similar structures (i.e. grouping words by their syntactic categories). These groupings enable humans to combine structures in order to communicate complex meanings. A foundational question is how do children acquire this ability underlying syntactic knowledge. In exploring this process, we will review various engineering approaches whose goal is similar to that of a child's -- without prior syntactic knowledge, correctly identify the parts of speech (POS) of the words in a sample of text. In reviewing these unsupervised tagging efforts, we will discuss common themes that support the advances in the models and their relevance for language acquisition. For example, we discuss how each model judges success (evaluation metrics), the "additional information" that constrains the POS learning (such as orthographic information), and the context used to determine POS (only previous word, words before and after the target, etc). The identified themes pave the way for future investigations into the cognitive processes that underpin the acquisition of syntactic categories and provide a useful layout of current state of the art unsupervised POS tagging models. 1 authors · Dec 15, 2023
1 FOCUS: Effective Embedding Initialization for Specializing Pretrained Multilingual Models on a Single Language Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models in low-resource languages. To accommodate the new language, the pretrained vocabulary and embeddings need to be adapted. Previous work on embedding initialization for such adapted vocabularies has mostly focused on monolingual source models. In this paper, we investigate the multilingual source model setting and propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that outperforms previous work when adapting XLM-R. FOCUS represents newly added tokens as combinations of tokens in the overlap of the pretrained and new vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary token embedding space. Our implementation of FOCUS is publicly available on GitHub. 2 authors · May 23, 2023
- Vocabulary Expansion for Low-resource Cross-lingual Transfer Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers, vocabulary, and pre-training data, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, the majority of previous work has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion for LLMs in low-resource settings (i.e. languages and compute) has yet to be explored. In this paper, we investigate sample-efficient adaptation strategies from different angles, including target vocabulary size and initialization methods, and the amount of target data available for adaptation. Extensive experiments across typologically diverse languages, tasks and models show that simpler heuristic-based embedding initialization is more efficient and robust to changes in target vocabulary size and adaptation data in low-resource settings, outperforming a popular random initialization and a more sophisticated state-of-the-art approach that relies on external data and model. 3 authors · Jun 17, 2024 2
- Subword models struggle with word learning, but surprisal hides it We study word learning in subword and character language models with the psycholinguistic lexical decision task. While subword LMs struggle to discern words and non-words with high accuracy, character LMs solve this task easily and consistently. Furthermore, when comparing word learning and syntactic learning, both processes are separable in character LM where word learning predates syntactic learning, whereas these processes are simultaneous in subword LM. This raises questions about the adequacy of subword LMs for modeling language acquisition and positions character LMs as a viable alternative. 2 authors · Feb 18
- Word class representations spontaneously emerge in a deep neural network trained on next word prediction How do humans learn language, and can the first language be learned at all? These fundamental questions are still hotly debated. In contemporary linguistics, there are two major schools of thought that give completely opposite answers. According to Chomsky's theory of universal grammar, language cannot be learned because children are not exposed to sufficient data in their linguistic environment. In contrast, usage-based models of language assume a profound relationship between language structure and language use. In particular, contextual mental processing and mental representations are assumed to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime example is syntax, i.e., the rules by which words are assembled into larger units such as sentences. Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear whether word classes are innate, as implied by universal grammar, or whether they emerge during language acquisition, as suggested by usage-based approaches. Here, we address this issue from a machine learning and natural language processing perspective. In particular, we trained an artificial deep neural network on predicting the next word, provided sequences of consecutive words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network. Strikingly, we find that the internal representations of nine-word input sequences cluster according to the word class of the tenth word to be predicted as output, even though the neural network did not receive any explicit information about syntactic rules or word classes during training. This surprising result suggests, that also in the human brain, abstract representational categories such as word classes may naturally emerge as a consequence of predictive coding and processing during language acquisition. 5 authors · Feb 15, 2023
5 OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining Pretraining multilingual language models from scratch requires considerable computational resources and substantial training data. Therefore, a more efficient method is to adapt existing pretrained language models (PLMs) to new languages via vocabulary extension and continued pretraining. However, this method usually randomly initializes the embeddings of new subwords and introduces substantially more embedding parameters to the language model, thus weakening the efficiency. To address these issues, we propose a novel framework: One For All (\textsc{Ofa}), which wisely initializes the embeddings of unseen subwords from target languages and thus can adapt a PLM to multiple languages efficiently and effectively. Ofa takes advantage of external well-aligned multilingual word embeddings and injects the alignment knowledge into the new embeddings. In addition, Ofa applies matrix factorization and replaces the cumbersome embeddings with two lower-dimensional matrices, which significantly reduces the number of parameters while not sacrificing the performance. Through extensive experiments, we show models initialized by Ofa are efficient and outperform several baselines. Ofa not only accelerates the convergence of continued pretraining, which is friendly to a limited computation budget, but also improves the zero-shot crosslingual transfer on a wide range of downstream tasks. We make our code and models publicly available. 4 authors · Nov 15, 2023 4
- Large Vocabulary Size Improves Large Language Models This paper empirically investigates the relationship between subword vocabulary size and the performance of large language models (LLMs) to provide insights on how to define the vocabulary size. Experimental results show that larger vocabulary sizes lead to better performance in LLMs. Moreover, we consider a continual training scenario where a pre-trained language model is trained on a different target language. We introduce a simple method to use a new vocabulary instead of the pre-defined one. We show that using the new vocabulary outperforms the model with the vocabulary used in pre-training. 4 authors · Jun 24, 2024
1 Decomposed Prompt Tuning via Low-Rank Reparameterization While prompt tuning approaches have achieved competitive performance with high efficiency, we observe that they invariably employ the same initialization process, wherein the soft prompt is either randomly initialized or derived from an existing embedding vocabulary. In contrast to these conventional methods, this study aims to investigate an alternative way to derive soft prompt. Our empirical studies show that the soft prompt typically exhibits a low intrinsic rank characteristic. With such observations, we propose decomposed prompt tuning, a novel approach that utilizes low-rank matrices to initialize the soft prompt. Through the low-rank reparameterization, our method significantly reduces the number of trainable parameters while maintaining effectiveness. Experimental results on the SuperGLUE benchmark in both high-resource and low-resource scenarios demonstrate the effectiveness of the proposed method. 5 authors · Oct 16, 2023
- Effective Structured Prompting by Meta-Learning and Representative Verbalizer Prompt tuning for pre-trained masked language models (MLM) has shown promising performance in natural language processing tasks with few labeled examples. It tunes a prompt for the downstream task, and a verbalizer is used to bridge the predicted token and label prediction. Due to the limited training data, prompt initialization is crucial for prompt tuning. Recently, MetaPrompting (Hou et al., 2022) uses meta-learning to learn a shared initialization for all task-specific prompts. However, a single initialization is insufficient to obtain good prompts for all tasks and samples when the tasks are complex. Moreover, MetaPrompting requires tuning the whole MLM, causing a heavy burden on computation and memory as the MLM is usually large. To address these issues, we use a prompt pool to extract more task knowledge and construct instance-dependent prompts via attention. We further propose a novel soft verbalizer (RepVerb) which constructs label embedding from feature embeddings directly. Combining meta-learning the prompt pool and RepVerb, we propose MetaPrompter for effective structured prompting. MetaPrompter is parameter-efficient as only the pool is required to be tuned. Experimental results demonstrate that MetaPrompter performs better than the recent state-of-the-arts and RepVerb outperforms existing soft verbalizers. 3 authors · Jun 1, 2023
- Embedding structure matters: Comparing methods to adapt multilingual vocabularies to new languages Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English. A strong baseline for specializing these models for specific languages is Language-Adaptive Pre-Training (LAPT). However, retaining a large cross-lingual vocabulary and embedding matrix comes at considerable excess computational cost during adaptation. In this study, we propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one. Namely, we address strategies for re-initializing the token embedding matrix after vocabulary specialization. We then provide a systematic experimental comparison of our techniques, in addition to the recently-proposed Focus method. We demonstrate that: 1) Embedding-replacement techniques in the monolingual transfer literature are inadequate for adapting multilingual models. 2) Replacing cross-lingual vocabularies with smaller specialized ones provides an efficient method to improve performance in low-resource languages. 3) Simple embedding re-initialization techniques based on script-wise sub-distributions rival techniques such as Focus, which rely on similarity scores obtained from an auxiliary model. 4 authors · Sep 9, 2023
- Sub-Character Tokenization for Chinese Pretrained Language Models Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work. 9 authors · Jun 1, 2021
1 On Eliciting Syntax from Language Models via Hashing Unsupervised parsing, also known as grammar induction, aims to infer syntactic structure from raw text. Recently, binary representation has exhibited remarkable information-preserving capabilities at both lexicon and syntax levels. In this paper, we explore the possibility of leveraging this capability to deduce parsing trees from raw text, relying solely on the implicitly induced grammars within models. To achieve this, we upgrade the bit-level CKY from zero-order to first-order to encode the lexicon and syntax in a unified binary representation space, switch training from supervised to unsupervised under the contrastive hashing framework, and introduce a novel loss function to impose stronger yet balanced alignment signals. Our model shows competitive performance on various datasets, therefore, we claim that our method is effective and efficient enough to acquire high-quality parsing trees from pre-trained language models at a low cost. 2 authors · Oct 5, 2024
- Word-Level Representation From Bytes For Language Modeling Modern language models mostly take sub-words as input, a design that balances the trade-off between vocabulary size, number of parameters, and performance. However, sub-word tokenization still has disadvantages like not being robust to noise and difficult to generalize to new languages. Also, the current trend of scaling up models reveals that larger models require larger embeddings but that makes parallelization hard. Previous work on image classification proves splitting raw input into a sequence of chucks is a strong, model-agnostic inductive bias. Based on this observation, we rethink the existing character-aware method that takes character-level inputs but makes word-level sequence modeling and prediction. We overhaul this method by introducing a cross-attention network that builds word-level representation directly from bytes, and a sub-word level prediction based on word-level hidden states to avoid the time and space requirement of word-level prediction. With these two improvements combined, we have a token free model with slim input embeddings for downstream tasks. We name our method Byte2Word and perform evaluations on language modeling and text classification. Experiments show that Byte2Word is on par with the strong sub-word baseline BERT but only takes up 10\% of embedding size. We further test our method on synthetic noise and cross-lingual transfer and find it competitive to baseline methods on both settings. 3 authors · Nov 22, 2022 2
- Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada In this paper, we present specially designed automatic speech recognition (ASR) systems for the highly agglutinative and inflective languages of Tamil and Kannada that can recognize unlimited vocabulary of words. We use subwords as the basic lexical units for recognition and construct subword grammar weighted finite state transducer (SG-WFST) graphs for word segmentation that captures most of the complex word formation rules of the languages. We have identified the following category of words (i) verbs, (ii) nouns, (ii) pronouns, and (iv) numbers. The prefix, infix and suffix lists of subwords are created for each of these categories and are used to design the SG-WFST graphs. We also present a heuristic segmentation algorithm that can even segment exceptional words that do not follow the rules encapsulated in the SG-WFST graph. Most of the data-driven subword dictionary creation algorithms are computation driven, and hence do not guarantee morpheme-like units and so we have used the linguistic knowledge of the languages and manually created the subword dictionaries and the graphs. Finally, we train a deep neural network acoustic model and combine it with the pronunciation lexicon of the subword dictionary and the SG-WFST graph to build the subword-ASR systems. Since the subword-ASR produces subword sequences as output for a given test speech, we post-process its output to get the final word sequence, so that the actual number of words that can be recognized is much higher. Upon experimenting the subword-ASR system with the IISc-MILE Tamil and Kannada ASR corpora, we observe an absolute word error rate reduction of 12.39% and 13.56% over the baseline word-based ASR systems for Tamil and Kannada, respectively. 3 authors · Jul 27, 2022
1 Learning Mutually Informed Representations for Characters and Subwords Most pretrained language models rely on subword tokenization, which processes text as a sequence of subword tokens. However, different granularities of text, such as characters, subwords, and words, can contain different kinds of information. Previous studies have shown that incorporating multiple input granularities improves model generalization, yet very few of them outputs useful representations for each granularity. In this paper, we introduce the entanglement model, aiming to combine character and subword language models. Inspired by vision-language models, our model treats characters and subwords as separate modalities, and it generates mutually informed representations for both granularities as output. We evaluate our model on text classification, named entity recognition, and POS-tagging tasks. Notably, the entanglement model outperforms its backbone language models, particularly in the presence of noisy texts and low-resource languages. Furthermore, the entanglement model even outperforms larger pre-trained models on all English sequence labeling tasks and classification tasks. Our anonymized code is available at https://anonymous.4open.science/r/noisy-IE-A673 3 authors · Nov 13, 2023
16 Tokenization Falling Short: The Curse of Tokenization Language models typically tokenize raw text into sequences of subword identifiers from a predefined vocabulary, a process inherently sensitive to typographical errors, length variations, and largely oblivious to the internal structure of tokens-issues we term the curse of tokenization. In this study, we delve into these drawbacks and demonstrate that large language models (LLMs) remain susceptible to these problems. This study systematically investigates these challenges and their impact on LLMs through three critical research questions: (1) complex problem solving, (2) token structure probing, and (3) resilience to typographical variation. Our findings reveal that scaling model parameters can mitigate the issue of tokenization; however, LLMs still suffer from biases induced by typos and other text format variations. Our experiments show that subword regularization such as BPE-dropout can mitigate this issue. We will release our code and data to facilitate further research. 4 authors · Jun 17, 2024 1
