1 Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses Recently, Anil et al. (2024) show that many-shot (up to hundreds of) demonstrations can jailbreak state-of-the-art LLMs by exploiting their long-context capability. Nevertheless, is it possible to use few-shot demonstrations to efficiently jailbreak LLMs within limited context sizes? While the vanilla few-shot jailbreaking may be inefficient, we propose improved techniques such as injecting special system tokens like [/INST] and employing demo-level random search from a collected demo pool. These simple techniques result in surprisingly effective jailbreaking against aligned LLMs (even with advanced defenses). For examples, our method achieves >80% (mostly >95%) ASRs on Llama-2-7B and Llama-3-8B without multiple restarts, even if the models are enhanced by strong defenses such as perplexity detection and/or SmoothLLM, which is challenging for suffix-based jailbreaking. In addition, we conduct comprehensive and elaborate (e.g., making sure to use correct system prompts) evaluations against other aligned LLMs and advanced defenses, where our method consistently achieves nearly 100% ASRs. Our code is available at https://github.com/sail-sg/I-FSJ. 6 authors · Jun 3, 2024
- UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems. 9 authors · Jan 24, 2024
- SDSAT: Accelerating LLM Inference through Speculative Decoding with Semantic Adaptive Tokens We propose an acceleration scheme for large language models (LLMs) through Speculative Decoding with Semantic Adaptive Tokens (SDSAT). The primary objective of this design is to enhance the LLM model's ability to generate draft tokens more accurately without compromising the model's accuracy. The core strategies involve: 1) Fine-tune the model by incorporating semantic adaptive tokens that possess flexible decoding capabilities without changing its structure, allowing them to generate high-quality draft tokens. 2) By employing a training method that does not affect the standard tokens, the model can acquire parallel decoding abilities atop its original framework with minimal training overhead. 3) We have designed the "two-step-draft-then-verify" generation strategies using both greedy search and nucleus sampling. Experiments conducted on the CodeLlama-13B and 7B models have yielded speed increases of over 3.5X and 3.0X, respectively. Please refer to https://github.com/hasuoshenyun/SDSAT. 2 authors · Mar 27, 2024 2
1 Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement. 7 authors · May 7, 2023 1
- Rethinking Token Reduction for State Space Models Recent advancements in State Space Models (SSMs) have attracted significant interest, particularly in models optimized for parallel training and handling long-range dependencies. Architectures like Mamba have scaled to billions of parameters with selective SSM. To facilitate broader applications using Mamba, exploring its efficiency is crucial. While token reduction techniques offer a straightforward post-training strategy, we find that applying existing methods directly to SSMs leads to substantial performance drops. Through insightful analysis, we identify the reasons for this failure and the limitations of current techniques. In response, we propose a tailored, unified post-training token reduction method for SSMs. Our approach integrates token importance and similarity, thus taking advantage of both pruning and merging, to devise a fine-grained intra-layer token reduction strategy. Extensive experiments show that our method improves the average accuracy by 5.7% to 13.1% on six benchmarks with Mamba-2 compared to existing methods, while significantly reducing computational demands and memory requirements. 9 authors · Oct 15, 2024