new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

PropMolFlow: Property-guided Molecule Generation with Geometry-Complete Flow Matching

Molecule generation is advancing rapidly in chemical discovery and drug design. Flow matching methods have recently set the state of the art (SOTA) in unconditional molecule generation, surpassing score-based diffusion models. However, diffusion models still lead in property-guided generation. In this work, we introduce PropMolFlow, a novel approach for property-guided molecule generation based on geometry-complete SE(3)-equivariant flow matching. Integrating five different property embedding methods with a Gaussian expansion of scalar properties, PropMolFlow outperforms previous SOTA diffusion models in conditional molecule generation across various properties while preserving the stability and validity of the generated molecules, consistent with its unconditional counterpart. Additionally, it enables faster inference with significantly fewer time steps compared to baseline models. We highlight the importance of validating the properties of generated molecules through DFT calculations performed at the same level of theory as the training data. Specifically, our analysis identifies properties that require DFT validation and others where a pretrained SE(3) geometric vector perceptron regressors provide sufficiently accurate predictions on generated molecules. Furthermore, we introduce a new property metric designed to assess the model's ability to propose molecules with underrepresented property values, assessing its capacity for out-of-distribution generalization. Our findings reveal shortcomings in existing structural metrics, which mistakenly validate open-shell molecules or molecules with invalid valence-charge configurations, underscoring the need for improved evaluation frameworks. Overall, this work paves the way for developing targeted property-guided generation methods, enhancing the design of molecular generative models for diverse applications.

Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits

Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.

On the Higgs spectra of the 3-3-1 model with the sextet of scalars engendering the type II seesaw mechanism

In the 3-3-1 model with right-handed neutrinos, three triplets of scalars engender the correct sequence of symmetry breaking, SU(3)_C times SU(3)_L times U(1)_X rightarrow SU(3)_C times SU(2)_L times U(1)_Y rightarrow SU(3)_C times U(1)_{EM}, generating mass for all fermions, except neutrinos. Tiny neutrino masses may be achieved by adding one sextet of scalars to the original scalar content. As consequence, it emerges a very complex scalar sector, involving terms that violate lepton number explicitly, too. The main obstacle to the development of the phenomenology of such scenario is the knowledge of its spectrum of scalars since, now, there are 15 massive scalar particles on it. The proposal of this work is to do an exhaustive analysis of such scalar sector with lepton number being explicitly violated at low, electroweak and high energy scales by means of trilinear terms in the potential. The first case can be addressed analytically and, as a nice result, we have observed that the scalar content of such case is split into two categories: One belonging to the 331 energy scale and the other belonging to the EWSB energy scale, with the last recovering the well known THDM+triplet. For the other cases, the scalar sector can be addressed only numerically. Hence, we proposed a very general approach for the numerical study of the potential, avoiding simplifications that can make us reach conclusions without foundation. We show that, in the case of lepton number being explicitly violated at electroweak scale, it is possible to recover the same physics of the THDM+triplet, as the previous case. Among all the possibilities, we call the attention to one special case which generates the 3HDM+triplet scenario. For the last case, when lepton number is violated at high energy scale, the sextet become very massive and decouples from the original scalar content of the 3-3-1 model.

Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS

We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases.

More on the Weak Gravity Conjecture via Convexity of Charged Operators

The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.

A mechanism to generate varying speed of light via Higgs-dilaton coupling: Theory and cosmological applications

We allow the Higgs field Phi to interact with a dilaton field chi of the background spacetime via the coupling chi^2,Phi^daggerPhi. Upon spontaneous gauge symmetry breaking, the Higgs VEV becomes proportional to chi. While traditionally this linkage is employed to make the Planck mass and particle masses dependent on chi, we present an textit alternative mechanism: the Higgs VEV will be used to construct Planck's constant hbar and speed of light c. Specifically, each open set vicinity of a given point x^* on the spacetime manifold is equipped with a replica of the Glashow-Weinberg-Salam action operating with its own effective values of hbar_* and c_* per hbar_*proptochi^{-1/2}(x^*) and c_*proptochi^{1/2}(x^*), causing these ``fundamental constants'' to vary alongside the dynamical field chi. Moreover, in each open set around x^*, the prevailing value chi(x^*) determines the length and time scales for physical processes occurring in this region as lproptochi^{-1}(x^*) and tauproptochi^{-3/2}(x^*). This leads to an textit anisotropic relation tau^{-1}propto l^{-3/2} between the rate of clocks and the length of rods, resulting in a distinct set of novel physical phenomena. For late-time cosmology, the variation of c along the trajectory of light waves from distant supernovae towards the Earth-based observer necessitates modifications to the Lema\^itre redshift relation and the Hubble law. These modifications are capable of: (1) Accounting for the Pantheon Catalog of SNeIa through a declining speed of light in an expanding Einstein--de Sitter universe, thus avoiding the need for dark energy; (2) Revitalizing Blanchard-Douspis-Rowan-Robinson-Sarkar's CMB power spectrum analysis that bypassed dark energy [A&A 412, 35 (2003)]; and (3) Resolving the H_0 tension without requiring a dynamical dark energy component.