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- Byte Pair Encoding is Suboptimal for Language Model Pretraining The success of pretrained transformer language models (LMs) in natural language processing has led to a wide range of pretraining setups. In particular, these models employ a variety of subword tokenization methods, most notably byte-pair encoding (BPE) (Sennrich et al., 2016; Gage, 1994), the WordPiece method (Schuster and Nakajima, 2012), and unigram language modeling (Kudo, 2018), to segment text. However, to the best of our knowledge, the literature does not contain a direct evaluation of the impact of tokenization on language model pretraining. We analyze differences between BPE and unigram LM tokenization, finding that the latter method recovers subword units that align more closely with morphology and avoids problems stemming from BPE's greedy construction procedure. We then compare the fine-tuned task performance of identical transformer masked language models pretrained with these tokenizations. Across downstream tasks and two languages (English and Japanese), we find that the unigram LM tokenization method matches or outperforms BPE. We hope that developers of future pretrained LMs will consider adopting the unigram LM method over the more prevalent BPE. 2 authors · Apr 7, 2020
2 Rethinking Tokenization: Crafting Better Tokenizers for Large Language Models Tokenization significantly influences language models(LMs)' performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the "Principle of Least Effort" from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient. 1 authors · Mar 1, 2024 3
1 Self-supervised Meta-Prompt Learning with Meta-Gradient Regularization for Few-shot Generalization Prompt tuning is a parameter-efficient method, which learns soft prompts and conditions frozen language models to perform specific downstream tasks. Though effective, prompt tuning under few-shot settings on the one hand heavily relies on a good initialization of soft prompts. On the other hand, it can easily overfit to few-shot training samples, thereby undermining generalizability. Existing works leverage pre-training or supervised meta-learning to initialize soft prompts but they fail to data-efficiently generalize to unseen downstream tasks. To address the above problems, this paper proposes a novel Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER). SUPMER leverages self-supervised meta-learning with a diverse set of well-designed meta-training tasks to learn a universal prompt initialization for efficient adaptation using only unlabeled data. Additionally, it jointly meta-learns a gradient regularization function to transform raw gradients into a domain-generalizable direction, thus alleviating the problem of overfitting. Extensive experiments show that SUPMER achieves better performance for different few-shot downstream tasks, and also exhibits a stronger domain generalization ability. The code for SUPMER will be available at https://github.com/beepkh/SUPMER. 6 authors · Mar 22, 2023
- BPE-Dropout: Simple and Effective Subword Regularization Subword segmentation is widely used to address the open vocabulary problem in machine translation. The dominant approach to subword segmentation is Byte Pair Encoding (BPE), which keeps the most frequent words intact while splitting the rare ones into multiple tokens. While multiple segmentations are possible even with the same vocabulary, BPE splits words into unique sequences; this may prevent a model from better learning the compositionality of words and being robust to segmentation errors. So far, the only way to overcome this BPE imperfection, its deterministic nature, was to create another subword segmentation algorithm (Kudo, 2018). In contrast, we show that BPE itself incorporates the ability to produce multiple segmentations of the same word. We introduce BPE-dropout - simple and effective subword regularization method based on and compatible with conventional BPE. It stochastically corrupts the segmentation procedure of BPE, which leads to producing multiple segmentations within the same fixed BPE framework. Using BPE-dropout during training and the standard BPE during inference improves translation quality up to 3 BLEU compared to BPE and up to 0.9 BLEU compared to the previous subword regularization. 3 authors · Oct 29, 2019 1
- The University of Edinburgh's Submission to the WMT22 Code-Mixing Shared Task (MixMT) The University of Edinburgh participated in the WMT22 shared task on code-mixed translation. This consists of two subtasks: i) generating code-mixed Hindi/English (Hinglish) text generation from parallel Hindi and English sentences and ii) machine translation from Hinglish to English. As both subtasks are considered low-resource, we focused our efforts on careful data generation and curation, especially the use of backtranslation from monolingual resources. For subtask 1 we explored the effects of constrained decoding on English and transliterated subwords in order to produce Hinglish. For subtask 2, we investigated different pretraining techniques, namely comparing simple initialisation from existing machine translation models and aligned augmentation. For both subtasks, we found that our baseline systems worked best. Our systems for both subtasks were one of the overall top-performing submissions. 4 authors · Oct 20, 2022
1 Greed is All You Need: An Evaluation of Tokenizer Inference Methods While subword tokenizers such as BPE and WordPiece are typically used to build vocabularies for NLP models, the method of decoding text into a sequence of tokens from these vocabularies is often left unspecified, or ill-suited to the method in which they were constructed. We provide a controlled analysis of seven tokenizer inference methods across four different algorithms and three vocabulary sizes, performed on a novel intrinsic evaluation suite we curated for English, combining measures rooted in morphology, cognition, and information theory. We show that for the most commonly used tokenizers, greedy inference performs surprisingly well; and that SaGe, a recently-introduced contextually-informed tokenizer, outperforms all others on morphological alignment. 4 authors · Mar 2, 2024
1 SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing This paper describes SentencePiece, a language-independent subword tokenizer and detokenizer designed for Neural-based text processing, including Neural Machine Translation. It provides open-source C++ and Python implementations for subword units. While existing subword segmentation tools assume that the input is pre-tokenized into word sequences, SentencePiece can train subword models directly from raw sentences, which allows us to make a purely end-to-end and language independent system. We perform a validation experiment of NMT on English-Japanese machine translation, and find that it is possible to achieve comparable accuracy to direct subword training from raw sentences. We also compare the performance of subword training and segmentation with various configurations. SentencePiece is available under the Apache 2 license at https://github.com/google/sentencepiece. 2 authors · Aug 19, 2018
8 Parameter Efficient Tuning Allows Scalable Personalization of LLMs for Text Entry: A Case Study on Abbreviation Expansion Abbreviation expansion is a strategy used to speed up communication by limiting the amount of typing and using a language model to suggest expansions. Here we look at personalizing a Large Language Model's (LLM) suggestions based on prior conversations to enhance the relevance of predictions, particularly when the user data is small (~1000 samples). Specifically, we compare fine-tuning, prompt-tuning, and retrieval augmented generation of expanded text suggestions for abbreviated inputs. Our case study with a deployed 8B parameter LLM on a real user living with ALS, and experiments on movie character personalization indicates that (1) customization may be necessary in some scenarios and prompt-tuning generalizes well to those, (2) fine-tuning on in-domain data (with as few as 600 samples) still shows some gains, however (3) retrieval augmented few-shot selection also outperforms fine-tuning. (4) Parameter efficient tuning allows for efficient and scalable personalization. For prompt-tuning, we also find that initializing the learned "soft-prompts" to user relevant concept tokens leads to higher accuracy than random initialization. 3 authors · Dec 21, 2023 1
- UniBridge: A Unified Approach to Cross-Lingual Transfer Learning for Low-Resource Languages In this paper, we introduce UniBridge (Cross-Lingual Transfer Learning with Optimized Embeddings and Vocabulary), a comprehensive approach developed to improve the effectiveness of Cross-Lingual Transfer Learning, particularly in languages with limited resources. Our approach tackles two essential elements of a language model: the initialization of embeddings and the optimal vocabulary size. Specifically, we propose a novel embedding initialization method that leverages both lexical and semantic alignment for a language. In addition, we present a method for systematically searching for the optimal vocabulary size, ensuring a balance between model complexity and linguistic coverage. Our experiments across multilingual datasets show that our approach greatly improves the F1-Score in several languages. UniBridge is a robust and adaptable solution for cross-lingual systems in various languages, highlighting the significance of initializing embeddings and choosing the right vocabulary size in cross-lingual environments. 3 authors · Jun 14, 2024
1 From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift. 5 authors · May 23, 2023
- Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models. 8 authors · Jun 10, 2021
- Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications. 11 authors · Dec 20, 2021
- Local Byte Fusion for Neural Machine Translation Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models. 4 authors · May 23, 2022
- Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora Grammatical error correction (GEC) is the task of correcting typos, spelling, punctuation and grammatical issues in text. Approaching the problem as a sequence-to-sequence task, we compare the use of a common subword unit vocabulary and byte-level encoding. Initial synthetic training data is created using an error-generating pipeline, and used for finetuning two subword-level models and one byte-level model. Models are then finetuned further on hand-corrected error corpora, including texts written by children, university students, dyslexic and second-language writers, and evaluated over different error types and origins. We show that a byte-level model enables higher correction quality than a subword approach, not only for simple spelling errors, but also for more complex semantic, stylistic and grammatical issues. In particular, initial training on synthetic corpora followed by finetuning on a relatively small parallel corpus of real-world errors helps the byte-level model correct a wide range of commonly occurring errors. Our experiments are run for the Icelandic language but should hold for other similar languages, particularly morphologically rich ones. 6 authors · May 29, 2023
- CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models While many languages possess processes of joining two or more words to create compound words, previous studies have been typically limited only to languages with excessively productive compound formation (e.g., German, Dutch) and there is no public dataset containing compound and non-compound words across a large number of languages. In this work, we systematically study decompounding, the task of splitting compound words into their constituents, at a wide scale. We first address the data gap by introducing a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary. We then use this dataset to evaluate an array of Large Language Models (LLMs) on the decompounding task. We find that LLMs perform poorly, especially on words which are tokenized unfavorably by subword tokenization. We thus introduce a novel methodology to train dedicated models for decompounding. The proposed two-stage procedure relies on a fully self-supervised objective in the first stage, while the second, supervised learning stage optionally fine-tunes the model on the annotated Wiktionary data. Our self-supervised models outperform the prior best unsupervised decompounding models by 13.9% accuracy on average. Our fine-tuned models outperform all prior (language-specific) decompounding tools. Furthermore, we use our models to leverage decompounding during the creation of a subword tokenizer, which we refer to as CompoundPiece. CompoundPiece tokenizes compound words more favorably on average, leading to improved performance on decompounding over an otherwise equivalent model using SentencePiece tokenization. 3 authors · May 23, 2023
3 Distributed Representations of Words and Phrases and their Compositionality The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 5 authors · Oct 16, 2013
- Char2Subword: Extending the Subword Embedding Space Using Robust Character Compositionality Byte-pair encoding (BPE) is a ubiquitous algorithm in the subword tokenization process of language models as it provides multiple benefits. However, this process is solely based on pre-training data statistics, making it hard for the tokenizer to handle infrequent spellings. On the other hand, though robust to misspellings, pure character-level models often lead to unreasonably long sequences and make it harder for the model to learn meaningful words. To alleviate these challenges, we propose a character-based subword module (char2subword) that learns the subword embedding table in pre-trained models like BERT. Our char2subword module builds representations from characters out of the subword vocabulary, and it can be used as a drop-in replacement of the subword embedding table. The module is robust to character-level alterations such as misspellings, word inflection, casing, and punctuation. We integrate it further with BERT through pre-training while keeping BERT transformer parameters fixed--and thus, providing a practical method. Finally, we show that incorporating our module to mBERT significantly improves the performance on the social media linguistic code-switching evaluation (LinCE) benchmark. 6 authors · Oct 23, 2020
- BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration Program synthesis is challenging largely because of the difficulty of search in a large space of programs. Human programmers routinely tackle the task of writing complex programs by writing sub-programs and then analyzing their intermediate results to compose them in appropriate ways. Motivated by this intuition, we present a new synthesis approach that leverages learning to guide a bottom-up search over programs. In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a given set of input-output examples. This is a powerful combination because of several emergent properties. First, in bottom-up search, intermediate programs can be executed, providing semantic information to the neural network. Second, given the concrete values from those executions, we can exploit rich features based on recent work on property signatures. Finally, bottom-up search allows the system substantial flexibility in what order to generate the solution, allowing the synthesizer to build up a program from multiple smaller sub-programs. Overall, our empirical evaluation finds that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches. We demonstrate the effectiveness of our technique on two datasets, one from the SyGuS competition and one of our own creation. 6 authors · Jul 28, 2020
2 From Words to Music: A Study of Subword Tokenization Techniques in Symbolic Music Generation Subword tokenization has been widely successful in text-based natural language processing (NLP) tasks with Transformer-based models. As Transformer models become increasingly popular in symbolic music-related studies, it is imperative to investigate the efficacy of subword tokenization in the symbolic music domain. In this paper, we explore subword tokenization techniques, such as byte-pair encoding (BPE), in symbolic music generation and its impact on the overall structure of generated songs. Our experiments are based on three types of MIDI datasets: single track-melody only, multi-track with a single instrument, and multi-track and multi-instrument. We apply subword tokenization on post-musical tokenization schemes and find that it enables the generation of longer songs at the same time and improves the overall structure of the generated music in terms of objective metrics like structure indicator (SI), Pitch Class Entropy, etc. We also compare two subword tokenization methods, BPE and Unigram, and observe that both methods lead to consistent improvements. Our study suggests that subword tokenization is a promising technique for symbolic music generation and may have broader implications for music composition, particularly in cases involving complex data such as multi-track songs. 2 authors · Apr 18, 2023
- Initializing Models with Larger Ones Weight initialization plays an important role in neural network training. Widely used initialization methods are proposed and evaluated for networks that are trained from scratch. However, the growing number of pretrained models now offers new opportunities for tackling this classical problem of weight initialization. In this work, we introduce weight selection, a method for initializing smaller models by selecting a subset of weights from a pretrained larger model. This enables the transfer of knowledge from pretrained weights to smaller models. Our experiments demonstrate that weight selection can significantly enhance the performance of small models and reduce their training time. Notably, it can also be used together with knowledge distillation. Weight selection offers a new approach to leverage the power of pretrained models in resource-constrained settings, and we hope it can be a useful tool for training small models in the large-model era. Code is available at https://github.com/OscarXZQ/weight-selection. 8 authors · Nov 30, 2023
