Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTIP: Text-Driven Image Processing with Semantic and Restoration Instructions
Text-driven diffusion models have become increasingly popular for various image editing tasks, including inpainting, stylization, and object replacement. However, it still remains an open research problem to adopt this language-vision paradigm for more fine-level image processing tasks, such as denoising, super-resolution, deblurring, and compression artifact removal. In this paper, we develop TIP, a Text-driven Image Processing framework that leverages natural language as a user-friendly interface to control the image restoration process. We consider the capacity of text information in two dimensions. First, we use content-related prompts to enhance the semantic alignment, effectively alleviating identity ambiguity in the restoration outcomes. Second, our approach is the first framework that supports fine-level instruction through language-based quantitative specification of the restoration strength, without the need for explicit task-specific design. In addition, we introduce a novel fusion mechanism that augments the existing ControlNet architecture by learning to rescale the generative prior, thereby achieving better restoration fidelity. Our extensive experiments demonstrate the superior restoration performance of TIP compared to the state of the arts, alongside offering the flexibility of text-based control over the restoration effects.
SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration
Video restoration poses non-trivial challenges in maintaining fidelity while recovering temporally consistent details from unknown degradations in the wild. Despite recent advances in diffusion-based restoration, these methods often face limitations in generation capability and sampling efficiency. In this work, we present SeedVR, a diffusion transformer designed to handle real-world video restoration with arbitrary length and resolution. The core design of SeedVR lies in the shifted window attention that facilitates effective restoration on long video sequences. SeedVR further supports variable-sized windows near the boundary of both spatial and temporal dimensions, overcoming the resolution constraints of traditional window attention. Equipped with contemporary practices, including causal video autoencoder, mixed image and video training, and progressive training, SeedVR achieves highly-competitive performance on both synthetic and real-world benchmarks, as well as AI-generated videos. Extensive experiments demonstrate SeedVR's superiority over existing methods for generic video restoration.
OneRestore: A Universal Restoration Framework for Composite Degradation
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow. Despite this reality, existing restoration methods typically target isolated degradation types, thereby falling short in environments where multiple degrading factors coexist. To bridge this gap, our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios. In this context, we propose OneRestore, a novel transformer-based framework designed for adaptive, controllable scene restoration. The proposed framework leverages a unique cross-attention mechanism, merging degraded scene descriptors with image features, allowing for nuanced restoration. Our model allows versatile input scene descriptors, ranging from manual text embeddings to automatic extractions based on visual attributes. Our methodology is further enhanced through a composite degradation restoration loss, using extra degraded images as negative samples to fortify model constraints. Comparative results on synthetic and real-world datasets demonstrate OneRestore as a superior solution, significantly advancing the state-of-the-art in addressing complex, composite degradations.
Compound Multi-branch Feature Fusion for Real Image Restoration
Image restoration is a challenging and ill-posed problem which also has been a long-standing issue. However, most of learning based restoration methods are proposed to target one degradation type which means they are lack of generalization. In this paper, we proposed a multi-branch restoration model inspired from the Human Visual System (i.e., Retinal Ganglion Cells) which can achieve multiple restoration tasks in a general framework. The experiments show that the proposed multi-branch architecture, called CMFNet, has competitive performance results on four datasets, including image dehazing, deraindrop, and deblurring, which are very common applications for autonomous cars. The source code and pretrained models of three restoration tasks are available at https://github.com/FanChiMao/CMFNet.
Under-Display Camera Image Restoration with Scattering Effect
The under-display camera (UDC) provides consumers with a full-screen visual experience without any obstruction due to notches or punched holes. However, the semi-transparent nature of the display inevitably introduces the severe degradation into UDC images. In this work, we address the UDC image restoration problem with the specific consideration of the scattering effect caused by the display. We explicitly model the scattering effect by treating the display as a piece of homogeneous scattering medium. With the physical model of the scattering effect, we improve the image formation pipeline for the image synthesis to construct a realistic UDC dataset with ground truths. To suppress the scattering effect for the eventual UDC image recovery, a two-branch restoration network is designed. More specifically, the scattering branch leverages global modeling capabilities of the channel-wise self-attention to estimate parameters of the scattering effect from degraded images. While the image branch exploits the local representation advantage of CNN to recover clear scenes, implicitly guided by the scattering branch. Extensive experiments are conducted on both real-world and synthesized data, demonstrating the superiority of the proposed method over the state-of-the-art UDC restoration techniques. The source code and dataset are available at https://github.com/NamecantbeNULL/SRUDC.
Apollo: Band-sequence Modeling for High-Quality Audio Restoration
Audio restoration has become increasingly significant in modern society, not only due to the demand for high-quality auditory experiences enabled by advanced playback devices, but also because the growing capabilities of generative audio models necessitate high-fidelity audio. Typically, audio restoration is defined as a task of predicting undistorted audio from damaged input, often trained using a GAN framework to balance perception and distortion. Since audio degradation is primarily concentrated in mid- and high-frequency ranges, especially due to codecs, a key challenge lies in designing a generator capable of preserving low-frequency information while accurately reconstructing high-quality mid- and high-frequency content. Inspired by recent advancements in high-sample-rate music separation, speech enhancement, and audio codec models, we propose Apollo, a generative model designed for high-sample-rate audio restoration. Apollo employs an explicit frequency band split module to model the relationships between different frequency bands, allowing for more coherent and higher-quality restored audio. Evaluated on the MUSDB18-HQ and MoisesDB datasets, Apollo consistently outperforms existing SR-GAN models across various bit rates and music genres, particularly excelling in complex scenarios involving mixtures of multiple instruments and vocals. Apollo significantly improves music restoration quality while maintaining computational efficiency. The source code for Apollo is publicly available at https://github.com/JusperLee/Apollo.
RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs
Blind face restoration aims at recovering high-quality face images from those with unknown degradations. Current algorithms mainly introduce priors to complement high-quality details and achieve impressive progress. However, most of these algorithms ignore abundant contextual information in the face and its interplay with the priors, leading to sub-optimal performance. Moreover, they pay less attention to the gap between the synthetic and real-world scenarios, limiting the robustness and generalization to real-world applications. In this work, we propose RestoreFormer++, which on the one hand introduces fully-spatial attention mechanisms to model the contextual information and the interplay with the priors, and on the other hand, explores an extending degrading model to help generate more realistic degraded face images to alleviate the synthetic-to-real-world gap. Compared with current algorithms, RestoreFormer++ has several crucial benefits. First, instead of using a multi-head self-attention mechanism like the traditional visual transformer, we introduce multi-head cross-attention over multi-scale features to fully explore spatial interactions between corrupted information and high-quality priors. In this way, it can facilitate RestoreFormer++ to restore face images with higher realness and fidelity. Second, in contrast to the recognition-oriented dictionary, we learn a reconstruction-oriented dictionary as priors, which contains more diverse high-quality facial details and better accords with the restoration target. Third, we introduce an extending degrading model that contains more realistic degraded scenarios for training data synthesizing, and thus helps to enhance the robustness and generalization of our RestoreFormer++ model. Extensive experiments show that RestoreFormer++ outperforms state-of-the-art algorithms on both synthetic and real-world datasets.
High-Quality Image Restoration Following Human Instructions
Image restoration is a fundamental problem that involves recovering a high-quality clean image from its degraded observation. All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model. In this work, we present the first approach that uses human-written instructions to guide the image restoration model. Given natural language prompts, our model can recover high-quality images from their degraded counterparts, considering multiple degradation types. Our method, InstructIR, achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. InstructIR improves +1dB over previous all-in-one restoration methods. Moreover, our dataset and results represent a novel benchmark for new research on text-guided image restoration and enhancement. Our code, datasets and models are available at: https://github.com/mv-lab/InstructIR
GameIR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content
Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.
Adaptation of the super resolution SOTA for Art Restoration in camera capture images
Preserving cultural heritage is of paramount importance. In the domain of art restoration, developing a computer vision model capable of effectively restoring deteriorated images of art pieces was difficult, but now we have a good computer vision state-of-art. Traditional restoration methods are often time-consuming and require extensive expertise. The aim of this work is to design an automated solution based on computer vision models that can enhance and reconstruct degraded artworks, improving their visual quality while preserving their original characteristics and artifacts. The model should handle a diverse range of deterioration types, including but not limited to noise, blur, scratches, fading, and other common forms of degradation. We adapt the current state-of-art for the image super-resolution based on the Diffusion Model (DM) and fine-tune it for Image art restoration. Our results show that instead of fine-tunning multiple different models for different kinds of degradation, fine-tuning one super-resolution. We train it on multiple datasets to make it robust. code link: https://github.com/Naagar/art_restoration_DM
Personalized Restoration via Dual-Pivot Tuning
Generative diffusion models can serve as a prior which ensures that solutions of image restoration systems adhere to the manifold of natural images. However, for restoring facial images, a personalized prior is necessary to accurately represent and reconstruct unique facial features of a given individual. In this paper, we propose a simple, yet effective, method for personalized restoration, called Dual-Pivot Tuning - a two-stage approach that personalize a blind restoration system while maintaining the integrity of the general prior and the distinct role of each component. Our key observation is that for optimal personalization, the generative model should be tuned around a fixed text pivot, while the guiding network should be tuned in a generic (non-personalized) manner, using the personalized generative model as a fixed ``pivot". This approach ensures that personalization does not interfere with the restoration process, resulting in a natural appearance with high fidelity to the person's identity and the attributes of the degraded image. We evaluated our approach both qualitatively and quantitatively through extensive experiments with images of widely recognized individuals, comparing it against relevant baselines. Surprisingly, we found that our personalized prior not only achieves higher fidelity to identity with respect to the person's identity, but also outperforms state-of-the-art generic priors in terms of general image quality. Project webpage: https://personalized-restoration.github.io
Towards Authentic Face Restoration with Iterative Diffusion Models and Beyond
An authentic face restoration system is becoming increasingly demanding in many computer vision applications, e.g., image enhancement, video communication, and taking portrait. Most of the advanced face restoration models can recover high-quality faces from low-quality ones but usually fail to faithfully generate realistic and high-frequency details that are favored by users. To achieve authentic restoration, we propose IDM, an Iteratively learned face restoration system based on denoising Diffusion Models (DDMs). We define the criterion of an authentic face restoration system, and argue that denoising diffusion models are naturally endowed with this property from two aspects: intrinsic iterative refinement and extrinsic iterative enhancement. Intrinsic learning can preserve the content well and gradually refine the high-quality details, while extrinsic enhancement helps clean the data and improve the restoration task one step further. We demonstrate superior performance on blind face restoration tasks. Beyond restoration, we find the authentically cleaned data by the proposed restoration system is also helpful to image generation tasks in terms of training stabilization and sample quality. Without modifying the models, we achieve better quality than state-of-the-art on FFHQ and ImageNet generation using either GANs or diffusion models.