Black hole thermodynamics in Horndeski theories

We investigate thermodynamics of static and spherically symmetric black holes (BHs) in the Horndeski theories. Because of the presence of the higher-derivative interactions and the nonminimal derivative couplings of the scalar field, the standard Wald entropy formula may not be directly applicable. Hence, following the original formulation by Iyer and Wald, we obtain the differentials of the BH entropy and the total mass of the system in the Horndeski theories, which lead to the first-law of thermodynamics via the conservation of the Hamiltonian. Our formulation covers the case of the static and spherically symmetric BH solutions with the static scalar field and those with the linearly time-dependent scalar field in the shift-symmetric Horndeski theories. We then apply our results to explicit BH solutions in the Horndeski theories. In the case of the conventional scalar-tensor theories and the Einstein-scalar-Gauss-Bonnet theories, we recover the BH entropy obtained by the Wald entropy formula. In the shift-symmetric theories, in the case of the BH solutions with the static scalar field we show that the BH entropy follows the ordinary area law even in the presence of the nontrivial profile of the scalar field. On the other hand, in the case of the BH solutions where the scalar field linearly depends on time, i.e., the stealth Schwarzschild and Schwarzschild-(anti-) de Sitter solutions, the BH entropy also depends on the profile of the scalar field. By use of the entropy, we find that there exists some range of the parameters in which Schwarzschild-(AdS) BH with non-trivial scalar field is thermodynamically stable than Schwarzschild-(AdS) BH without scalar field in general relativity.

Cosmology with one galaxy?

Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star-formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2,000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allow our models to infer the value of Omega_{rm m}, at fixed Omega_{rm b}, with a sim10% precision, while no constraint can be placed on sigma_8. Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, zleq3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Omega_{rm m}. We believe that our results can be explained taking into account that changes in the value of Omega_{rm m}, or potentially Omega_{rm b}/Omega_{rm m}, affect the dark matter content of galaxies. That effect leaves a distinct signature in galaxy properties to the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.

Symmetries and Asymptotically Flat Space

The construction of a theory of quantum gravity is an outstanding problem that can benefit from better understanding the laws of nature that are expected to hold in regimes currently inaccessible to experiment. Such fundamental laws can be found by considering the classical counterparts of a quantum theory. For example, conservation laws in a quantum theory often stem from conservation laws of the corresponding classical theory. In order to construct such laws, this thesis is concerned with the interplay between symmetries and conservation laws of classical field theories and their application to asymptotically flat spacetimes. This work begins with an explanation of symmetries in field theories with a focus on variational symmetries and their associated conservation laws. Boundary conditions for general relativity are then formulated on three-dimensional asymptotically flat spacetimes at null infinity using the method of conformal completion. Conserved quantities related to asymptotic symmetry transformations are derived and their properties are studied. This is done in a manifestly coordinate independent manner. In a separate step a coordinate system is introduced, such that the results can be compared to existing literature. Next, asymptotically flat spacetimes which contain both future as well as past null infinity are considered. Asymptotic symmetries occurring at these disjoint regions of three-dimensional asymptotically flat spacetimes are linked and the corresponding conserved quantities are matched. Finally, it is shown how asymptotic symmetries lead to the notion of distinct Minkowski spaces that can be differentiated by conserved quantities.

GaussianProperty: Integrating Physical Properties to 3D Gaussians with LMMs

Estimating physical properties for visual data is a crucial task in computer vision, graphics, and robotics, underpinning applications such as augmented reality, physical simulation, and robotic grasping. However, this area remains under-explored due to the inherent ambiguities in physical property estimation. To address these challenges, we introduce GaussianProperty, a training-free framework that assigns physical properties of materials to 3D Gaussians. Specifically, we integrate the segmentation capability of SAM with the recognition capability of GPT-4V(ision) to formulate a global-local physical property reasoning module for 2D images. Then we project the physical properties from multi-view 2D images to 3D Gaussians using a voting strategy. We demonstrate that 3D Gaussians with physical property annotations enable applications in physics-based dynamic simulation and robotic grasping. For physics-based dynamic simulation, we leverage the Material Point Method (MPM) for realistic dynamic simulation. For robot grasping, we develop a grasping force prediction strategy that estimates a safe force range required for object grasping based on the estimated physical properties. Extensive experiments on material segmentation, physics-based dynamic simulation, and robotic grasping validate the effectiveness of our proposed method, highlighting its crucial role in understanding physical properties from visual data. Online demo, code, more cases and annotated datasets are available on https://Gaussian-Property.github.io{this https URL}.