- Subword Dictionary Learning and Segmentation Techniques for Automatic Speech Recognition in Tamil and Kannada We present automatic speech recognition (ASR) systems for Tamil and Kannada based on subword modeling to effectively handle unlimited vocabulary due to the highly agglutinative nature of the languages. We explore byte pair encoding (BPE), and proposed a variant of this algorithm named extended-BPE, and Morfessor tool to segment each word as subwords. We have effectively incorporated maximum likelihood (ML) and Viterbi estimation techniques with weighted finite state transducers (WFST) framework in these algorithms to learn the subword dictionary from a large text corpus. Using the learnt subword dictionary, the words in training data transcriptions are segmented to subwords and we train deep neural network ASR systems which recognize subword sequence for any given test speech utterance. The output subword sequence is then post-processed using deterministic rules to get the final word sequence such that the actual number of words that can be recognized is much larger. For Tamil ASR, We use 152 hours of data for training and 65 hours for testing, whereas for Kannada ASR, we use 275 hours for training and 72 hours for testing. Upon experimenting with different combination of segmentation and estimation techniques, we find that the word error rate (WER) reduces drastically when compared to the baseline word-level ASR, achieving a maximum absolute WER reduction of 6.24% and 6.63% for Tamil and Kannada respectively. 3 authors · Jul 27, 2022
- TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask. 2 authors · Jul 4, 2024
- CharBERT: Character-aware Pre-trained Language Model Most pre-trained language models (PLMs) construct word representations at subword level with Byte-Pair Encoding (BPE) or its variations, by which OOV (out-of-vocab) words are almost avoidable. However, those methods split a word into subword units and make the representation incomplete and fragile. In this paper, we propose a character-aware pre-trained language model named CharBERT improving on the previous methods (such as BERT, RoBERTa) to tackle these problems. We first construct the contextual word embedding for each token from the sequential character representations, then fuse the representations of characters and the subword representations by a novel heterogeneous interaction module. We also propose a new pre-training task named NLM (Noisy LM) for unsupervised character representation learning. We evaluate our method on question answering, sequence labeling, and text classification tasks, both on the original datasets and adversarial misspelling test sets. The experimental results show that our method can significantly improve the performance and robustness of PLMs simultaneously. Pretrained models, evaluation sets, and code are available at https://github.com/wtma/CharBERT 6 authors · Nov 3, 2020
- Neural Machine Translation without Embeddings Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular. 2 authors · Aug 21, 2020
- Pre-Trained Language Models for Interactive Decision-Making Language model (LM) pre-training is useful in many language processing tasks. But can pre-trained LMs be further leveraged for more general machine learning problems? We propose an approach for using LMs to scaffold learning and generalization in general sequential decision-making problems. In this approach, goals and observations are represented as a sequence of embeddings, and a policy network initialized with a pre-trained LM predicts the next action. We demonstrate that this framework enables effective combinatorial generalization across different environments and supervisory modalities. We begin by assuming access to a set of expert demonstrations, and show that initializing policies with LMs and fine-tuning them via behavior cloning improves task completion rates by 43.6% in the VirtualHome environment. Next, we integrate an active data gathering procedure in which agents iteratively interact with the environment, relabel past "failed" experiences with new goals, and update their policies in a self-supervised loop. Active data gathering further improves combinatorial generalization, outperforming the best baseline by 25.1%. Finally, we explain these results by investigating three possible factors underlying the effectiveness of the LM-based policy. We find that sequential input representations (vs. fixed-dimensional feature vectors) and LM-based weight initialization are both important for generalization. Surprisingly, however, the format of the policy inputs encoding (e.g. as a natural language string vs. an arbitrary sequential encoding) has little influence. Together, these results suggest that language modeling induces representations that are useful for modeling not just language, but also goals and plans; these representations can aid learning and generalization even outside of language processing. 14 authors · Feb 3, 2022
2 Pixel Sentence Representation Learning Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist 10 authors · Feb 12, 2024
- Mapping Supervised Bilingual Word Embeddings from English to low-resource languages It is very challenging to work with low-resource languages due to the inadequate availability of data. Using a dictionary to map independently trained word embeddings into a shared vector space has proved to be very useful in learning bilingual embeddings in the past. Here we have tried to map individual embeddings of words in English and their corresponding translated words in low-resource languages like Estonian, Slovenian, Slovakian, and Hungarian. We have used a supervised learning approach. We report accuracy scores through various retrieval strategies which show that it is possible to approach challenging tasks in Natural Language Processing like machine translation for such languages, provided that we have at least some amount of proper bilingual data. We also conclude that we can follow an unsupervised learning path on monolingual text data as that is more suitable for low-resource languages. 1 authors · Oct 14, 2019
1 Tokenization with Factorized Subword Encoding In recent years, language models have become increasingly larger and more complex. However, the input representations for these models continue to rely on simple and greedy subword tokenization methods. In this paper, we propose a novel tokenization method that factorizes subwords onto discrete triplets using a VQ-VAE model. The effectiveness of the proposed tokenization method, referred to as the Factorizer, is evaluated on language modeling and morpho-syntactic tasks for 7 diverse languages. Results indicate that this method is more appropriate and robust for morphological tasks than the commonly used byte-pair encoding (BPE) tokenization algorithm. 2 authors · Jun 13, 2023
- Byte BPE Tokenization as an Inverse string Homomorphism Tokenization is an important preprocessing step in the training and inference of large language models (LLMs). While there has been extensive research on the expressive power of the neural achitectures used in LLMs, the impact of tokenization has not been well understood. In this work, we demonstrate that tokenization, irrespective of the algorithm used, acts as an inverse homomorphism between strings and tokens. This suggests that the character space of the source language and the token space of the tokenized language are homomorphic, preserving the structural properties of the source language. Additionally, we explore the concept of proper tokenization, which refers to an unambiguous tokenization returned from the tokenizer. Our analysis reveals that the expressiveness of neural architectures in recognizing context-free languages is not affected by tokenization. 4 authors · Dec 4, 2024
1 Hierarchical Autoregressive Transformers: Combining Byte-~and Word-Level Processing for Robust, Adaptable Language Models Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains. 4 authors · Jan 17 2
- Lexical Generalization Improves with Larger Models and Longer Training While fine-tuned language models perform well on many tasks, they were also shown to rely on superficial surface features such as lexical overlap. Excessive utilization of such heuristics can lead to failure on challenging inputs. We analyze the use of lexical overlap heuristics in natural language inference, paraphrase detection, and reading comprehension (using a novel contrastive dataset), and find that larger models are much less susceptible to adopting lexical overlap heuristics. We also find that longer training leads models to abandon lexical overlap heuristics. Finally, we provide evidence that the disparity between models size has its source in the pre-trained model 3 authors · Oct 23, 2022
- PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at https://github.com/Albert-Ma/PROP. 6 authors · Oct 20, 2020
1 Understanding the Role of Input Token Characters in Language Models: How Does Information Loss Affect Performance? Understanding how and what pre-trained language models (PLMs) learn about language is an open challenge in natural language processing. Previous work has focused on identifying whether they capture semantic and syntactic information, and how the data or the pre-training objective affects their performance. However, to the best of our knowledge, no previous work has specifically examined how information loss in input token characters affects the performance of PLMs. In this study, we address this gap by pre-training language models using small subsets of characters from individual tokens. Surprisingly, we find that pre-training even under extreme settings, i.e. using only one character of each token, the performance retention in standard NLU benchmarks and probing tasks compared to full-token models is high. For instance, a model pre-trained only on single first characters from tokens achieves performance retention of approximately 90\% and 77\% of the full-token model in SuperGLUE and GLUE tasks, respectively. 3 authors · Oct 26, 2023 1
- Pre-training LLMs using human-like development data corpus Pre-trained Large Language Models (LLMs) have shown success in a diverse set of language inference and understanding tasks. The pre-training stage of LLMs looks at a large corpus of raw textual data. The BabyLM shared task compares LLM pre-training to human language acquisition, where the number of tokens seen by 13-year-old kids is magnitudes smaller than the number of tokens seen by LLMs. In this work, we pre-train and evaluate LLMs on their ability to learn contextual word representations using roughly the same number of tokens as seen by children. We provide a strong set of baselines; with different architectures, evaluation of changes in performance across epochs, and reported pre-training metrics for the strict small and strict tracks of the task. We also try to loosely replicate the RoBERTa baseline given by the task organizers to observe the training robustness to hyperparameter selection and replicability. We provide the submission details to the strict and strict-small tracks in this report. 3 authors · Nov 8, 2023
- Evidence of Meaning in Language Models Trained on Programs We present evidence that language models can learn meaning despite being trained only to perform next token prediction on text, specifically a corpus of programs. Each program is preceded by a specification in the form of (textual) input-output examples. Working with programs enables us to precisely define concepts relevant to meaning in language (e.g., correctness and semantics), making program synthesis well-suited as an intermediate testbed for characterizing the presence (or absence) of meaning in language models. We first train a Transformer model on the corpus of programs, then probe the trained model's hidden states as it completes a program given a specification. Despite providing no inductive bias toward learning the semantics of the language, we find that a linear probe is able to extract abstractions of both current and future program states from the model states. Moreover, there is a strong, statistically significant correlation between the accuracy of the probe and the model's ability to generate a program that implements the specification. To evaluate whether the semantics are represented in the model states rather than learned by the probe, we design a novel experimental procedure that intervenes on the semantics of the language while preserving the lexicon and syntax. We also demonstrate that the model learns to generate correct programs that are, on average, shorter than those in the training set, which is evidence that language model outputs may differ from the training distribution in semantically meaningful ways. In summary, this paper does not propose any new techniques for training language models, but develops an experimental framework for and provides insights into the acquisition and representation of (formal) meaning in language models. 2 authors · May 18, 2023
1 Mapping distributional to model-theoretic semantic spaces: a baseline Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset. 1 authors · Jul 10, 2016
- Too Much Information: Keeping Training Simple for BabyLMs This paper details the work of the University of Groningen for the BabyLM Challenge. We follow the idea that, like babies, language models should be introduced to simpler concepts first and build off of that knowledge to understand more complex concepts. We examine this strategy of simple-then-complex through a variety of lenses, namely context size, vocabulary, and overall linguistic complexity of the data. We find that only one, context size, is truly beneficial to training a language model. However this simple change to context size gives us improvements of 2 points on average on (Super)GLUE tasks, 1 point on MSGS tasks, and 12\% on average on BLiMP tasks. Our context-limited model outperforms the baseline that was trained on 10times the amount of data. 2 authors · Nov 3, 2023
- Linguistic Structure Induction from Language Models Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction. 1 authors · Mar 11, 2024
1 2x Faster Language Model Pre-training via Masked Structural Growth Acceleration of large language model pre-training is a critical issue in present NLP research. In this paper, we focus on speeding up pre-training by progressively growing from a small Transformer structure to a large one. There are two main research problems related to progressive growth: growth schedule and growth operator. For growth schedule, existing work has explored multi-stage expansion of depth and feedforward layers. However, the impact of each dimension on the schedule's efficiency is still an open question. For growth operator, existing work relies on the initialization of new weights to inherit knowledge, and achieve only non-strict function preservation, limiting further optimization of training dynamics. To address these issues, we propose Masked Structural Growth (MSG), including growth schedules involving all possible dimensions and strictly function-preserving growth operators that is independent of the initialization of new weights. Experiments show that MSG is significantly faster than related work: we achieve a speed-up of 80% for Bert-base and 120% for Bert-large pre-training. Moreover, MSG is able to improve fine-tuning performances at the same time. 4 authors · May 4, 2023
- B-PROP: Bootstrapped Pre-training with Representative Words Prediction for Ad-hoc Retrieval Pre-training and fine-tuning have achieved remarkable success in many downstream natural language processing (NLP) tasks. Recently, pre-training methods tailored for information retrieval (IR) have also been explored, and the latest success is the PROP method which has reached new SOTA on a variety of ad-hoc retrieval benchmarks. The basic idea of PROP is to construct the representative words prediction (ROP) task for pre-training inspired by the query likelihood model. Despite its exciting performance, the effectiveness of PROP might be bounded by the classical unigram language model adopted in the ROP task construction process. To tackle this problem, we propose a bootstrapped pre-training method (namely B-PROP) based on BERT for ad-hoc retrieval. The key idea is to use the powerful contextual language model BERT to replace the classical unigram language model for the ROP task construction, and re-train BERT itself towards the tailored objective for IR. Specifically, we introduce a novel contrastive method, inspired by the divergence-from-randomness idea, to leverage BERT's self-attention mechanism to sample representative words from the document. By further fine-tuning on downstream ad-hoc retrieval tasks, our method achieves significant improvements over baselines without pre-training or with other pre-training methods, and further pushes forward the SOTA on a variety of ad-hoc retrieval tasks. 6 authors · Apr 20, 2021
- Charformer: Fast Character Transformers via Gradient-based Subword Tokenization State-of-the-art models in natural language processing rely on separate rigid subword tokenization algorithms, which limit their generalization ability and adaptation to new settings. In this paper, we propose a new model inductive bias that learns a subword tokenization end-to-end as part of the model. To this end, we introduce a soft gradient-based subword tokenization module (GBST) that automatically learns latent subword representations from characters in a data-driven fashion. Concretely, GBST enumerates candidate subword blocks and learns to score them in a position-wise fashion using a block scoring network. We additionally introduce Charformer, a deep Transformer model that integrates GBST and operates on the byte level. Via extensive experiments on English GLUE, multilingual, and noisy text datasets, we show that Charformer outperforms a series of competitive byte-level baselines while generally performing on par and sometimes outperforming subword-based models. Additionally, Charformer is fast, improving the speed of both vanilla byte-level and subword-level Transformers by 28%-100% while maintaining competitive quality. We believe this work paves the way for highly performant token-free models that are trained completely end-to-end. 10 authors · Jun 23, 2021 2
2 Smart Word Suggestions for Writing Assistance Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces "Smart Word Suggestions" (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes is available at https://github.com/microsoft/SmartWordSuggestions. 8 authors · May 17, 2023
