- VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion One-shot voice conversion (VC), which performs conversion across arbitrary speakers with only a single target-speaker utterance for reference, can be effectively achieved by speech representation disentanglement. Existing work generally ignores the correlation between different speech representations during training, which causes leakage of content information into the speaker representation and thus degrades VC performance. To alleviate this issue, we employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training, to achieve proper disentanglement of content, speaker and pitch representations, by reducing their inter-dependencies in an unsupervised manner. Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations for retaining source linguistic content and intonation variations, while capturing target speaker characteristics. In doing so, the proposed approach achieves higher speech naturalness and speaker similarity than current state-of-the-art one-shot VC systems. Our code, pre-trained models and demo are available at https://github.com/Wendison/VQMIVC. 6 authors · Jun 18, 2021
- AdaptVC: High Quality Voice Conversion with Adaptive Learning The goal of voice conversion is to transform the speech of a source speaker to sound like that of a reference speaker while preserving the original content. A key challenge is to extract disentangled linguistic content from the source and voice style from the reference. While existing approaches leverage various methods to isolate the two, a generalization still requires further attention, especially for robustness in zero-shot scenarios. In this paper, we achieve successful disentanglement of content and speaker features by tuning self-supervised speech features with adapters. The adapters are trained to dynamically encode nuanced features from rich self-supervised features, and the decoder fuses them to produce speech that accurately resembles the reference with minimal loss of content. Moreover, we leverage a conditional flow matching decoder with cross-attention speaker conditioning to further boost the synthesis quality and efficiency. Subjective and objective evaluations in a zero-shot scenario demonstrate that the proposed method outperforms existing models in speech quality and similarity to the reference speech. 6 authors · Jan 2, 2025
- Vec-Tok-VC+: Residual-enhanced Robust Zero-shot Voice Conversion with Progressive Constraints in a Dual-mode Training Strategy Zero-shot voice conversion (VC) aims to transform source speech into arbitrary unseen target voice while keeping the linguistic content unchanged. Recent VC methods have made significant progress, but semantic losses in the decoupling process as well as training-inference mismatch still hinder conversion performance. In this paper, we propose Vec-Tok-VC+, a novel prompt-based zero-shot VC model improved from Vec-Tok Codec, achieving voice conversion given only a 3s target speaker prompt. We design a residual-enhanced K-Means decoupler to enhance the semantic content extraction with a two-layer clustering process. Besides, we employ teacher-guided refinement to simulate the conversion process to eliminate the training-inference mismatch, forming a dual-mode training strategy. Furthermore, we design a multi-codebook progressive loss function to constrain the layer-wise output of the model from coarse to fine to improve speaker similarity and content accuracy. Objective and subjective evaluations demonstrate that Vec-Tok-VC+ outperforms the strong baselines in naturalness, intelligibility, and speaker similarity. 8 authors · Jun 14, 2024
- MeanVC: Lightweight and Streaming Zero-Shot Voice Conversion via Mean Flows Zero-shot voice conversion (VC) aims to transfer timbre from a source speaker to any unseen target speaker while preserving linguistic content. Growing application scenarios demand models with streaming inference capabilities. This has created a pressing need for models that are simultaneously fast, lightweight, and high-fidelity. However, existing streaming methods typically rely on either autoregressive (AR) or non-autoregressive (NAR) frameworks, which either require large parameter sizes to achieve strong performance or struggle to generalize to unseen speakers. In this study, we propose MeanVC, a lightweight and streaming zero-shot VC approach. MeanVC introduces a diffusion transformer with a chunk-wise autoregressive denoising strategy, combining the strengths of both AR and NAR paradigms for efficient streaming processing. By introducing mean flows, MeanVC regresses the average velocity field during training, enabling zero-shot VC with superior speech quality and speaker similarity in a single sampling step by directly mapping from the start to the endpoint of the flow trajectory. Additionally, we incorporate diffusion adversarial post-training to mitigate over-smoothing and further enhance speech quality. Experimental results demonstrate that MeanVC significantly outperforms existing zero-shot streaming VC systems, achieving superior conversion quality with higher efficiency and significantly fewer parameters. Audio demos and code are publicly available at https://aslp-lab.github.io/MeanVC. 7 authors · Oct 9, 2025
