new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 3

MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task

Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.

Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction

In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, f-distill, etc, inside a theory-driven framework which we name the \emph{Uni-Instruct}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the f-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded f-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded f-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \emph{1.46} for unconditional generation and \emph{1.38} for conditional generation. On the ImageNet-64times 64 generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \emph{1.02}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.

Continuous-Multiple Image Outpainting in One-Step via Positional Query and A Diffusion-based Approach

Image outpainting aims to generate the content of an input sub-image beyond its original boundaries. It is an important task in content generation yet remains an open problem for generative models. This paper pushes the technical frontier of image outpainting in two directions that have not been resolved in literature: 1) outpainting with arbitrary and continuous multiples (without restriction), and 2) outpainting in a single step (even for large expansion multiples). Moreover, we develop a method that does not depend on a pre-trained backbone network, which is in contrast commonly required by the previous SOTA outpainting methods. The arbitrary multiple outpainting is achieved by utilizing randomly cropped views from the same image during training to capture arbitrary relative positional information. Specifically, by feeding one view and positional embeddings as queries, we can reconstruct another view. At inference, we generate images with arbitrary expansion multiples by inputting an anchor image and its corresponding positional embeddings. The one-step outpainting ability here is particularly noteworthy in contrast to previous methods that need to be performed for N times to obtain a final multiple which is N times of its basic and fixed multiple. We evaluate the proposed approach (called PQDiff as we adopt a diffusion-based generator as our embodiment, under our proposed Positional Query scheme) on public benchmarks, demonstrating its superior performance over state-of-the-art approaches. Specifically, PQDiff achieves state-of-the-art FID scores on the Scenery (21.512), Building Facades (25.310), and WikiArts (36.212) datasets. Furthermore, under the 2.25x, 5x and 11.7x outpainting settings, PQDiff only takes 40.6\%, 20.3\% and 10.2\% of the time of the benchmark state-of-the-art (SOTA) method.

COS(M+O)S: Curiosity and RL-Enhanced MCTS for Exploring Story Space via Language Models

We present COS(M+O)S, a System 2-inspired framework for open-ended plot development that systematically explores the vast space of possible story expansions, enabling a 3B-parameter language model to approach the plot quality of a 70B model on select short-story tasks. The method accomplishes this by combining Monte Carlo Tree Search (MCTS), guided by a step-level value model that rewards moderate surprisal (curiosity) while penalizing incoherence, and Odds Ratio Preference Optimization (ORPO) to fine-tune the policy on high-value plot expansions. This iterative reinforcement learning loop systematically explores multiple candidate plot branches, backpropagates quality signals, and adapts the policy for faster convergence, notably shifting the policy from puzzle-based Chain-of-Thought to more character-driven storytelling. In small-scale tests with short-story prompts, 67%-77% of participants favored COS(M+O)S's highest-rated expansions over lower-rated ones, suggesting that our learned value function aligns. GPT-4o ratings further show that COS(M+O)S surpasses naive single-pass decoding from Llama 3.2 3B by 0.59 SD, coming within 0.06 SD of Llama 3.1 70B (no significant difference, p=0.93). Pairwise comparisons with o1 place COS(M+O)S 1.5 SD above the 3B baseline and find no statistically significant gap from 70B. Nevertheless, absolute story quality remains modest, constrained by the small model's capacity and limited training data.

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

CPL: Critical Plan Step Learning Boosts LLM Generalization in Reasoning Tasks

Post-training, particularly reinforcement learning (RL) using self-play-generated data, has become a new learning paradigm for large language models (LLMs). However, scaling RL to develop a general reasoner remains a research challenge, as existing methods focus on task-specific reasoning without adequately addressing generalization across a broader range of tasks. Moreover, unlike traditional RL with limited action space, LLMs operate in an infinite space, making it crucial to search for valuable and diverse strategies to solve problems effectively. To address this, we propose searching within the action space on high-level abstract plans to enhance model generalization and introduce Critical Plan Step Learning (CPL), comprising: 1) searching on plan, using Monte Carlo Tree Search (MCTS) to explore diverse plan steps in multi-step reasoning tasks, and 2) learning critical plan steps through Step-level Advantage Preference Optimization (Step-APO), which integrates advantage estimates for step preference obtained via MCTS into Direct Preference Optimization (DPO). This combination helps the model effectively learn critical plan steps, enhancing both reasoning capabilities and generalization. Experimental results demonstrate that our method, trained exclusively on GSM8K and MATH, not only significantly improves performance on GSM8K (+10.5%) and MATH (+6.5%), but also enhances out-of-domain reasoning benchmarks, such as HumanEval (+12.2%), GPQA (+8.6%), ARC-C (+4.0%), MMLU-STEM (+2.2%), and BBH (+1.8%).

Non-Sequential Graph Script Induction via Multimedia Grounding

Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating "branching". In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.