- Spike No More: Stabilizing the Pre-training of Large Language Models Loss spikes often occur during pre-training of large language models. The spikes degrade the performance of large language models and sometimes ruin the pre-training. Since the pre-training needs a vast computational budget, we should avoid such spikes. To investigate the cause of loss spikes, we focus on gradients of internal layers. Through theoretical analyses, we reveal two causes of the exploding gradients, and provide requirements to prevent the explosion. In addition, we propose a method to satisfy the requirements by combining the initialization method and a simple modification to embeddings. We conduct various experiments to verify our theoretical analyses empirically. Experimental results indicate that the combination is effective in preventing spikes during pre-training. 4 authors · Dec 28, 2023
- Improving Pre-trained Language Model Sensitivity via Mask Specific losses: A case study on Biomedical NER Adapting language models (LMs) to novel domains is often achieved through fine-tuning a pre-trained LM (PLM) on domain-specific data. Fine-tuning introduces new knowledge into an LM, enabling it to comprehend and efficiently perform a target domain task. Fine-tuning can however be inadvertently insensitive if it ignores the wide array of disparities (e.g in word meaning) between source and target domains. For instance, words such as chronic and pressure may be treated lightly in social conversations, however, clinically, these words are usually an expression of concern. To address insensitive fine-tuning, we propose Mask Specific Language Modeling (MSLM), an approach that efficiently acquires target domain knowledge by appropriately weighting the importance of domain-specific terms (DS-terms) during fine-tuning. MSLM jointly masks DS-terms and generic words, then learns mask-specific losses by ensuring LMs incur larger penalties for inaccurately predicting DS-terms compared to generic words. Results of our analysis show that MSLM improves LMs sensitivity and detection of DS-terms. We empirically show that an optimal masking rate not only depends on the LM, but also on the dataset and the length of sequences. Our proposed masking strategy outperforms advanced masking strategies such as span- and PMI-based masking. 5 authors · Mar 26, 2024
- Why don't people use character-level machine translation? We present a literature and empirical survey that critically assesses the state of the art in character-level modeling for machine translation (MT). Despite evidence in the literature that character-level systems are comparable with subword systems, they are virtually never used in competitive setups in WMT competitions. We empirically show that even with recent modeling innovations in character-level natural language processing, character-level MT systems still struggle to match their subword-based counterparts. Character-level MT systems show neither better domain robustness, nor better morphological generalization, despite being often so motivated. However, we are able to show robustness towards source side noise and that translation quality does not degrade with increasing beam size at decoding time. 3 authors · Oct 15, 2021
- Word Alignment in the Era of Deep Learning: A Tutorial The word alignment task, despite its prominence in the era of statistical machine translation (SMT), is niche and under-explored today. In this two-part tutorial, we argue for the continued relevance for word alignment. The first part provides a historical background to word alignment as a core component of the traditional SMT pipeline. We zero-in on GIZA++, an unsupervised, statistical word aligner with surprising longevity. Jumping forward to the era of neural machine translation (NMT), we show how insights from word alignment inspired the attention mechanism fundamental to present-day NMT. The second part shifts to a survey approach. We cover neural word aligners, showing the slow but steady progress towards surpassing GIZA++ performance. Finally, we cover the present-day applications of word alignment, from cross-lingual annotation projection, to improving translation. 1 authors · Nov 30, 2022
- Learning How to Ask: Querying LMs with Mixtures of Soft Prompts Natural-language prompts have recently been used to coax pretrained language models into performing other AI tasks, using a fill-in-the-blank paradigm (Petroni et al., 2019) or a few-shot extrapolation paradigm (Brown et al., 2020). For example, language models retain factual knowledge from their training corpora that can be extracted by asking them to "fill in the blank" in a sentential prompt. However, where does this prompt come from? We explore the idea of learning prompts by gradient descent -- either fine-tuning prompts taken from previous work, or starting from random initialization. Our prompts consist of "soft words," i.e., continuous vectors that are not necessarily word type embeddings from the language model. Furthermore, for each task, we optimize a mixture of prompts, learning which prompts are most effective and how to ensemble them. Across multiple English LMs and tasks, our approach hugely outperforms previous methods, showing that the implicit factual knowledge in language models was previously underestimated. Moreover, this knowledge is cheap to elicit: random initialization is nearly as good as informed initialization. 2 authors · Apr 13, 2021
- CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code Recent works have widely adopted large language model pretraining for source code, suggested source code-specific pretraining objectives and investigated the applicability of various Transformer-based language model architectures for source code. This work investigates another important aspect of such models, namely the effect of different subtokenization options, and aims at identifying most effective and length-efficient subtokenizations, taking into account code specifics. We propose subtokenziation that reduces average length by 17% without downstream performance drop, and show that a carefully chosen subtokenization may improve quality by 0.5-2%, possibly with some length increase. 2 authors · Aug 1, 2023
- AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a syntactic subspace, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages. 4 authors · Jun 23, 2022
- On the Complementarity between Pre-Training and Random-Initialization for Resource-Rich Machine Translation Pre-Training (PT) of text representations has been successfully applied to low-resource Neural Machine Translation (NMT). However, it usually fails to achieve notable gains (sometimes, even worse) on resource-rich NMT on par with its Random-Initialization (RI) counterpart. We take the first step to investigate the complementarity between PT and RI in resource-rich scenarios via two probing analyses, and find that: 1) PT improves NOT the accuracy, but the generalization by achieving flatter loss landscapes than that of RI; 2) PT improves NOT the confidence of lexical choice, but the negative diversity by assigning smoother lexical probability distributions than that of RI. Based on these insights, we propose to combine their complementarities with a model fusion algorithm that utilizes optimal transport to align neurons between PT and RI. Experiments on two resource-rich translation benchmarks, WMT'17 English-Chinese (20M) and WMT'19 English-German (36M), show that PT and RI could be nicely complementary to each other, achieving substantial improvements considering both translation accuracy, generalization, and negative diversity. Probing tools and code are released at: https://github.com/zanchangtong/PTvsRI. 6 authors · Sep 7, 2022
- Beyond IID: Optimizing Instruction Learning from the Perspective of Instruction Interaction and Dependency With the availability of various instruction datasets, a pivotal challenge is how to effectively select and integrate these instructions to fine-tune large language models (LLMs). Previous research mainly focuses on selecting individual high-quality instructions. However, these works overlooked the joint interactions and dependencies between different categories of instructions, leading to suboptimal selection strategies. Moreover, the nature of these interaction patterns remains largely unexplored, let alone optimize the instruction set with regard to them. To fill these gaps, in this paper, we: (1) systemically investigate interaction and dependency patterns between different categories of instructions, (2) manage to optimize the instruction set concerning the interaction patterns using a linear programming-based method, and optimize the learning schema of SFT using an instruction dependency taxonomy guided curriculum learning. Experimental results across different LLMs demonstrate improved performance over strong baselines on widely adopted benchmarks. 5 authors · Sep 11, 2024
- Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods. 10 authors · Mar 12, 2023
1 How BPE Affects Memorization in Transformers Training data memorization in NLP can both be beneficial (e.g., closed-book QA) and undesirable (personal data extraction). In any case, successful model training requires a non-trivial amount of memorization to store word spellings, various linguistic idiosyncrasies and common knowledge. However, little is known about what affects the memorization behavior of NLP models, as the field tends to focus on the equally important question of generalization. In this work, we demonstrate that the size of the subword vocabulary learned by Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard Transformer models to memorize training data, even when we control for the number of learned parameters. We find that with a large subword vocabulary size, Transformer models fit random mappings more easily and are more vulnerable to membership inference attacks. Similarly, given a prompt, Transformer-based language models with large subword vocabularies reproduce the training data more often. We conjecture this effect is caused by reduction in the sequences' length that happens as the BPE vocabulary grows. Our findings can allow a more informed choice of hyper-parameters, that is better tailored for a particular use-case. 3 authors · Oct 6, 2021
- From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models. 4 authors · May 10, 2022
1 Superfiltering: Weak-to-Strong Data Filtering for Fast Instruction-Tuning Instruction tuning is critical to improve LLMs but usually suffers from low-quality and redundant data. Data filtering for instruction tuning has proved important in improving both the efficiency and performance of the tuning process. But it also leads to extra cost and computation due to the involvement of LLMs in this process. To reduce the filtering cost, we study Superfiltering: Can we use a smaller and weaker model to select data for finetuning a larger and stronger model? Despite the performance gap between weak and strong language models, we find their highly consistent capability to perceive instruction difficulty and data selection results. This enables us to use a much smaller and more efficient model to filter the instruction data used to train a larger language model. Not only does it largely speed up the data filtering, but the filtered-data-finetuned LLM achieves even better performance on standard benchmarks. Extensive experiments validate the efficacy and efficiency of our approach. 8 authors · Feb 1, 2024
1 Using Zero-shot Prompting in the Automatic Creation and Expansion of Topic Taxonomies for Tagging Retail Banking Transactions This work presents an unsupervised method for automatically constructing and expanding topic taxonomies by using instruction-based fine-tuned LLMs (Large Language Models). We apply topic modeling and keyword extraction techniques to create initial topic taxonomies and LLMs to post-process the resulting terms and create a hierarchy. To expand an existing taxonomy with new terms, we use zero-shot prompting to find out where to add new nodes, which, to our knowledge, is the first work to present such an approach to taxonomy tasks. We use the resulting taxonomies to assign tags that characterize merchants from a retail bank dataset. To evaluate our work, we asked 12 volunteers to answer a two-part form in which we first assessed the quality of the taxonomies created and then the tags assigned to merchants based on that taxonomy. The evaluation revealed a coherence rate exceeding 90% for the chosen taxonomies, while the average coherence for merchant tagging surpassed 80%. 16 authors · Jan 7, 2024
1 Assessment of Pre-Trained Models Across Languages and Grammars We present an approach for assessing how multilingual large language models (LLMs) learn syntax in terms of multi-formalism syntactic structures. We aim to recover constituent and dependency structures by casting parsing as sequence labeling. To do so, we select a few LLMs and study them on 13 diverse UD treebanks for dependency parsing and 10 treebanks for constituent parsing. Our results show that: (i) the framework is consistent across encodings, (ii) pre-trained word vectors do not favor constituency representations of syntax over dependencies, (iii) sub-word tokenization is needed to represent syntax, in contrast to character-based models, and (iv) occurrence of a language in the pretraining data is more important than the amount of task data when recovering syntax from the word vectors. 3 authors · Sep 20, 2023
- Learning to Retrieve Passages without Supervision Dense retrievers for open-domain question answering (ODQA) have been shown to achieve impressive performance by training on large datasets of question-passage pairs. In this work we ask whether this dependence on labeled data can be reduced via unsupervised pretraining that is geared towards ODQA. We show this is in fact possible, via a novel pretraining scheme designed for retrieval. Our "recurring span retrieval" approach uses recurring spans across passages in a document to create pseudo examples for contrastive learning. Our pretraining scheme directly controls for term overlap across pseudo queries and relevant passages, thus allowing to model both lexical and semantic relations between them. The resulting model, named Spider, performs surprisingly well without any labeled training examples on a wide range of ODQA datasets. Specifically, it significantly outperforms all other pretrained baselines in a zero-shot setting, and is competitive with BM25, a strong sparse baseline. Moreover, a hybrid retriever over Spider and BM25 improves over both, and is often competitive with DPR models, which are trained on tens of thousands of examples. Last, notable gains are observed when using Spider as an initialization for supervised training. 5 authors · Dec 14, 2021
1 InfoPrompt: Information-Theoretic Soft Prompt Tuning for Natural Language Understanding Soft prompt tuning achieves superior performances across a wide range of few-shot tasks. However, the performances of prompt tuning can be highly sensitive to the initialization of the prompts. We also empirically observe that conventional prompt tuning methods cannot encode and learn sufficient task-relevant information from prompt tokens. In this work, we develop an information-theoretic framework that formulates soft prompt tuning as maximizing mutual information between prompts and other model parameters (or encoded representations). This novel view helps us to develop a more efficient, accurate and robust soft prompt tuning method InfoPrompt. With this framework, we develop two novel mutual information based loss functions, to (i) discover proper prompt initialization for the downstream tasks and learn sufficient task-relevant information from prompt tokens and (ii) encourage the output representation from the pretrained language model to be more aware of the task-relevant information captured in the learnt prompt. Extensive experiments validate that InfoPrompt can significantly accelerate the convergence of the prompt tuning and outperform traditional prompt tuning methods. Finally, we provide a formal theoretical result for showing to show that gradient descent type algorithm can be used to train our mutual information loss. 9 authors · Jun 8, 2023
- Ensemble Distillation for Unsupervised Constituency Parsing We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance. To this end, we propose a notion of "tree averaging," based on which we further propose a novel ensemble method for unsupervised parsing. To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods. Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions. 5 authors · Oct 2, 2023
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness We introduce "pointer-guided segment ordering" (SO), a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations in large language models. Our methodology leverages a self-attention-driven pointer network to restore the original sequence of shuffled text segments, addressing the challenge of capturing the structural coherence and contextual dependencies within documents. This pre-training approach is complemented by a fine-tuning methodology that incorporates dynamic sampling, augmenting the diversity of training instances and improving sample efficiency for various downstream applications. We evaluate our method on a diverse set of datasets, demonstrating its efficacy in tasks requiring sequential text classification across scientific literature and financial reporting domains. Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures, leading to state-of-the-art performance in downstream classification tasks. 4 authors · Jun 6, 2024 2
1 Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search We present Grid Beam Search (GBS), an algorithm which extends beam search to allow the inclusion of pre-specified lexical constraints. The algorithm can be used with any model that generates a sequence hat{y} = {y_{0}ldots y_{T}} , by maximizing p(y | x) = prodlimits_{t}p(y_{t} | x; {y_{0} ldots y_{t-1}}) . Lexical constraints take the form of phrases or words that must be present in the output sequence. This is a very general way to incorporate additional knowledge into a model's output without requiring any modification of the model parameters or training data. We demonstrate the feasibility and flexibility of Lexically Constrained Decoding by conducting experiments on Neural Interactive-Predictive Translation, as well as Domain Adaptation for Neural Machine Translation. Experiments show that GBS can provide large improvements in translation quality in interactive scenarios, and that, even without any user input, GBS can be used to achieve significant gains in performance in domain adaptation scenarios. 2 authors · Apr 24, 2017