1 SEF-VC: Speaker Embedding Free Zero-Shot Voice Conversion with Cross Attention Zero-shot voice conversion (VC) aims to transfer the source speaker timbre to arbitrary unseen target speaker timbre, while keeping the linguistic content unchanged. Although the voice of generated speech can be controlled by providing the speaker embedding of the target speaker, the speaker similarity still lags behind the ground truth recordings. In this paper, we propose SEF-VC, a speaker embedding free voice conversion model, which is designed to learn and incorporate speaker timbre from reference speech via a powerful position-agnostic cross-attention mechanism, and then reconstruct waveform from HuBERT semantic tokens in a non-autoregressive manner. The concise design of SEF-VC enhances its training stability and voice conversion performance. Objective and subjective evaluations demonstrate the superiority of SEF-VC to generate high-quality speech with better similarity to target reference than strong zero-shot VC baselines, even for very short reference speeches. 4 authors · Dec 14, 2023
- O_O-VC: Synthetic Data-Driven One-to-One Alignment for Any-to-Any Voice Conversion Traditional voice conversion (VC) methods typically attempt to separate speaker identity and linguistic information into distinct representations, which are then combined to reconstruct the audio. However, effectively disentangling these factors remains challenging, often leading to information loss during training. In this paper, we propose a new approach that leverages synthetic speech data generated by a high-quality, pretrained multispeaker text-to-speech (TTS) model. Specifically, synthetic data pairs that share the same linguistic content but differ in speaker identity are used as input-output pairs to train the voice conversion model. This enables the model to learn a direct mapping between source and target voices, effectively capturing speaker-specific characteristics while preserving linguistic content. Additionally, we introduce a flexible training strategy for any-to-any voice conversion that generalizes well to unseen speakers and new languages, enhancing adaptability and performance in zero-shot scenarios. Our experiments show that our proposed method achieves a 16.35% relative reduction in word error rate and a 5.91% improvement in speaker cosine similarity, outperforming several state-of-the-art methods. Voice conversion samples can be accessed at: https://oovc-emnlp-2025.github.io/ 5 authors · Oct 10, 2025
- StableVC: Style Controllable Zero-Shot Voice Conversion with Conditional Flow Matching Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines. 7 authors · Dec 5, 2024
8 EmoReg: Directional Latent Vector Modeling for Emotional Intensity Regularization in Diffusion-based Voice Conversion The Emotional Voice Conversion (EVC) aims to convert the discrete emotional state from the source emotion to the target for a given speech utterance while preserving linguistic content. In this paper, we propose regularizing emotion intensity in the diffusion-based EVC framework to generate precise speech of the target emotion. Traditional approaches control the intensity of an emotional state in the utterance via emotion class probabilities or intensity labels that often lead to inept style manipulations and degradations in quality. On the contrary, we aim to regulate emotion intensity using self-supervised learning-based feature representations and unsupervised directional latent vector modeling (DVM) in the emotional embedding space within a diffusion-based framework. These emotion embeddings can be modified based on the given target emotion intensity and the corresponding direction vector. Furthermore, the updated embeddings can be fused in the reverse diffusion process to generate the speech with the desired emotion and intensity. In summary, this paper aims to achieve high-quality emotional intensity regularization in the diffusion-based EVC framework, which is the first of its kind work. The effectiveness of the proposed method has been shown across state-of-the-art (SOTA) baselines in terms of subjective and objective evaluations for the English and Hindi languages Demo samples are available at the following URL: \url{https://nirmesh-sony.github.io/EmoReg/}. 5 authors · Dec 29, 2024 1