Unlimited-Size Diffusion Restoration
Recently, using diffusion models for zero-shot image restoration (IR) has become a new hot paradigm. This type of method only needs to use the pre-trained off-the-shelf diffusion models, without any finetuning, and can directly handle various IR tasks. The upper limit of the restoration performance depends on the pre-trained diffusion models, which are in rapid evolution. However, current methods only discuss how to deal with fixed-size images, but dealing with images of arbitrary sizes is very important for practical applications. This paper focuses on how to use those diffusion-based zero-shot IR methods to deal with any size while maintaining the excellent characteristics of zero-shot. A simple way to solve arbitrary size is to divide it into fixed-size patches and solve each patch independently. But this may yield significant artifacts since it neither considers the global semantics of all patches nor the local information of adjacent patches. Inspired by the Range-Null space Decomposition, we propose the Mask-Shift Restoration to address local incoherence and propose the Hierarchical Restoration to alleviate out-of-domain issues. Our simple, parameter-free approaches can be used not only for image restoration but also for image generation of unlimited sizes, with the potential to be a general tool for diffusion models. Code: https://github.com/wyhuai/DDNM/tree/main/hq_demo
Prompt-In-Prompt Learning for Universal Image Restoration
Image restoration, which aims to retrieve and enhance degraded images, is fundamental across a wide range of applications. While conventional deep learning approaches have notably improved the image quality across various tasks, they still suffer from (i) the high storage cost needed for various task-specific models and (ii) the lack of interactivity and flexibility, hindering their wider application. Drawing inspiration from the pronounced success of prompts in both linguistic and visual domains, we propose novel Prompt-In-Prompt learning for universal image restoration, named PIP. First, we present two novel prompts, a degradation-aware prompt to encode high-level degradation knowledge and a basic restoration prompt to provide essential low-level information. Second, we devise a novel prompt-to-prompt interaction module to fuse these two prompts into a universal restoration prompt. Third, we introduce a selective prompt-to-feature interaction module to modulate the degradation-related feature. By doing so, the resultant PIP works as a plug-and-play module to enhance existing restoration models for universal image restoration. Extensive experimental results demonstrate the superior performance of PIP on multiple restoration tasks, including image denoising, deraining, dehazing, deblurring, and low-light enhancement. Remarkably, PIP is interpretable, flexible, efficient, and easy-to-use, showing promising potential for real-world applications. The code is available at https://github.com/longzilicart/pip_universal.
Understanding the Impact of Negative Prompts: When and How Do They Take Effect?
The concept of negative prompts, emerging from conditional generation models like Stable Diffusion, allows users to specify what to exclude from the generated images.%, demonstrating significant practical efficacy. Despite the widespread use of negative prompts, their intrinsic mechanisms remain largely unexplored. This paper presents the first comprehensive study to uncover how and when negative prompts take effect. Our extensive empirical analysis identifies two primary behaviors of negative prompts. Delayed Effect: The impact of negative prompts is observed after positive prompts render corresponding content. Deletion Through Neutralization: Negative prompts delete concepts from the generated image through a mutual cancellation effect in latent space with positive prompts. These insights reveal significant potential real-world applications; for example, we demonstrate that negative prompts can facilitate object inpainting with minimal alterations to the background via a simple adaptive algorithm. We believe our findings will offer valuable insights for the community in capitalizing on the potential of negative prompts.
Improving Image Restoration through Removing Degradations in Textual Representations
In this paper, we introduce a new perspective for improving image restoration by removing degradation in the textual representations of a given degraded image. Intuitively, restoration is much easier on text modality than image one. For example, it can be easily conducted by removing degradation-related words while keeping the content-aware words. Hence, we combine the advantages of images in detail description and ones of text in degradation removal to perform restoration. To address the cross-modal assistance, we propose to map the degraded images into textual representations for removing the degradations, and then convert the restored textual representations into a guidance image for assisting image restoration. In particular, We ingeniously embed an image-to-text mapper and text restoration module into CLIP-equipped text-to-image models to generate the guidance. Then, we adopt a simple coarse-to-fine approach to dynamically inject multi-scale information from guidance to image restoration networks. Extensive experiments are conducted on various image restoration tasks, including deblurring, dehazing, deraining, and denoising, and all-in-one image restoration. The results showcase that our method outperforms state-of-the-art ones across all these tasks. The codes and models are available at https://github.com/mrluin/TextualDegRemoval.
AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation
In the image acquisition process, various forms of degradation, including noise, haze, and rain, are frequently introduced. These degradations typically arise from the inherent limitations of cameras or unfavorable ambient conditions. To recover clean images from degraded versions, numerous specialized restoration methods have been developed, each targeting a specific type of degradation. Recently, all-in-one algorithms have garnered significant attention by addressing different types of degradations within a single model without requiring prior information of the input degradation type. However, these methods purely operate in the spatial domain and do not delve into the distinct frequency variations inherent to different degradation types. To address this gap, we propose an adaptive all-in-one image restoration network based on frequency mining and modulation. Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands, thereby requiring different treatments for each restoration task. Specifically, we first mine low- and high-frequency information from the input features, guided by the adaptively decoupled spectra of the degraded image. The extracted features are then modulated by a bidirectional operator to facilitate interactions between different frequency components. Finally, the modulated features are merged into the original input for a progressively guided restoration. With this approach, the model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance on different image restoration tasks, including denoising, dehazing, deraining, motion deblurring, and low-light image enhancement. Our code is available at https://github.com/c-yn/AdaIR.
RestoreX-AI: A Contrastive Approach towards Guiding Image Restoration via Explainable AI Systems
Modern applications such as self-driving cars and drones rely heavily upon robust object detection techniques. However, weather corruptions can hinder the object detectability and pose a serious threat to their navigation and reliability. Thus, there is a need for efficient denoising, deraining, and restoration techniques. Generative adversarial networks and transformers have been widely adopted for image restoration. However, the training of these methods is often unstable and time-consuming. Furthermore, when used for object detection (OD), the output images generated by these methods may provide unsatisfactory results despite image clarity. In this work, we propose a contrastive approach towards mitigating this problem, by evaluating images generated by restoration models during and post training. This approach leverages OD scores combined with attention maps for predicting the usefulness of restored images for the OD task. We conduct experiments using two novel use-cases of conditional GANs and two transformer methods that probe the robustness of the proposed approach on multi-weather corruptions in the OD task. Our approach achieves an averaged 178 percent increase in mAP between the input and restored images under adverse weather conditions like dust tornadoes and snowfall. We report unique cases where greater denoising does not improve OD performance and conversely where noisy generated images demonstrate good results. We conclude the need for explainability frameworks to bridge the gap between human and machine perception, especially in the context of robust object detection for autonomous vehicles.
Restoration by Generation with Constrained Priors
The inherent generative power of denoising diffusion models makes them well-suited for image restoration tasks where the objective is to find the optimal high-quality image within the generative space that closely resembles the input image. We propose a method to adapt a pretrained diffusion model for image restoration by simply adding noise to the input image to be restored and then denoise. Our method is based on the observation that the space of a generative model needs to be constrained. We impose this constraint by finetuning the generative model with a set of anchor images that capture the characteristics of the input image. With the constrained space, we can then leverage the sampling strategy used for generation to do image restoration. We evaluate against previous methods and show superior performances on multiple real-world restoration datasets in preserving identity and image quality. We also demonstrate an important and practical application on personalized restoration, where we use a personal album as the anchor images to constrain the generative space. This approach allows us to produce results that accurately preserve high-frequency details, which previous works are unable to do. Project webpage: https://gen2res.github.io.
Restoration of Analog Videos Using Swin-UNet
In this paper, we present a system to restore analog videos of historical archives. These videos often contain severe visual degradation due to the deterioration of their tape supports that require costly and slow manual interventions to recover the original content. The proposed system uses a multi-frame approach and is able to deal with severe tape mistracking, which results in completely scrambled frames. Tests on real-world videos from a major historical video archive show the effectiveness of our demo system. The code and the pre-trained model are publicly available at https://github.com/miccunifi/analog-video-restoration.
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
Restoration based Generative Models
Denoising diffusion models (DDMs) have recently attracted increasing attention by showing impressive synthesis quality. DDMs are built on a diffusion process that pushes data to the noise distribution and the models learn to denoise. In this paper, we establish the interpretation of DDMs in terms of image restoration (IR). Integrating IR literature allows us to use an alternative objective and diverse forward processes, not confining to the diffusion process. By imposing prior knowledge on the loss function grounded on MAP-based estimation, we eliminate the need for the expensive sampling of DDMs. Also, we propose a multi-scale training, which improves the performance compared to the diffusion process, by taking advantage of the flexibility of the forward process. Experimental results demonstrate that our model improves the quality and efficiency of both training and inference. Furthermore, we show the applicability of our model to inverse problems. We believe that our framework paves the way for designing a new type of flexible general generative model.
RAP-SR: RestorAtion Prior Enhancement in Diffusion Models for Realistic Image Super-Resolution
Benefiting from their powerful generative capabilities, pretrained diffusion models have garnered significant attention for real-world image super-resolution (Real-SR). Existing diffusion-based SR approaches typically utilize semantic information from degraded images and restoration prompts to activate prior for producing realistic high-resolution images. However, general-purpose pretrained diffusion models, not designed for restoration tasks, often have suboptimal prior, and manually defined prompts may fail to fully exploit the generated potential. To address these limitations, we introduce RAP-SR, a novel restoration prior enhancement approach in pretrained diffusion models for Real-SR. First, we develop the High-Fidelity Aesthetic Image Dataset (HFAID), curated through a Quality-Driven Aesthetic Image Selection Pipeline (QDAISP). Our dataset not only surpasses existing ones in fidelity but also excels in aesthetic quality. Second, we propose the Restoration Priors Enhancement Framework, which includes Restoration Priors Refinement (RPR) and Restoration-Oriented Prompt Optimization (ROPO) modules. RPR refines the restoration prior using the HFAID, while ROPO optimizes the unique restoration identifier, improving the quality of the resulting images. RAP-SR effectively bridges the gap between general-purpose models and the demands of Real-SR by enhancing restoration prior. Leveraging the plug-and-play nature of RAP-SR, our approach can be seamlessly integrated into existing diffusion-based SR methods, boosting their performance. Extensive experiments demonstrate its broad applicability and state-of-the-art results. Codes and datasets will be available upon acceptance.