- Instruction Diversity Drives Generalization To Unseen Tasks Instruction tuning -- fine-tuning a large language model (LLM) on pairs of instructions and desired outcomes -- is an approach that enables pre-trained language models to perform real-world tasks and follow human instructions. Its practical success depends on the model learning a broader set of instructions than those it was trained on. Yet the factors that determine model generalization to such unseen tasks are not well understood. %To understand the driving factors of generalization, In this paper, we experiment with string rewrites, a symbolic task that serves as a building block for Turing complete Markov algorithms while allowing experimental control of "inputs" and "instructions". We investigate the trade-off between the number of instructions the model is trained on and the number of training samples provided for each instruction and observe that the diversity of the instruction set determines generalization. Generalization emerges once a diverse enough set of tasks is provided, even though very few examples are provided for each task. Instruction diversity also ensures robustness with respect to non-uniform distributions of instructions in the training set. 3 authors · Feb 16, 2024
- Unbalanced Optimal Transport for Unbalanced Word Alignment Monolingual word alignment is crucial to model semantic interactions between sentences. In particular, null alignment, a phenomenon in which words have no corresponding counterparts, is pervasive and critical in handling semantically divergent sentences. Identification of null alignment is useful on its own to reason about the semantic similarity of sentences by indicating there exists information inequality. To achieve unbalanced word alignment that values both alignment and null alignment, this study shows that the family of optimal transport (OT), i.e., balanced, partial, and unbalanced OT, are natural and powerful approaches even without tailor-made techniques. Our extensive experiments covering unsupervised and supervised settings indicate that our generic OT-based alignment methods are competitive against the state-of-the-arts specially designed for word alignment, remarkably on challenging datasets with high null alignment frequencies. 3 authors · Jun 6, 2023
- INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets. 7 authors · Feb 22, 2024
- Incorporating Context into Subword Vocabularies Most current popular subword tokenizers are trained based on word frequency statistics over a corpus, without considering information about co-occurrence or context. Nevertheless, the resulting vocabularies are used in language models' highly contextualized settings. We present SaGe, a tokenizer that tailors subwords for their downstream use by baking in the contextualized signal at the vocabulary creation phase. We show that SaGe does a better job than current widespread tokenizers in keeping token contexts cohesive, while not incurring a large price in terms of encoding efficiency or domain robustness. SaGe improves performance on English GLUE classification tasks as well as on NER, and on Inference and NER in Turkish, demonstrating its robustness to language properties such as morphological exponence and agglutination. 2 authors · Oct 13, 2022
1 Language Model Tokenizers Introduce Unfairness Between Languages Recent language models have shown impressive multilingual performance, even when not explicitly trained for it. Despite this, there are concerns about the quality of their outputs across different languages. In this paper, we show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked. The same text translated into different languages can have drastically different tokenization lengths, with differences up to 15 times in some cases. These disparities persist even for tokenizers that are intentionally trained for multilingual support. Character-level and byte-level models also exhibit over 4 times the difference in the encoding length for some language pairs. This induces unfair treatment for some language communities in regard to the cost of accessing commercial language services, the processing time and latency, as well as the amount of content that can be provided as context to the models. Therefore, we make the case that we should train future language models using multilingually fair subword tokenizers. 4 authors · May 17, 2023
- Joint Khmer Word Segmentation and Part-of-Speech Tagging Using Deep Learning Khmer text is written from left to right with optional space. Space is not served as a word boundary but instead, it is used for readability or other functional purposes. Word segmentation is a prior step for downstream tasks such as part-of-speech (POS) tagging and thus, the robustness of POS tagging highly depends on word segmentation. The conventional Khmer POS tagging is a two-stage process that begins with word segmentation and then actual tagging of each word, afterward. In this work, a joint word segmentation and POS tagging approach using a single deep learning model is proposed so that word segmentation and POS tagging can be performed spontaneously. The proposed model was trained and tested using the publicly available Khmer POS dataset. The validation suggested that the performance of the joint model is on par with the conventional two-stage POS tagging. 3 authors · Mar 31, 2021
- Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations Recent research has adopted a new experimental field centered around the concept of text perturbations which has revealed that shuffled word order has little to no impact on the downstream performance of Transformer-based language models across many NLP tasks. These findings contradict the common understanding of how the models encode hierarchical and structural information and even question if the word order is modeled with position embeddings. To this end, this paper proposes nine probing datasets organized by the type of controllable text perturbation for three Indo-European languages with a varying degree of word order flexibility: English, Swedish and Russian. Based on the probing analysis of the M-BERT and M-BART models, we report that the syntactic sensitivity depends on the language and model pre-training objectives. We also find that the sensitivity grows across layers together with the increase of the perturbation granularity. Last but not least, we show that the models barely use the positional information to induce syntactic trees from their intermediate self-attention and contextualized representations. 3 authors · Sep 28, 2021
- LearningWord Embeddings for Low-resource Languages by PU Learning Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages. 4 authors · May 9, 2018
- StablePT: Towards Stable Prompting for Few-shot Learning via Input Separation Large language models have shown their ability to become effective few-shot learners with prompting, revoluting the paradigm of learning with data scarcity. However, this approach largely depends on the quality of prompt initialization, and always exhibits large variability among different runs. Such property makes prompt tuning highly unreliable and vulnerable to poorly constructed prompts, which limits its extension to more real-world applications. To tackle this issue, we propose to treat the hard prompt and soft prompt as separate inputs to mitigate noise brought by the prompt initialization. Furthermore, we optimize soft prompts with contrastive learning for utilizing class-aware information in the training process to maintain model performance. Experimental results demonstrate that \sysname outperforms state-of-the-art methods by 7.20% in accuracy and reduces the standard deviation by 2.02 on average. Furthermore, extensive experiments underscore its robustness and stability across 7 datasets covering various tasks. 7 authors · Apr 30, 2024
1 Experimental Support for a Categorical Compositional Distributional Model of Meaning Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model. 2 authors · Jun 20, 2011
- LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters. 3 authors · Jun 27, 2024
- Integrating Multi-scale Contextualized Information for Byte-based Neural Machine Translation Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified once it is learned, making it hard to adapt to new words. Second, in multilingual translation, the imbalance in data volumes across different languages spreads to the vocabulary, exacerbating translations involving low-resource languages. While byte-based tokenization addresses these issues, byte-based models struggle with the low information density inherent in UTF-8 byte sequences. Previous works enhance token semantics through local contextualization but fail to select an appropriate contextualizing scope based on the input. Consequently, we propose the Multi-Scale Contextualization (MSC) method, which learns contextualized information of varying scales across different hidden state dimensions. It then leverages the attention module to dynamically integrate the multi-scale contextualized information. Experiments show that MSC significantly outperforms subword-based and other byte-based methods in both multilingual and out-of-domain scenarios. Code can be found in https://github.com/ictnlp/Multiscale-Contextualization. 2 authors · May 29, 2024 2
1 Compositional Semantic Parsing with Large Language Models Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications. 8 authors · Sep 29, 2022
1 Pre-training with Large Language Model-based Document Expansion for Dense Passage Retrieval In this paper, we systematically study the potential of pre-training with Large Language Model(LLM)-based document expansion for dense passage retrieval. Concretely, we leverage the capabilities of LLMs for document expansion, i.e. query generation, and effectively transfer expanded knowledge to retrievers using pre-training strategies tailored for passage retrieval. These strategies include contrastive learning and bottlenecked query generation. Furthermore, we incorporate a curriculum learning strategy to reduce the reliance on LLM inferences. Experimental results demonstrate that pre-training with LLM-based document expansion significantly boosts the retrieval performance on large-scale web-search tasks. Our work shows strong zero-shot and out-of-domain retrieval abilities, making it more widely applicable for retrieval when initializing with no human-labeled data. 5 authors · Aug 16, 2023
31 Stream of Search (SoS): Learning to Search in Language Language models are rarely shown fruitful mistakes while training. They then struggle to look beyond the next token, suffering from a snowballing of errors and struggling to predict the consequence of their actions several steps ahead. In this paper, we show how language models can be taught to search by representing the process of search in language, as a flattened string -- a stream of search (SoS). We propose a unified language for search that captures an array of different symbolic search strategies. We demonstrate our approach using the simple yet difficult game of Countdown, where the goal is to combine input numbers with arithmetic operations to reach a target number. We pretrain a transformer-based language model from scratch on a dataset of streams of search generated by heuristic solvers. We find that SoS pretraining increases search accuracy by 25% over models trained to predict only the optimal search trajectory. We further finetune this model with two policy improvement methods: Advantage-Induced Policy Alignment (APA) and Self-Taught Reasoner (STaR). The finetuned SoS models solve 36% of previously unsolved problems, including problems that cannot be solved by any of the heuristic solvers. Our results indicate that language models can learn to solve problems via search, self-improve to flexibly use different search strategies, and potentially discover new ones. 7 authors · Apr 1, 2024 1
- Enriching Word Vectors with Subword Information Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks. 4 authors · Jul 15, 2016
- A Language for Function Signature Representations Recent work by (Richardson and Kuhn, 2017a,b; Richardson et al., 2018) looks at semantic parser induction and question answering in the domain of source code libraries and APIs. In this brief note, we formalize the representations being learned in these studies and introduce a simple domain specific language and a systematic translation from this language to first-order logic. By recasting the target representations in terms of classical logic, we aim to broaden the applicability of existing code datasets for investigating more complex natural language understanding and reasoning problems in the software domain. 1 authors · Mar 31, 2018
1 Sometimes I am a Tree: Data Drives Unstable Hierarchical Generalization Language models (LMs), like other neural networks, often favor shortcut heuristics based on surface-level patterns. Although LMs behave like n-gram models early in training, they must eventually learn hierarchical syntactic representations to correctly apply grammatical rules out-of-distribution (OOD). In this work, we use case studies of English grammar to explore how complex, diverse training data drives models to generalize OOD. We construct a framework that unifies our understanding of random variation with training dynamics, rule selection with memorization, and data diversity with complexity. We show that these factors are nuanced, and that intermediate levels of diversity and complexity lead to inconsistent behavior across random seeds and to unstable training dynamics. Our findings emphasize the critical role of training data in shaping generalization patterns and illuminate how competing model strategies lead to inconsistent generalization outcomes across random seeds. Code is available at https://github.com/sunnytqin/concept_comp.git. 3 authors · Dec 5, 2024
- Learn Your Tokens: Word-Pooled Tokenization for Language Modeling Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness. 4 authors · Oct 17, 2023
1 Dodging the Data Bottleneck: Automatic Subtitling with Automatically Segmented ST Corpora Speech translation for subtitling (SubST) is the task of automatically translating speech data into well-formed subtitles by inserting subtitle breaks compliant to specific displaying guidelines. Similar to speech translation (ST), model training requires parallel data comprising audio inputs paired with their textual translations. In SubST, however, the text has to be also annotated with subtitle breaks. So far, this requirement has represented a bottleneck for system development, as confirmed by the dearth of publicly available SubST corpora. To fill this gap, we propose a method to convert existing ST corpora into SubST resources without human intervention. We build a segmenter model that automatically segments texts into proper subtitles by exploiting audio and text in a multimodal fashion, achieving high segmentation quality in zero-shot conditions. Comparative experiments with SubST systems respectively trained on manual and automatic segmentations result in similar performance, showing the effectiveness of our approach. 4 authors · Sep 21, 2022
- Survival of the Most Influential Prompts: Efficient Black-Box Prompt Search via Clustering and Pruning Prompt-based learning has been an effective paradigm for large pretrained language models (LLM), enabling few-shot or even zero-shot learning. Black-box prompt search has received growing interest recently for its distinctive properties of gradient-free optimization, proven particularly useful and powerful for model-as-a-service usage. However, the discrete nature and the complexity of combinatorial optimization hinder the efficiency of modern black-box approaches. Despite extensive research on search algorithms, the crucial aspect of search space design and optimization has been largely overlooked. In this paper, we first conduct a sensitivity analysis by prompting LLM, revealing that only a small number of tokens exert a disproportionate amount of influence on LLM predictions. Leveraging this insight, we propose the Clustering and Pruning for Efficient Black-box Prompt Search (ClaPS), a simple black-box search method that first clusters and prunes the search space to focus exclusively on influential prompt tokens. By employing even simple search methods within the pruned search space, ClaPS achieves state-of-the-art performance across various tasks and LLMs, surpassing the performance of complex approaches while significantly reducing search costs. Our findings underscore the critical role of search space design and optimization in enhancing both the usefulness and the efficiency of black-box prompt-based learning. 4 authors · Oct 19, 2023
2 Retrofitting (Large) Language Models with Dynamic Tokenization Current language models (LMs) use a fixed, static subword tokenizer. This choice, often taken for granted, typically results in degraded efficiency and capabilities in languages other than English, and makes it challenging to apply LMs to new domains or languages. To address these issues, we propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text. For encoder-style models, we introduce a subword-merging algorithm inspired by byte-pair encoding (BPE), but at a batch level. We merge frequent subword sequences in a batch, then apply a pretrained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. When applied with word-level boundaries, this on average reduces token sequence lengths by >20% across 14 languages on XNLI with XLM-R while degrading its task performance by less than 2%. For decoder-style models, we apply dynamic tokenization in two ways: 1) for prefilling, maintaining performance of Mistral-7B almost completely with up to 40% sequence reduction - relative to the word-level; and 2) via an approximate nearest neighbor index, achieving fast generation with a one million token vocabulary, demonstrating scalability to even larger, dynamic vocabularies. Overall, our findings show that dynamic tokenization substantially improves inference speed and promotes fairness across languages, making a leap towards overcoming the limitations of static tokenization and enabling more equitable and adaptable LMs. 3 authors · Nov 27, 2024