- CoGenAV: Versatile Audio-Visual Representation Learning via Contrastive-Generative Synchronization The inherent synchronization between a speaker's lip movements, voice, and the underlying linguistic content offers a rich source of information for improving speech processing tasks, especially in challenging conditions where traditional audio-only systems falter. We introduce CoGenAV, a powerful and data-efficient model designed to learn versatile audio-visual representations applicable across a wide range of speech and audio-visual tasks. CoGenAV is trained by optimizing a dual objective derived from natural audio-visual synchrony, contrastive feature alignment and generative text prediction, using only 223 hours of labeled data from the LRS2 dataset. This contrastive-generative synchronization strategy effectively captures fundamental cross-modal correlations. We showcase the effectiveness and versatility of the learned CoGenAV representations on multiple benchmarks. When utilized for Audio-Visual Speech Recognition (AVSR) on LRS2, these representations contribute to achieving a state-of-the-art Word Error Rate (WER) of 1.27. They also enable strong performance in Visual Speech Recognition (VSR) with a WER of 22.0 on LRS2, and significantly improve performance in noisy environments by over 70%. Furthermore, CoGenAV representations benefit speech reconstruction tasks, boosting performance in Speech Enhancement and Separation, and achieve competitive results in audio-visual synchronization tasks like Active Speaker Detection (ASD). Our model will be open-sourced to facilitate further development and collaboration within both academia and industry. 4 authors · May 6, 2025
- Remastering Divide and Remaster: A Cinematic Audio Source Separation Dataset with Multilingual Support Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets. 3 authors · Jul 9, 2024
- Multimodal datasets: misogyny, pornography, and malignant stereotypes We have now entered the era of trillion parameter machine learning models trained on billion-sized datasets scraped from the internet. The rise of these gargantuan datasets has given rise to formidable bodies of critical work that has called for caution while generating these large datasets. These address concerns surrounding the dubious curation practices used to generate these datasets, the sordid quality of alt-text data available on the world wide web, the problematic content of the CommonCrawl dataset often used as a source for training large language models, and the entrenched biases in large-scale visio-linguistic models (such as OpenAI's CLIP model) trained on opaque datasets (WebImageText). In the backdrop of these specific calls of caution, we examine the recently released LAION-400M dataset, which is a CLIP-filtered dataset of Image-Alt-text pairs parsed from the Common-Crawl dataset. We found that the dataset contains, troublesome and explicit images and text pairs of rape, pornography, malign stereotypes, racist and ethnic slurs, and other extremely problematic content. We outline numerous implications, concerns and downstream harms regarding the current state of large scale datasets while raising open questions for various stakeholders including the AI community, regulators, policy makers and data subjects. 3 authors · Oct 5, 2021
1 Language Specific Knowledge: Do Models Know Better in X than in English? Code-switching is a common phenomenon of alternating between different languages in the same utterance, thought, or conversation. We posit that humans code-switch because they feel more comfortable talking about certain topics and domains in one language than another. With the rise of knowledge-intensive language models, we ask ourselves the next, natural question: Could models hold more knowledge on some topics in some language X? More importantly, could we improve reasoning by changing the language that reasoning is performed in? We coin the term Language Specific Knowledge (LSK) to represent this phenomenon. As ethnic cultures tend to develop alongside different languages, we employ culture-specific datasets (that contain knowledge about cultural and social behavioral norms). We find that language models can perform better when using chain-of-thought reasoning in some languages other than English, sometimes even better in low-resource languages. Paired with previous works showing that semantic similarity does not equate to representational similarity, we hypothesize that culturally specific texts occur more abundantly in corresponding languages, enabling specific knowledge to occur only in specific "expert" languages. Motivated by our initial results, we design a simple methodology called LSKExtractor to benchmark the language-specific knowledge present in a language model and, then, exploit it during inference. We show our results on various models and datasets, showing an average relative improvement of 10% in accuracy. Our research contributes to the open-source development of language models that are inclusive and more aligned with the cultural and linguistic contexts in which they are deployed. 3 authors · May 20, 2025 2