DR2: Diffusion-based Robust Degradation Remover for Blind Face Restoration
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training, while more complex cases could happen in the real world. This gap between the assumed and actual degradation hurts the restoration performance where artifacts are often observed in the output. However, it is expensive and infeasible to include every type of degradation to cover real-world cases in the training data. To tackle this robustness issue, we propose Diffusion-based Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image. By leveraging a well-performing denoising diffusion probabilistic model, our DR2 diffuses input images to a noisy status where various types of degradation give way to Gaussian noise, and then captures semantic information through iterative denoising steps. As a result, DR2 is robust against common degradation (e.g. blur, resize, noise and compression) and compatible with different designs of enhancement modules. Experiments in various settings show that our framework outperforms state-of-the-art methods on heavily degraded synthetic and real-world datasets.
DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation
Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets. To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model. GenIR, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation & filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images. Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address. Our exhaustive experiments confirm DreamClear's superior performance, underlining the efficacy of our dual strategy for real-world image restoration. Code and pre-trained models will be available at: https://github.com/shallowdream204/DreamClear.
From Posterior Sampling to Meaningful Diversity in Image Restoration
Image restoration problems are typically ill-posed in the sense that each degraded image can be restored in infinitely many valid ways. To accommodate this, many works generate a diverse set of outputs by attempting to randomly sample from the posterior distribution of natural images given the degraded input. Here we argue that this strategy is commonly of limited practical value because of the heavy tail of the posterior distribution. Consider for example inpainting a missing region of the sky in an image. Since there is a high probability that the missing region contains no object but clouds, any set of samples from the posterior would be entirely dominated by (practically identical) completions of sky. However, arguably, presenting users with only one clear sky completion, along with several alternative solutions such as airships, birds, and balloons, would better outline the set of possibilities. In this paper, we initiate the study of meaningfully diverse image restoration. We explore several post-processing approaches that can be combined with any diverse image restoration method to yield semantically meaningful diversity. Moreover, we propose a practical approach for allowing diffusion based image restoration methods to generate meaningfully diverse outputs, while incurring only negligent computational overhead. We conduct extensive user studies to analyze the proposed techniques, and find the strategy of reducing similarity between outputs to be significantly favorable over posterior sampling. Code and examples are available at https://noa-cohen.github.io/MeaningfulDiversityInIR.
SVFR: A Unified Framework for Generalized Video Face Restoration
Face Restoration (FR) is a crucial area within image and video processing, focusing on reconstructing high-quality portraits from degraded inputs. Despite advancements in image FR, video FR remains relatively under-explored, primarily due to challenges related to temporal consistency, motion artifacts, and the limited availability of high-quality video data. Moreover, traditional face restoration typically prioritizes enhancing resolution and may not give as much consideration to related tasks such as facial colorization and inpainting. In this paper, we propose a novel approach for the Generalized Video Face Restoration (GVFR) task, which integrates video BFR, inpainting, and colorization tasks that we empirically show to benefit each other. We present a unified framework, termed as stable video face restoration (SVFR), which leverages the generative and motion priors of Stable Video Diffusion (SVD) and incorporates task-specific information through a unified face restoration framework. A learnable task embedding is introduced to enhance task identification. Meanwhile, a novel Unified Latent Regularization (ULR) is employed to encourage the shared feature representation learning among different subtasks. To further enhance the restoration quality and temporal stability, we introduce the facial prior learning and the self-referred refinement as auxiliary strategies used for both training and inference. The proposed framework effectively combines the complementary strengths of these tasks, enhancing temporal coherence and achieving superior restoration quality. This work advances the state-of-the-art in video FR and establishes a new paradigm for generalized video face restoration. Code and video demo are available at https://github.com/wangzhiyaoo/SVFR.git.
Rethinking RGB Color Representation for Image Restoration Models
Image restoration models are typically trained with a pixel-wise distance loss defined over the RGB color representation space, which is well known to be a source of blurry and unrealistic textures in the restored images. The reason, we believe, is that the three-channel RGB space is insufficient for supervising the restoration models. To this end, we augment the representation to hold structural information of local neighborhoods at each pixel while keeping the color information and pixel-grainedness unharmed. The result is a new representation space, dubbed augmented RGB (aRGB) space. Substituting the underlying representation space for the per-pixel losses facilitates the training of image restoration models, thereby improving the performance without affecting the evaluation phase. Notably, when combined with auxiliary objectives such as adversarial or perceptual losses, our aRGB space consistently improves overall metrics by reconstructing both color and local structures, overcoming the conventional perception-distortion trade-off.
Boosting Punctuation Restoration with Data Generation and Reinforcement Learning
Punctuation restoration is an important task in automatic speech recognition (ASR) which aim to restore the syntactic structure of generated ASR texts to improve readability. While punctuated texts are abundant from written documents, the discrepancy between written punctuated texts and ASR texts limits the usability of written texts in training punctuation restoration systems for ASR texts. This paper proposes a reinforcement learning method to exploit in-topic written texts and recent advances in large pre-trained generative language models to bridge this gap. The experiments show that our method achieves state-of-the-art performance on the ASR test set on two benchmark datasets for punctuation restoration.
GridFormer: Residual Dense Transformer with Grid Structure for Image Restoration in Adverse Weather Conditions
Image restoration in adverse weather conditions is a difficult task in computer vision. In this paper, we propose a novel transformer-based framework called GridFormer which serves as a backbone for image restoration under adverse weather conditions. GridFormer is designed in a grid structure using a residual dense transformer block, and it introduces two core designs. First, it uses an enhanced attention mechanism in the transformer layer. The mechanism includes stages of the sampler and compact self-attention to improve efficiency, and a local enhancement stage to strengthen local information. Second, we introduce a residual dense transformer block (RDTB) as the final GridFormer layer. This design further improves the network's ability to learn effective features from both preceding and current local features. The GridFormer framework achieves state-of-the-art results on five diverse image restoration tasks in adverse weather conditions, including image deraining, dehazing, deraining & dehazing, desnowing, and multi-weather restoration. The source code and pre-trained models will be released.
ClassPruning: Speed Up Image Restoration Networks by Dynamic N:M Pruning
Image restoration tasks have achieved tremendous performance improvements with the rapid advancement of deep neural networks. However, most prevalent deep learning models perform inference statically, ignoring that different images have varying restoration difficulties and lightly degraded images can be well restored by slimmer subnetworks. To this end, we propose a new solution pipeline dubbed ClassPruning that utilizes networks with different capabilities to process images with varying restoration difficulties. In particular, we use a lightweight classifier to identify the image restoration difficulty, and then the sparse subnetworks with different capabilities can be sampled based on predicted difficulty by performing dynamic N:M fine-grained structured pruning on base restoration networks. We further propose a novel training strategy along with two additional loss terms to stabilize training and improve performance. Experiments demonstrate that ClassPruning can help existing methods save approximately 40% FLOPs while maintaining performance.
CascadedGaze: Efficiency in Global Context Extraction for Image Restoration
Image restoration tasks traditionally rely on convolutional neural networks. However, given the local nature of the convolutional operator, they struggle to capture global information. The promise of attention mechanisms in Transformers is to circumvent this problem, but it comes at the cost of intensive computational overhead. Many recent studies in image restoration have focused on solving the challenge of balancing performance and computational cost via Transformer variants. In this paper, we present CascadedGaze Network (CGNet), an encoder-decoder architecture that employs Global Context Extractor (GCE), a novel and efficient way to capture global information for image restoration. The GCE module leverages small kernels across convolutional layers to learn global dependencies, without requiring self-attention. Extensive experimental results show that our approach outperforms a range of state-of-the-art methods on denoising benchmark datasets including both real image denoising and synthetic image denoising, as well as on image deblurring task, while being more computationally efficient.
Textual Prompt Guided Image Restoration
Image restoration has always been a cutting-edge topic in the academic and industrial fields of computer vision. Since degradation signals are often random and diverse, "all-in-one" models that can do blind image restoration have been concerned in recent years. Early works require training specialized headers and tails to handle each degradation of concern, which are manually cumbersome. Recent works focus on learning visual prompts from data distribution to identify degradation type. However, the prompts employed in most of models are non-text, lacking sufficient emphasis on the importance of human-in-the-loop. In this paper, an effective textual prompt guided image restoration model has been proposed. In this model, task-specific BERT is fine-tuned to accurately understand user's instructions and generating textual prompt guidance. Depth-wise multi-head transposed attentions and gated convolution modules are designed to bridge the gap between textual prompts and visual features. The proposed model has innovatively introduced semantic prompts into low-level visual domain. It highlights the potential to provide a natural, precise, and controllable way to perform image restoration tasks. Extensive experiments have been done on public denoising, dehazing and deraining datasets. The experiment results demonstrate that, compared with popular state-of-the-art methods, the proposed model can obtain much more superior performance, achieving accurate recognition and removal of degradation without increasing model's complexity. Related source codes and data will be publicly available on github site https://github.com/MoTong-AI-studio/TextPromptIR.
A Restoration Network as an Implicit Prior
Image denoisers have been shown to be powerful priors for solving inverse problems in imaging. In this work, we introduce a generalization of these methods that allows any image restoration network to be used as an implicit prior. The proposed method uses priors specified by deep neural networks pre-trained as general restoration operators. The method provides a principled approach for adapting state-of-the-art restoration models for other inverse problems. Our theoretical result analyzes its convergence to a stationary point of a global functional associated with the restoration operator. Numerical results show that the method using a super-resolution prior achieves state-of-the-art performance both quantitatively and qualitatively. Overall, this work offers a step forward for solving inverse problems by enabling the use of powerful pre-trained restoration models as priors.
