Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA parallel Basis Update and Galerkin Integrator for Tree Tensor Networks
Computing the numerical solution to high-dimensional tensor differential equations can lead to prohibitive computational costs and memory requirements. To reduce the memory and computational footprint, dynamical low-rank approximation (DLRA) has proven to be a promising approach. DLRA represents the solution as a low-rank tensor factorization and evolves the resulting low-rank factors in time. A central challenge in DLRA is to find time integration schemes that are robust to the arising small singular values. A robust parallel basis update & Galerkin integrator, which simultaneously evolves all low-rank factors, has recently been derived for matrix differential equations. This work extends the parallel low-rank matrix integrator to Tucker tensors and general tree tensor networks, yielding an algorithm in which all bases and connecting tensors are evolved in parallel over a time step. We formulate the algorithm, provide a robust error bound, and demonstrate the efficiency of the new integrators for problems in quantum many-body physics, uncertainty quantification, and radiative transfer.
Neural Relighting with Subsurface Scattering by Learning the Radiance Transfer Gradient
Reconstructing and relighting objects and scenes under varying lighting conditions is challenging: existing neural rendering methods often cannot handle the complex interactions between materials and light. Incorporating pre-computed radiance transfer techniques enables global illumination, but still struggles with materials with subsurface scattering effects. We propose a novel framework for learning the radiance transfer field via volume rendering and utilizing various appearance cues to refine geometry end-to-end. This framework extends relighting and reconstruction capabilities to handle a wider range of materials in a data-driven fashion. The resulting models produce plausible rendering results in existing and novel conditions. We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
Observational signatures of mixing-induced cooling in the Kelvin-Helmholtz instability
Cool (approx 10^4K), dense material permeates the hot (approx 10^6K), tenuous solar corona in form of coronal condensations, for example prominences and coronal rain. As the solar atmosphere evolves, turbulence can drive mixing between the condensations and the surrounding corona, with the mixing layer exhibiting an enhancement in emission from intermediate temperature (approx10^5K) spectral lines, which is often attributed to turbulent heating within the mixing layer. However, radiative cooling is highly efficient at intermediate temperatures and numerical simulations have shown that radiative cooling can far exceed turbulent heating in prominence-corona mixing scenarios. As such the mixing layer can have a net loss of thermal energy, i.e., the mixing layer is cooling rather than heating. Here, we investigate the observational signatures of cooling processes in Kelvin-Helmholtz mixing between a prominence thread and the surrounding solar corona through 2D numerical simulations. Optically thin emission is synthesised for Si IV, along with optically thick emission for Halpha, Ca II K and Mg II h using Lightweaver The Mg II h probes the turbulent mixing layer, whereas Halpha and Ca II K form within the thread and along its boundary respectively. As the mixing evolves, intermediate temperatures form leading to an increase in Si IV emission, which coincides with increased radiative losses. The simulation is dominated by cooling in the mixing layer, rather than turbulent heating, and yet enhanced emission in warm lines is produced. As such, an observational signature of decreased emission in cooler lines and increased emission in hotter lines may be a signature of mixing, rather than an implication of heating.
Driving Enhanced Exciton Transfer by Automatic Differentiation
We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective.
Radiation-magnetohydrodynamics with MPI-AMRVAC using flux-limited diffusion
Context. Radiation plays a significant role in solar and astrophysical environments as it may constitute a sizeable fraction of the energy density, momentum flux, and the total pressure. Modelling the dynamic interaction between radiation and magnetized plasmas in such environments is an intricate and computationally costly task. Aims. The goal of this work is to demonstrate the capabilities of the open-source parallel, block-adaptive computational framework MPI-AMRVAC, in solving equations of radiation-magnetohydrodynamics (RMHD), and to present benchmark test cases relevant for radiation-dominated magnetized plasmas. Methods. The existing magnetohydrodynamics (MHD) and flux-limited diffusion (FLD) radiative-hydrodynamics physics modules are combined to solve the equations of radiation-magnetohydrodynamics (RMHD) on block-adaptive finite volume Cartesian meshes in any dimensionality. Results. We introduce and validate several benchmark test cases such as steady radiative MHD shocks, radiation-damped linear MHD waves, radiation-modified Riemann problems and a multi-dimensional radiative magnetoconvection case. We recall the basic governing Rankine-Hugoniot relations for shocks and the dispersion relation for linear MHD waves in the presence of optically thick radiation fields where the diffusion limit is reached. The RMHD system allows for 8 linear wave types, where the classical 7-wave MHD picture (entropy and three wave pairs for slow, Alfven and fast) is augmented with a radiative diffusion mode. Conclusions. The MPI-AMRVAC code now has the capability to perform multidimensional RMHD simulations with mesh adaptation making it well-suited for larger scientific applications to study magnetized matter-radiation interactions in solar and stellar interiors and atmospheres.
Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases.
Mirror-NeRF: Learning Neural Radiance Fields for Mirrors with Whitted-Style Ray Tracing
Recently, Neural Radiance Fields (NeRF) has exhibited significant success in novel view synthesis, surface reconstruction, etc. However, since no physical reflection is considered in its rendering pipeline, NeRF mistakes the reflection in the mirror as a separate virtual scene, leading to the inaccurate reconstruction of the mirror and multi-view inconsistent reflections in the mirror. In this paper, we present a novel neural rendering framework, named Mirror-NeRF, which is able to learn accurate geometry and reflection of the mirror and support various scene manipulation applications with mirrors, such as adding new objects or mirrors into the scene and synthesizing the reflections of these new objects in mirrors, controlling mirror roughness, etc. To achieve this goal, we propose a unified radiance field by introducing the reflection probability and tracing rays following the light transport model of Whitted Ray Tracing, and also develop several techniques to facilitate the learning process. Experiments and comparisons on both synthetic and real datasets demonstrate the superiority of our method. The code and supplementary material are available on the project webpage: https://zju3dv.github.io/Mirror-NeRF/.
Eulerian-Lagrangian particle-based model for diffusional growth for the better parameterization of ISM clouds: A road map for improving climate model through small-scale model using observations
The quantitative prediction of the intensity of rainfall events (light or heavy) has remained a challenge in Numerical Weather Prediction (NWP) models. For the first time the mean coefficient of diffusional growth rates are calculated using an Eulerian-Lagrangian particle-based small-scale model on in situ airborne measurement data of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) during monsoon over Indian sub-continent. The results show that diffusional growth rates varies in the range of 0.00025 - 0.0015(cm/s). The generic problem of the overestimation of light rain in NWP models might be related with the choice of cm in the model. It is also shown from DNS experiment using Eulerian-Lagrangian particle-based small-scale model that the relative dispersion is constrained with average values in the range of ~ 0.2 - 0.37 (~ 0.1- 0.26) in less humid (more humid) conditions. This is in agreement with in situ airborne observation (dispersion ~ 0.36) and previous study over Indian sub-continent. The linear relationship between relative dispersion and cloud droplet number concentration (NC) is obtained from this study using CAIPEEX observation over Indian subcontinent. The dispersion based autoconversion-scheme for Indian region must be useful for the Indian summer monsoon precipitation calculation in the general circulation model. The present study also provide valuable guidance for the parameterization of effective radius, important for radiation scheme.
Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk
The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.
NeRF Analogies: Example-Based Visual Attribute Transfer for NeRFs
A Neural Radiance Field (NeRF) encodes the specific relation of 3D geometry and appearance of a scene. We here ask the question whether we can transfer the appearance from a source NeRF onto a target 3D geometry in a semantically meaningful way, such that the resulting new NeRF retains the target geometry but has an appearance that is an analogy to the source NeRF. To this end, we generalize classic image analogies from 2D images to NeRFs. We leverage correspondence transfer along semantic affinity that is driven by semantic features from large, pre-trained 2D image models to achieve multi-view consistent appearance transfer. Our method allows exploring the mix-and-match product space of 3D geometry and appearance. We show that our method outperforms traditional stylization-based methods and that a large majority of users prefer our method over several typical baselines.
Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10-90 GHz
The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.
RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D
Lifting 2D diffusion for 3D generation is a challenging problem due to the lack of geometric prior and the complex entanglement of materials and lighting in natural images. Existing methods have shown promise by first creating the geometry through score-distillation sampling (SDS) applied to rendered surface normals, followed by appearance modeling. However, relying on a 2D RGB diffusion model to optimize surface normals is suboptimal due to the distribution discrepancy between natural images and normals maps, leading to instability in optimization. In this paper, recognizing that the normal and depth information effectively describe scene geometry and be automatically estimated from images, we propose to learn a generalizable Normal-Depth diffusion model for 3D generation. We achieve this by training on the large-scale LAION dataset together with the generalizable image-to-depth and normal prior models. In an attempt to alleviate the mixed illumination effects in the generated materials, we introduce an albedo diffusion model to impose data-driven constraints on the albedo component. Our experiments show that when integrated into existing text-to-3D pipelines, our models significantly enhance the detail richness, achieving state-of-the-art results. Our project page is https://lingtengqiu.github.io/RichDreamer/.
Solar variability in the Mg II h and k lines
Solar irradiance and its variations in the ultraviolet (UV) control the photochemistry in Earth's atmosphere and influence Earth's climate. The variability of Mg II h and k core-to-wing ratio, also known as the Mg II index, is highly correlated with the solar UV irradiance variability. Because of this, Mg II index is routinely used as a proxy for solar UV irradiance variability, which can help to get insights into the influence of solar UV irradiance variability on Earth's climate. Measurements of the Mg II index, however, have only been carried out since 1978 and do not cover the climate relevant timescales longer than a few decades. Here we present a model to calculate the Mg II index and its variability based on the well-established SATIRE (Spectral And Total Irradiance REconstruction) model. We demonstrate that our model calculations yield an excellent agreement with the observed Mg II index variations, both on the solar activity cycle and on the solar rotation timescales. Using this model, we synthesize Mg II index timeseries on climate relevant timescales of decades and longer. Here we present the timeseries of the Mg II index spanning nearly three centuries.
Material Transforms from Disentangled NeRF Representations
In this paper, we first propose a novel method for transferring material transformations across different scenes. Building on disentangled Neural Radiance Field (NeRF) representations, our approach learns to map Bidirectional Reflectance Distribution Functions (BRDF) from pairs of scenes observed in varying conditions, such as dry and wet. The learned transformations can then be applied to unseen scenes with similar materials, therefore effectively rendering the transformation learned with an arbitrary level of intensity. Extensive experiments on synthetic scenes and real-world objects validate the effectiveness of our approach, showing that it can learn various transformations such as wetness, painting, coating, etc. Our results highlight not only the versatility of our method but also its potential for practical applications in computer graphics. We publish our method implementation, along with our synthetic/real datasets on https://github.com/astra-vision/BRDFTransform
Flying with Photons: Rendering Novel Views of Propagating Light
We present an imaging and neural rendering technique that seeks to synthesize videos of light propagating through a scene from novel, moving camera viewpoints. Our approach relies on a new ultrafast imaging setup to capture a first-of-its kind, multi-viewpoint video dataset with picosecond-level temporal resolution. Combined with this dataset, we introduce an efficient neural volume rendering framework based on the transient field. This field is defined as a mapping from a 3D point and 2D direction to a high-dimensional, discrete-time signal that represents time-varying radiance at ultrafast timescales. Rendering with transient fields naturally accounts for effects due to the finite speed of light, including viewpoint-dependent appearance changes caused by light propagation delays to the camera. We render a range of complex effects, including scattering, specular reflection, refraction, and diffraction. Additionally, we demonstrate removing viewpoint-dependent propagation delays using a time warping procedure, rendering of relativistic effects, and video synthesis of direct and global components of light transport.