- Introducing L2M3, A Multilingual Medical Large Language Model to Advance Health Equity in Low-Resource Regions Addressing the imminent shortfall of 10 million health workers by 2030, predominantly in Low- and Middle-Income Countries (LMICs), this paper introduces an innovative approach that harnesses the power of Large Language Models (LLMs) integrated with machine translation models. This solution is engineered to meet the unique needs of Community Health Workers (CHWs), overcoming language barriers, cultural sensitivities, and the limited availability of medical dialog datasets. I have crafted a model that not only boasts superior translation capabilities but also undergoes rigorous fine-tuning on open-source datasets to ensure medical accuracy and is equipped with comprehensive safety features to counteract the risks of misinformation. Featuring a modular design, this approach is specifically structured for swift adaptation across various linguistic and cultural contexts, utilizing open-source components to significantly reduce healthcare operational costs. This strategic innovation markedly improves the accessibility and quality of healthcare services by providing CHWs with contextually appropriate medical knowledge and diagnostic tools. This paper highlights the transformative impact of this context-aware LLM, underscoring its crucial role in addressing the global healthcare workforce deficit and propelling forward healthcare outcomes in LMICs. 1 authors · Apr 11, 2024
- EICAP: Deep Dive in Assessment and Enhancement of Large Language Models in Emotional Intelligence through Multi-Turn Conversations Emotional Intelligence (EI) is a critical yet underexplored dimension in the development of human-aligned LLMs. To address this gap, we introduce a unified, psychologically grounded four-layer taxonomy of EI tailored for large language models (LLMs), encompassing emotional tracking, cause inference, appraisal, and emotionally appropriate response generation. Building on this framework, we present EICAP-Bench, a novel MCQ style multi-turn benchmark designed to evaluate EI capabilities in open-source LLMs across diverse linguistic and cultural contexts. We evaluate six LLMs: LLaMA3 (8B), LLaMA3-Instruct, Gemma (9B), Gemma-Instruct, Qwen2.5 (7B), and Qwen2.5-Instruct on EmoCap-Bench, identifying Qwen2.5-Instruct as the strongest baseline. To assess the potential for enhancing EI capabilities, we fine-tune both Qwen2.5-Base and Qwen2.5-Instruct using LoRA adapters on UltraChat (UC), a large-scale, instruction-tuned dialogue dataset, in both English and Arabic. Our statistical analysis reveals that among the five EI layers, only the Appraisal layer shows significant improvement through UC-based fine-tuning. These findings highlight the limitations of existing pretraining and instruction-tuning paradigms in equipping LLMs with deeper emotional reasoning and underscore the need for targeted data and modeling strategies for comprehensive EI alignment. 2 authors · Aug 8, 2025
- Contextual Cues in Machine Translation: Investigating the Potential of Multi-Source Input Strategies in LLMs and NMT Systems We explore the impact of multi-source input strategies on machine translation (MT) quality, comparing GPT-4o, a large language model (LLM), with a traditional multilingual neural machine translation (NMT) system. Using intermediate language translations as contextual cues, we evaluate their effectiveness in enhancing English and Chinese translations into Portuguese. Results suggest that contextual information significantly improves translation quality for domain-specific datasets and potentially for linguistically distant language pairs, with diminishing returns observed in benchmarks with high linguistic variability. Additionally, we demonstrate that shallow fusion, a multi-source approach we apply within the NMT system, shows improved results when using high-resource languages as context for other translation pairs, highlighting the importance of strategic context language selection. 3 authors · Mar 10, 2025
3 ViLBias: A Framework for Bias Detection using Linguistic and Visual Cues The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces ViLBias, a framework that leverages state of the art LLMs and VLMs to detect linguistic and visual biases in news content, addressing the limitations of traditional text-only approaches. Our contributions include a novel dataset pairing textual content with accompanying visuals from diverse news sources and a hybrid annotation framework, combining LLM-based annotations with human review to enhance quality while reducing costs and improving scalability. We evaluate the efficacy of LLMs and VLMs in identifying biases, revealing their strengths in detecting subtle framing and text-visual inconsistencies. Empirical analysis demonstrates that incorporating visual cues alongside text enhances bias detection accuracy by 3 to 5 %, showcasing the complementary strengths of LLMs in generative reasoning and Small Language Models (SLMs) in classification. This study offers a comprehensive exploration of LLMs and VLMs as tools for detecting multimodal biases in news content, highlighting both their potential and limitations. Our research paves the way for more robust, scalable, and nuanced approaches to media bias detection, contributing to the broader field of natural language processing and multimodal analysis. (The data and code will be made available for research purposes). 10 authors · Dec 22, 2024