Memory augment is All You Need for image restoration
Image restoration is a low-level vision task, most CNN methods are designed as a black box, lacking transparency and internal aesthetics. Although some methods combining traditional optimization algorithms with DNNs have been proposed, they all have some limitations. In this paper, we propose a three-granularity memory layer and contrast learning named MemoryNet, specifically, dividing the samples into positive, negative, and actual three samples for contrastive learning, where the memory layer is able to preserve the deep features of the image and the contrastive learning converges the learned features to balance. Experiments on Derain/Deshadow/Deblur task demonstrate that these methods are effective in improving restoration performance. In addition, this paper's model obtains significant PSNR, SSIM gain on three datasets with different degradation types, which is a strong proof that the recovered images are perceptually realistic. The source code of MemoryNet can be obtained from https://github.com/zhangbaijin/MemoryNet
Miipher: A Robust Speech Restoration Model Integrating Self-Supervised Speech and Text Representations
Speech restoration (SR) is a task of converting degraded speech signals into high-quality ones. In this study, we propose a robust SR model called Miipher, and apply Miipher to a new SR application: increasing the amount of high-quality training data for speech generation by converting speech samples collected from the Web to studio-quality. To make our SR model robust against various degradation, we use (i) a speech representation extracted from w2v-BERT for the input feature, and (ii) a text representation extracted from transcripts via PnG-BERT as a linguistic conditioning feature. Experiments show that Miipher (i) is robust against various audio degradation and (ii) enable us to train a high-quality text-to-speech (TTS) model from restored speech samples collected from the Web. Audio samples are available at our demo page: google.github.io/df-conformer/miipher/
Image Restoration with Mean-Reverting Stochastic Differential Equations
This paper presents a stochastic differential equation (SDE) approach for general-purpose image restoration. The key construction consists in a mean-reverting SDE that transforms a high-quality image into a degraded counterpart as a mean state with fixed Gaussian noise. Then, by simulating the corresponding reverse-time SDE, we are able to restore the origin of the low-quality image without relying on any task-specific prior knowledge. Crucially, the proposed mean-reverting SDE has a closed-form solution, allowing us to compute the ground truth time-dependent score and learn it with a neural network. Moreover, we propose a maximum likelihood objective to learn an optimal reverse trajectory that stabilizes the training and improves the restoration results. The experiments show that our proposed method achieves highly competitive performance in quantitative comparisons on image deraining, deblurring, and denoising, setting a new state-of-the-art on two deraining datasets. Finally, the general applicability of our approach is further demonstrated via qualitative results on image super-resolution, inpainting, and dehazing. Code is available at https://github.com/Algolzw/image-restoration-sde.
VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration
Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on a single type of distortion, such as speech denoising or dereverberation. However, speech signals can be degraded by several different distortions simultaneously in the real world. It is thus important to extend speech restoration models to deal with multiple distortions. In this paper, we introduce VoiceFixer, a unified framework for high-fidelity speech restoration. VoiceFixer restores speech from multiple distortions (e.g., noise, reverberation, and clipping) and can expand degraded speech (e.g., noisy speech) with a low bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We design VoiceFixer based on (1) an analysis stage that predicts intermediate-level features from the degraded speech, and (2) a synthesis stage that generates waveform using a neural vocoder. Both objective and subjective evaluations show that VoiceFixer is effective on severely degraded speech, such as real-world historical speech recordings. Samples of VoiceFixer are available at https://haoheliu.github.io/voicefixer.
VoiceFixer: Toward General Speech Restoration with Neural Vocoder
Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on single-task speech restoration (SSR), such as speech denoising or speech declipping. However, SSR systems only focus on one task and do not address the general speech restoration problem. In addition, previous SSR systems show limited performance in some speech restoration tasks such as speech super-resolution. To overcome those limitations, we propose a general speech restoration (GSR) task that attempts to remove multiple distortions simultaneously. Furthermore, we propose VoiceFixer, a generative framework to address the GSR task. VoiceFixer consists of an analysis stage and a synthesis stage to mimic the speech analysis and comprehension of the human auditory system. We employ a ResUNet to model the analysis stage and a neural vocoder to model the synthesis stage. We evaluate VoiceFixer with additive noise, room reverberation, low-resolution, and clipping distortions. Our baseline GSR model achieves a 0.499 higher mean opinion score (MOS) than the speech enhancement SSR model. VoiceFixer further surpasses the GSR baseline model on the MOS score by 0.256. Moreover, we observe that VoiceFixer generalizes well to severely degraded real speech recordings, indicating its potential in restoring old movies and historical speeches. The source code is available at https://github.com/haoheliu/voicefixer_main.
SwinIR: Image Restoration Using Swin Transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14\sim0.45dB, while the total number of parameters can be reduced by up to 67%.
Towards True Detail Restoration for Super-Resolution: A Benchmark and a Quality Metric
Super-resolution (SR) has become a widely researched topic in recent years. SR methods can improve overall image and video quality and create new possibilities for further content analysis. But the SR mainstream focuses primarily on increasing the naturalness of the resulting image despite potentially losing context accuracy. Such methods may produce an incorrect digit, character, face, or other structural object even though they otherwise yield good visual quality. Incorrect detail restoration can cause errors when detecting and identifying objects both manually and automatically. To analyze the detail-restoration capabilities of image and video SR models, we developed a benchmark based on our own video dataset, which contains complex patterns that SR models generally fail to correctly restore. We assessed 32 recent SR models using our benchmark and compared their ability to preserve scene context. We also conducted a crowd-sourced comparison of restored details and developed an objective assessment metric that outperforms other quality metrics by correlation with subjective scores for this task. In conclusion, we provide a deep analysis of benchmark results that yields insights for future SR-based work.
DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models
This paper introduces a method for zero-shot video restoration using pre-trained image restoration diffusion models. Traditional video restoration methods often need retraining for different settings and struggle with limited generalization across various degradation types and datasets. Our approach uses a hierarchical token merging strategy for keyframes and local frames, combined with a hybrid correspondence mechanism that blends optical flow and feature-based nearest neighbor matching (latent merging). We show that our method not only achieves top performance in zero-shot video restoration but also significantly surpasses trained models in generalization across diverse datasets and extreme degradations (8times super-resolution and high-standard deviation video denoising). We present evidence through quantitative metrics and visual comparisons on various challenging datasets. Additionally, our technique works with any 2D restoration diffusion model, offering a versatile and powerful tool for video enhancement tasks without extensive retraining. This research leads to more efficient and widely applicable video restoration technologies, supporting advancements in fields that require high-quality video output. See our project page for video results at https://jimmycv07.github.io/DiffIR2VR_web/.
VCR: Visual Caption Restoration
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration
Photo-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks.
InstantIR: Blind Image Restoration with Instant Generative Reference
Handling test-time unknown degradation is the major challenge in Blind Image Restoration (BIR), necessitating high model generalization. An effective strategy is to incorporate prior knowledge, either from human input or generative model. In this paper, we introduce Instant-reference Image Restoration (InstantIR), a novel diffusion-based BIR method which dynamically adjusts generation condition during inference. We first extract a compact representation of the input via a pre-trained vision encoder. At each generation step, this representation is used to decode current diffusion latent and instantiate it in the generative prior. The degraded image is then encoded with this reference, providing robust generation condition. We observe the variance of generative references fluctuate with degradation intensity, which we further leverage as an indicator for developing a sampling algorithm adaptive to input quality. Extensive experiments demonstrate InstantIR achieves state-of-the-art performance and offering outstanding visual quality. Through modulating generative references with textual description, InstantIR can restore extreme degradation and additionally feature creative restoration.
Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration
Although learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data synthesis pipelines, estimating degradation kernels, employing deep internal learning, and performing domain adaptation and regularization. Previous domain adaptation methods have sought to bridge the domain gap by learning domain-invariant knowledge in either feature or pixel space. However, these techniques often struggle to extend to low-level vision tasks within a stable and compact framework. In this paper, we show that it is possible to perform domain adaptation via the noise space using diffusion models. In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss that guides the restoration model in progressively aligning both restored synthetic and real-world outputs with a target clean distribution. We refer to this method as denoising as adaptation. To prevent shortcuts during joint training, we present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model. They implicitly blur the boundaries between conditioned synthetic and real data and prevent the reliance of the model on easily distinguishable features. Experimental results on three classical image restoration tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness of the proposed method.
Towards Robust Blind Face Restoration with Codebook Lookup Transformer
Blind face restoration is a highly ill-posed problem that often requires auxiliary guidance to 1) improve the mapping from degraded inputs to desired outputs, or 2) complement high-quality details lost in the inputs. In this paper, we demonstrate that a learned discrete codebook prior in a small proxy space largely reduces the uncertainty and ambiguity of restoration mapping by casting blind face restoration as a code prediction task, while providing rich visual atoms for generating high-quality faces. Under this paradigm, we propose a Transformer-based prediction network, named CodeFormer, to model the global composition and context of the low-quality faces for code prediction, enabling the discovery of natural faces that closely approximate the target faces even when the inputs are severely degraded. To enhance the adaptiveness for different degradation, we also propose a controllable feature transformation module that allows a flexible trade-off between fidelity and quality. Thanks to the expressive codebook prior and global modeling, CodeFormer outperforms the state of the arts in both quality and fidelity, showing superior robustness to degradation. Extensive experimental results on synthetic and real-world datasets verify the effectiveness of our method.
Universal Image Restoration Pre-training via Degradation Classification
This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.
Visual Style Prompt Learning Using Diffusion Models for Blind Face Restoration
Blind face restoration aims to recover high-quality facial images from various unidentified sources of degradation, posing significant challenges due to the minimal information retrievable from the degraded images. Prior knowledge-based methods, leveraging geometric priors and facial features, have led to advancements in face restoration but often fall short of capturing fine details. To address this, we introduce a visual style prompt learning framework that utilizes diffusion probabilistic models to explicitly generate visual prompts within the latent space of pre-trained generative models. These prompts are designed to guide the restoration process. To fully utilize the visual prompts and enhance the extraction of informative and rich patterns, we introduce a style-modulated aggregation transformation layer. Extensive experiments and applications demonstrate the superiority of our method in achieving high-quality blind face restoration. The source code is available at https://github.com/LonglongaaaGo/VSPBFR{https://github.com/LonglongaaaGo/VSPBFR}.
DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
We present DiffBIR, which leverages pretrained text-to-image diffusion models for blind image restoration problem. Our framework adopts a two-stage pipeline. In the first stage, we pretrain a restoration module across diversified degradations to improve generalization capability in real-world scenarios. The second stage leverages the generative ability of latent diffusion models, to achieve realistic image restoration. Specifically, we introduce an injective modulation sub-network -- LAControlNet for finetuning, while the pre-trained Stable Diffusion is to maintain its generative ability. Finally, we introduce a controllable module that allows users to balance quality and fidelity by introducing the latent image guidance in the denoising process during inference. Extensive experiments have demonstrated its superiority over state-of-the-art approaches for both blind image super-resolution and blind face restoration tasks on synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR.