Training LLM-Based Agents with Synthetic Self-Reflected Trajectories and Partial Masking

Autonomous agents, which perceive environments and take actions to achieve goals, have become increasingly feasible with the advancements in large language models (LLMs). However, current powerful agents often depend on sophisticated prompt engineering combined with closed-source LLMs like GPT-4. Although training open-source LLMs using expert trajectories from teacher models has yielded some improvements in agent capabilities, this approach still faces limitations such as performance plateauing and error propagation. To mitigate these challenges, we propose STeP, a novel method for improving LLM-based agent training. We synthesize self-reflected trajectories that include reflections and corrections of error steps, which enhance the effectiveness of LLM agents in learning from teacher models, enabling them to become agents capable of self-reflecting and correcting. We also introduce partial masking strategy that prevents the LLM from internalizing incorrect or suboptimal steps. Experiments demonstrate that our method improves agent performance across three representative tasks: ALFWorld, WebShop, and SciWorld. For the open-source model LLaMA2-7B-Chat, when trained using self-reflected trajectories constructed with Qwen1.5-110B-Chat as the teacher model, it achieves comprehensive improvements with less training data compared to agents trained exclusively on expert trajectories.

ACE-Step: A Step Towards Music Generation Foundation Model

We introduce ACE-Step, a novel open-source foundation model for music generation that overcomes key limitations of existing approaches and achieves state-of-the-art performance through a holistic architectural design. Current methods face inherent trade-offs between generation speed, musical coherence, and controllability. For example, LLM-based models (e.g. Yue, SongGen) excel at lyric alignment but suffer from slow inference and structural artifacts. Diffusion models (e.g. DiffRhythm), on the other hand, enable faster synthesis but often lack long-range structural coherence. ACE-Step bridges this gap by integrating diffusion-based generation with Sana's Deep Compression AutoEncoder (DCAE) and a lightweight linear transformer. It also leverages MERT and m-hubert to align semantic representations (REPA) during training, allowing rapid convergence. As a result, our model synthesizes up to 4 minutes of music in just 20 seconds on an A100 GPU-15x faster than LLM-based baselines-while achieving superior musical coherence and lyric alignment across melody, harmony, and rhythm metrics. Moreover, ACE-Step preserves fine-grained acoustic details, enabling advanced control mechanisms such as voice cloning, lyric editing, remixing, and track generation (e.g. lyric2vocal, singing2accompaniment). Rather than building yet another end-to-end text-to-music pipeline, our vision is to establish a foundation model for music AI: a fast, general-purpose, efficient yet flexible architecture that makes it easy to train subtasks on top of it. This paves the way for the development of powerful tools that seamlessly integrate into the creative workflows of music artists, producers, and content creators. In short, our goal is to build a stable diffusion moment for music. The code, the model weights and the demo are available at: https://ace-step.github.io/.

RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold

Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data doubles the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of synthetic data by 8 times. We show that training on per-step negatives can help to unlearn spurious correlations in the positive data, and is equivalent to advantage-weighted reinforcement learning (RL), implying that it inherits robustness benefits of RL over imitating positive data alone.

What Are Step-Level Reward Models Rewarding? Counterintuitive Findings from MCTS-Boosted Mathematical Reasoning

Step-level reward models (SRMs) can significantly enhance mathematical reasoning performance through process supervision or step-level preference alignment based on reinforcement learning. The performance of SRMs is pivotal, as they serve as critical guidelines, ensuring that each step in the reasoning process is aligned with desired outcomes. Recently, AlphaZero-like methods, where Monte Carlo Tree Search (MCTS) is employed for automatic step-level preference annotation, have proven particularly effective. However, the precise mechanisms behind the success of SRMs remain largely unexplored. To address this gap, this study delves into the counterintuitive aspects of SRMs, particularly focusing on MCTS-based approaches. Our findings reveal that the removal of natural language descriptions of thought processes has minimal impact on the efficacy of SRMs. Furthermore, we demonstrate that SRMs are adept at assessing the complex logical coherence present in mathematical language while having difficulty in natural language. These insights provide a nuanced understanding of the core elements that drive effective step-level reward modeling in mathematical reasoning. By shedding light on these mechanisms, this study offers valuable guidance for developing more efficient and streamlined SRMs, which can be achieved by focusing on the crucial parts of mathematical reasoning.

Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning

We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process inspired by the successful strategy employed by AlphaZero. Our work leverages Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals. To enhance consistency in intermediate steps, we combine outcome validation and stepwise self-evaluation, continually updating the quality assessment of newly generated data. The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data. Theoretical analysis reveals the importance of using on-policy sampled data for successful self-improving. Extensive evaluations on various arithmetic and commonsense reasoning tasks demonstrate remarkable performance improvements over existing models. For instance, our approach outperforms the Mistral-7B Supervised Fine-Tuning (SFT) baseline on GSM8K, MATH, and ARC-C, with substantial increases in accuracy to 81.8% (+5.9%), 34.7% (+5.8%), and 76.4% (+15.8%), respectively. Additionally, our research delves into the training and inference compute tradeoff, providing insights into how our method effectively maximizes performance gains. Our code is publicly available at https://github.com/YuxiXie/MCTS-DPO.

The Impact of Reasoning Step Length on Large Language Models

Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.

BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning

Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.

MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data

Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at https://github.com/Eleanor-H/MUSTARD.

Unlock Predictable Scaling from Emergent Abilities

The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy through massive sampling in the decoding phase. We conduct quantitative investigations into the scaling law of task performance. Firstly, a strict task scaling law is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts. Secondly, underpinned by PassUntil, we observe concrete evidence of emergent abilities and ascertain that they are not in conflict with the continuity of performance improvement. Their semblance to break-through is that their scaling curve cannot be fitted by standard scaling law function. We then introduce a mathematical definition for the emergent abilities. Through the definition, we refute a prevalent ``multi-step reasoning hypothesis'' regarding the genesis of emergent abilities and propose a new hypothesis with a satisfying fit to the observed scaling curve.