NeRD: Neural Reflectance Decomposition from Image Collections
Decomposing a scene into its shape, reflectance, and illumination is a challenging but important problem in computer vision and graphics. This problem is inherently more challenging when the illumination is not a single light source under laboratory conditions but is instead an unconstrained environmental illumination. Though recent work has shown that implicit representations can be used to model the radiance field of an object, most of these techniques only enable view synthesis and not relighting. Additionally, evaluating these radiance fields is resource and time-intensive. We propose a neural reflectance decomposition (NeRD) technique that uses physically-based rendering to decompose the scene into spatially varying BRDF material properties. In contrast to existing techniques, our input images can be captured under different illumination conditions. In addition, we also propose techniques to convert the learned reflectance volume into a relightable textured mesh enabling fast real-time rendering with novel illuminations. We demonstrate the potential of the proposed approach with experiments on both synthetic and real datasets, where we are able to obtain high-quality relightable 3D assets from image collections. The datasets and code is available on the project page: https://markboss.me/publication/2021-nerd/
UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation
Recent advancements in text-to-3D generation technology have significantly advanced the conversion of textual descriptions into imaginative well-geometrical and finely textured 3D objects. Despite these developments, a prevalent limitation arises from the use of RGB data in diffusion or reconstruction models, which often results in models with inherent lighting and shadows effects that detract from their realism, thereby limiting their usability in applications that demand accurate relighting capabilities. To bridge this gap, we present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors. Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model. Extensive evaluations demonstrate that UniDream surpasses existing methods in generating 3D objects with clearer albedo textures, smoother surfaces, enhanced realism, and superior relighting capabilities.
Subsurface Scattering for 3D Gaussian Splatting
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface. 3D Gaussian Splatting introduced high-quality novel view synthesis at real-time speeds. While 3D Gaussians efficiently approximate an object's surface, they fail to capture the volumetric properties of subsurface scattering. We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data. Our method decomposes the scene into an explicit surface represented as 3D Gaussians, with a spatially varying BRDF, and an implicit volumetric representation of the scattering component. A learned incident light field accounts for shadowing. We optimize all parameters jointly via ray-traced differentiable rendering. Our approach enables material editing, relighting and novel view synthesis at interactive rates. We show successful application on synthetic data and introduce a newly acquired multi-view multi-light dataset of objects in a light-stage setup. Compared to previous work we achieve comparable or better results at a fraction of optimization and rendering time while enabling detailed control over material attributes. Project page https://sss.jdihlmann.com/
CloudTracks: A Dataset for Localizing Ship Tracks in Satellite Images of Clouds
Clouds play a significant role in global temperature regulation through their effect on planetary albedo. Anthropogenic emissions of aerosols can alter the albedo of clouds, but the extent of this effect, and its consequent impact on temperature change, remains uncertain. Human-induced clouds caused by ship aerosol emissions, commonly referred to as ship tracks, provide visible manifestations of this effect distinct from adjacent cloud regions and therefore serve as a useful sandbox to study human-induced clouds. However, the lack of large-scale ship track data makes it difficult to deduce their general effects on cloud formation. Towards developing automated approaches to localize ship tracks at scale, we present CloudTracks, a dataset containing 3,560 satellite images labeled with more than 12,000 ship track instance annotations. We train semantic segmentation and instance segmentation model baselines on our dataset and find that our best model substantially outperforms previous state-of-the-art for ship track localization (61.29 vs. 48.65 IoU). We also find that the best instance segmentation model is able to identify the number of ship tracks in each image more accurately than the previous state-of-the-art (1.64 vs. 4.99 MAE). However, we identify cases where the best model struggles to accurately localize and count ship tracks, so we believe CloudTracks will stimulate novel machine learning approaches to better detect elongated and overlapping features in satellite images. We release our dataset openly at {zenodo.org/records/10042922}.
Radiant Foam: Real-Time Differentiable Ray Tracing
Research on differentiable scene representations is consistently moving towards more efficient, real-time models. Recently, this has led to the popularization of splatting methods, which eschew the traditional ray-based rendering of radiance fields in favor of rasterization. This has yielded a significant improvement in rendering speeds due to the efficiency of rasterization algorithms and hardware, but has come at a cost: the approximations that make rasterization efficient also make implementation of light transport phenomena like reflection and refraction much more difficult. We propose a novel scene representation which avoids these approximations, but keeps the efficiency and reconstruction quality of splatting by leveraging a decades-old efficient volumetric mesh ray tracing algorithm which has been largely overlooked in recent computer vision research. The resulting model, which we name Radiant Foam, achieves rendering speed and quality comparable to Gaussian Splatting, without the constraints of rasterization. Unlike ray traced Gaussian models that use hardware ray tracing acceleration, our method requires no special hardware or APIs beyond the standard features of a programmable GPU.
A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has recently emerged as a transformative technique in the realm of explicit radiance field and computer graphics. This innovative approach, characterized by the utilization of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research in this domain. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in applicable and explicit radiance field representation.
Relightable Full-Body Gaussian Codec Avatars
We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
The image relighting task of transferring illumination conditions between two images offers an interesting and difficult challenge with potential applications in photography, cinematography and computer graphics. In this report we present methods that we tried to achieve that goal. Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature. With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.
3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes
Particle-based representations of radiance fields such as 3D Gaussian Splatting have found great success for reconstructing and re-rendering of complex scenes. Most existing methods render particles via rasterization, projecting them to screen space tiles for processing in a sorted order. This work instead considers ray tracing the particles, building a bounding volume hierarchy and casting a ray for each pixel using high-performance GPU ray tracing hardware. To efficiently handle large numbers of semi-transparent particles, we describe a specialized rendering algorithm which encapsulates particles with bounding meshes to leverage fast ray-triangle intersections, and shades batches of intersections in depth-order. The benefits of ray tracing are well-known in computer graphics: processing incoherent rays for secondary lighting effects such as shadows and reflections, rendering from highly-distorted cameras common in robotics, stochastically sampling rays, and more. With our renderer, this flexibility comes at little cost compared to rasterization. Experiments demonstrate the speed and accuracy of our approach, as well as several applications in computer graphics and vision. We further propose related improvements to the basic Gaussian representation, including a simple use of generalized kernel functions which significantly reduces particle hit counts.
StyleRF: Zero-shot 3D Style Transfer of Neural Radiance Fields
3D style transfer aims to render stylized novel views of a 3D scene with multi-view consistency. However, most existing work suffers from a three-way dilemma over accurate geometry reconstruction, high-quality stylization, and being generalizable to arbitrary new styles. We propose StyleRF (Style Radiance Fields), an innovative 3D style transfer technique that resolves the three-way dilemma by performing style transformation within the feature space of a radiance field. StyleRF employs an explicit grid of high-level features to represent 3D scenes, with which high-fidelity geometry can be reliably restored via volume rendering. In addition, it transforms the grid features according to the reference style which directly leads to high-quality zero-shot style transfer. StyleRF consists of two innovative designs. The first is sampling-invariant content transformation that makes the transformation invariant to the holistic statistics of the sampled 3D points and accordingly ensures multi-view consistency. The second is deferred style transformation of 2D feature maps which is equivalent to the transformation of 3D points but greatly reduces memory footprint without degrading multi-view consistency. Extensive experiments show that StyleRF achieves superior 3D stylization quality with precise geometry reconstruction and it can generalize to various new styles in a zero-shot manner.
Efficient View Synthesis with Neural Radiance Distribution Field
Recent work on Neural Radiance Fields (NeRF) has demonstrated significant advances in high-quality view synthesis. A major limitation of NeRF is its low rendering efficiency due to the need for multiple network forwardings to render a single pixel. Existing methods to improve NeRF either reduce the number of required samples or optimize the implementation to accelerate the network forwarding. Despite these efforts, the problem of multiple sampling persists due to the intrinsic representation of radiance fields. In contrast, Neural Light Fields (NeLF) reduce the computation cost of NeRF by querying only one single network forwarding per pixel. To achieve a close visual quality to NeRF, existing NeLF methods require significantly larger network capacities which limits their rendering efficiency in practice. In this work, we propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time. Specifically, we use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF. The key is to model the radiance distribution along each ray with frequency basis and predict frequency weights using the network. Pixel values are then computed via volume rendering on radiance distributions. Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods: we achieve a ~254x speed-up over NeRF with similar network size, with only a marginal performance decline. Our project page is at yushuang-wu.github.io/NeRDF.
vHeat: Building Vision Models upon Heat Conduction
A fundamental problem in learning robust and expressive visual representations lies in efficiently estimating the spatial relationships of visual semantics throughout the entire image. In this study, we propose vHeat, a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field. The essential idea, inspired by the physical principle of heat conduction, is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy. This mechanism is incorporated into deep models through the newly proposed module, the Heat Conduction Operator (HCO), which is physically plausible and can be efficiently implemented using DCT and IDCT operations with a complexity of O(N^{1.5}). Extensive experiments demonstrate that vHeat surpasses Vision Transformers (ViTs) across various vision tasks, while also providing higher inference speeds, reduced FLOPs, and lower GPU memory usage for high-resolution images. The code will be released at https://github.com/MzeroMiko/vHeat.
LumiNet: Latent Intrinsics Meets Diffusion Models for Indoor Scene Relighting
We introduce LumiNet, a novel architecture that leverages generative models and latent intrinsic representations for effective lighting transfer. Given a source image and a target lighting image, LumiNet synthesizes a relit version of the source scene that captures the target's lighting. Our approach makes two key contributions: a data curation strategy from the StyleGAN-based relighting model for our training, and a modified diffusion-based ControlNet that processes both latent intrinsic properties from the source image and latent extrinsic properties from the target image. We further improve lighting transfer through a learned adaptor (MLP) that injects the target's latent extrinsic properties via cross-attention and fine-tuning. Unlike traditional ControlNet, which generates images with conditional maps from a single scene, LumiNet processes latent representations from two different images - preserving geometry and albedo from the source while transferring lighting characteristics from the target. Experiments demonstrate that our method successfully transfers complex lighting phenomena including specular highlights and indirect illumination across scenes with varying spatial layouts and materials, outperforming existing approaches on challenging indoor scenes using only images as input.