1 Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach. 2 authors · Mar 10, 2023
1 NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs when working with real-world KGs. Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training. Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks while retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters. 4 authors · Jun 22, 2021
- Prompting in Autoregressive Large Language Models Autoregressive Large Language Models have transformed the landscape of Natural Language Processing. Pre-train and prompt paradigm has replaced the conventional approach of pre-training and fine-tuning for many downstream NLP tasks. This shift has been possible largely due to LLMs and innovative prompting techniques. LLMs have shown great promise for a variety of downstream tasks owing to their vast parameters and huge datasets that they are pre-trained on. However, in order to fully realize their potential, their outputs must be guided towards the desired outcomes. Prompting, in which a specific input or instruction is provided to guide the LLMs toward the intended output, has become a tool for achieving this goal. In this paper, we discuss the various prompting techniques that have been applied to fully harness the power of LLMs. We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy. Further, we identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research. 1 authors · Nov 28, 2023
- Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist. 6 authors · Jul 28, 2021
- Honey, I Shrunk the Language: Language Model Behavior at Reduced Scale In recent years, language models have drastically grown in size, and the abilities of these models have been shown to improve with scale. The majority of recent scaling laws studies focused on high-compute high-parameter count settings, leaving the question of when these abilities begin to emerge largely unanswered. In this paper, we investigate whether the effects of pre-training can be observed when the problem size is reduced, modeling a smaller, reduced-vocabulary language. We show the benefits of pre-training with masked language modeling (MLM) objective in models as small as 1.25M parameters, and establish a strong correlation between pre-training perplexity and downstream performance (GLUE benchmark). We examine downscaling effects, extending scaling laws to models as small as ~1M parameters. At this scale, we observe a break of the power law for compute-optimal models and show that the MLM loss does not scale smoothly with compute-cost (FLOPs) below 2.2 times 10^{15} FLOPs. We also find that adding layers does not always benefit downstream performance. 5 authors · May 26, 2023
6 Retrieval-Enhanced Machine Learning: Synthesis and Opportunities In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research. 5 authors · Jul 17, 2024 2
1 Revisiting subword tokenization: A case study on affixal negation in large language models In this work, we measure the impact of affixal negation on modern English large language models (LLMs). In affixal negation, the negated meaning is expressed through a negative morpheme, which is potentially challenging for LLMs as their tokenizers are often not morphologically plausible. We conduct extensive experiments using LLMs with different subword tokenization methods, which lead to several insights on the interaction between tokenization performance and negation sensitivity. Despite some interesting mismatches between tokenization accuracy and negation detection performance, we show that models can, on the whole, reliably recognize the meaning of affixal negation. 5 authors · Apr 2, 2024 1
27 LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models Quantization is an indispensable technique for serving Large Language Models (LLMs) and has recently found its way into LoRA fine-tuning. In this work we focus on the scenario where quantization and LoRA fine-tuning are applied together on a pre-trained model. In such cases it is common to observe a consistent gap in the performance on downstream tasks between full fine-tuning and quantization plus LoRA fine-tuning approach. In response, we propose LoftQ (LoRA-Fine-Tuning-aware Quantization), a novel quantization framework that simultaneously quantizes an LLM and finds a proper low-rank initialization for LoRA fine-tuning. Such an initialization alleviates the discrepancy between the quantized and full-precision model and significantly improves the generalization in downstream tasks. We evaluate our method on natural language understanding, question answering, summarization, and natural language generation tasks. Experiments show that our method is highly effective and outperforms existing quantization methods, especially in the challenging 2-bit and 2/4-bit mixed precision regimes. We will release our code. 7 authors · Oct 12, 2023 4
- Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks. 4 authors · Oct 26, 2022
- BinaryAlign: Word Alignment as Binary Sequence Labeling Real world deployments of word alignment are almost certain to cover both high and low resource languages. However, the state-of-the-art for this task recommends a different model class depending on the availability of gold alignment training data for a particular language pair. We propose BinaryAlign, a novel word alignment technique based on binary sequence labeling that outperforms existing approaches in both scenarios, offering a unifying approach to the task. Additionally, we vary the specific choice of multilingual foundation model, perform stratified error analysis over alignment error type, and explore the performance of BinaryAlign on non-English language pairs. We make our source code publicly available. 3 authors · Jul 16, 2024
- A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes. 2 authors · Jun 28, 2021
- Using Contextual Information for Sentence-level Morpheme Segmentation Recent advancements in morpheme segmentation primarily emphasize word-level segmentation, often neglecting the contextual relevance within the sentence. In this study, we redefine the morpheme segmentation task as a sequence-to-sequence problem, treating the entire sentence as input rather than isolating individual words. Our findings reveal that the multilingual model consistently exhibits superior performance compared to monolingual counterparts. While our model did not surpass the performance of the current state-of-the-art, it demonstrated comparable efficacy with high-resource languages while revealing limitations in low-resource language scenarios. 2 authors · Mar 15, 2024
1 Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations We introduce sub-sentence encoder, a contrastively-learned contextual embedding model for fine-grained semantic representation of text. In contrast to the standard practice with sentence embeddings, where the meaning of an entire sequence of text is encoded into a fixed-length vector, the sub-sentence encoder learns to produce distinct contextual embeddings corresponding to different atomic propositions, i.e. atomic units of meaning expressed within a text sequence. The sub-sentence embeddings are contrastively learned to recognize (inferred) semantic equivalence between propositions across different text sequences. Our experiments show the effectiveness of sub-sentence encoders in applications, such as retrieving supporting facts for fine-grained text attribution or recognizing the conditional semantic similarity between texts. In practice, we demonstrate that sub-sentence encoders keep the same level of inference cost and space complexity compared to sentence encoders. 10 authors · Nov 7, 2023
5 Contextual Position Encoding: Learning to Count What's Important The attention mechanism is a critical component of Large Language Models (LLMs) that allows tokens in a sequence to interact with each other, but is order-invariant. Incorporating position encoding (PE) makes it possible to address by position, such as attending to the i-th token. However, current PE methods use token counts to derive position, and thus cannot generalize to higher levels of abstraction, such as attending to the i-th sentence. In this paper, we propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the i-th particular word, noun, or sentence. We show that CoPE can solve the selective copy, counting and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks. 4 authors · May 28, 2024 1
5 Zero-Shot Tokenizer Transfer Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer. 3 authors · May 13, 2024 3
- Understanding Emergent Abilities of Language Models from the Loss Perspective Recent studies have put into question the belief that emergent abilities in language models are exclusive to large models. This skepticism arises from two observations: 1) smaller models can also exhibit high performance on emergent abilities and 2) there is doubt on the discontinuous metrics used to measure these abilities. In this paper, we propose to study emergent abilities in the lens of pre-training loss, instead of model size or training compute. We demonstrate that the models with the same pre-training loss, but different model and data sizes, generate the same performance on various downstream tasks. We also discover that a model exhibits emergent abilities on certain tasks -- regardless of the continuity of metrics -- when its pre-training loss falls below a specific threshold. Before reaching this threshold, its performance remains at the level of random guessing. This inspires us to redefine emergent abilities as those that manifest in models with lower pre-training losses, highlighting that these abilities cannot be predicted by merely extrapolating the performance trends of models with higher pre-training losses. 4 authors · Mar 23, 2024
- Give your Text Representation Models some Love: the Case for Basque Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available. 7 authors · Mar 31, 2020
- Preserving Multilingual Quality While Tuning Query Encoder on English Only A dense passage retrieval system can serve as the initial stages of information retrieval, selecting the most relevant text passages for downstream tasks. In this work we conducted experiments with the goal of finding how much the quality of a multilingual retrieval could be degraded if the query part of a dual encoder is tuned on an English-only dataset (assuming scarcity of cross-lingual samples for the targeted domain or task). Specifically, starting with a high quality multilingual embedding model, we observe that an English-only tuning may not only preserve the original quality of the multilingual retrieval, but even improve it. 3 authors · Jun 30, 2024
- Learning High-Quality and General-Purpose Phrase Representations Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract 3 authors · Jan 18, 2024
- Fine-tuning a Subtle Parsing Distinction Using a Probabilistic Decision Tree: the Case of Postnominal "that" in Noun Complement Clauses vs. Relative Clauses In this paper we investigated two different methods to parse relative and noun complement clauses in English and resorted to distinct tags for their corresponding that as a relative pronoun and as a complementizer. We used an algorithm to relabel a corpus parsed with the GUM Treebank using Universal Dependency. Our second experiment consisted in using TreeTagger, a Probabilistic Decision Tree, to learn the distinction between the two complement and relative uses of postnominal "that". We investigated the effect of the training set size on TreeTagger accuracy and how representative the GUM Treebank files are for the two structures under scrutiny. We discussed some of the linguistic and structural tenets of the learnability of this distinction. 2 authors · Dec 5, 2022
- Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits. 2 authors · May 31, 2017
- CoLLEGe: Concept Embedding Generation for Large Language Models Current language models are unable to quickly learn new concepts on the fly, often requiring a more involved finetuning process to learn robustly. Prompting in-context is not robust to context distractions, and often fails to confer much information about the new concepts. Classic methods for few-shot word learning in NLP, relying on global word vectors, are less applicable to large language models. In this paper, we introduce a novel approach named CoLLEGe (Concept Learning with Language Embedding Generation) to modernize few-shot concept learning. CoLLEGe is a meta-learning framework capable of generating flexible embeddings for new concepts using a small number of example sentences or definitions. Our primary meta-learning objective is simply to facilitate a language model to make next word predictions in forthcoming sentences, making it compatible with language model pretraining. We design a series of tasks to test new concept learning in challenging real-world scenarios, including new word acquisition, definition inference, and verbal reasoning, and demonstrate that our method succeeds in each setting without task-specific training. 3 authors · Mar 22, 2024
- Mimicking Word Embeddings using Subword RNNs Word embeddings improve generalization over lexical features by placing each word in a lower-dimensional space, using distributional information obtained from unlabeled data. However, the effectiveness of word embeddings for downstream NLP tasks is limited by out-of-vocabulary (OOV) words, for which embeddings do not exist. In this paper, we present MIMICK, an approach to generating OOV word embeddings compositionally, by learning a function from spellings to distributional embeddings. Unlike prior work, MIMICK does not require re-training on the original word embedding corpus; instead, learning is performed at the type level. Intrinsic and extrinsic evaluations demonstrate the power of this simple approach. On 23 languages, MIMICK improves performance over a word-based baseline for tagging part-of-speech and morphosyntactic attributes. It is competitive with (and complementary to) a supervised character-based model in low-resource settings. 3 authors · Jul 21, 2017
1 Scaling LLM Pre-training with Vocabulary Curriculum Modern language models rely on static vocabularies, fixed before pretraining, in contrast to the adaptive vocabulary acquisition observed in human language learning. To bridge this gap, we introduce vocabulary curriculum learning, an approach that improves pretraining efficiency with log-linear scaling gains relative to vocabulary size. Our method alternates between entropy-guided vocabulary expansion and model optimization, enabling models to learn transferable representations across diverse tokenization granularities. This approach naturally gives rise to an optimal computation allocation pattern: longer tokens capture predictable content, while shorter tokens focus on more complex, harder-to-predict contexts. Experiments on small-scale GPT models demonstrate improved scaling efficiency, reinforcing the effectiveness of dynamic tokenization. We release our code to support further research and plan to extend our experiments to larger models and diverse domains. 1 authors · Feb 25 2
- POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training Large-scale pre-trained language models, such as BERT and GPT-2, have achieved excellent performance in language representation learning and free-form text generation. However, these models cannot be directly employed to generate text under specified lexical constraints. To address this challenge, we present POINTER (PrOgressive INsertion-based TransformER), a simple yet novel insertion-based approach for hard-constrained text generation. The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner. This procedure is recursively applied until a sequence is completed. The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable. We pre-train our model with the proposed progressive insertion-based objective on a 12GB Wikipedia dataset, and fine-tune it on downstream hard-constrained generation tasks. Non-autoregressive decoding yields an empirically logarithmic time complexity during inference time. Experimental results on both News and Yelp datasets demonstrate that POINTER achieves state-of-the-art performance on constrained text generation. We released the pre-trained models and the source code to facilitate future research (https://github.com/dreasysnail/POINTER). 6 authors · May 1, 2020
- Self-Infilling Code Generation This work introduces a general code generation framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent code language models with infilling capabilities can perform self-infilling: whereas infilling operations aim to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize this feature to develop an infilling-augmented decoding process that facilitates non-monotonic generation. This approach allows for postponing the generation of uncertain code snippets until a definitive suffix is established, leading to improved control over the generation sequence. In addition, it facilitates a looping mechanism, which can iteratively update and synchronize each piece of generation in a cyclic manner. Extensive experiments are conducted to demonstrate that our proposed decoding process is effective in enhancing regularity and quality across several code generation benchmarks. 5 authors · Nov 29, 2023
18 Teaching Arithmetic to Small Transformers Large language models like GPT-4 exhibit emergent capabilities across general-purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next-token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, we discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities. 5 authors · Jul 7, 2023
