1 Towards Multimodal Sarcasm Detection (An _Obviously_ Perfect Paper) Sarcasm is often expressed through several verbal and non-verbal cues, e.g., a change of tone, overemphasis in a word, a drawn-out syllable, or a straight looking face. Most of the recent work in sarcasm detection has been carried out on textual data. In this paper, we argue that incorporating multimodal cues can improve the automatic classification of sarcasm. As a first step towards enabling the development of multimodal approaches for sarcasm detection, we propose a new sarcasm dataset, Multimodal Sarcasm Detection Dataset (MUStARD), compiled from popular TV shows. MUStARD consists of audiovisual utterances annotated with sarcasm labels. Each utterance is accompanied by its context of historical utterances in the dialogue, which provides additional information on the scenario where the utterance occurs. Our initial results show that the use of multimodal information can reduce the relative error rate of sarcasm detection by up to 12.9% in F-score when compared to the use of individual modalities. The full dataset is publicly available for use at https://github.com/soujanyaporia/MUStARD 6 authors · Jun 5, 2019
- An Innovative CGL-MHA Model for Sarcasm Sentiment Recognition Using the MindSpore Framework The pervasive use of the Internet and social media introduces significant challenges to automated sentiment analysis, particularly for sarcastic expressions in user-generated content. Sarcasm conveys negative emotions through ostensibly positive or exaggerated language, complicating its detection within natural language processing tasks. To address this, we propose an innovative sarcasm detection model integrating Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Multi-Head Attention mechanisms. The CNN component captures local n-gram features, while GRU and LSTM layers model sequential dependencies and contextual information. Multi-Head Attention enhances the model's focus on relevant parts of the input, improving interpretability. Experiments on two sarcasm detection datasets, Headlines and Riloff, demonstrate that the model achieves an accuracy of 81.20% and an F1 score of 80.77% on Headlines, and an accuracy of 79.72% with an F1 score of 61.39% on Riloff, outperforming traditional models. These results validate the effectiveness of our hybrid approach for sarcasm detection in social media texts. 3 authors · Nov 2, 2024
- Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue Sarcasm Explanation in Dialogue (SED) is a new yet challenging task, which aims to generate a natural language explanation for the given sarcastic dialogue that involves multiple modalities (\ie utterance, video, and audio). Although existing studies have achieved great success based on the generative pretrained language model BART, they overlook exploiting the sentiments residing in the utterance, video and audio, which play important roles in reflecting sarcasm that essentially involves subtle sentiment contrasts. Nevertheless, it is non-trivial to incorporate sentiments for boosting SED performance, due to three main challenges: 1) diverse effects of utterance tokens on sentiments; 2) gap between video-audio sentiment signals and the embedding space of BART; and 3) various relations among utterances, utterance sentiments, and video-audio sentiments. To tackle these challenges, we propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE. In particular, we first propose a lexicon-guided utterance sentiment inference module, where a heuristic utterance sentiment refinement strategy is devised. We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip. Thereafter, we devise a context-sentiment graph to comprehensively model the semantic relations among the utterances, utterance sentiments, and video-audio sentiments, to facilitate sarcasm explanation generation. Extensive experiments on the publicly released dataset WITS verify the superiority of our model over cutting-edge methods. 6 authors · Feb 5, 2024
- BanglaSarc: A Dataset for Sarcasm Detection Being one of the most widely spoken language in the world, the use of Bangla has been increasing in the world of social media as well. Sarcasm is a positive statement or remark with an underlying negative motivation that is extensively employed in today's social media platforms. There has been a significant improvement in sarcasm detection in English over the previous many years, however the situation regarding Bangla sarcasm detection remains unchanged. As a result, it is still difficult to identify sarcasm in bangla, and a lack of high-quality data is a major contributing factor. This article proposes BanglaSarc, a dataset constructed specifically for bangla textual data sarcasm detection. This dataset contains of 5112 comments/status and contents collected from various online social platforms such as Facebook, YouTube, along with a few online blogs. Due to the limited amount of data collection of categorized comments in Bengali, this dataset will aid in the of study identifying sarcasm, recognizing people's emotion, detecting various types of Bengali expressions, and other domains. The dataset is publicly available at https://www.kaggle.com/datasets/sakibapon/banglasarc. 6 authors · Sep 27, 2022
- Sarcasm Detection using Hybrid Neural Network Sarcasm Detection has enjoyed great interest from the research community, however the task of predicting sarcasm in a text remains an elusive problem for machines. Past studies mostly make use of twitter datasets collected using hashtag based supervision but such datasets are noisy in terms of labels and language. To overcome these shortcoming, we introduce a new dataset which contains news headlines from a sarcastic news website and a real news website. Next, we propose a hybrid Neural Network architecture with attention mechanism which provides insights about what actually makes sentences sarcastic. Through experiments, we show that the proposed model improves upon the baseline by ~ 5% in terms of classification accuracy. 2 authors · Aug 20, 2019