Conditions for radiative zones in the molecular hydrogen envelope of Jupiter and Saturn: The role of alkali metals
Interior models of gas giants in the Solar System traditionally assume a fully convective molecular hydrogen envelope. However, recent observations from the Juno mission suggest a possible depletion of alkali metals in Jupiter's molecular hydrogen envelope, indicating that a stable radiative layer could exist at the kilobar level. Recent studies propose that deep stable layers help reconcile various Jupiter observations, including its atmospheric water and CO abundances and the depth of its zonal winds. However, opacity tables used to infer stable layers are often outdated and incomplete, leaving the precise molecular hydrogen envelope composition required for a deep radiative zone uncertain. In this paper, we determine atmospheric compositions that can lead to the formation of a radiative zone at the kilobar level in Jupiter and Saturn today. We computed radiative opacity tables covering pressures up to 10^5 bar, including the most abundant molecules present in the gas giants of the Solar System, as well as contributions from free electrons, metal hydrides, oxides, and atomic species, using the most up-to-date line lists published in the literature. These tables were used to calculate Rosseland-mean opacities for the molecular hydrogen envelopes of Jupiter and Saturn, which were then compared to the critical mean opacity required to maintain convection. We find that the presence of a radiative zone is controlled by the existence of K, Na, and NaH in the atmosphere of Jupiter and Saturn. For Jupiter, the elemental abundance of K and Na must be less than sim 10^{-3} times solar to form a radiative zone. In contrast, for Saturn, the required abundance for K and Na is below sim 10^{-4} times solar.
AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality Prediction
Air quality prediction and modelling plays a pivotal role in public health and environment management, for individuals and authorities to make informed decisions. Although traditional data-driven models have shown promise in this domain, their long-term prediction accuracy can be limited, especially in scenarios with sparse or incomplete data and they often rely on black-box deep learning structures that lack solid physical foundation leading to reduced transparency and interpretability in predictions. To address these limitations, this paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet). Specifically, we leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks. Then, we utilize a graph structure to integrate physics knowledge into a neural network architecture and exploit latent representations to capture spatio-temporal relationships within the air quality data. Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios including different lead time (24h, 48h, 72h), sparse data and sudden change prediction, achieving reduction in prediction errors up to 10%. Moreover, a case study further validates that our model captures underlying physical processes of particle movement and generates accurate predictions with real physical meaning.
Generative Modelling of BRDF Textures from Flash Images
We learn a latent space for easy capture, consistent interpolation, and efficient reproduction of visual material appearance. When users provide a photo of a stationary natural material captured under flashlight illumination, first it is converted into a latent material code. Then, in the second step, conditioned on the material code, our method produces an infinite and diverse spatial field of BRDF model parameters (diffuse albedo, normals, roughness, specular albedo) that subsequently allows rendering in complex scenes and illuminations, matching the appearance of the input photograph. Technically, we jointly embed all flash images into a latent space using a convolutional encoder, and -- conditioned on these latent codes -- convert random spatial fields into fields of BRDF parameters using a convolutional neural network (CNN). We condition these BRDF parameters to match the visual characteristics (statistics and spectra of visual features) of the input under matching light. A user study compares our approach favorably to previous work, even those with access to BRDF supervision.
Climate-sensitive Urban Planning through Optimization of Tree Placements
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves, which results in increased thermal discomfort and mortality rates. While global mitigation action is undoubtedly necessary, so is climate adaptation, e.g., through climate-sensitive urban planning. Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments. Our work investigates the challenge of optimal placement of such trees. Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs. This rules out optimization of tree placements over large areas and considering effects over longer time scales. Hence, we employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales, spanning from daily variations to extended time scales of heatwave events and even decades. To optimize tree placements, we harness the innate local effect of trees within the iterated local search framework with tailored adaptations. We show the efficacy of our approach across a wide spectrum of study areas and time scales. We believe that our approach is a step towards empowering decision-makers, urban designers and planners to proactively and effectively assess the potential of urban trees to mitigate heat stress.
URAvatar: Universal Relightable Gaussian Codec Avatars
We present a new approach to creating photorealistic and relightable head avatars from a phone scan with unknown illumination. The reconstructed avatars can be animated and relit in real time with the global illumination of diverse environments. Unlike existing approaches that estimate parametric reflectance parameters via inverse rendering, our approach directly models learnable radiance transfer that incorporates global light transport in an efficient manner for real-time rendering. However, learning such a complex light transport that can generalize across identities is non-trivial. A phone scan in a single environment lacks sufficient information to infer how the head would appear in general environments. To address this, we build a universal relightable avatar model represented by 3D Gaussians. We train on hundreds of high-quality multi-view human scans with controllable point lights. High-resolution geometric guidance further enhances the reconstruction accuracy and generalization. Once trained, we finetune the pretrained model on a phone scan using inverse rendering to obtain a personalized relightable avatar. Our experiments establish the efficacy of our design, outperforming existing approaches while retaining real-time rendering capability.
Adaptive Shells for Efficient Neural Radiance Field Rendering
Neural radiance fields achieve unprecedented quality for novel view synthesis, but their volumetric formulation remains expensive, requiring a huge number of samples to render high-resolution images. Volumetric encodings are essential to represent fuzzy geometry such as foliage and hair, and they are well-suited for stochastic optimization. Yet, many scenes ultimately consist largely of solid surfaces which can be accurately rendered by a single sample per pixel. Based on this insight, we propose a neural radiance formulation that smoothly transitions between volumetric- and surface-based rendering, greatly accelerating rendering speed and even improving visual fidelity. Our method constructs an explicit mesh envelope which spatially bounds a neural volumetric representation. In solid regions, the envelope nearly converges to a surface and can often be rendered with a single sample. To this end, we generalize the NeuS formulation with a learned spatially-varying kernel size which encodes the spread of the density, fitting a wide kernel to volume-like regions and a tight kernel to surface-like regions. We then extract an explicit mesh of a narrow band around the surface, with width determined by the kernel size, and fine-tune the radiance field within this band. At inference time, we cast rays against the mesh and evaluate the radiance field only within the enclosed region, greatly reducing the number of samples required. Experiments show that our approach enables efficient rendering at very high fidelity. We also demonstrate that the extracted envelope enables downstream applications such as animation and simulation.
A Diffusion Approach to Radiance Field Relighting using Multi-Illumination Synthesis
Relighting radiance fields is severely underconstrained for multi-view data, which is most often captured under a single illumination condition; It is especially hard for full scenes containing multiple objects. We introduce a method to create relightable radiance fields using such single-illumination data by exploiting priors extracted from 2D image diffusion models. We first fine-tune a 2D diffusion model on a multi-illumination dataset conditioned by light direction, allowing us to augment a single-illumination capture into a realistic -- but possibly inconsistent -- multi-illumination dataset from directly defined light directions. We use this augmented data to create a relightable radiance field represented by 3D Gaussian splats. To allow direct control of light direction for low-frequency lighting, we represent appearance with a multi-layer perceptron parameterized on light direction. To enforce multi-view consistency and overcome inaccuracies we optimize a per-image auxiliary feature vector. We show results on synthetic and real multi-view data under single illumination, demonstrating that our method successfully exploits 2D diffusion model priors to allow realistic 3D relighting for complete scenes. Project site https://repo-sam.inria.fr/fungraph/generative-radiance-field-relighting/
NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections
Neural Radiance Fields (NeRFs) typically struggle to reconstruct and render highly specular objects, whose appearance varies quickly with changes in viewpoint. Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content. Moreover, these techniques rely on large computationally-expensive neural networks to model outgoing radiance, which severely limits optimization and rendering speed. We address these issues with an approach based on ray tracing: instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts reflection rays from these points and traces them through the NeRF representation to render feature vectors which are decoded into color using a small inexpensive network. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing shiny objects, and that it is the only existing NeRF method that can synthesize photorealistic specular appearance and reflections in real-world scenes, while requiring comparable optimization time to current state-of-the-art view synthesis models.
MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors
Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.
MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes
Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.
Full Transport General Relativistic Radiation Magnetohydrodynamics for Nucleosynthesis in Collapsars
We model a compact black hole-accretion disk system in the collapsar scenario with full transport, frequency dependent, general relativistic radiation magnetohydrodynamics. We examine whether or not winds from a collapsar disk can undergo rapid neutron capture (r-process) nucleosynthesis and significantly contribute to solar r-process abundances. We find the inclusion of accurate transport has significant effects on outflows, raising the electron fraction above Y_{rm e} sim 0.3 and preventing third peak r-process material from being synthesized. We analyze the time-evolution of neutrino processes and electron fraction in the disk and present a simple one-dimensional model for the vertical structure that emerges. We compare our simulation to semi-analytic expectations and argue that accurate neutrino transport and realistic initial and boundary conditions are required to capture the dynamics and nucleosynthetic outcome of a collapsar.
DiffRF: Rendering-Guided 3D Radiance Field Diffusion
We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.
StyleSplat: 3D Object Style Transfer with Gaussian Splatting
Recent advancements in radiance fields have opened new avenues for creating high-quality 3D assets and scenes. Style transfer can enhance these 3D assets with diverse artistic styles, transforming creative expression. However, existing techniques are often slow or unable to localize style transfer to specific objects. We introduce StyleSplat, a lightweight method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images. Our approach first learns a photorealistic representation of the scene using 3D Gaussian splatting while jointly segmenting individual 3D objects. We then use a nearest-neighbor feature matching loss to finetune the Gaussians of the selected objects, aligning their spherical harmonic coefficients with the style image to ensure consistency and visual appeal. StyleSplat allows for quick, customizable style transfer and localized stylization of multiple objects within a scene, each with a different style. We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
Clustered Geometries Exploiting Quantum Coherence Effects for Efficient Energy Transfer in Light Harvesting
Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harvesting model to reveal that dimerized geometries with strong electronic coherences within donor and acceptor pairs exhibit significantly improved efficiency, which is in marked contrast to predictions of the classical F\"orster theory. We reveal that energy tuning due to coherent delocalization of photoexcitations is mainly responsible for the efficiency optimization. This coherence-assisted energy-tuning mechanism also explains the energetics and chlorophyll arrangements in the widely-studied Fenna-Matthews-Olson complex. We argue that a clustered network with rapid energy relaxation among donors and resonant energy transfer from donor to acceptor states provides a basic formula for constructing efficient light-harvesting systems, and the general principles revealed here can be generalized to larger systems and benefit future innovation of efficient molecular light-harvesting materials.
A Comparative Study on Generative Models for High Resolution Solar Observation Imaging
Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at https://github.com/SLAMPAI/generative-models-for-highres-solar-images.
Deblurring 3D Gaussian Splatting
Recent studies in Radiance Fields have paved the robust way for novel view synthesis with their photorealistic rendering quality. Nevertheless, they usually employ neural networks and volumetric rendering, which are costly to train and impede their broad use in various real-time applications due to the lengthy rendering time. Lately 3D Gaussians splatting-based approach has been proposed to model the 3D scene, and it achieves remarkable visual quality while rendering the images in real-time. However, it suffers from severe degradation in the rendering quality if the training images are blurry. Blurriness commonly occurs due to the lens defocusing, object motion, and camera shake, and it inevitably intervenes in clean image acquisition. Several previous studies have attempted to render clean and sharp images from blurry input images using neural fields. The majority of those works, however, are designed only for volumetric rendering-based neural radiance fields and are not straightforwardly applicable to rasterization-based 3D Gaussian splatting methods. Thus, we propose a novel real-time deblurring framework, deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP) that manipulates the covariance of each 3D Gaussian to model the scene blurriness. While deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images. A variety of experiments have been conducted on the benchmark, and the results have revealed the effectiveness of our approach for deblurring. Qualitative results are available at https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/
Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting
We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.