Denoising Diffusion Models for Plug-and-Play Image Restoration
Plug-and-play Image Restoration (IR) has been widely recognized as a flexible and interpretable method for solving various inverse problems by utilizing any off-the-shelf denoiser as the implicit image prior. However, most existing methods focus on discriminative Gaussian denoisers. Although diffusion models have shown impressive performance for high-quality image synthesis, their potential to serve as a generative denoiser prior to the plug-and-play IR methods remains to be further explored. While several other attempts have been made to adopt diffusion models for image restoration, they either fail to achieve satisfactory results or typically require an unacceptable number of Neural Function Evaluations (NFEs) during inference. This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework. Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models. Experimental results on three representative IR tasks, including super-resolution, image deblurring, and inpainting, demonstrate that DiffPIR achieves state-of-the-art performance on both the FFHQ and ImageNet datasets in terms of reconstruction faithfulness and perceptual quality with no more than 100 NFEs. The source code is available at {https://github.com/yuanzhi-zhu/DiffPIR}
Modular Degradation Simulation and Restoration for Under-Display Camera
Under-display camera (UDC) provides an elegant solution for full-screen smartphones. However, UDC captured images suffer from severe degradation since sensors lie under the display. Although this issue can be tackled by image restoration networks, these networks require large-scale image pairs for training. To this end, we propose a modular network dubbed MPGNet trained using the generative adversarial network (GAN) framework for simulating UDC imaging. Specifically, we note that the UDC imaging degradation process contains brightness attenuation, blurring, and noise corruption. Thus we model each degradation with a characteristic-related modular network, and all modular networks are cascaded to form the generator. Together with a pixel-wise discriminator and supervised loss, we can train the generator to simulate the UDC imaging degradation process. Furthermore, we present a Transformer-style network named DWFormer for UDC image restoration. For practical purposes, we use depth-wise convolution instead of the multi-head self-attention to aggregate local spatial information. Moreover, we propose a novel channel attention module to aggregate global information, which is critical for brightness recovery. We conduct evaluations on the UDC benchmark, and our method surpasses the previous state-of-the-art models by 1.23 dB on the P-OLED track and 0.71 dB on the T-OLED track, respectively.
MambaIRv2: Attentive State Space Restoration
The Mamba-based image restoration backbones have recently demonstrated significant potential in balancing global reception and computational efficiency. However, the inherent causal modeling limitation of Mamba, where each token depends solely on its predecessors in the scanned sequence, restricts the full utilization of pixels across the image and thus presents new challenges in image restoration. In this work, we propose MambaIRv2, which equips Mamba with the non-causal modeling ability similar to ViTs to reach the attentive state space restoration model. Specifically, the proposed attentive state-space equation allows to attend beyond the scanned sequence and facilitate image unfolding with just one single scan. Moreover, we further introduce a semantic-guided neighboring mechanism to encourage interaction between distant but similar pixels. Extensive experiments show our MambaIRv2 outperforms SRFormer by even 0.35dB PSNR for lightweight SR even with 9.3\% less parameters and suppresses HAT on classic SR by up to 0.29dB. Code is available at https://github.com/csguoh/MambaIR.
RestorerID: Towards Tuning-Free Face Restoration with ID Preservation
Blind face restoration has made great progress in producing high-quality and lifelike images. Yet it remains challenging to preserve the ID information especially when the degradation is heavy. Current reference-guided face restoration approaches either require face alignment or personalized test-tuning, which are unfaithful or time-consuming. In this paper, we propose a tuning-free method named RestorerID that incorporates ID preservation during face restoration. RestorerID is a diffusion model-based method that restores low-quality images with varying levels of degradation by using a single reference image. To achieve this, we propose a unified framework to combine the ID injection with the base blind face restoration model. In addition, we design a novel Face ID Rebalancing Adapter (FIR-Adapter) to tackle the problems of content unconsistency and contours misalignment that are caused by information conflicts between the low-quality input and reference image. Furthermore, by employing an Adaptive ID-Scale Adjusting strategy, RestorerID can produce superior restored images across various levels of degradation. Experimental results on the Celeb-Ref dataset and real-world scenarios demonstrate that RestorerID effectively delivers high-quality face restoration with ID preservation, achieving a superior performance compared to the test-tuning approaches and other reference-guided ones. The code of RestorerID is available at https://github.com/YingJiacheng/RestorerID.
Frequency-Aware Guidance for Blind Image Restoration via Diffusion Models
Blind image restoration remains a significant challenge in low-level vision tasks. Recently, denoising diffusion models have shown remarkable performance in image synthesis. Guided diffusion models, leveraging the potent generative priors of pre-trained models along with a differential guidance loss, have achieved promising results in blind image restoration. However, these models typically consider data consistency solely in the spatial domain, often resulting in distorted image content. In this paper, we propose a novel frequency-aware guidance loss that can be integrated into various diffusion models in a plug-and-play manner. Our proposed guidance loss, based on 2D discrete wavelet transform, simultaneously enforces content consistency in both the spatial and frequency domains. Experimental results demonstrate the effectiveness of our method in three blind restoration tasks: blind image deblurring, imaging through turbulence, and blind restoration for multiple degradations. Notably, our method achieves a significant improvement in PSNR score, with a remarkable enhancement of 3.72\,dB in image deblurring. Moreover, our method exhibits superior capability in generating images with rich details and reduced distortion, leading to the best visual quality.
Efficient Image Restoration through Low-Rank Adaptation and Stable Diffusion XL
In this study, we propose an enhanced image restoration model, SUPIR, based on the integration of two low-rank adaptive (LoRA) modules with the Stable Diffusion XL (SDXL) framework. Our method leverages the advantages of LoRA to fine-tune SDXL models, thereby significantly improving image restoration quality and efficiency. We collect 2600 high-quality real-world images, each with detailed descriptive text, for training the model. The proposed method is evaluated on standard benchmarks and achieves excellent performance, demonstrated by higher peak signal-to-noise ratio (PSNR), lower learned perceptual image patch similarity (LPIPS), and higher structural similarity index measurement (SSIM) scores. These results underscore the effectiveness of combining LoRA with SDXL for advanced image restoration tasks, highlighting the potential of our approach in generating high-fidelity restored images.
Perceptual Fairness in Image Restoration
Fairness in image restoration tasks is the desire to treat different sub-groups of images equally well. Existing definitions of fairness in image restoration are highly restrictive. They consider a reconstruction to be a correct outcome for a group (e.g., women) only if it falls within the group's set of ground truth images (e.g., natural images of women); otherwise, it is considered entirely incorrect. Consequently, such definitions are prone to controversy, as errors in image restoration can manifest in various ways. In this work we offer an alternative approach towards fairness in image restoration, by considering the Group Perceptual Index (GPI), which we define as the statistical distance between the distribution of the group's ground truth images and the distribution of their reconstructions. We assess the fairness of an algorithm by comparing the GPI of different groups, and say that it achieves perfect Perceptual Fairness (PF) if the GPIs of all groups are identical. We motivate and theoretically study our new notion of fairness, draw its connection to previous ones, and demonstrate its utility on state-of-the-art face image super-resolution algorithms.
DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks
Document image restoration is a crucial aspect of Document AI systems, as the quality of document images significantly influences the overall performance. Prevailing methods address distinct restoration tasks independently, leading to intricate systems and the incapability to harness the potential synergies of multi-task learning. To overcome this challenge, we propose DocRes, a generalist model that unifies five document image restoration tasks including dewarping, deshadowing, appearance enhancement, deblurring, and binarization. To instruct DocRes to perform various restoration tasks, we propose a novel visual prompt approach called Dynamic Task-Specific Prompt (DTSPrompt). The DTSPrompt for different tasks comprises distinct prior features, which are additional characteristics extracted from the input image. Beyond its role as a cue for task-specific execution, DTSPrompt can also serve as supplementary information to enhance the model's performance. Moreover, DTSPrompt is more flexible than prior visual prompt approaches as it can be seamlessly applied and adapted to inputs with high and variable resolutions. Experimental results demonstrate that DocRes achieves competitive or superior performance compared to existing state-of-the-art task-specific models. This underscores the potential of DocRes across a broader spectrum of document image restoration tasks. The source code is publicly available at https://github.com/ZZZHANG-jx/DocRes
Efficient Diffusion Model for Image Restoration by Residual Shifting
While diffusion-based image restoration (IR) methods have achieved remarkable success, they are still limited by the low inference speed attributed to the necessity of executing hundreds or even thousands of sampling steps. Existing acceleration sampling techniques, though seeking to expedite the process, inevitably sacrifice performance to some extent, resulting in over-blurry restored outcomes. To address this issue, this study proposes a novel and efficient diffusion model for IR that significantly reduces the required number of diffusion steps. Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration. Specifically, our proposed method establishes a Markov chain that facilitates the transitions between the high-quality and low-quality images by shifting their residuals, substantially improving the transition efficiency. A carefully formulated noise schedule is devised to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experimental evaluations demonstrate that the proposed method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks, namely image super-resolution, image inpainting, and blind face restoration, \textbf{even only with four sampling steps}. Our code and model are publicly available at https://github.com/zsyOAOA/ResShift.
Towards Real-World Blind Face Restoration with Generative Diffusion Prior
Blind face restoration is an important task in computer vision and has gained significant attention due to its wide-range applications. In this work, we delve into the potential of leveraging the pretrained Stable Diffusion for blind face restoration. We propose BFRffusion which is thoughtfully designed to effectively extract features from low-quality face images and could restore realistic and faithful facial details with the generative prior of the pretrained Stable Diffusion. In addition, we build a privacy-preserving face dataset called PFHQ with balanced attributes like race, gender, and age. This dataset can serve as a viable alternative for training blind face restoration methods, effectively addressing privacy and bias concerns usually associated with the real face datasets. Through an extensive series of experiments, we demonstrate that our BFRffusion achieves state-of-the-art performance on both synthetic and real-world public testing datasets for blind face restoration and our PFHQ dataset is an available resource for training blind face restoration networks. The codes, pretrained models, and dataset are released at https://github.com/chenxx89/BFRffusion.