- DocMSU: A Comprehensive Benchmark for Document-level Multimodal Sarcasm Understanding Multimodal Sarcasm Understanding (MSU) has a wide range of applications in the news field such as public opinion analysis and forgery detection. However, existing MSU benchmarks and approaches usually focus on sentence-level MSU. In document-level news, sarcasm clues are sparse or small and are often concealed in long text. Moreover, compared to sentence-level comments like tweets, which mainly focus on only a few trends or hot topics (e.g., sports events), content in the news is considerably diverse. Models created for sentence-level MSU may fail to capture sarcasm clues in document-level news. To fill this gap, we present a comprehensive benchmark for Document-level Multimodal Sarcasm Understanding (DocMSU). Our dataset contains 102,588 pieces of news with text-image pairs, covering 9 diverse topics such as health, business, etc. The proposed large-scale and diverse DocMSU significantly facilitates the research of document-level MSU in real-world scenarios. To take on the new challenges posed by DocMSU, we introduce a fine-grained sarcasm comprehension method to properly align the pixel-level image features with word-level textual features in documents. Experiments demonstrate the effectiveness of our method, showing that it can serve as a baseline approach to the challenging DocMSU. Our code and dataset are available at https://github.com/Dulpy/DocMSU. 9 authors · Dec 26, 2023
- Multi-source Semantic Graph-based Multimodal Sarcasm Explanation Generation Multimodal Sarcasm Explanation (MuSE) is a new yet challenging task, which aims to generate a natural language sentence for a multimodal social post (an image as well as its caption) to explain why it contains sarcasm. Although the existing pioneer study has achieved great success with the BART backbone, it overlooks the gap between the visual feature space and the decoder semantic space, the object-level metadata of the image, as well as the potential external knowledge. To solve these limitations, in this work, we propose a novel mulTi-source sEmantic grAph-based Multimodal sarcasm explanation scheme, named TEAM. In particular, TEAM extracts the object-level semantic meta-data instead of the traditional global visual features from the input image. Meanwhile, TEAM resorts to ConceptNet to obtain the external related knowledge concepts for the input text and the extracted object meta-data. Thereafter, TEAM introduces a multi-source semantic graph that comprehensively characterize the multi-source (i.e., caption, object meta-data, external knowledge) semantic relations to facilitate the sarcasm reasoning. Extensive experiments on a public released dataset MORE verify the superiority of our model over cutting-edge methods. 5 authors · Jun 28, 2023
1 InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at [https://github.com/CoderChen01/InterCLIP-MEP](https://github.com/CoderChen01/InterCLIP-MEP). 2 authors · Jun 24, 2024
- CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well. 6 authors · May 1, 2024
- Interpretable Bangla Sarcasm Detection using BERT and Explainable AI A positive phrase or a sentence with an underlying negative motive is usually defined as sarcasm that is widely used in today's social media platforms such as Facebook, Twitter, Reddit, etc. In recent times active users in social media platforms are increasing dramatically which raises the need for an automated NLP-based system that can be utilized in various tasks such as determining market demand, sentiment analysis, threat detection, etc. However, since sarcasm usually implies the opposite meaning and its detection is frequently a challenging issue, data meaning extraction through an NLP-based model becomes more complicated. As a result, there has been a lot of study on sarcasm detection in English over the past several years, and there's been a noticeable improvement and yet sarcasm detection in the Bangla language's state remains the same. In this article, we present a BERT-based system that can achieve 99.60\% while the utilized traditional machine learning algorithms are only capable of achieving 89.93\%. Additionally, we have employed Local Interpretable Model-Agnostic Explanations that introduce explainability to our system. Moreover, we have utilized a newly collected bangla sarcasm dataset, BanglaSarc that was constructed specifically for the evaluation of this study. This dataset consists of fresh records of sarcastic and non-sarcastic comments, the majority of which are acquired from Facebook and YouTube comment sections. 6 authors · Mar 22, 2023
- BESSTIE: A Benchmark for Sentiment and Sarcasm Classification for Varieties of English Despite large language models (LLMs) being known to exhibit bias against non-mainstream varieties, there are no known labeled datasets for sentiment analysis of English. To address this gap, we introduce BESSTIE, a benchmark for sentiment and sarcasm classification for three varieties of English: Australian (en-AU), Indian (en-IN), and British (en-UK). Using web-based content from two domains, namely, Google Place reviews and Reddit comments, we collect datasets for these language varieties using two methods: location-based and topic-based filtering. Native speakers of the language varieties manually annotate the datasets with sentiment and sarcasm labels. To assess whether the dataset accurately represents these varieties, we conduct two validation steps: (a) manual annotation of language varieties and (b) automatic language variety prediction. Subsequently, we fine-tune nine large language models (LLMs) (representing a range of encoder/decoder and mono/multilingual models) on these datasets, and evaluate their performance on the two tasks. Our results reveal that the models consistently perform better on inner-circle varieties (i.e., en-AU and en-UK), with significant performance drops for en-IN, particularly in sarcasm detection. We also report challenges in cross-variety generalisation, highlighting the need for language variety-specific datasets such as ours. BESSTIE promises to be a useful evaluative benchmark for future research in equitable LLMs, specifically in terms of language varieties. The BESSTIE datasets, code, and models will be publicly available upon acceptance. 4 authors · Dec 5, 2024
- Deep contextualized word representations for detecting sarcasm and irony Predicting context-dependent and non-literal utterances like sarcastic and ironic expressions still remains a challenging task in NLP, as it goes beyond linguistic patterns, encompassing common sense and shared knowledge as crucial components. To capture complex morpho-syntactic features that can usually serve as indicators for irony or sarcasm across dynamic contexts, we propose a model that uses character-level vector representations of words, based on ELMo. We test our model on 7 different datasets derived from 3 different data sources, providing state-of-the-art performance in 6 of them, and otherwise offering competitive results. 4 authors · Sep 25, 2018
2 Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches. 5 authors · Aug 1, 2017 1