DreamMat: High-quality PBR Material Generation with Geometry- and Light-aware Diffusion Models
2D diffusion model, which often contains unwanted baked-in shading effects and results in unrealistic rendering effects in the downstream applications. Generating Physically Based Rendering (PBR) materials instead of just RGB textures would be a promising solution. However, directly distilling the PBR material parameters from 2D diffusion models still suffers from incorrect material decomposition, such as baked-in shading effects in albedo. We introduce DreamMat, an innovative approach to resolve the aforementioned problem, to generate high-quality PBR materials from text descriptions. We find out that the main reason for the incorrect material distillation is that large-scale 2D diffusion models are only trained to generate final shading colors, resulting in insufficient constraints on material decomposition during distillation. To tackle this problem, we first finetune a new light-aware 2D diffusion model to condition on a given lighting environment and generate the shading results on this specific lighting condition. Then, by applying the same environment lights in the material distillation, DreamMat can generate high-quality PBR materials that are not only consistent with the given geometry but also free from any baked-in shading effects in albedo. Extensive experiments demonstrate that the materials produced through our methods exhibit greater visual appeal to users and achieve significantly superior rendering quality compared to baseline methods, which are preferable for downstream tasks such as game and film production.
Constraints on Cosmic Rays Acceleration in Bright Gamma-ray Bursts with Observations of Fermi
Gamma-ray bursts (GRBs) are widely suggested as potential sources of ultrahigh-energy cosmic rays (UHECRs). The kinetic energy of the jets dissipates, leading to the production of an enormous amount of gamma-ray photons and possibly also the acceleration of protons. The accelerated protons will interact with the radiation of the GRB via the photomeson and Bethe-Heitler processes, which can initiate electromagnetic cascades. This process can give rise to broadband radiation up to the GeV-TeV gamma-ray regime. The expected gamma-ray flux from cascades depends on properties of the GRB jet, such as the dissipation radius R_{rm diss}, the bulk Lorentz factor Gamma, and the baryon loading factor eta_p. Therefore, observations of Fermi-LAT can impose constraints on these important parameters. In this study, we select 12 GRBs of high keV-MeV fluence and constrain the baryon loading factor, under different combinations of the bulk Lorentz factor and the dissipation radius based on Fermi-LAT's measurements. Our findings indicate a strong constraint of eta_p<10 for most selected GRBs over a large parameter space except for large dissipation radii (gtrsim 10^{15}rm cm) and high bulk Lorentz factors (gtrsim 600). The constraint is comparable to, and in some GRBs even stronger than, that from high-energy neutrinos for stacked GRBs. Our results suggest that for typical bulk Lorentz factor of several hundreds, the dissipation radii of GRBs need be large to avoid overshooting the GeV gamma-ray flux during the prompt emission phase of GRBs, which can be used to constrain GRBs.
Breathing New Life into 3D Assets with Generative Repainting
Diffusion-based text-to-image models ignited immense attention from the vision community, artists, and content creators. Broad adoption of these models is due to significant improvement in the quality of generations and efficient conditioning on various modalities, not just text. However, lifting the rich generative priors of these 2D models into 3D is challenging. Recent works have proposed various pipelines powered by the entanglement of diffusion models and neural fields. We explore the power of pretrained 2D diffusion models and standard 3D neural radiance fields as independent, standalone tools and demonstrate their ability to work together in a non-learned fashion. Such modularity has the intrinsic advantage of eased partial upgrades, which became an important property in such a fast-paced domain. Our pipeline accepts any legacy renderable geometry, such as textured or untextured meshes, orchestrates the interaction between 2D generative refinement and 3D consistency enforcement tools, and outputs a painted input geometry in several formats. We conduct a large-scale study on a wide range of objects and categories from the ShapeNetSem dataset and demonstrate the advantages of our approach, both qualitatively and quantitatively. Project page: https://www.obukhov.ai/repainting_3d_assets
Surface Reconstruction from Gaussian Splatting via Novel Stereo Views
The Gaussian splatting for radiance field rendering method has recently emerged as an efficient approach for accurate scene representation. It optimizes the location, size, color, and shape of a cloud of 3D Gaussian elements to visually match, after projection, or splatting, a set of given images taken from various viewing directions. And yet, despite the proximity of Gaussian elements to the shape boundaries, direct surface reconstruction of objects in the scene is a challenge. We propose a novel approach for surface reconstruction from Gaussian splatting models. Rather than relying on the Gaussian elements' locations as a prior for surface reconstruction, we leverage the superior novel-view synthesis capabilities of 3DGS. To that end, we use the Gaussian splatting model to render pairs of stereo-calibrated novel views from which we extract depth profiles using a stereo matching method. We then combine the extracted RGB-D images into a geometrically consistent surface. The resulting reconstruction is more accurate and shows finer details when compared to other methods for surface reconstruction from Gaussian splatting models, while requiring significantly less compute time compared to other surface reconstruction methods. We performed extensive testing of the proposed method on in-the-wild scenes, taken by a smartphone, showcasing its superior reconstruction abilities. Additionally, we tested the proposed method on the Tanks and Temples benchmark, and it has surpassed the current leading method for surface reconstruction from Gaussian splatting models. Project page: https://gs2mesh.github.io/.
Taming Latent Diffusion Model for Neural Radiance Field Inpainting
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images. Despite some recent work showing preliminary success in editing a reconstructed NeRF with diffusion prior, they remain struggling to synthesize reasonable geometry in completely uncovered regions. One major reason is the high diversity of synthetic contents from the diffusion model, which hinders the radiance field from converging to a crisp and deterministic geometry. Moreover, applying latent diffusion models on real data often yields a textural shift incoherent to the image condition due to auto-encoding errors. These two problems are further reinforced with the use of pixel-distance losses. To address these issues, we propose tempering the diffusion model's stochasticity with per-scene customization and mitigating the textural shift with masked adversarial training. During the analyses, we also found the commonly used pixel and perceptual losses are harmful in the NeRF inpainting task. Through rigorous experiments, our framework yields state-of-the-art NeRF inpainting results on various real-world scenes. Project page: https://hubert0527.github.io/MALD-NeRF
Recent global temperature surge amplified by record-low planetary albedo
In 2023, the global mean temperature soared to 1.48K above the pre-industrial level, surpassing the previous record by 0.17K. Previous best-guess estimates of known drivers including anthropogenic warming and the El Nino onset fall short by about 0.2K in explaining the temperature rise. Utilizing satellite and reanalysis data, we identify a record-low planetary albedo as the primary factor bridging this gap. The decline is caused largely by a reduced low-cloud cover in the northern mid-latitudes and tropics, in continuation of a multi-annual trend. Understanding how much of the low-cloud trend is due to internal variability, reduced aerosol concentrations, or a possibly emerging low-cloud feedback will be crucial for assessing the current and expected future warming.
Locally Stylized Neural Radiance Fields
In recent years, there has been increasing interest in applying stylization on 3D scenes from a reference style image, in particular onto neural radiance fields (NeRF). While performing stylization directly on NeRF guarantees appearance consistency over arbitrary novel views, it is a challenging problem to guide the transfer of patterns from the style image onto different parts of the NeRF scene. In this work, we propose a stylization framework for NeRF based on local style transfer. In particular, we use a hash-grid encoding to learn the embedding of the appearance and geometry components, and show that the mapping defined by the hash table allows us to control the stylization to a certain extent. Stylization is then achieved by optimizing the appearance branch while keeping the geometry branch fixed. To support local style transfer, we propose a new loss function that utilizes a segmentation network and bipartite matching to establish region correspondences between the style image and the content images obtained from volume rendering. Our experiments show that our method yields plausible stylization results with novel view synthesis while having flexible controllability via manipulating and customizing the region correspondences.
RADIANCE: Radio-Frequency Adversarial Deep-learning Inference for Automated Network Coverage Estimation
Radio-frequency coverage maps (RF maps) are extensively utilized in wireless networks for capacity planning, placement of access points and base stations, localization, and coverage estimation. Conducting site surveys to obtain RF maps is labor-intensive and sometimes not feasible. In this paper, we propose radio-frequency adversarial deep-learning inference for automated network coverage estimation (RADIANCE), a generative adversarial network (GAN) based approach for synthesizing RF maps in indoor scenarios. RADIANCE utilizes a semantic map, a high-level representation of the indoor environment to encode spatial relationships and attributes of objects within the environment and guide the RF map generation process. We introduce a new gradient-based loss function that computes the magnitude and direction of change in received signal strength (RSS) values from a point within the environment. RADIANCE incorporates this loss function along with the antenna pattern to capture signal propagation within a given indoor configuration and generate new patterns under new configuration, antenna (beam) pattern, and center frequency. Extensive simulations are conducted to compare RADIANCE with ray-tracing simulations of RF maps. Our results show that RADIANCE achieves a mean average error (MAE) of 0.09, root-mean-squared error (RMSE) of 0.29, peak signal-to-noise ratio (PSNR) of 10.78, and multi-scale structural similarity index (MS-SSIM) of 0.80.
Constraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap
TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
DiffusionSat: A Generative Foundation Model for Satellite Imagery
Diffusion models have achieved state-of-the-art results on many modalities including images, speech, and video. However, existing models are not tailored to support remote sensing data, which is widely used in important applications including environmental monitoring and crop-yield prediction. Satellite images are significantly different from natural images -- they can be multi-spectral, irregularly sampled across time -- and existing diffusion models trained on images from the Web do not support them. Furthermore, remote sensing data is inherently spatio-temporal, requiring conditional generation tasks not supported by traditional methods based on captions or images. In this paper, we present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets. As text-based captions are sparsely available for satellite images, we incorporate the associated metadata such as geolocation as conditioning information. Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting. Our method outperforms previous state-of-the-art methods for satellite image generation and is the first large-scale generative foundation model for satellite imagery.
RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis
Differentiable volumetric rendering-based methods made significant progress in novel view synthesis. On one hand, innovative methods have replaced the Neural Radiance Fields (NeRF) network with locally parameterized structures, enabling high-quality renderings in a reasonable time. On the other hand, approaches have used differentiable splatting instead of NeRF's ray casting to optimize radiance fields rapidly using Gaussian kernels, allowing for fine adaptation to the scene. However, differentiable ray casting of irregularly spaced kernels has been scarcely explored, while splatting, despite enabling fast rendering times, is susceptible to clearly visible artifacts. Our work closes this gap by providing a physically consistent formulation of the emitted radiance c and density {\sigma}, decomposed with Gaussian functions associated with Spherical Gaussians/Harmonics for all-frequency colorimetric representation. We also introduce a method enabling differentiable ray casting of irregularly distributed Gaussians using an algorithm that integrates radiance fields slab by slab and leverages a BVH structure. This allows our approach to finely adapt to the scene while avoiding splatting artifacts. As a result, we achieve superior rendering quality compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset. Project page with videos and code: https://raygauss.github.io/
ThermalNeRF: Thermal Radiance Fields
Thermal imaging has a variety of applications, from agricultural monitoring to building inspection to imaging under poor visibility, such as in low light, fog, and rain. However, reconstructing thermal scenes in 3D presents several challenges due to the comparatively lower resolution and limited features present in long-wave infrared (LWIR) images. To overcome these challenges, we propose a unified framework for scene reconstruction from a set of LWIR and RGB images, using a multispectral radiance field to represent a scene viewed by both visible and infrared cameras, thus leveraging information across both spectra. We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step using a simple calibration target. We demonstrate our method on real-world sets of RGB and LWIR photographs captured from a handheld thermal camera, showing the effectiveness of our method at scene representation across the visible and infrared spectra. We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects that are occluded in either the RGB or thermal channels. Please see https://yvette256.github.io/thermalnerf for video results as well as our code and dataset release.
ClimateNeRF: Extreme Weather Synthesis in Neural Radiance Field
Physical simulations produce excellent predictions of weather effects. Neural radiance fields produce SOTA scene models. We describe a novel NeRF-editing procedure that can fuse physical simulations with NeRF models of scenes, producing realistic movies of physical phenomena in those scenes. Our application -- Climate NeRF -- allows people to visualize what climate change outcomes will do to them. ClimateNeRF allows us to render realistic weather effects, including smog, snow, and flood. Results can be controlled with physically meaningful variables like water level. Qualitative and quantitative studies show that our simulated results are significantly more realistic than those from SOTA 2D image editing and SOTA 3D NeRF stylization.
AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment
Air pollution remains a leading global health risk, exacerbated by rapid industrialization and urbanization, contributing significantly to morbidity and mortality rates. In this paper, we introduce AirCast, a novel multi-variable air pollution forecasting model, by combining weather and air quality variables. AirCast employs a multi-task head architecture that simultaneously forecasts atmospheric conditions and pollutant concentrations, improving its understanding of how weather patterns affect air quality. Predicting extreme pollution events is challenging due to their rare occurrence in historic data, resulting in a heavy-tailed distribution of pollution levels. To address this, we propose a novel Frequency-weighted Mean Absolute Error (fMAE) loss, adapted from the class-balanced loss for regression tasks. Informed from domain knowledge, we investigate the selection of key variables known to influence pollution levels. Additionally, we align existing weather and chemical datasets across spatial and temporal dimensions. AirCast's integrated approach, combining multi-task learning, frequency weighted loss and domain informed variable selection, enables more accurate pollution forecasts. Our source code and models are made public here (https://github.com/vishalned/AirCast.git)
NeRF2: Neural Radio-Frequency Radiance Fields
Although Maxwell discovered the physical laws of electromagnetic waves 160 years ago, how to precisely model the propagation of an RF signal in an electrically large and complex environment remains a long-standing problem. The difficulty is in the complex interactions between the RF signal and the obstacles (e.g., reflection, diffraction, etc.). Inspired by the great success of using a neural network to describe the optical field in computer vision, we propose a neural radio-frequency radiance field, NeRF^2, which represents a continuous volumetric scene function that makes sense of an RF signal's propagation. Particularly, after training with a few signal measurements, NeRF^2 can tell how/what signal is received at any position when it knows the position of a transmitter. As a physical-layer neural network, NeRF^2 can take advantage of the learned statistic model plus the physical model of ray tracing to generate a synthetic dataset that meets the training demands of application-layer artificial neural networks (ANNs). Thus, we can boost the performance of ANNs by the proposed turbo-learning, which mixes the true and synthetic datasets to intensify the training. Our experiment results show that turbo-learning can enhance performance with an approximate 50% increase. We also demonstrate the power of NeRF^2 in the field of indoor localization and 5G MIMO.
RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering
In this paper, we propose a novel end-to-end relightable neural inverse rendering system that achieves high-quality reconstruction of geometry and material properties, thus enabling high-quality relighting. The cornerstone of our method is a two-stage approach for learning a better factorization of scene parameters. In the first stage, we develop a reflection-aware radiance field using a neural signed distance field (SDF) as the geometry representation and deploy an MLP (multilayer perceptron) to estimate indirect illumination. In the second stage, we introduce a novel information-sharing network structure to jointly learn the radiance field and the physically based factorization of the scene. For the physically based factorization, to reduce the noise caused by Monte Carlo sampling, we apply a split-sum approximation with a simplified Disney BRDF and cube mipmap as the environment light representation. In the relighting phase, to enhance the quality of indirect illumination, we propose a second split-sum algorithm to trace secondary rays under the split-sum rendering framework. Furthermore, there is no dataset or protocol available to quantitatively evaluate the inverse rendering performance for glossy objects. To assess the quality of material reconstruction and relighting, we have created a new dataset with ground truth BRDF parameters and relighting results. Our experiments demonstrate that our algorithm achieves state-of-the-art performance in inverse rendering and relighting, with particularly strong results in the reconstruction of highly reflective objects.
Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation
Global climate models typically operate at a grid resolution of hundreds of kilometers and fail to resolve atmospheric mesoscale processes, e.g., clouds, precipitation, and gravity waves (GWs). Model representation of these processes and their sources is essential to the global circulation and planetary energy budget, but subgrid scale contributions from these processes are often only approximately represented in models using parameterizations. These parameterizations are subject to approximations and idealizations, which limit their capability and accuracy. The most drastic of these approximations is the "single-column approximation" which completely neglects the horizontal evolution of these processes, resulting in key biases in current climate models. With a focus on atmospheric GWs, we present the first-ever global simulation of atmospheric GW fluxes using machine learning (ML) models trained on the WINDSET dataset to emulate global GW emulation in the atmosphere, as an alternative to traditional single-column parameterizations. Using an Attention U-Net-based architecture trained on globally resolved GW momentum fluxes, we illustrate the importance and effectiveness of global nonlocality, when simulating GWs using data-driven schemes.
GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling
3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.
NeuMaDiff: Neural Material Synthesis via Hyperdiffusion
High-quality material synthesis is essential for replicating complex surface properties to create realistic digital scenes. However, existing methods often suffer from inefficiencies in time and memory, require domain expertise, or demand extensive training data, with high-dimensional material data further constraining performance. Additionally, most approaches lack multi-modal guidance capabilities and standardized evaluation metrics, limiting control and comparability in synthesis tasks. To address these limitations, we propose NeuMaDiff, a novel neural material synthesis framework utilizing hyperdiffusion. Our method employs neural fields as a low-dimensional representation and incorporates a multi-modal conditional hyperdiffusion model to learn the distribution over material weights. This enables flexible guidance through inputs such as material type, text descriptions, or reference images, providing greater control over synthesis. To support future research, we contribute two new material datasets and introduce two BRDF distributional metrics for more rigorous evaluation. We demonstrate the effectiveness of NeuMaDiff through extensive experiments, including a novel statistics-based constrained synthesis approach, which enables the generation of materials of desired categories.
OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
Recent advances in deep learning such as neural radiance fields and implicit neural representations have significantly propelled the field of 3D reconstruction. However, accurately reconstructing objects with complex optical properties, such as metals and glass, remains a formidable challenge due to their unique specular and light-transmission characteristics. To facilitate the development of solutions to these challenges, we introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials-including conductors, dielectrics, plastics, and their roughened variants- and captured under 723 diverse lighting conditions. To this end, we utilized physics-based rendering with laboratory-measured Indices of Refraction (IOR) and generated high-fidelity multiview images that closely replicate real-world objects. OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask. It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials, thereby paving the way for the development of 3D reconstruction algorithms capable of handling complex material properties.
Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts
Air pollution poses a significant threat to public health and well-being, particularly in urban areas. This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants. The investigation delineates the process of data collection, detailing the combination of diverse data sources utilized in the study. Through experiments conducted in the Milan metropolitan area, the models demonstrate their efficacy in predicting pollutant levels for the forthcoming day, achieving a percentage error of around 30%. The proposed models are advantageous as they are independent of monitoring stations, facilitating their use in areas without existing infrastructure. Additionally, we have released the collected dataset to the public, aiming to stimulate further research in this field. This research contributes to advancing our understanding of urban air quality dynamics and emphasizes the importance of amalgamating satellite, meteorological, and topographical data to develop robust pollution forecasting models.
Neural Gaffer: Relighting Any Object via Diffusion
Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive. In this work, we propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer, that takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel environmental lighting condition, simply by conditioning an image generator on a target environment map, without an explicit scene decomposition. Our method builds on a pre-trained diffusion model, and fine-tunes it on a synthetic relighting dataset, revealing and harnessing the inherent understanding of lighting present in the diffusion model. We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy. Moreover, by combining with other generative methods, our model enables many downstream 2D tasks, such as text-based relighting and object insertion. Our model can also operate as a strong relighting prior for 3D tasks, such as relighting a radiance field.
A low-cost ultraviolet-to-infrared absolute quantum efficiency characterization system of detectors
We present a low-cost ultraviolet to infrared absolute quantum efficiency detector characterization system developed using commercial off-the-shelf components. The key components of the experiment include a light source,a regulated power supply, a monochromator, an integrating sphere, and a calibrated photodiode. We provide a step-by-step procedure to construct the photon and quantum efficiency transfer curves of imaging sensors. We present results for the GSENSE 2020 BSI CMOS sensor and the Sony IMX 455 BSI CMOS sensor. As a reference for similar characterizations, we provide a list of parts and associated costs along with images of our setup.
Relighting Neural Radiance Fields with Shadow and Highlight Hints
This paper presents a novel neural implicit radiance representation for free viewpoint relighting from a small set of unstructured photographs of an object lit by a moving point light source different from the view position. We express the shape as a signed distance function modeled by a multi layer perceptron. In contrast to prior relightable implicit neural representations, we do not disentangle the different reflectance components, but model both the local and global reflectance at each point by a second multi layer perceptron that, in addition, to density features, the current position, the normal (from the signed distace function), view direction, and light position, also takes shadow and highlight hints to aid the network in modeling the corresponding high frequency light transport effects. These hints are provided as a suggestion, and we leave it up to the network to decide how to incorporate these in the final relit result. We demonstrate and validate our neural implicit representation on synthetic and real scenes exhibiting a wide variety of shapes, material properties, and global illumination light transport.
NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation
We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene geometry, material, and lighting from image observations in a physically-based manner. The proposed incident light and inter-reflection framework can be easily applied to other NeRF systems. We show that our method can not only decompose the outgoing radiance into incident lights and surface materials, but also serve as a surface refinement module that further improves the reconstruction detail of the neural surface. We demonstrate on several datasets that the proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation
The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.