Multi-task Image Restoration Guided By Robust DINO Features
Multi-task image restoration has gained significant interest due to its inherent versatility and efficiency compared to its single-task counterpart. Despite its potential, performance degradation is observed with an increase in the number of tasks, primarily attributed to the distinct nature of each restoration task. Addressing this challenge, we introduce \textbf{DINO-IR}, a novel multi-task image restoration approach leveraging robust features extracted from DINOv2. Our empirical analysis shows that while shallow features of DINOv2 capture rich low-level image characteristics, the deep features ensure a robust semantic representation insensitive to degradations while preserving high-frequency contour details. Building on these features, we devise specialized components, including multi-layer semantic fusion module, DINO-Restore adaption and fusion module, and DINO perception contrastive loss, to integrate DINOv2 features into the restoration paradigm. Equipped with the aforementioned components, our DINO-IR performs favorably against existing multi-task image restoration approaches in various tasks by a large margin, indicating the superiority and necessity of reinforcing the robust features for multi-task image restoration.
FLAIR: A Conditional Diffusion Framework with Applications to Face Video Restoration
Face video restoration (FVR) is a challenging but important problem where one seeks to recover a perceptually realistic face videos from a low-quality input. While diffusion probabilistic models (DPMs) have been shown to achieve remarkable performance for face image restoration, they often fail to preserve temporally coherent, high-quality videos, compromising the fidelity of reconstructed faces. We present a new conditional diffusion framework called FLAIR for FVR. FLAIR ensures temporal consistency across frames in a computationally efficient fashion by converting a traditional image DPM into a video DPM. The proposed conversion uses a recurrent video refinement layer and a temporal self-attention at different scales. FLAIR also uses a conditional iterative refinement process to balance the perceptual and distortion quality during inference. This process consists of two key components: a data-consistency module that analytically ensures that the generated video precisely matches its degraded observation and a coarse-to-fine image enhancement module specifically for facial regions. Our extensive experiments show superiority of FLAIR over the current state-of-the-art (SOTA) for video super-resolution, deblurring, JPEG restoration, and space-time frame interpolation on two high-quality face video datasets.
Deep Equilibrium Diffusion Restoration with Parallel Sampling
Diffusion-based image restoration (IR) methods aim to use diffusion models to recover high-quality (HQ) images from degraded images and achieve promising performance. Due to the inherent property of diffusion models, most of these methods need long serial sampling chains to restore HQ images step-by-step. As a result, it leads to expensive sampling time and high computation costs. Moreover, such long sampling chains hinder understanding the relationship between the restoration results and the inputs since it is hard to compute the gradients in the whole chains. In this work, we aim to rethink the diffusion-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system. Specifically, we derive an analytical solution by modeling the entire sampling chain in diffusion-based IR models as a joint multivariate fixed point system. With the help of the analytical solution, we are able to conduct single-image sampling in a parallel way and restore HQ images without training. Furthermore, we compute fast gradients in DEQ and found that initialization optimization can boost performance and control the generation direction. Extensive experiments on benchmarks demonstrate the effectiveness of our proposed method on typical IR tasks and real-world settings. The code and models will be made publicly available.
Reference-based Restoration of Digitized Analog Videotapes
Analog magnetic tapes have been the main video data storage device for several decades. Videos stored on analog videotapes exhibit unique degradation patterns caused by tape aging and reader device malfunctioning that are different from those observed in film and digital video restoration tasks. In this work, we present a reference-based approach for the resToration of digitized Analog videotaPEs (TAPE). We leverage CLIP for zero-shot artifact detection to identify the cleanest frames of each video through textual prompts describing different artifacts. Then, we select the clean frames most similar to the input ones and employ them as references. We design a transformer-based Swin-UNet network that exploits both neighboring and reference frames via our Multi-Reference Spatial Feature Fusion (MRSFF) blocks. MRSFF blocks rely on cross-attention and attention pooling to take advantage of the most useful parts of each reference frame. To address the absence of ground truth in real-world videos, we create a synthetic dataset of videos exhibiting artifacts that closely resemble those commonly found in analog videotapes. Both quantitative and qualitative experiments show the effectiveness of our approach compared to other state-of-the-art methods. The code, the model, and the synthetic dataset are publicly available at https://github.com/miccunifi/TAPE.
Physics-Driven Turbulence Image Restoration with Stochastic Refinement
Image distortion by atmospheric turbulence is a stochastic degradation, which is a critical problem in long-range optical imaging systems. A number of research has been conducted during the past decades, including model-based and emerging deep-learning solutions with the help of synthetic data. Although fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions recently, the training of such models only relies on the synthetic data and ground truth pairs. This paper proposes the Physics-integrated Restoration Network (PiRN) to bring the physics-based simulator directly into the training process to help the network to disentangle the stochasticity from the degradation and the underlying image. Furthermore, to overcome the ``average effect" introduced by deterministic models and the domain gap between the synthetic and real-world degradation, we further introduce PiRN with Stochastic Refinement (PiRN-SR) to boost its perceptual quality. Overall, our PiRN and PiRN-SR improve the generalization to real-world unknown turbulence conditions and provide a state-of-the-art restoration in both pixel-wise accuracy and perceptual quality. Our codes are available at https://github.com/VITA-Group/PiRN.
Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration
We propose an image restoration algorithm that can control the perceptual quality and/or the mean square error (MSE) of any pre-trained model, trading one over the other at test time. Our algorithm is few-shot: Given about a dozen images restored by the model, it can significantly improve the perceptual quality and/or the MSE of the model for newly restored images without further training. Our approach is motivated by a recent theoretical result that links between the minimum MSE (MMSE) predictor and the predictor that minimizes the MSE under a perfect perceptual quality constraint. Specifically, it has been shown that the latter can be obtained by optimally transporting the output of the former, such that its distribution matches the source data. Thus, to improve the perceptual quality of a predictor that was originally trained to minimize MSE, we approximate the optimal transport by a linear transformation in the latent space of a variational auto-encoder, which we compute in closed-form using empirical means and covariances. Going beyond the theory, we find that applying the same procedure on models that were initially trained to achieve high perceptual quality, typically improves their perceptual quality even further. And by interpolating the results with the original output of the model, we can improve their MSE on the expense of perceptual quality. We illustrate our method on a variety of degradations applied to general content images of arbitrary dimensions.
Burstormer: Burst Image Restoration and Enhancement Transformer
On a shutter press, modern handheld cameras capture multiple images in rapid succession and merge them to generate a single image. However, individual frames in a burst are misaligned due to inevitable motions and contain multiple degradations. The challenge is to properly align the successive image shots and merge their complimentary information to achieve high-quality outputs. Towards this direction, we propose Burstormer: a novel transformer-based architecture for burst image restoration and enhancement. In comparison to existing works, our approach exploits multi-scale local and non-local features to achieve improved alignment and feature fusion. Our key idea is to enable inter-frame communication in the burst neighborhoods for information aggregation and progressive fusion while modeling the burst-wide context. However, the input burst frames need to be properly aligned before fusing their information. Therefore, we propose an enhanced deformable alignment module for aligning burst features with regards to the reference frame. Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions. After multi-level alignment and enrichment, we re-emphasize on inter-frame communication within burst using a cyclic burst sampling module. Finally, the inter-frame information is aggregated using the proposed burst feature fusion module followed by progressive upsampling. Our Burstormer outperforms state-of-the-art methods on burst super-resolution, burst denoising and burst low-light enhancement. Our codes and pretrained models are available at https:// github.com/akshaydudhane16/Burstormer
Generative Diffusion Prior for Unified Image Restoration and Enhancement
Existing image restoration methods mostly leverage the posterior distribution of natural images. However, they often assume known degradation and also require supervised training, which restricts their adaptation to complex real applications. In this work, we propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner. GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems. Specifically, GDP systematically explores a protocol of conditional guidance, which is verified more practical than the commonly used guidance way. Furthermore, GDP is strength at optimizing the parameters of degradation model during the denoising process, achieving blind image restoration. Besides, we devise hierarchical guidance and patch-based methods, enabling the GDP to generate images of arbitrary resolutions. Experimentally, we demonstrate GDP's versatility on several image datasets for linear problems, such as super-resolution, deblurring, inpainting, and colorization, as well as non-linear and blind issues, such as low-light enhancement and HDR image recovery. GDP outperforms the current leading unsupervised methods on the diverse benchmarks in reconstruction quality and perceptual quality. Moreover, GDP also generalizes well for natural images or synthesized images with arbitrary sizes from various tasks out of the distribution of the ImageNet training set.
DifFace: Blind Face Restoration with Diffused Error Contraction
While deep learning-based methods for blind face restoration have achieved unprecedented success, they still suffer from two major limitations. First, most of them deteriorate when facing complex degradations out of their training data. Second, these methods require multiple constraints, e.g., fidelity, perceptual, and adversarial losses, which require laborious hyper-parameter tuning to stabilize and balance their influences. In this work, we propose a novel method named DifFace that is capable of coping with unseen and complex degradations more gracefully without complicated loss designs. The key of our method is to establish a posterior distribution from the observed low-quality (LQ) image to its high-quality (HQ) counterpart. In particular, we design a transition distribution from the LQ image to the intermediate state of a pre-trained diffusion model and then gradually transmit from this intermediate state to the HQ target by recursively applying a pre-trained diffusion model. The transition distribution only relies on a restoration backbone that is trained with L_2 loss on some synthetic data, which favorably avoids the cumbersome training process in existing methods. Moreover, the transition distribution can contract the error of the restoration backbone and thus makes our method more robust to unknown degradations. Comprehensive experiments show that DifFace is superior to current state-of-the-art methods, especially in cases with severe degradations. Our code and model are available at https://github.com/zsyOAOA/DifFace.
Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model
Most existing Image Restoration (IR) models are task-specific, which can not be generalized to different degradation operators. In this work, we propose the Denoising Diffusion Null-Space Model (DDNM), a novel zero-shot framework for arbitrary linear IR problems, including but not limited to image super-resolution, colorization, inpainting, compressed sensing, and deblurring. DDNM only needs a pre-trained off-the-shelf diffusion model as the generative prior, without any extra training or network modifications. By refining only the null-space contents during the reverse diffusion process, we can yield diverse results satisfying both data consistency and realness. We further propose an enhanced and robust version, dubbed DDNM+, to support noisy restoration and improve restoration quality for hard tasks. Our experiments on several IR tasks reveal that DDNM outperforms other state-of-the-art zero-shot IR methods. We also demonstrate that DDNM+ can solve complex real-world applications, e.g., old photo restoration.