28 Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training LLMs are computationally expensive to pre-train due to their large scale. Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored. This work identifies three critical textit{O}bstacles: (O1) lack of comprehensive evaluation, (O2) untested viability for scaling, and (O3) lack of empirical guidelines. To tackle O1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting. Our findings reveal that a depthwise stacking operator, called G_{stack}, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into G_{stack} to address O2 and O3. For O2 (untested scalability), our study shows that G_{stack} is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens. For example, compared to a conventionally trained 7B model using 300B tokens, our G_{stack} model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address O3 (lack of empirical guidelines) by formalizing guidelines to determine growth timing and growth factor for G_{stack}, making it practical in general LLM pre-training. We also provide in-depth discussions and comprehensive ablation studies of G_{stack}. Our code and pre-trained model are available at https://llm-stacking.github.io/{https://llm-stacking.github.io/}. 8 authors · May 24, 2024 1
- Prompting Large Language Model for Machine Translation: A Case Study Research on prompting has shown excellent performance with little or even no supervised training across many tasks. However, prompting for machine translation is still under-explored in the literature. We fill this gap by offering a systematic study on prompting strategies for translation, examining various factors for prompt template and demonstration example selection. We further explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning in prompting. Extensive experiments with GLM-130B (Zeng et al., 2022) as the testbed show that 1) the number and the quality of prompt examples matter, where using suboptimal examples degenerates translation; 2) several features of prompt examples, such as semantic similarity, show significant Spearman correlation with their prompting performance; yet, none of the correlations are strong enough; 3) using pseudo parallel prompt examples constructed from monolingual data via zero-shot prompting could improve translation; and 4) improved performance is achievable by transferring knowledge from prompt examples selected in other settings. We finally provide an analysis on the model outputs and discuss several problems that prompting still suffers from. 3 authors · Jan 17, 2023
1 Comparing Performance of Different Linguistically-Backed Word Embeddings for Cyberbullying Detection In most cases, word embeddings are learned only from raw tokens or in some cases, lemmas. This includes pre-trained language models like BERT. To investigate on the potential of capturing deeper relations between lexical items and structures and to filter out redundant information, we propose to preserve the morphological, syntactic and other types of linguistic information by combining them with the raw tokens or lemmas. This means, for example, including parts-of-speech or dependency information within the used lexical features. The word embeddings can then be trained on the combinations instead of just raw tokens. It is also possible to later apply this method to the pre-training of huge language models and possibly enhance their performance. This would aid in tackling problems which are more sophisticated from the point of view of linguistic representation, such as detection of cyberbullying. 3 authors · Jun 4, 2022
1 Auto-Regressive Next-Token Predictors are Universal Learners Large language models display remarkable capabilities in logical and mathematical reasoning, allowing them to solve complex tasks. Interestingly, these abilities emerge in networks trained on the simple task of next-token prediction. In this work, we present a theoretical framework for studying auto-regressive next-token predictors. We demonstrate that even simple models such as linear next-token predictors, trained on Chain-of-Thought (CoT) data, can approximate any function efficiently computed by a Turing machine. We introduce a new complexity measure -- length complexity -- which measures the number of intermediate tokens in a CoT sequence required to approximate some target function, and analyze the interplay between length complexity and other notions of complexity. Finally, we show experimentally that simple next-token predictors, such as linear networks and shallow Multi-Layer Perceptrons (MLPs), display non-trivial performance on text generation and arithmetic tasks. Our results demonstrate that the power of language models can be attributed, to a great extent, to the auto-regressive next-token training scheme, and not necessarily to a particular choice of architecture. 1 authors · Sep 13, 2023
- Faster Learned Sparse Retrieval with Block-Max Pruning Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks. 3 authors · May 2, 2024
- Mitigating Word Bias in Zero-shot Prompt-based Classifiers Prompt-based classifiers are an attractive approach for zero-shot classification. However, the precise choice of the prompt template and label words can largely influence performance, with semantically equivalent settings often showing notable performance difference. This discrepancy can be partly attributed to word biases, where the classifier may be biased towards classes. To address this problem, it is possible to optimise classification thresholds on a labelled data set, however, this mitigates some of the advantages of prompt-based classifiers. This paper instead approaches this problem by examining the expected marginal probabilities of the classes. Here, probabilities are reweighted to have a uniform prior over classes, in an unsupervised fashion. Further, we draw a theoretical connection between the class priors and the language models' word prior, and offer the ability to set a threshold in a zero-resource fashion. We show that matching class priors correlates strongly with the oracle upper bound performance and demonstrate large consistent performance gains for prompt settings over a range of NLP tasks. 3 authors · Sep 10, 2023
- Linear Cross-Lingual Mapping of Sentence Embeddings Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings. 3 authors · May 23, 2023
18 SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR. 10 authors · Dec 16, 2024 2
- GPT-SW3: An Autoregressive Language Model for the Nordic Languages This paper details the process of developing the first native large generative language model for the Nordic languages, GPT-SW3. We cover all parts of the development process, from data collection and processing, training configuration and instruction finetuning, to evaluation and considerations for release strategies. We hope that this paper can serve as a guide and reference for other researchers that undertake the development of large generative models for smaller languages. 10 authors · May 22, 2023
- DeeperImpact: Optimizing Sparse Learned Index Structures A lot of recent work has focused on sparse learned indexes that use deep neural architectures to significantly improve retrieval quality while keeping the efficiency benefits of the inverted index. While such sparse learned structures achieve effectiveness far beyond those of traditional inverted index-based rankers, there is still a gap in effectiveness to the best dense retrievers, or even to sparse methods that leverage more expensive optimizations such as query expansion and query term weighting. We focus on narrowing this gap by revisiting and optimizing DeepImpact, a sparse retrieval approach that uses DocT5Query for document expansion followed by a BERT language model to learn impact scores for document terms. We first reinvestigate the expansion process and find that the recently proposed Doc2Query query filtration does not enhance retrieval quality when used with DeepImpact. Instead, substituting T5 with a fine-tuned Llama 2 model for query prediction results in a considerable improvement. Subsequently, we study training strategies that have proven effective for other models, in particular the use of hard negatives, distillation, and pre-trained CoCondenser model initialization. Our results significantly narrow the effectiveness gap with the most effective versions of SPLADE. 4 authors · May 27, 2024
2 Multi-Granularity Prediction for Scene Text Recognition Scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this challenging problem, numerous innovative methods have been successively proposed and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet powerful vision STR model, which is built upon ViT and outperforms previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, i.e. , subword representations (BPE and WordPiece) widely-used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. The resultant algorithm (termed MGP-STR) is able to push the performance envelop of STR to an even higher level. Specifically, it achieves an average recognition accuracy of 93.35% on standard benchmarks. Code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR. 3 authors · Sep 8, 2022
- Improving Neural Language Models by Segmenting, Attending, and Predicting the Future Common language models typically predict the next word given the context. In this work, we propose a method that improves language modeling by learning to align the given context and the following phrase. The model does not require any linguistic annotation of phrase segmentation. Instead, we define syntactic heights and phrase segmentation rules, enabling the model to automatically induce phrases, recognize their task-specific heads, and generate phrase embeddings in an unsupervised learning manner. Our method can easily be applied to language models with different network architectures since an independent module is used for phrase induction and context-phrase alignment, and no change is required in the underlying language modeling network. Experiments have shown that our model outperformed several strong baseline models on different data sets. We achieved a new state-of-the-art performance of 17.4 perplexity on the Wikitext-103 dataset. Additionally, visualizing the outputs of the phrase induction module showed that our model is able to learn approximate phrase-level structural knowledge without any annotation. 4 authors · Jun 4, 2019
- Understanding and Mitigating Tokenization Bias in Language Models State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model. 4 authors · Jun 24, 2024
1 On Meta-Prompting Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs. 4 authors · Dec 11, 2023 1
1 Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting Language models have the ability to perform in-context learning (ICL), allowing them to flexibly adapt their behavior based on context. This contrasts with in-weights learning, where information is statically encoded in model parameters from iterated observations of the data. Despite this apparent ability to learn in-context, language models are known to struggle when faced with unseen or rarely seen tokens. Hence, we study structural in-context learning, which we define as the ability of a model to execute in-context learning on arbitrary tokens -- so called because the model must generalize on the basis of e.g. sentence structure or task structure, rather than semantic content encoded in token embeddings. An ideal model would be able to do both: flexibly deploy in-weights operations (in order to robustly accommodate ambiguous or unknown contexts using encoded semantic information) and structural in-context operations (in order to accommodate novel tokens). We study structural in-context algorithms in a simple part-of-speech setting using both practical and toy models. We find that active forgetting, a technique that was recently introduced to help models generalize to new languages, forces models to adopt structural in-context learning solutions. Finally, we introduce temporary forgetting, a straightforward extension of active forgetting that enables one to control how much a model relies on in-weights vs. in-context solutions. Importantly, temporary forgetting allows us to induce a dual process strategy where in-context and in-weights solutions coexist within a single model. 4 authors · May 28, 2024
- Mimetic Initialization Helps State Space Models Learn to Recall Recent work has shown that state space models such as Mamba are significantly worse than Transformers on recall-based tasks due to the fact that their state size is constant with respect to their input sequence length. But in practice, state space models have fairly large state sizes, and we conjecture that they should be able to perform much better at these tasks than previously reported. We investigate whether their poor copying and recall performance could be due in part to training difficulties rather than fundamental capacity constraints. Based on observations of their "attention" maps, we propose a structured initialization technique that allows state space layers to more readily mimic attention. Across a variety of architecture settings, our initialization makes it substantially easier for Mamba to learn to copy and do associative recall from scratch. 5 authors · Oct 14, 2024
6 Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM. 4 authors · Jun 28, 2024 4
- Guided Stream of Search: Learning to Better Search with Language Models via Optimal Path Guidance While language models have demonstrated impressive capabilities across a range of tasks, they still struggle with tasks that require complex planning and reasoning. Recent studies have proposed training language models on search processes rather than optimal solutions, resulting in better generalization performance even though search processes are noisy and even suboptimal. However, these studies overlook the value of optimal solutions, which can serve as step-by-step landmarks to guide more effective search. In this work, we explore how to leverage optimal solutions to enhance the search and planning abilities of language models. To this end, we propose guided stream of search (GSoS), which seamlessly incorporates optimal solutions into the self-generation process in a progressive manner, producing high-quality search trajectories. These trajectories are then distilled into the pre-trained model via supervised fine-tuning. Our approach significantly enhances the search and planning abilities of language models on Countdown, a simple yet challenging mathematical reasoning task. Notably, combining our method with RL fine-tuning yields further improvements, whereas previous supervised fine-tuning methods do not benefit from RL. Furthermore, our approach exhibits greater effectiveness than leveraging optimal solutions in the form of subgoal rewards. 3 authors · Oct 3, 2024
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
- InstUPR : Instruction-based Unsupervised Passage Reranking with Large Language Models This paper introduces InstUPR, an unsupervised passage reranking method based on large language models (LLMs). Different from existing approaches that rely on extensive training with query-document pairs or retrieval-specific instructions, our method leverages the instruction-following capabilities of instruction-tuned LLMs for passage reranking without any additional fine-tuning. To achieve this, we introduce a soft score aggregation technique and employ pairwise reranking for unsupervised passage reranking. Experiments on the BEIR benchmark demonstrate that InstUPR outperforms unsupervised baselines as well as an instruction-tuned reranker, highlighting its effectiveness and superiority. Source code to reproduce all experiments is open-sourced at https://github.com/MiuLab/InstUPR 2 authors · Mar 25, 2024
- Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities. Effectively leveraging this potential for complex tasks hinges crucially on improving their ability to use tools. Synthesizing tool use data by simulating the real world is an effective approach. Nevertheless, our investigation reveals that training gains significantly decay as the scale of these data increases. The primary factor is the model's poor performance (a.k.a deficiency) in complex scenarios, which hinders learning from data using SFT. Driven by this objective, we propose an iterative reinforced fine-tuning strategy to continually guide the model to alleviate it. Specifically, we first identify deficiency-related data based on feedback from the policy model, then perform a Monte Carlo Tree Search to collect fine-grained preference pairs to pinpoint deficiencies. Subsequently, we update the policy model using preference optimization to align with ground truth and misalign with deficiencies. This process can be iterated. Moreover, before the iteration, we propose an easy-to-hard warm-up SFT strategy to facilitate learning from challenging data. The experiments demonstrate our models go beyond the same parametric models, outperforming many larger open-source and closed-source models. Additionally, it has achieved notable training gains in complex tool use scenarios. 9 authors · Jan 14
1 BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting The BLOOM model is a large open-source multilingual language model capable of zero-shot learning, but its pretraining was limited to 46 languages. To improve its zero-shot performance on unseen languages, it is desirable to adapt BLOOM, but previous works have only explored adapting small language models. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling/. 14 authors · Dec 19, 2022
- Parallel Structures in Pre-training Data Yield In-Context Learning Pre-trained language models (LMs) are capable of in-context learning (ICL): they can adapt to a task with only a few examples given in the prompt without any parameter update. However, it is unclear where this capability comes from as there is a stark distribution shift between pre-training text and ICL prompts. In this work, we study what patterns of the pre-training data contribute to ICL. We find that LMs' ICL ability depends on parallel structures in the pre-training data -- pairs of phrases following similar templates in the same context window. Specifically, we detect parallel structures by checking whether training on one phrase improves prediction of the other, and conduct ablation experiments to study their effect on ICL. We show that removing parallel structures in the pre-training data reduces LMs' ICL accuracy by 51% (vs 2% from random ablation). This drop persists even when excluding common patterns such as n-gram repetitions and long-range dependency, showing the diversity and generality of parallel structures. A closer look at the detected parallel structures indicates that they cover diverse linguistic tasks and span long distances in the data. 5 authors · Feb 19, 2024