NerfAcc: Efficient Sampling Accelerates NeRFs
Optimizing and rendering Neural Radiance Fields is computationally expensive due to the vast number of samples required by volume rendering. Recent works have included alternative sampling approaches to help accelerate their methods, however, they are often not the focus of the work. In this paper, we investigate and compare multiple sampling approaches and demonstrate that improved sampling is generally applicable across NeRF variants under an unified concept of transmittance estimator. To facilitate future experiments, we develop NerfAcc, a Python toolbox that provides flexible APIs for incorporating advanced sampling methods into NeRF related methods. We demonstrate its flexibility by showing that it can reduce the training time of several recent NeRF methods by 1.5x to 20x with minimal modifications to the existing codebase. Additionally, highly customized NeRFs, such as Instant-NGP, can be implemented in native PyTorch using NerfAcc.
NeRFMeshing: Distilling Neural Radiance Fields into Geometrically-Accurate 3D Meshes
With the introduction of Neural Radiance Fields (NeRFs), novel view synthesis has recently made a big leap forward. At the core, NeRF proposes that each 3D point can emit radiance, allowing to conduct view synthesis using differentiable volumetric rendering. While neural radiance fields can accurately represent 3D scenes for computing the image rendering, 3D meshes are still the main scene representation supported by most computer graphics and simulation pipelines, enabling tasks such as real time rendering and physics-based simulations. Obtaining 3D meshes from neural radiance fields still remains an open challenge since NeRFs are optimized for view synthesis, not enforcing an accurate underlying geometry on the radiance field. We thus propose a novel compact and flexible architecture that enables easy 3D surface reconstruction from any NeRF-driven approach. Upon having trained the radiance field, we distill the volumetric 3D representation into a Signed Surface Approximation Network, allowing easy extraction of the 3D mesh and appearance. Our final 3D mesh is physically accurate and can be rendered in real time on an array of devices.
The bolometric Bond albedo and energy balance of Uranus
Using a newly developed `holistic' atmospheric model of the aerosol structure in Uranus's atmosphere, based upon observations made by HST/STIS, Gemini/NIFS and IRTF/SpeX from 2000 -- 2009, we make a new estimate the bolometric Bond albedo of Uranus during this time of A^* = 0.338 pm 0.011, with a phase integral of q^* = 1.36 pm 0.03. Then, using a simple seasonal model, developed to be consistent with the disc-integrated blue and green magnitude data from the Lowell Observatory from 1950 to 2016, we model how Uranus's reflectivity and heat budget vary during its orbit and determine new orbital-mean average value for the bolometric Bond albedo of A^* = 0.349 pm 0.016 and for the absorbed solar flux of P_mathrm{in}=0.604 pm 0.027 W m^{-2}. Assuming the outgoing thermal flux to be P_mathrm{out}=0.693 pm 0.013 W m^{-2}, as previously determined from Voyager 2 observations, we arrive at a new estimate of Uranus's average heat flux budget of P_out/P_in = 1.15 pm 0.06, finding considerable variation with time due to Uranus's significant orbital eccentricity of 0.046. This leads the flux budget to vary from P_out/P_in = 1.03 near perihelion, to 1.24 near aphelion. We conclude that although P_out/P_in is considerably smaller than for the other giant planets, Uranus is not in thermal equilibrium with the Sun.
NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field Indirect Illumination
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images. In order to achieve better decomposition, recent approaches attempt to model indirect illuminations reflected from different materials via Spherical Gaussians (SG), which, however, tends to blur the high-frequency reflection details. In this paper, we propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images, while considering near-field indirect illumination. In a nutshell, we introduce the Monte Carlo sampling based path tracing and cache the indirect illumination as neural radiance, enabling a physics-faithful and easy-to-optimize inverse rendering method. To enhance efficiency and practicality, we leverage SG to represent the smooth environment illuminations and apply importance sampling techniques. To supervise indirect illuminations from unobserved directions, we develop a novel radiance consistency constraint between implicit neural radiance and path tracing results of unobserved rays along with the joint optimization of materials and illuminations, thus significantly improving the decomposition performance. Extensive experiments demonstrate that our method outperforms the state-of-the-art on multiple synthetic and real datasets, especially in terms of inter-reflection decomposition.Our code and data are available at https://woolseyyy.github.io/nefii/.
Light Sampling Field and BRDF Representation for Physically-based Neural Rendering
Physically-based rendering (PBR) is key for immersive rendering effects used widely in the industry to showcase detailed realistic scenes from computer graphics assets. A well-known caveat is that producing the same is computationally heavy and relies on complex capture devices. Inspired by the success in quality and efficiency of recent volumetric neural rendering, we want to develop a physically-based neural shader to eliminate device dependency and significantly boost performance. However, no existing lighting and material models in the current neural rendering approaches can accurately represent the comprehensive lighting models and BRDFs properties required by the PBR process. Thus, this paper proposes a novel lighting representation that models direct and indirect light locally through a light sampling strategy in a learned light sampling field. We also propose BRDF models to separately represent surface/subsurface scattering details to enable complex objects such as translucent material (i.e., skin, jade). We then implement our proposed representations with an end-to-end physically-based neural face skin shader, which takes a standard face asset (i.e., geometry, albedo map, and normal map) and an HDRI for illumination as inputs and generates a photo-realistic rendering as output. Extensive experiments showcase the quality and efficiency of our PBR face skin shader, indicating the effectiveness of our proposed lighting and material representations.
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
Spectral Retrieval with JWST Photometric data: a Case Study for HIP 65426 b
Half of the JWST high-contrast imaging objects will only have photometric data {{as of Cycle 2}}. However, to better understand their atmospheric chemistry which informs formation origin, spectroscopic data are preferred. Using HIP 65426 b, we investigate to what extent planet properties and atmospheric chemical abundance can be retrieved with only JWST photometric data points (2.5-15.5 mum) in conjunction with ground-based archival low-resolution spectral data (1.0-2.3 mum). We find that the data is consistent with an atmosphere with solar metallicity and C/O ratios at 0.40 and 0.55. We rule out 10x solar metallicity and an atmosphere with C/O = 1.0. We also find strong evidence of silicate clouds but no sign of an enshrouding featureless {{dust}} extinction. This work offers guidance and cautionary tales on analyzing data in the absence of medium-to-high resolution spectral data.
RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS
Recent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
Indirect measurement of atomic magneto-optical rotation via Hilbert transform
The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime.
NeRF as Non-Distant Environment Emitter in Physics-based Inverse Rendering
Physics-based inverse rendering aims to jointly optimize shape, materials, and lighting from captured 2D images. Here lighting is an important part of achieving faithful light transport simulation. While the environment map is commonly used as the lighting model in inverse rendering, we show that its distant lighting assumption leads to spatial invariant lighting, which can be an inaccurate approximation in real-world inverse rendering. We propose to use NeRF as a spatially varying environment lighting model and build an inverse rendering pipeline using NeRF as the non-distant environment emitter. By comparing our method with the environment map on real and synthetic datasets, we show that our NeRF-based emitter models the scene lighting more accurately and leads to more accurate inverse rendering. Project page and video: https://nerfemitterpbir.github.io/.
Dynamic Mesh-Aware Radiance Fields
Embedding polygonal mesh assets within photorealistic Neural Radience Fields (NeRF) volumes, such that they can be rendered and their dynamics simulated in a physically consistent manner with the NeRF, is under-explored from the system perspective of integrating NeRF into the traditional graphics pipeline. This paper designs a two-way coupling between mesh and NeRF during rendering and simulation. We first review the light transport equations for both mesh and NeRF, then distill them into an efficient algorithm for updating radiance and throughput along a cast ray with an arbitrary number of bounces. To resolve the discrepancy between the linear color space that the path tracer assumes and the sRGB color space that standard NeRF uses, we train NeRF with High Dynamic Range (HDR) images. We also present a strategy to estimate light sources and cast shadows on the NeRF. Finally, we consider how the hybrid surface-volumetric formulation can be efficiently integrated with a high-performance physics simulator that supports cloth, rigid and soft bodies. The full rendering and simulation system can be run on a GPU at interactive rates. We show that a hybrid system approach outperforms alternatives in visual realism for mesh insertion, because it allows realistic light transport from volumetric NeRF media onto surfaces, which affects the appearance of reflective/refractive surfaces and illumination of diffuse surfaces informed by the dynamic scene.
Controllable Light Diffusion for Portraits
We introduce light diffusion, a novel method to improve lighting in portraits, softening harsh shadows and specular highlights while preserving overall scene illumination. Inspired by professional photographers' diffusers and scrims, our method softens lighting given only a single portrait photo. Previous portrait relighting approaches focus on changing the entire lighting environment, removing shadows (ignoring strong specular highlights), or removing shading entirely. In contrast, we propose a learning based method that allows us to control the amount of light diffusion and apply it on in-the-wild portraits. Additionally, we design a method to synthetically generate plausible external shadows with sub-surface scattering effects while conforming to the shape of the subject's face. Finally, we show how our approach can increase the robustness of higher level vision applications, such as albedo estimation, geometry estimation and semantic segmentation.
Multi-Space Neural Radiance Fields
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We demonstrate the superiority and compatibility of our approach using three representative NeRF-based models, i.e., NeRF, Mip-NeRF, and Mip-NeRF 360. Comparisons are performed on a novelly constructed dataset consisting of 25 synthetic scenes and 7 real captured scenes with complex reflection and refraction, all having 360-degree viewpoints. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects. Our code and dataset will be publicly available at https://zx-yin.github.io/msnerf.
Neural Microfacet Fields for Inverse Rendering
We present Neural Microfacet Fields, a method for recovering materials, geometry, and environment illumination from images of a scene. Our method uses a microfacet reflectance model within a volumetric setting by treating each sample along the ray as a (potentially non-opaque) surface. Using surface-based Monte Carlo rendering in a volumetric setting enables our method to perform inverse rendering efficiently by combining decades of research in surface-based light transport with recent advances in volume rendering for view synthesis. Our approach outperforms prior work in inverse rendering, capturing high fidelity geometry and high frequency illumination details; its novel view synthesis results are on par with state-of-the-art methods that do not recover illumination or materials.
RePaint-NeRF: NeRF Editting via Semantic Masks and Diffusion Models
The emergence of Neural Radiance Fields (NeRF) has promoted the development of synthesized high-fidelity views of the intricate real world. However, it is still a very demanding task to repaint the content in NeRF. In this paper, we propose a novel framework that can take RGB images as input and alter the 3D content in neural scenes. Our work leverages existing diffusion models to guide changes in the designated 3D content. Specifically, we semantically select the target object and a pre-trained diffusion model will guide the NeRF model to generate new 3D objects, which can improve the editability, diversity, and application range of NeRF. Experiment results show that our algorithm is effective for editing 3D objects in NeRF under different text prompts, including editing appearance, shape, and more. We validate our method on both real-world datasets and synthetic-world datasets for these editing tasks. Please visit https://repaintnerf.github.io for a better view of our results.