Task Agnostic Restoration of Natural Video Dynamics
In many video restoration/translation tasks, image processing operations are na\"ively extended to the video domain by processing each frame independently, disregarding the temporal connection of the video frames. This disregard for the temporal connection often leads to severe temporal inconsistencies. State-Of-The-Art (SOTA) techniques that address these inconsistencies rely on the availability of unprocessed videos to implicitly siphon and utilize consistent video dynamics to restore the temporal consistency of frame-wise processed videos which often jeopardizes the translation effect. We propose a general framework for this task that learns to infer and utilize consistent motion dynamics from inconsistent videos to mitigate the temporal flicker while preserving the perceptual quality for both the temporally neighboring and relatively distant frames without requiring the raw videos at test time. The proposed framework produces SOTA results on two benchmark datasets, DAVIS and videvo.net, processed by numerous image processing applications. The code and the trained models are available at https://github.com/MKashifAli/TARONVD.
Simple Baselines for Image Restoration
Although there have been significant advances in the field of image restoration recently, the system complexity of the state-of-the-art (SOTA) methods is increasing as well, which may hinder the convenient analysis and comparison of methods. In this paper, we propose a simple baseline that exceeds the SOTA methods and is computationally efficient. To further simplify the baseline, we reveal that the nonlinear activation functions, e.g. Sigmoid, ReLU, GELU, Softmax, etc. are not necessary: they could be replaced by multiplication or removed. Thus, we derive a Nonlinear Activation Free Network, namely NAFNet, from the baseline. SOTA results are achieved on various challenging benchmarks, e.g. 33.69 dB PSNR on GoPro (for image deblurring), exceeding the previous SOTA 0.38 dB with only 8.4% of its computational costs; 40.30 dB PSNR on SIDD (for image denoising), exceeding the previous SOTA 0.28 dB with less than half of its computational costs. The code and the pre-trained models are released at https://github.com/megvii-research/NAFNet.
GAN Prior Embedded Network for Blind Face Restoration in the Wild
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead to acceptable results. Existing generative adversarial network (GAN) based methods can produce better results but tend to generate over-smoothed restorations. In this work, we propose a new method by first learning a GAN for high-quality face image generation and embedding it into a U-shaped DNN as a prior decoder, then fine-tuning the GAN prior embedded DNN with a set of synthesized low-quality face images. The GAN blocks are designed to ensure that the latent code and noise input to the GAN can be respectively generated from the deep and shallow features of the DNN, controlling the global face structure, local face details and background of the reconstructed image. The proposed GAN prior embedded network (GPEN) is easy-to-implement, and it can generate visually photo-realistic results. Our experiments demonstrated that the proposed GPEN achieves significantly superior results to state-of-the-art BFR methods both quantitatively and qualitatively, especially for the restoration of severely degraded face images in the wild. The source code and models can be found at https://github.com/yangxy/GPEN.
Towards Real-World Blind Face Restoration with Generative Facial Prior
Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages rich and diverse priors encapsulated in a pretrained face GAN for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets.
Old Photo Restoration via Deep Latent Space Translation
We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with apartial nonlocal block targeting to the structured defects, such as scratches and dust spots, and a local branch targeting to the unstructured defects, such as noises and blurriness. Two branches are fused in the latent space, leading to improved capability to restore old photos from multiple defects. Furthermore, we apply another face refinement network to recover fine details of faces in the old photos, thus ultimately generating photos with enhanced perceptual quality. With comprehensive experiments, the proposed pipeline demonstrates superior performance over state-of-the-art methods as well as existing commercial tools in terms of visual quality for old photos restoration.
Blind Face Restoration via Deep Multi-scale Component Dictionaries
Recent reference-based face restoration methods have received considerable attention due to their great capability in recovering high-frequency details on real low-quality images. However, most of these methods require a high-quality reference image of the same identity, making them only applicable in limited scenes. To address this issue, this paper suggests a deep face dictionary network (termed as DFDNet) to guide the restoration process of degraded observations. To begin with, we use K-means to generate deep dictionaries for perceptually significant face components (\ie, left/right eyes, nose and mouth) from high-quality images. Next, with the degraded input, we match and select the most similar component features from their corresponding dictionaries and transfer the high-quality details to the input via the proposed dictionary feature transfer (DFT) block. In particular, component AdaIN is leveraged to eliminate the style diversity between the input and dictionary features (\eg, illumination), and a confidence score is proposed to adaptively fuse the dictionary feature to the input. Finally, multi-scale dictionaries are adopted in a progressive manner to enable the coarse-to-fine restoration. Experiments show that our proposed method can achieve plausible performance in both quantitative and qualitative evaluation, and more importantly, can generate realistic and promising results on real degraded images without requiring an identity-belonging reference. The source code and models are available at https://github.com/csxmli2016/DFDNet.
Improving Yorùbá Diacritic Restoration
Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology.
Adaptive Blind All-in-One Image Restoration
Blind all-in-one image restoration models aim to recover a high-quality image from an input degraded with unknown distortions. However, these models require all the possible degradation types to be defined during the training stage while showing limited generalization to unseen degradations, which limits their practical application in complex cases. In this paper, we propose a simple but effective adaptive blind all-in-one restoration (ABAIR) model, which can address multiple degradations, generalizes well to unseen degradations, and efficiently incorporate new degradations by training a small fraction of parameters. First, we train our baseline model on a large dataset of natural images with multiple synthetic degradations, augmented with a segmentation head to estimate per-pixel degradation types, resulting in a powerful backbone able to generalize to a wide range of degradations. Second, we adapt our baseline model to varying image restoration tasks using independent low-rank adapters. Third, we learn to adaptively combine adapters to versatile images via a flexible and lightweight degradation estimator. Our model is both powerful in handling specific distortions and flexible in adapting to complex tasks, it not only outperforms the state-of-the-art by a large margin on five- and three-task IR setups, but also shows improved generalization to unseen degradations and also composite distortions.
KS-Net: Multi-band joint speech restoration and enhancement network for 2024 ICASSP SSI Challenge
This paper presents the speech restoration and enhancement system created by the 1024K team for the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. Our system consists of a generative adversarial network (GAN) in complex-domain for speech restoration and a fine-grained multi-band fusion module for speech enhancement. In the blind test set of SSI, the proposed system achieves an overall mean opinion score (MOS) of 3.49 based on ITU-T P.804 and a Word Accuracy Rate (WAcc) of 0.78 for the real-time track, as well as an overall P.804 MOS of 3.43 and a WAcc of 0.78 for the non-real-time track, ranking 1st in both tracks.
Reconstructing the Invisible: Video Frame Restoration through Siamese Masked Conditional Variational Autoencoder
In the domain of computer vision, the restoration of missing information in video frames is a critical challenge, particularly in applications such as autonomous driving and surveillance systems. This paper introduces the Siamese Masked Conditional Variational Autoencoder (SiamMCVAE), leveraging a siamese architecture with twin encoders based on vision transformers. This innovative design enhances the model's ability to comprehend lost content by capturing intrinsic similarities between paired frames. SiamMCVAE proficiently reconstructs missing elements in masked frames, effectively addressing issues arising from camera malfunctions through variational inferences. Experimental results robustly demonstrate the model's effectiveness in restoring missing information, thus enhancing the resilience of computer vision systems. The incorporation of Siamese Vision Transformer (SiamViT) encoders in SiamMCVAE exemplifies promising potential for addressing real-world challenges in computer vision, reinforcing the adaptability of autonomous systems in dynamic environments.
HAT: Hybrid Attention Transformer for Image Restoration
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising. However, we find that these networks can only utilize a limited spatial range of input information through attribution analysis. This implies that the potential of Transformer is still not fully exploited in existing networks. In order to activate more input pixels for better restoration, we propose a new Hybrid Attention Transformer (HAT). It combines both channel attention and window-based self-attention schemes, thus making use of their complementary advantages. Moreover, to better aggregate the cross-window information, we introduce an overlapping cross-attention module to enhance the interaction between neighboring window features. In the training stage, we additionally adopt a same-task pre-training strategy to further exploit the potential of the model for further improvement. Extensive experiments have demonstrated the effectiveness of the proposed modules. We further scale up the model to show that the performance of the SR task can be greatly improved. Besides, we extend HAT to more image restoration applications, including real-world image super-resolution, Gaussian image denoising and image compression artifacts reduction. Experiments on benchmark and real-world datasets demonstrate that our HAT achieves state-of-the-art performance both quantitatively and qualitatively. Codes and models are publicly available at https://github.com/XPixelGroup/HAT.
From heavy rain removal to detail restoration: A faster and better network
The profound accumulation of precipitation during intense rainfall events can markedly degrade the quality of images, leading to the erosion of textural details. Despite the improvements observed in existing learning-based methods specialized for heavy rain removal, it is discerned that a significant proportion of these methods tend to overlook the precise reconstruction of the intricate details. In this work, we introduce a simple dual-stage progressive enhancement network, denoted as DPENet, aiming to achieve effective deraining while preserving the structural accuracy of rain-free images. This approach comprises two key modules, a rain streaks removal network (R^2Net) focusing on accurate rain removal, and a details reconstruction network (DRNet) designed to recover the textural details of rain-free images. Firstly, we introduce a dilated dense residual block (DDRB) within R^2Net, enabling the aggregation of high-level and low-level features. Secondly, an enhanced residual pixel-wise attention block (ERPAB) is integrated into DRNet to facilitate the incorporation of contextual information. To further enhance the fidelity of our approach, we employ a comprehensive loss function that accentuates both the marginal and regional accuracy of rain-free images. Extensive experiments conducted on publicly available benchmarks demonstrates the noteworthy efficiency and effectiveness of our proposed DPENet. The source code and pre-trained models are currently available at https://github.com/chdwyb/DPENet.
Learning Truncated Causal History Model for Video Restoration
One key challenge to video restoration is to model the transition dynamics of video frames governed by motion. In this work, we propose TURTLE to learn the truncated causal history model for efficient and high-performing video restoration. Unlike traditional methods that process a range of contextual frames in parallel, TURTLE enhances efficiency by storing and summarizing a truncated history of the input frame latent representation into an evolving historical state. This is achieved through a sophisticated similarity-based retrieval mechanism that implicitly accounts for inter-frame motion and alignment. The causal design in TURTLE enables recurrence in inference through state-memorized historical features while allowing parallel training by sampling truncated video clips. We report new state-of-the-art results on a multitude of video restoration benchmark tasks, including video desnowing, nighttime video deraining, video raindrops and rain streak removal, video super-resolution, real-world and synthetic video deblurring, and blind video denoising while reducing the computational cost compared to existing best contextual methods on all these tasks.