Metastable Cosmological Constant and Gravitational Bubbles: Ultra-Late-Time Transitions in Modified Gravity

The observed cosmological constant may originate as the minimum value U_{min} of a scalar field potential, where the scalar field is frozen due to a large mass. If this vacuum is metastable, it may decay to a true vacuum either at present or in the future. Assuming its decay rate Gamma is comparable to the Hubble expansion rate H_0, we estimate the scale of true vacuum bubbles and analyze their evolution. We find that their initial formation scale is sub-millimeter and their tension causes rapid collapse if m gtrsim 1.7 cdot 10^{-3}, eV. For smaller masses, the bubbles expand at the speed of light. We extend our analysis to scalar-tensor theories with non-minimal coupling, finding that the nucleation scale of gravitational constant bubbles remains consistent with the sub-millimeter regime of General Relativity. The critical mass scale remains around 10^{-3},eV. A theoretical estimate at redshift z_{obs} sim 0.01 suggests an observable bubble radius of sim 50 Mpc, implying a gravitational transition triggered sim 300 Myr ago, with a present-day size approaching 100 Mpc. Additionally, we explore mass ranges (m < 10^{-3},eV) and non-minimal coupling xi ranges (10^{-8},eV^{2-n} - 10^{-1},eV^{2-n}) that lead to a variation Delta G/G_N within the 1%-7% range. We assume non-minimal coupling of the form F(phi)=1/kappa - xi phi^n, with kappa=8pi G_N and 2 leq n leq 9. Finally, we review various local physics or/and transition based proposed solutions to the Hubble tension, including ultra-late-time transitional models (z sim 0.01), screened fifth-force mechanisms, and the Lambda_{rm s}CDM model, which features a transition at z sim 2. We discuss observational hints supporting these scenarios and the theoretical challenges they face.

Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space

Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

Population Aware Diffusion for Time Series Generation

Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.

Mass-Radius Relationships for Solid Exoplanets

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.

Rescaled Einstein-Gauss-Bonnet Gravity Inflation

We study the inflationary phenomenology of a rescaled Einstein-Gauss-Bonnet gravity. In this framework, the gravitational constant of the Einstein-Hilbert term is rescaled due to effective terms active in the high curvature era. Basically, the total theory is an F(R,G,phi) theory with the Gauss-Bonnet part contributing only a non-minimal coupling to the scalar field, so it is a theory with string theory origins and with a non-trivial F(R) gravity part. The F(R) gravity part in the high curvature regime contributes only a rescaled Einstein-Hilbert term and thus the resulting theory is effectively a rescaled version of a standard Einstein-Gauss-Bonnet theory. We develop the formalism of rescaled Einstein-Gauss-Bonnet gravity, taking in account the GW170817 constraints on the gravitational wave speed. We show explicitly how the rescaled theory affects directly the primordial scalar and tensor perturbations, and how the slow-roll and observational indices of inflation are affected by the rescaling of the theory. We perform a thorough phenomenological analysis of several models of interest and we show that is it possible to obtain viable inflationary theories compatible with the latest Planck data. Also among the studied models there are cases that yield a relatively large blue tilted tensor spectral index and we demonstrate that these models can lead to detectable primordial gravitational waves in the future gravitational wave experiments. Some of the scenarios examined, for specific values of the reheating temperature may be detectable by SKA, LISA, BBO, DECIGO and the Einstein Telescope.