Continuous Field Reconstruction from Sparse Observations with Implicit Neural Networks
Reliably reconstructing physical fields from sparse sensor data is a challenge that frequently arises in many scientific domains. In practice, the process generating the data often is not understood to sufficient accuracy. Therefore, there is a growing interest in using the deep neural network route to address the problem. This work presents a novel approach that learns a continuous representation of the physical field using implicit neural representations (INRs). Specifically, after factorizing spatiotemporal variability into spatial and temporal components using the separation of variables technique, the method learns relevant basis functions from sparsely sampled irregular data points to develop a continuous representation of the data. In experimental evaluations, the proposed model outperforms recent INR methods, offering superior reconstruction quality on simulation data from a state-of-the-art climate model and a second dataset that comprises ultra-high resolution satellite-based sea surface temperature fields.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
MTFusion: Reconstructing Any 3D Object from Single Image Using Multi-word Textual Inversion
Reconstructing 3D models from single-view images is a long-standing problem in computer vision. The latest advances for single-image 3D reconstruction extract a textual description from the input image and further utilize it to synthesize 3D models. However, existing methods focus on capturing a single key attribute of the image (e.g., object type, artistic style) and fail to consider the multi-perspective information required for accurate 3D reconstruction, such as object shape and material properties. Besides, the reliance on Neural Radiance Fields hinders their ability to reconstruct intricate surfaces and texture details. In this work, we propose MTFusion, which leverages both image data and textual descriptions for high-fidelity 3D reconstruction. Our approach consists of two stages. First, we adopt a novel multi-word textual inversion technique to extract a detailed text description capturing the image's characteristics. Then, we use this description and the image to generate a 3D model with FlexiCubes. Additionally, MTFusion enhances FlexiCubes by employing a special decoder network for Signed Distance Functions, leading to faster training and finer surface representation. Extensive evaluations demonstrate that our MTFusion surpasses existing image-to-3D methods on a wide range of synthetic and real-world images. Furthermore, the ablation study proves the effectiveness of our network designs.
ODS: A self-reporting system for radio telescopes to coexist with adaptive satellite constellations
Low Earth orbit (LEO) satellite constellations bring broadband internet and cellular service to the most remote locations on the planet. Unfortunately, many of these locations also host some of the world's best optical and radio astronomy (RA) observatories. With the number of LEO satellites expected to increase by an order of magnitude in the upcoming decade, satellite downlink radio frequency interference (RFI) is a growing concern in protected radio-quiet areas like the United States National Radio Quiet Zone. When these satellites transmit in the spectrum near protected RA bands, undesired out-of-band emission can leak into these protected bands and impact scientific observations. In this paper, we present a self-reporting system - Operational Data Sharing (ODS) - which enables mutual awareness by publishing radio telescopes' operational information to a protected database that is available to satellite operators through a representational state transfer application programming interface (REST API). Satellite operators can use the ODS data to adapt their downlink tasking algorithms in real time to avoid overwhelming sensitive RA facilities, particularly, through the novel Telescope Boresight Avoidance (TBA) technique. Preliminary results from recent experiments between the NRAO and the SpaceX Starlink teams demonstrate the effectiveness of the ODS and TBA in reducing downlink RFI in the Karl G. Jansky Very Large Array's observations in the 1990-1995 MHz and 10.7-12.7 GHz bands. This automated ODS system is beginning to be implemented by other RA facilities and could be utilized by other satellite operators in the near future.
Multi-frequency antenna for quasi-isotropic radiator and 6G massive IoT
An isotropic antenna radiates and receives electromagnetic wave uniformly in magnitude in 3D space. A multi-frequency quasi-isotropic antenna can serve as a practically feasible solution to emulate an ideal multi-frequency isotropic radiator. It is also an essential technology for mobile smart devices for massive IoT in the upcoming 6G. However, ever since the quasi-isotropic antenna was proposed and achieved more than half a century ago, at most two discrete narrow frequency bands can be achieved, because of the significantly increased structural complexity from multi-frequency isotropic radiation. This limitation impedes numerous related electromagnetic experiments and the advances in wireless communication. Here, for the first time, a design method for multi-band (>2) quasi-isotropic antennas is proposed. An exemplified quasi-isotropic antenna with the desired four frequency bands is also presented for demonstration. The measured results validate excellent performance on both electromagnetics and wireless communications for this antenna.
Physics-based Indirect Illumination for Inverse Rendering
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images. To model the illumination of a scene, existing inverse rendering works either completely ignore the indirect illumination or model it by coarse approximations, leading to sub-optimal illumination, geometry, and material prediction of the scene. In this work, we propose a physics-based illumination model that first locates surface points through an efficient refined sphere tracing algorithm, then explicitly traces the incoming indirect lights at each surface point based on reflection. Then, we estimate each identified indirect light through an efficient neural network. Moreover, we utilize the Leibniz's integral rule to resolve non-differentiability in the proposed illumination model caused by boundary lights inspired by differentiable irradiance in computer graphics. As a result, the proposed differentiable illumination model can be learned end-to-end together with geometry and materials estimation. As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method performs favorably against existing inverse rendering methods on novel view synthesis and inverse rendering.
HiFA: High-fidelity Text-to-3D with Advanced Diffusion Guidance
Automatic text-to-3D synthesis has achieved remarkable advancements through the optimization of 3D models. Existing methods commonly rely on pre-trained text-to-image generative models, such as diffusion models, providing scores for 2D renderings of Neural Radiance Fields (NeRFs) and being utilized for optimizing NeRFs. However, these methods often encounter artifacts and inconsistencies across multiple views due to their limited understanding of 3D geometry. To address these limitations, we propose a reformulation of the optimization loss using the diffusion prior. Furthermore, we introduce a novel training approach that unlocks the potential of the diffusion prior. To improve 3D geometry representation, we apply auxiliary depth supervision for NeRF-rendered images and regularize the density field of NeRFs. Extensive experiments demonstrate the superiority of our method over prior works, resulting in advanced photo-realism and improved multi-view consistency.
Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis
X-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed. The application on sparse-view CT reconstruction also reveals the practical values of our method. Code and models will be publicly available at https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .
ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural Rendering
Vision in adverse weather conditions, whether it be snow, rain, or fog is challenging. In these scenarios, scattering and attenuation severly degrades image quality. Handling such inclement weather conditions, however, is essential to operate autonomous vehicles, drones and robotic applications where human performance is impeded the most. A large body of work explores removing weather-induced image degradations with dehazing methods. Most methods rely on single images as input and struggle to generalize from synthetic fully-supervised training approaches or to generate high fidelity results from unpaired real-world datasets. With data as bottleneck and most of today's training data relying on good weather conditions with inclement weather as outlier, we rely on an inverse rendering approach to reconstruct the scene content. We introduce ScatterNeRF, a neural rendering method which adequately renders foggy scenes and decomposes the fog-free background from the participating media-exploiting the multiple views from a short automotive sequence without the need for a large training data corpus. Instead, the rendering approach is optimized on the multi-view scene itself, which can be typically captured by an autonomous vehicle, robot or drone during operation. Specifically, we propose a disentangled representation for the scattering volume and the scene objects, and learn the scene reconstruction with physics-inspired losses. We validate our method by capturing multi-view In-the-Wild data and controlled captures in a large-scale fog chamber.
The young Sun's XUV-activity as a constraint for lower CO_2-limits in the Earth's Archean atmosphere
Despite their importance for determining the evolution of the Earth's atmosphere and surface conditions, the evolutionary histories of the Earth's atmospheric CO_2 abundance during the Archean eon and the Sun's activity are poorly constrained. In this study, we apply a state-of-the-art physical model for the upper atmosphere of the Archean Earth to study the effects of different atmospheric CO_2/N_2 mixing ratios and solar activity levels on the escape of the atmosphere to space. We find that unless CO_2 was a major constituent of the atmosphere during the Archean eon, enhanced heating of the thermosphere by the Sun's strong X-ray and ultraviolet radiation would have caused rapid escape to space. We derive lower limits on the atmospheric CO_2 abundance of approximately 40\% at 3.8~billion years ago, which is likely enough to counteract the faint young Sun and keep the Earth from being completely frozen. Furthermore, our results indicate that the Sun was most likely born as a slow to moderate {rotating young G-star} to prevent rapid escape, putting essential constraints on the Sun's activity evolution throughout the solar system's history. In case that there were yet unknown cooling mechanisms present in the Archean atmosphere, this could reduce our CO_2 stability limits, and it would allow a more active Sun.
Neural Photometry-guided Visual Attribute Transfer
We present a deep learning-based method for propagating spatially-varying visual material attributes (e.g. texture maps or image stylizations) to larger samples of the same or similar materials. For training, we leverage images of the material taken under multiple illuminations and a dedicated data augmentation policy, making the transfer robust to novel illumination conditions and affine deformations. Our model relies on a supervised image-to-image translation framework and is agnostic to the transferred domain; we showcase a semantic segmentation, a normal map, and a stylization. Following an image analogies approach, the method only requires the training data to contain the same visual structures as the input guidance. Our approach works at interactive rates, making it suitable for material edit applications. We thoroughly evaluate our learning methodology in a controlled setup providing quantitative measures of performance. Last, we demonstrate that training the model on a single material is enough to generalize to materials of the same type without the need for massive datasets.
Development of different methods and their efficiencies for the estimation of diffusion coefficients following the diffusion couple technique
The interdiffusion coefficients are estimated either following the Wagner's method expressed with respect to the composition (mol or atomic fraction) normalized variable after considering the molar volume variation or the den Broeder's method expressed with respect to the concentration (composition divided by the molar volume) normalized variable. On the other hand, the relations for estimation of the intrinsic diffusion coefficients of components as established by van Loo and integrated diffusion coefficients in a phase with narrow homogeneity range as established by Wagner are currently available with respect to the composition normalized variable only. In this study, we have first derived the relation proposed by den Broeder following the line of treatment proposed by Wagner. Further, the relations for estimation of the intrinsic diffusion coefficients of the components and integrated interdiffusion coefficient are established with respect to the concentration normalized variable, which were not available earlier. The veracity of these methods is examined based on the estimation of data in Ni-Pd, Ni-Al and Cu-Sn systems. Our analysis indicates that both the approaches are logically correct and there is small difference in the estimated data in these systems although a higher difference could be found in other systems. The integrated interdiffusion coefficients with respect to the concentration (or concentration normalized variable) can only be estimated considering the ideal molar volume variation. This might be drawback in certain practical systems.
SpecNeRF: Gaussian Directional Encoding for Specular Reflections
Neural radiance fields have achieved remarkable performance in modeling the appearance of 3D scenes. However, existing approaches still struggle with the view-dependent appearance of glossy surfaces, especially under complex lighting of indoor environments. Unlike existing methods, which typically assume distant lighting like an environment map, we propose a learnable Gaussian directional encoding to better model the view-dependent effects under near-field lighting conditions. Importantly, our new directional encoding captures the spatially-varying nature of near-field lighting and emulates the behavior of prefiltered environment maps. As a result, it enables the efficient evaluation of preconvolved specular color at any 3D location with varying roughness coefficients. We further introduce a data-driven geometry prior that helps alleviate the shape radiance ambiguity in reflection modeling. We show that our Gaussian directional encoding and geometry prior significantly improve the modeling of challenging specular reflections in neural radiance fields, which helps decompose appearance into more physically meaningful components.