- Unveiling Key Aspects of Fine-Tuning in Sentence Embeddings: A Representation Rank Analysis The latest advancements in unsupervised learning of sentence embeddings predominantly involve employing contrastive learning-based (CL-based) fine-tuning over pre-trained language models. In this study, we analyze the latest sentence embedding methods by adopting representation rank as the primary tool of analysis. We first define Phase 1 and Phase 2 of fine-tuning based on when representation rank peaks. Utilizing these phases, we conduct a thorough analysis and obtain essential findings across key aspects, including alignment and uniformity, linguistic abilities, and correlation between performance and rank. For instance, we find that the dynamics of the key aspects can undergo significant changes as fine-tuning transitions from Phase 1 to Phase 2. Based on these findings, we experiment with a rank reduction (RR) strategy that facilitates rapid and stable fine-tuning of the latest CL-based methods. Through empirical investigations, we showcase the efficacy of RR in enhancing the performance and stability of five state-of-the-art sentence embedding methods. 5 authors · May 18, 2024
- Scattered or Connected? An Optimized Parameter-efficient Tuning Approach for Information Retrieval Pre-training and fine-tuning have achieved significant advances in the information retrieval (IR). A typical approach is to fine-tune all the parameters of large-scale pre-trained models (PTMs) on downstream tasks. As the model size and the number of tasks increase greatly, such approach becomes less feasible and prohibitively expensive. Recently, a variety of parameter-efficient tuning methods have been proposed in natural language processing (NLP) that only fine-tune a small number of parameters while still attaining strong performance. Yet there has been little effort to explore parameter-efficient tuning for IR. In this work, we first conduct a comprehensive study of existing parameter-efficient tuning methods at both the retrieval and re-ranking stages. Unlike the promising results in NLP, we find that these methods cannot achieve comparable performance to full fine-tuning at both stages when updating less than 1\% of the original model parameters. More importantly, we find that the existing methods are just parameter-efficient, but not learning-efficient as they suffer from unstable training and slow convergence. To analyze the underlying reason, we conduct a theoretical analysis and show that the separation of the inserted trainable modules makes the optimization difficult. To alleviate this issue, we propose to inject additional modules alongside the PTM to make the original scattered modules connected. In this way, all the trainable modules can form a pathway to smooth the loss surface and thus help stabilize the training process. Experiments at both retrieval and re-ranking stages show that our method outperforms existing parameter-efficient methods significantly, and achieves comparable or even better performance over full fine-tuning. 5 authors · Aug 21, 2022
- Chain-of-Instructions: Compositional Instruction Tuning on Large Language Models Fine-tuning large language models (LLMs) with a collection of large and diverse instructions has improved the model's generalization to different tasks, even for unseen tasks. However, most existing instruction datasets include only single instructions, and they struggle to follow complex instructions composed of multiple subtasks (Wang et al., 2023a). In this work, we propose a novel concept of compositional instructions called chain-of-instructions (CoI), where the output of one instruction becomes an input for the next like a chain. Unlike the conventional practice of solving single instruction tasks, our proposed method encourages a model to solve each subtask step by step until the final answer is reached. CoI-tuning (i.e., fine-tuning with CoI instructions) improves the model's ability to handle instructions composed of multiple subtasks. CoI-tuned models also outperformed baseline models on multilingual summarization, demonstrating the generalizability of CoI models on unseen composite downstream tasks. 7 authors · Feb 18, 2024 2
2 A Latent Variable Model Approach to PMI-based Word Embeddings Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space. 5 authors · Feb 11, 2015
3 ByT5: Towards a token-free future with pre-trained byte-to-byte models Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. 8 authors · May 28, 2021
- WinoDict: Probing language models for in-context word acquisition We introduce a new in-context learning paradigm to measure Large Language Models' (LLMs) ability to learn novel words during inference. In particular, we rewrite Winograd-style co-reference resolution problems by replacing the key concept word with a synthetic but plausible word that the model must understand to complete the task. Solving this task requires the model to make use of the dictionary definition of the new word given in the prompt. This benchmark addresses word acquisition, one important aspect of the diachronic degradation known to afflict LLMs. As LLMs are frozen in time at the moment they are trained, they are normally unable to reflect the way language changes over time. We show that the accuracy of LLMs compared to the original Winograd tasks decreases radically in our benchmark, thus identifying a limitation of current models and providing a benchmark to measure future improvements in LLMs ability to do in-context learning. 4 authors · Sep 25, 2022
- Aggretriever: A Simple Approach to Aggregate Textual Representations for Robust Dense Passage Retrieval Pre-trained language models have been successful in many knowledge-intensive NLP tasks. However, recent work has shown that models such as BERT are not ``structurally ready'' to aggregate textual information into a [CLS] vector for dense passage retrieval (DPR). This ``lack of readiness'' results from the gap between language model pre-training and DPR fine-tuning. Previous solutions call for computationally expensive techniques such as hard negative mining, cross-encoder distillation, and further pre-training to learn a robust DPR model. In this work, we instead propose to fully exploit knowledge in a pre-trained language model for DPR by aggregating the contextualized token embeddings into a dense vector, which we call agg*. By concatenating vectors from the [CLS] token and agg*, our Aggretriever model substantially improves the effectiveness of dense retrieval models on both in-domain and zero-shot evaluations without introducing substantial training overhead. Code is available at https://github.com/castorini/dhr 3 authors · Jul 31, 2022
20 Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models In this technical report, we introduce the training methodologies implemented in the development of Skywork-MoE, a high-performance mixture-of-experts (MoE) large language model (LLM) with 146 billion parameters and 16 experts. It is initialized from the pre-existing dense checkpoints of our Skywork-13B model. We explore the comparative effectiveness of upcycling versus training from scratch initializations. Our findings suggest that the choice between these two approaches should consider both the performance of the existing dense checkpoints and the MoE training budget. We highlight two innovative techniques: gating logit normalization, which improves expert diversification, and adaptive auxiliary loss coefficients, allowing for layer-specific adjustment of auxiliary loss coefficients. Our experimental results validate the effectiveness of these methods. Leveraging these techniques and insights, we trained our upcycled Skywork-MoE on a condensed subset of our SkyPile corpus. The evaluation results demonstrate that our model delivers strong performance across a wide range of benchmarks. 16 authors · Jun 2, 2024 10
1 Training a T5 Using Lab-sized Resources Training large neural language models on large datasets is resource- and time-intensive. These requirements create a barrier to entry, where those with fewer resources cannot build competitive models. This paper presents various techniques for making it possible to (a) train a large language model using resources that a modest research lab might have, and (b) train it in a reasonable amount of time. We provide concrete recommendations for practitioners, which we illustrate with a case study: a T5 model for Danish, the first for this language. 2 authors · Aug 25, 2022
1 The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning No free lunch theorems for supervised learning state that no learner can solve all problems or that all learners achieve exactly the same accuracy on average over a uniform distribution on learning problems. Accordingly, these theorems are often referenced in support of the notion that individual problems require specially tailored inductive biases. While virtually all uniformly sampled datasets have high complexity, real-world problems disproportionately generate low-complexity data, and we argue that neural network models share this same preference, formalized using Kolmogorov complexity. Notably, we show that architectures designed for a particular domain, such as computer vision, can compress datasets on a variety of seemingly unrelated domains. Our experiments show that pre-trained and even randomly initialized language models prefer to generate low-complexity sequences. Whereas no free lunch theorems seemingly indicate that individual problems require specialized learners, we explain how tasks that often require human intervention such as picking an appropriately sized model when labeled data is scarce or plentiful can be automated into a single learning algorithm. These observations justify the trend in deep learning of unifying seemingly disparate problems with an increasingly small set of machine learning models. 4 authors · Apr 11, 2023
- From Receptive to Productive: Learning to Use Confusing Words through Automatically Selected Example Sentences Knowing how to use words appropriately has been a key to improving language proficiency. Previous studies typically discuss how students learn receptively to select the correct candidate from a set of confusing words in the fill-in-the-blank task where specific context is given. In this paper, we go one step further, assisting students to learn to use confusing words appropriately in a productive task: sentence translation. We leverage the GiveMeExample system, which suggests example sentences for each confusing word, to achieve this goal. In this study, students learn to differentiate the confusing words by reading the example sentences, and then choose the appropriate word(s) to complete the sentence translation task. Results show students made substantial progress in terms of sentence structure. In addition, highly proficient students better managed to learn confusing words. In view of the influence of the first language on learners, we further propose an effective approach to improve the quality of the suggested sentences. 4 authors · Jun 6, 2019
- C3: Continued Pretraining with Contrastive Weak Supervision for Cross Language Ad-Hoc Retrieval Pretrained language models have improved effectiveness on numerous tasks, including ad-hoc retrieval. Recent work has shown that continuing to pretrain a language model with auxiliary objectives before fine-tuning on the retrieval task can further improve retrieval effectiveness. Unlike monolingual retrieval, designing an appropriate auxiliary task for cross-language mappings is challenging. To address this challenge, we use comparable Wikipedia articles in different languages to further pretrain off-the-shelf multilingual pretrained models before fine-tuning on the retrieval task. We show that our approach yields improvements in retrieval effectiveness. 5 authors · Apr 25, 2022
- Super Tiny Language Models The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods collectively reduce the parameter count by 90% to 95% compared to traditional models while maintaining competitive performance. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives, targeting models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications. 6 authors · May 23, 2024 2
2 From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning Large Language Models (LLMs) have achieved remarkable success, demonstrating powerful instruction-following capabilities across diverse tasks. Instruction fine-tuning is critical in enabling LLMs to align with user intentions and effectively follow instructions. In this work, we investigate how instruction fine-tuning modifies pre-trained models, focusing on two perspectives: instruction recognition and knowledge evolution. To study the behavior shift of LLMs, we employ a suite of local and global explanation methods, including a gradient-based approach for input-output attribution and techniques for interpreting patterns and concepts in self-attention and feed-forward layers. Our findings reveal three significant impacts of instruction fine-tuning: 1) It empowers LLMs to better recognize the instruction parts from user prompts, thereby facilitating high-quality response generation and addressing the ``lost-in-the-middle'' issue observed in pre-trained models; 2) It aligns the knowledge stored in feed-forward layers with user-oriented tasks, exhibiting minimal shifts across linguistic levels. 3) It facilitates the learning of word-word relations with instruction verbs through the self-attention mechanism, particularly in the lower and middle layers, indicating enhanced recognition of instruction words. These insights contribute to a deeper understanding of the behavior shifts in LLMs after instruction fine-tuning and lay the groundwork for future research aimed at interpreting and optimizing LLMs for various applications. We will release our code and data soon. 7 authors · Sep 30, 2023
- Mapping 'when'-clauses in Latin American and Caribbean languages: an experiment in subtoken-based typology Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character n-grams and English when. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination. 1 authors · Apr 28, 2024
1 Retrofitting Word Vectors to Semantic Lexicons Vector space word representations are learned from distributional information of words in large corpora. Although such statistics are semantically informative, they disregard the valuable information that is contained in semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database. This paper proposes a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed. Evaluated on a battery of standard lexical semantic evaluation tasks in several languages, we obtain substantial improvements starting with a variety of word vector models. Our refinement method outperforms prior techniques for incorporating semantic lexicons into the word vector training algorithms. 6 authors · Nov 15, 2014
- Learning Rich Representation of Keyphrases from Text In this work, we explore how to train task-specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 8.16 points in F1) over SOTA, when the LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks. 4 authors · Dec 15, 2021
- Pre-trained Models for Natural Language Processing: A Survey Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 6 authors · Mar 18, 2020
1 Advancing State of the Art in Language Modeling Generalization is arguably the most important goal of statistical language modeling research. Publicly available benchmarks and papers published with an open-source code have been critical to advancing the field. However, it is often very difficult, and sometimes even impossible, to reproduce the results fully as reported in publications. In this paper, we propose a simple framework that should help advance the state of the art in language modeling in terms of generalization. We propose to publish not just the code, but also probabilities on dev and test sets with future publications so that one can easily add the new model into an ensemble. This has crucial advantages: it is much easier to determine whether a newly proposed model is actually complementary to the current baseline. Therefore, instead of inventing new names for the old tricks, the scientific community can advance faster. Finally, this approach promotes diversity of ideas: one does not need to create an individual model that is the new state of the art to attract attention; it will be sufficient to develop a new model that learns patterns which other models do not. Thus, even a suboptimal model can be found to have value. Remarkably, our approach has yielded new state-of-the-art results across various language modeling benchmarks up to 10%. 2 authors · Nov 28, 2023 1
10 Confidence Regulation Neurons in Language Models Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences. 7 authors · Jun 23, 2024 1
10 Challenges with unsupervised LLM knowledge discovery We show that existing unsupervised methods on large language model (LLM) activations do not discover knowledge -- instead they seem to discover whatever feature of the activations is most prominent. The idea behind unsupervised knowledge elicitation is that knowledge satisfies a consistency structure, which can be used to discover knowledge. We first prove theoretically that arbitrary features (not just knowledge) satisfy the consistency structure of a particular leading unsupervised knowledge-elicitation method, contrast-consistent search (Burns et al. - arXiv:2212.03827). We then present a series of experiments showing settings in which unsupervised methods result in classifiers that do not predict knowledge, but instead predict a different prominent feature. We conclude that existing unsupervised methods for discovering latent knowledge are insufficient, and we contribute sanity checks to apply to evaluating future knowledge elicitation methods. Conceptually, we hypothesise that the identification issues explored here, e.g. distinguishing a model's knowledge from that of a simulated character's, will persist for future unsupervised methods. 6 authors · Dec 15, 2023 1