MambaIR: A Simple Baseline for Image Restoration with State-Space Model
Recent years have witnessed great progress in image restoration thanks to the advancements in modern deep neural networks e.g. Convolutional Neural Network and Transformer. However, existing restoration backbones are usually limited due to the inherent local reductive bias or quadratic computational complexity. Recently, Selective Structured State Space Model e.g., Mamba, has shown great potential for long-range dependencies modeling with linear complexity, but it is still under-explored in low-level computer vision. In this work, we introduce a simple but strong benchmark model, named MambaIR, for image restoration. In detail, we propose the Residual State Space Block as the core component, which employs convolution and channel attention to enhance the capabilities of the vanilla Mamba. In this way, our MambaIR takes advantage of local patch recurrence prior as well as channel interaction to produce restoration-specific feature representation. Extensive experiments demonstrate the superiority of our method, for example, MambaIR outperforms Transformer-based baseline SwinIR by up to 0.36dB, using similar computational cost but with a global receptive field. Code is available at https://github.com/csguoh/MambaIR.
Shifted Autoencoders for Point Annotation Restoration in Object Counting
Object counting typically uses 2D point annotations. The complexity of object shapes and the subjectivity of annotators may lead to annotation inconsistency, potentially confusing counting model training. Some sophisticated noise-resistance counting methods have been proposed to alleviate this issue. Differently, we aim to directly refine the initial point annotations before training counting models. For that, we propose the Shifted Autoencoders (SAE), which enhances annotation consistency. Specifically, SAE applies random shifts to initial point annotations and employs a UNet to restore them to their original positions. Similar to MAE reconstruction, the trained SAE captures general position knowledge and ignores specific manual offset noise. This allows to restore the initial point annotations to more general and thus consistent positions. Extensive experiments show that using such refined consistent annotations to train some advanced (including noise-resistance) object counting models steadily/significantly boosts their performances. Remarkably, the proposed SAE helps to set new records on nine datasets. We will make codes and refined point annotations available.
The Perception-Robustness Tradeoff in Deterministic Image Restoration
We study the behavior of deterministic methods for solving inverse problems in imaging. These methods are commonly designed to achieve two goals: (1) attaining high perceptual quality, and (2) generating reconstructions that are consistent with the measurements. We provide a rigorous proof that the better a predictor satisfies these two requirements, the larger its Lipschitz constant must be, regardless of the nature of the degradation involved. In particular, to approach perfect perceptual quality and perfect consistency, the Lipschitz constant of the model must grow to infinity. This implies that such methods are necessarily more susceptible to adversarial attacks. We demonstrate our theory on single image super-resolution algorithms, addressing both noisy and noiseless settings. We also show how this undesired behavior can be leveraged to explore the posterior distribution, thereby allowing the deterministic model to imitate stochastic methods.
Controlling Vision-Language Models for Universal Image Restoration
Vision-language models such as CLIP have shown great impact on diverse downstream tasks for zero-shot or label-free predictions. However, when it comes to low-level vision such as image restoration their performance deteriorates dramatically due to corrupted inputs. In this paper, we present a degradation-aware vision-language model (DA-CLIP) to better transfer pretrained vision-language models to low-level vision tasks as a universal framework for image restoration. More specifically, DA-CLIP trains an additional controller that adapts the fixed CLIP image encoder to predict high-quality feature embeddings. By integrating the embedding into an image restoration network via cross-attention, we are able to pilot the model to learn a high-fidelity image reconstruction. The controller itself will also output a degradation feature that matches the real corruptions of the input, yielding a natural classifier for different degradation types. In addition, we construct a mixed degradation dataset with synthetic captions for DA-CLIP training. Our approach advances state-of-the-art performance on both degradation-specific and unified image restoration tasks, showing a promising direction of prompting image restoration with large-scale pretrained vision-language models. Our code is available at https://github.com/Algolzw/daclip-uir.
Dual Associated Encoder for Face Restoration
Restoring facial details from low-quality (LQ) images has remained a challenging problem due to its ill-posedness induced by various degradations in the wild. The existing codebook prior mitigates the ill-posedness by leveraging an autoencoder and learned codebook of high-quality (HQ) features, achieving remarkable quality. However, existing approaches in this paradigm frequently depend on a single encoder pre-trained on HQ data for restoring HQ images, disregarding the domain gap between LQ and HQ images. As a result, the encoding of LQ inputs may be insufficient, resulting in suboptimal performance. To tackle this problem, we propose a novel dual-branch framework named DAEFR. Our method introduces an auxiliary LQ branch that extracts crucial information from the LQ inputs. Additionally, we incorporate association training to promote effective synergy between the two branches, enhancing code prediction and output quality. We evaluate the effectiveness of DAEFR on both synthetic and real-world datasets, demonstrating its superior performance in restoring facial details. Project page: https://liagm.github.io/DAEFR/
DiffIR: Efficient Diffusion Model for Image Restoration
Diffusion model (DM) has achieved SOTA performance by modeling the image synthesis process into a sequential application of a denoising network. However, different from image synthesis, image restoration (IR) has a strong constraint to generate results in accordance with ground-truth. Thus, for IR, traditional DMs running massive iterations on a large model to estimate whole images or feature maps is inefficient. To address this issue, we propose an efficient DM for IR (DiffIR), which consists of a compact IR prior extraction network (CPEN), dynamic IR transformer (DIRformer), and denoising network. Specifically, DiffIR has two training stages: pretraining and training DM. In pretraining, we input ground-truth images into CPEN_{S1} to capture a compact IR prior representation (IPR) to guide DIRformer. In the second stage, we train the DM to directly estimate the same IRP as pretrained CPEN_{S1} only using LQ images. We observe that since the IPR is only a compact vector, DiffIR can use fewer iterations than traditional DM to obtain accurate estimations and generate more stable and realistic results. Since the iterations are few, our DiffIR can adopt a joint optimization of CPEN_{S2}, DIRformer, and denoising network, which can further reduce the estimation error influence. We conduct extensive experiments on several IR tasks and achieve SOTA performance while consuming less computational costs. Code is available at https://github.com/Zj-BinXia/DiffIR.
Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective
In recent years, we have witnessed the great advancement of Deep neural networks (DNNs) in image restoration. However, a critical limitation is that they cannot generalize well to real-world degradations with different degrees or types. In this paper, we are the first to propose a novel training strategy for image restoration from the causality perspective, to improve the generalization ability of DNNs for unknown degradations. Our method, termed Distortion Invariant representation Learning (DIL), treats each distortion type and degree as one specific confounder, and learns the distortion-invariant representation by eliminating the harmful confounding effect of each degradation. We derive our DIL with the back-door criterion in causality by modeling the interventions of different distortions from the optimization perspective. Particularly, we introduce counterfactual distortion augmentation to simulate the virtual distortion types and degrees as the confounders. Then, we instantiate the intervention of each distortion with a virtual model updating based on corresponding distorted images, and eliminate them from the meta-learning perspective. Extensive experiments demonstrate the effectiveness of our DIL on the generalization capability for unseen distortion types and degrees. Our code will be available at https://github.com/lixinustc/Causal-IR-DIL.
Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration
Compression plays an important role on the efficient transmission and storage of images and videos through band-limited systems such as streaming services, virtual reality or videogames. However, compression unavoidably leads to artifacts and the loss of the original information, which may severely degrade the visual quality. For these reasons, quality enhancement of compressed images has become a popular research topic. While most state-of-the-art image restoration methods are based on convolutional neural networks, other transformers-based methods such as SwinIR, show impressive performance on these tasks. In this paper, we explore the novel Swin Transformer V2, to improve SwinIR for image super-resolution, and in particular, the compressed input scenario. Using this method we can tackle the major issues in training transformer vision models, such as training instability, resolution gaps between pre-training and fine-tuning, and hunger on data. We conduct experiments on three representative tasks: JPEG compression artifacts removal, image super-resolution (classical and lightweight), and compressed image super-resolution. Experimental results demonstrate that our method, Swin2SR, can improve the training convergence and performance of SwinIR, and is a top-5 solution at the "AIM 2022 Challenge on Super-Resolution of Compressed Image and Video".
Adaptive Cross-Layer Attention for Image Restoration
Non-local attention module has been proven to be crucial for image restoration. Conventional non-local attention processes features of each layer separately, so it risks missing correlation between features among different layers. To address this problem, we aim to design attention modules that aggregate information from different layers. Instead of finding correlated key pixels within the same layer, each query pixel is encouraged to attend to key pixels at multiple previous layers of the network. In order to efficiently embed such attention design into neural network backbones, we propose a novel Adaptive Cross-Layer Attention (ACLA) module. Two adaptive designs are proposed for ACLA: (1) adaptively selecting the keys for non-local attention at each layer; (2) automatically searching for the insertion locations for ACLA modules. By these two adaptive designs, ACLA dynamically selects a flexible number of keys to be aggregated for non-local attention at previous layer while maintaining a compact neural network with compelling performance. Extensive experiments on image restoration tasks, including single image super-resolution, image denoising, image demosaicing, and image compression artifacts reduction, validate the effectiveness and efficiency of ACLA. The code of ACLA is available at https://github.com/SDL-ASU/ACLA.
Restormer: Efficient Transformer for High-Resolution Image Restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks. Recently, another class of neural architectures, Transformers, have shown significant performance gains on natural language and high-level vision tasks. While the Transformer model mitigates the shortcomings of CNNs (i.e., limited receptive field and inadaptability to input content), its computational complexity grows quadratically with the spatial resolution, therefore making it infeasible to apply to most image restoration tasks involving high-resolution images. In this work, we propose an efficient Transformer model by making several key designs in the building blocks (multi-head attention and feed-forward network) such that it can capture long-range pixel interactions, while still remaining applicable to large images. Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks, including image deraining, single-image motion deblurring, defocus deblurring (single-image and dual-pixel data), and image denoising (Gaussian grayscale/color denoising, and real image denoising). The source code and pre-trained models are available at https://github.com/swz30/Restormer.
Learning Enriched Features for Real Image Restoration and Enhancement
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for a variety of image processing tasks, including image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.