Critical scaling law for the deposition efficiency of inertia-driven particle collisions with a cylinder in high Reynolds number air flow
The Earth's atmosphere is an aerosol, it contains suspended particles. When air flows over an obstacle such as an aircraft wing or tree branch, these particles may not follow the same paths as the air flowing around the obstacle. Instead the particles in the air may deviate from the path of the air and so collide with the surface of the obstacle. It is known that particle inertia can drive this deposition, and that there is a critical value of this inertia, below which no point particles deposit. Particle inertia is measured by the Stokes number, St. We show that near the critical value of the Stokes number, St_c, the amount of deposition has the unusual scaling law of exp(-1/(St-St_c)^{1/2}). The scaling is controlled by the stagnation point of the flow. This scaling is determined by the time for the particle to reach the surface of the cylinder varying as 1/(St-St_c)^{1/2}, together with the distance away from the stagnation point (perpendicular to the flow direction) increasing exponentially with time. The scaling law applies to inviscid flow, a model for flow at high Reynolds numbers. The unusual scaling means that the amount of particles deposited increases only very slowly above the critical Stokes number. This has consequences for applications ranging from rime formation and fog harvesting to pollination.
ACE2-SOM: Coupling to a slab ocean and learning the sensitivity of climate to changes in CO_2
While autoregressive machine-learning-based emulators have been trained to produce stable and accurate rollouts in the climate of the present-day and recent past, none so far have been trained to emulate the sensitivity of climate to substantial changes in CO_2 or other greenhouse gases. As an initial step we couple the Ai2 Climate Emulator version 2 to a slab ocean model (hereafter ACE2-SOM) and train it on output from a collection of equilibrium-climate physics-based reference simulations with varying levels of CO_2. We test it in equilibrium and non-equilibrium climate scenarios with CO_2 concentrations seen and unseen in training. ACE2-SOM performs well in equilibrium-climate inference with both in-sample and out-of-sample CO_2 concentrations, accurately reproducing the emergent time-mean spatial patterns of surface temperature and precipitation change with CO_2 doubling, tripling, or quadrupling. In addition, the vertical profile of atmospheric warming and change in extreme precipitation rates with increased CO_2 closely agree with the reference model. Non-equilibrium-climate inference is more challenging. With CO_2 increasing gradually at a rate of 2% year^{-1}, ACE2-SOM can accurately emulate the global annual mean trends of surface and lower-to-middle atmosphere fields but produces unphysical jumps in stratospheric fields. With an abrupt quadrupling of CO_2, ML-controlled fields transition unrealistically quickly to the 4xCO_2 regime. In doing so they violate global energy conservation and exhibit unphysical sensitivities of and surface and top of atmosphere radiative fluxes to instantaneous changes in CO_2. Future emulator development needed to address these issues should improve its generalizability to diverse climate change scenarios.
Practical considerations for high-fidelity wavefront shaping experiments
Wavefront shaping is a technique for directing light through turbid media. The theoretical aspects of wavefront shaping are well understood, and under near-ideal experimental conditions, accurate predictions for the expected signal enhancement can be given. In practice, however, there are many experimental factors that negatively affect the outcome of the experiment. Here, we present a comprehensive overview of these experimental factors, including the effect of sample scattering properties, noise, and response of the spatial light modulator. We present simple means to identify experimental imperfections and to minimize their negative effect on the outcome of the experiment. This paper is accompanied by Python code for automatically quantifying experimental problems using the OpenWFS framework for running and simulating wavefront shaping experiments.
BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields
Neural rendering combines ideas from classical computer graphics and machine learning to synthesize images from real-world observations. NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images. By leveraging an interpolation approach, NeRF can produce new 3D reconstructed views of complicated scenes. Rather than directly restoring the whole 3D scene geometry, NeRF generates a volumetric representation called a ``radiance field,'' which is capable of creating color and density for every point within the relevant 3D space. The broad appeal and notoriety of NeRF make it imperative to examine the existing research on the topic comprehensively. While previous surveys on 3D rendering have primarily focused on traditional computer vision-based or deep learning-based approaches, only a handful of them discuss the potential of NeRF. However, such surveys have predominantly focused on NeRF's early contributions and have not explored its full potential. NeRF is a relatively new technique continuously being investigated for its capabilities and limitations. This survey reviews recent advances in NeRF and categorizes them according to their architectural designs, especially in the field of novel view synthesis.
GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis
While 2D generative adversarial networks have enabled high-resolution image synthesis, they largely lack an understanding of the 3D world and the image formation process. Thus, they do not provide precise control over camera viewpoint or object pose. To address this problem, several recent approaches leverage intermediate voxel-based representations in combination with differentiable rendering. However, existing methods either produce low image resolution or fall short in disentangling camera and scene properties, e.g., the object identity may vary with the viewpoint. In this paper, we propose a generative model for radiance fields which have recently proven successful for novel view synthesis of a single scene. In contrast to voxel-based representations, radiance fields are not confined to a coarse discretization of the 3D space, yet allow for disentangling camera and scene properties while degrading gracefully in the presence of reconstruction ambiguity. By introducing a multi-scale patch-based discriminator, we demonstrate synthesis of high-resolution images while training our model from unposed 2D images alone. We systematically analyze our approach on several challenging synthetic and real-world datasets. Our experiments reveal that radiance fields are a powerful representation for generative image synthesis, leading to 3D consistent models that render with high fidelity.
Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and Dynamic PROPELLER MRI
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information. These discrepancies can be caused by a variety of factors, including magnetic field inhomogeneities, chemical shifts, or susceptibility differences within the tissues. Such artifacts can manifest as blurring, ghosting, or misregistration of the reconstructed image, and they often compromise its diagnostic quality. We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance. Our approach is inspired by recent progress in modeling radiance fields, and is capable of reconstructing both static and dynamic MR images as well as separating fat and water, which is of independent clinical interest. We demonstrate our approach in the context of PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI acquisitions, which are popular for their robustness to motion artifacts. Our method operates in a few minutes on a single GPU, and to our knowledge is the first to correct for chemical shift in gradient echo PROPELLER MRI reconstruction without additional measurements or pretraining data.
Radon concentration variations at the Yangyang underground laboratory
The concentration of radon in the air has been measured in the 700 m-deep Yangyang underground laboratory between October 2004 and May 2022. The average concentrations in two experimental areas, called A6 and A5, were measured to be 53.4pm0.2 Bq/m3 and 33.5pm0.1 Bq/m3, respectively. The lower value in the A5 area reflects the presence of better temperature control and ventilation. The radon concentrations sampled within the two A5 experimental rooms' air are found to be correlated to the local surface temperature outside of the rooms, with correlation coefficients r = 0.22 and r = 0.70. Therefore, the radon concentrations display a seasonal variation, because the local temperature driven by the overground season influences air ventilation in the experimental areas. A fit on the annual residual concentrations finds that the amplitude occurs each year on August, 31pm6 days.
Precision measurement of the last bound states in H_2 and determination of the H + H scattering length
The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed.
A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data
This paper investigates the possibility of high resolution mapping of PM2.5 concentration over Tehran city using high resolution satellite AOD (MAIAC) retrievals. For this purpose, a framework including three main stages, data preprocessing; regression modeling; and model deployment was proposed. The output of the framework was a machine learning model trained to predict PM2.5 from MAIAC AOD retrievals and meteorological data. The results of model testing revealed the efficiency and capability of the developed framework for high resolution mapping of PM2.5, which was not realized in former investigations performed over the city. Thus, this study, for the first time, realized daily, 1 km resolution mapping of PM2.5 in Tehran with R2 around 0.74 and RMSE better than 9.0 mg/m3. Keywords: MAIAC; MODIS; AOD; Machine learning; Deep learning; PM2.5; Regression
Relightify: Relightable 3D Faces from a Single Image via Diffusion Models
Following the remarkable success of diffusion models on image generation, recent works have also demonstrated their impressive ability to address a number of inverse problems in an unsupervised way, by properly constraining the sampling process based on a conditioning input. Motivated by this, in this paper, we present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image. We start by leveraging a high-quality UV dataset of facial reflectance (diffuse and specular albedo and normals), which we render under varying illumination settings to simulate natural RGB textures and, then, train an unconditional diffusion model on concatenated pairs of rendered textures and reflectance components. At test time, we fit a 3D morphable model to the given image and unwrap the face in a partial UV texture. By sampling from the diffusion model, while retaining the observed texture part intact, the model inpaints not only the self-occluded areas but also the unknown reflectance components, in a single sequence of denoising steps. In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent reflectance estimation. Through a series of qualitative and quantitative comparisons, we demonstrate superior performance in both texture completion as well as reflectance reconstruction tasks.
One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models.
Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1c from JWST NIRISS Transmission Spectra
Attempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here, we present the 0.6--2.85\,mum transmission spectrum of the 1.1\,rm R_oplus, sim340\,K rocky planet TRAPPIST-1\,c obtained over two JWST NIRISS/SOSS transit observations. Each of the two spectra displays 100--500\,ppm signatures of stellar contamination. Despite being separated by 367\,days, the retrieved spot and faculae properties are consistent between the two visits, resulting in nearly identical transmission spectra. Jointly retrieving for stellar contamination and a planetary atmosphere reveals that our spectrum can rule out hydrogen-dominated, lesssim300times solar metallicity atmospheres with effective surface pressures down to 10\,mbar at the 3-sigma level. For high-mean molecular weight atmospheres, where O_2 or N_2 is the background gas, our spectrum disfavors partial pressures of more than sim10\,mbar for H_2O, CO, NH_3 and CH_4 at the 2-sigma level. Similarly, under the assumption of a 100\% H_2O, NH_3, CO, or CH_4 atmosphere, our spectrum disfavors thick, >1\,bar atmospheres at the 2-sigma level. These non-detections of spectral features are in line with predictions that even heavier, CO_2-rich, atmospheres would be efficiently lost on TRAPPIST-1\,c given the cumulative high-energy irradiation experienced by the planet. Our results further stress the importance of robustly accounting for stellar contamination when analyzing JWST observations of exo-Earths around M dwarfs, as well as the need for high-fidelity stellar models to search for the potential signals of thin secondary atmospheres.
GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction
We present GSD, a diffusion model approach based on Gaussian Splatting (GS) representation for 3D object reconstruction from a single view. Prior works suffer from inconsistent 3D geometry or mediocre rendering quality due to improper representations. We take a step towards resolving these shortcomings by utilizing the recent state-of-the-art 3D explicit representation, Gaussian Splatting, and an unconditional diffusion model. This model learns to generate 3D objects represented by sets of GS ellipsoids. With these strong generative 3D priors, though learning unconditionally, the diffusion model is ready for view-guided reconstruction without further model fine-tuning. This is achieved by propagating fine-grained 2D features through the efficient yet flexible splatting function and the guided denoising sampling process. In addition, a 2D diffusion model is further employed to enhance rendering fidelity, and improve reconstructed GS quality by polishing and re-using the rendered images. The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views. Experiments on the challenging real-world CO3D dataset demonstrate the superiority of our approach. Project page: https://yxmu.foo/GSD/{this https URL}