Star Formation Rates, Metallicities, and Stellar Masses on kpc-scales in TNG50

Integral field units (IFU) have extended our knowledge of galactic properties to kpc (or, sometimes, even smaller) patches of galaxies. These scales are where the physics driving galaxy evolution (feedback, chemical enrichment, etc.) take place. Quantifying the spatially-resolved properties of galaxies, both observationally and theoretically, is therefore critical to our understanding of galaxy evolution. To this end, we investigate spatially-resolved scaling relations within central galaxies (M_star>10^{9.0}) at z=0 in IllustrisTNG. We examine both the resolved star-forming main sequence (rSFMS) and the resolved mass-metallicity relation (rMZR) using 1~{rm kpc}times1~{rm kpc} maps of galaxies. We find that the rSFMS in IllustrisTNG is well-described by a power-law, but has some dependence on the host galaxy's mass. Conversely, the rMZR for IllustrisTNG can be described by a single power-law at low stellar mass surface density that flattens at high surface densities and is independent of host galaxy mass. We find quantitative agreement in both the rSFMS and rMZR with recent IFU observational campaigns. Furthermore, we argue that the rSFMS is an indirect result of the Schmidt-Kennicutt (SK) law and local gas fraction relation, which are both independent of host galaxy properties. Finally, we expand upon a localized leaky-box model to study the evolution of idealized spaxels and find that it provides a good description of these resolved relations. The degree of agreement, however, between idealized spaxels and simulated spaxels depends on the `net' outflow rate for the spaxel, and the observed scaling relations indicate a preference for a low net outflow rate.

The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models

We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index d n_s/dln k = 0.0062 pm 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (N_{rm eff} = 2.86 pm 0.13, which combined with external BBN data becomes N_{rm eff} = 2.89 pm 0.11), for non-zero neutrino masses (sum m_nu < 0.082 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (N_{rm idr} < 0.134), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline LambdaCDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.

Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data

Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.

A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions

Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.

Coherent Structures Governing Transport at Turbulent Interfaces

In an experiment on a turbulent jet, we detect interfacial turbulent layers in a frame that moves, on average, along with the \tnti. This significantly prolongs the observation time of scalar and velocity structures and enables the measurement of two types of Lagrangian coherent structures. One structure, the finite-time Lyapunov field (FTLE), quantifies advective transport barriers of fluid parcels while the other structure highlights barriers of diffusive momentum transport. These two complementary structures depend on large-scale and small-scale motion and are therefore associated with the growth of the turbulent region through engulfment or nibbling, respectively. We detect the \tnti\ from cluster analysis, where we divide the measured scalar field into four clusters. Not only the \tnti\ can be found this way, but also the next, internal, turbulent-turbulent interface. Conditional averages show that these interfaces are correlated with barriers of advective and diffusive transport when the Lagrangian integration time is smaller than the integral time scale. Diffusive structures decorrelate faster since they have a smaller timescale. Conditional averages of these structures at internal turbulent-turbulent interfaces show the same pattern with a more pronounced jump at the interface indicative of a shear layer. This is quite an unexpected outcome, as the internal interface is now defined not by the presence or absence of vorticity, but by conditional vorticity corresponding to two uniform concentration zones. The long-time diffusive momentum flux along Lagrangian paths represents the growth of the turbulent flow into the irrotational domain, a direct demonstration of nibbling. The diffusive flux parallel to the \tnti\ appears to be concentrated in a diffusive superlayer whose width is comparable with the Taylor microscale, which is relatively invariant in time.

Massive neutrinos and cosmic composition

Cosmological data probe massive neutrinos via their effects on the geometry of the Universe and the growth of structure, both of which are degenerate with the late-time expansion history. We clarify the nature of these degeneracies and the individual roles of both probes in neutrino mass inference. Geometry is strongly sensitive to neutrino masses: within LambdaCDM, the primary cosmic microwave background anisotropies alone impose that the matter fraction Omega_m must increase fivefold with increasing neutrino mass. Moreover, large-scale structure observables, like weak lensing of the CMB, are dimensionless and thus depend not on the matter density (as often quoted) but in fact the matter fraction. We explore the consequential impact of this distinction on the interplay between probes of structure, low-redshift distances, and CMB anisotropies. We derive constraints on the neutrino's masses independently from their suppression of structure and impact on geometry, showing that the latter is at least as important as the former. While the Dark Energy Spectroscopic Instrument's recent baryon acoustic oscillation data place stringent bounds largely deriving from their geometric incompatibility with massive neutrinos, all recent type Ia supernova datasets drive marginal preferences for nonzero neutrino masses because they prefer substantially larger matter fractions. Recent CMB lensing data, however, neither exclude neutrinos' suppression of structure nor constrain it strongly enough to discriminate between mass hierarchies. Current data thus evince not a need for modified dynamics of neutrino perturbations or structure growth but rather an inconsistent compatibility with massive neutrinos' impact on the expansion history. We identify two of DESI's measurements that strongly influence its constraints, and we also discuss neutrino mass measurements in models that alter the sound horizon.

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues

Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.