- 3D-Speaker-Toolkit: An Open-Source Toolkit for Multimodal Speaker Verification and Diarization We introduce 3D-Speaker-Toolkit, an open-source toolkit for multimodal speaker verification and diarization, designed for meeting the needs of academic researchers and industrial practitioners. The 3D-Speaker-Toolkit adeptly leverages the combined strengths of acoustic, semantic, and visual data, seamlessly fusing these modalities to offer robust speaker recognition capabilities. The acoustic module extracts speaker embeddings from acoustic features, employing both fully-supervised and self-supervised learning approaches. The semantic module leverages advanced language models to comprehend the substance and context of spoken language, thereby augmenting the system's proficiency in distinguishing speakers through linguistic patterns. The visual module applies image processing technologies to scrutinize facial features, which bolsters the precision of speaker diarization in multi-speaker environments. Collectively, these modules empower the 3D-Speaker-Toolkit to achieve substantially improved accuracy and reliability in speaker-related tasks. With 3D-Speaker-Toolkit, we establish a new benchmark for multimodal speaker analysis. The toolkit also includes a handful of open-source state-of-the-art models and a large-scale dataset containing over 10,000 speakers. The toolkit is publicly available at https://github.com/modelscope/3D-Speaker. 11 authors · Mar 29, 2024
- Explaining How Transformers Use Context to Build Predictions Language Generation Models produce words based on the previous context. Although existing methods offer input attributions as explanations for a model's prediction, it is still unclear how prior words affect the model's decision throughout the layers. In this work, we leverage recent advances in explainability of the Transformer and present a procedure to analyze models for language generation. Using contrastive examples, we compare the alignment of our explanations with evidence of the linguistic phenomena, and show that our method consistently aligns better than gradient-based and perturbation-based baselines. Then, we investigate the role of MLPs inside the Transformer and show that they learn features that help the model predict words that are grammatically acceptable. Lastly, we apply our method to Neural Machine Translation models, and demonstrate that they generate human-like source-target alignments for building predictions. 4 authors · May 21, 2023
- GrammaMT: Improving Machine Translation with Grammar-Informed In-Context Learning We introduce GrammaMT, a grammatically-aware prompting approach for machine translation that uses Interlinear Glossed Text (IGT), a common form of linguistic description providing morphological and lexical annotations for source sentences. GrammaMT proposes three prompting strategies: gloss-shot, chain-gloss and model-gloss. All are training-free, requiring only a few examples that involve minimal effort to collect, and making them well-suited for low-resource setups. Experiments show that GrammaMT enhances translation performance on open-source instruction-tuned LLMs for various low- to high-resource languages across three benchmarks: (1) the largest IGT corpus, (2) the challenging 2023 SIGMORPHON Shared Task data over endangered languages, and (3) even in an out-of-domain setting with FLORES. Moreover, ablation studies reveal that leveraging gloss resources could substantially boost MT performance (by over 17 BLEU points) if LLMs accurately generate or access input sentence glosses. 4 authors · Oct 24, 2024
1 NER4all or Context is All You Need: Using LLMs for low-effort, high-performance NER on historical texts. A humanities informed approach Named entity recognition (NER) is a core task for historical research in automatically establishing all references to people, places, events and the like. Yet, do to the high linguistic and genre diversity of sources, only limited canonisation of spellings, the level of required historical domain knowledge, and the scarcity of annotated training data, established approaches to natural language processing (NLP) have been both extremely expensive and yielded only unsatisfactory results in terms of recall and precision. Our paper introduces a new approach. We demonstrate how readily-available, state-of-the-art LLMs significantly outperform two leading NLP frameworks, spaCy and flair, for NER in historical documents by seven to twentytwo percent higher F1-Scores. Our ablation study shows how providing historical context to the task and a bit of persona modelling that turns focus away from a purely linguistic approach are core to a successful prompting strategy. We also demonstrate that, contrary to our expectations, providing increasing numbers of examples in few-shot approaches does not improve recall or precision below a threshold of 16-shot. In consequence, our approach democratises access to NER for all historians by removing the barrier of scripting languages and computational skills required for established NLP tools and instead leveraging natural language prompts and consumer-grade tools and frontends. 12 authors · Feb 4, 2025 1
- A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval. 2 authors · Dec 19, 2018