Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHarnessing the Power of Prompt-based Techniques for Generating School-Level Questions using Large Language Models
Designing high-quality educational questions is a challenging and time-consuming task. In this work, we propose a novel approach that utilizes prompt-based techniques to generate descriptive and reasoning-based questions. However, current question-answering (QA) datasets are inadequate for conducting our experiments on prompt-based question generation (QG) in an educational setting. Therefore, we curate a new QG dataset called EduProbe for school-level subjects, by leveraging the rich content of NCERT textbooks. We carefully annotate this dataset as quadruples of 1) Context: a segment upon which the question is formed; 2) Long Prompt: a long textual cue for the question (i.e., a longer sequence of words or phrases, covering the main theme of the context); 3) Short Prompt: a short textual cue for the question (i.e., a condensed representation of the key information or focus of the context); 4) Question: a deep question that aligns with the context and is coherent with the prompts. We investigate several prompt-based QG methods by fine-tuning pre-trained transformer-based large language models (LLMs), namely PEGASUS, T5, MBART, and BART. Moreover, we explore the performance of two general-purpose pre-trained LLMs such as Text-Davinci-003 and GPT-3.5-Turbo without any further training. By performing automatic evaluation, we show that T5 (with long prompt) outperforms all other models, but still falls short of the human baseline. Under human evaluation criteria, TextDavinci-003 usually shows better results than other models under various prompt settings. Even in the case of human evaluation criteria, QG models mostly fall short of the human baseline. Our code and dataset are available at: https://github.com/my625/PromptQG
Mitigating Word Bias in Zero-shot Prompt-based Classifiers
Prompt-based classifiers are an attractive approach for zero-shot classification. However, the precise choice of the prompt template and label words can largely influence performance, with semantically equivalent settings often showing notable performance difference. This discrepancy can be partly attributed to word biases, where the classifier may be biased towards classes. To address this problem, it is possible to optimise classification thresholds on a labelled data set, however, this mitigates some of the advantages of prompt-based classifiers. This paper instead approaches this problem by examining the expected marginal probabilities of the classes. Here, probabilities are reweighted to have a uniform prior over classes, in an unsupervised fashion. Further, we draw a theoretical connection between the class priors and the language models' word prior, and offer the ability to set a threshold in a zero-resource fashion. We show that matching class priors correlates strongly with the oracle upper bound performance and demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings
While text-to-image (T2I) generative models have become ubiquitous, they do not necessarily generate images that align with a given prompt. While previous work has evaluated T2I alignment by proposing metrics, benchmarks, and templates for collecting human judgements, the quality of these components is not systematically measured. Human-rated prompt sets are generally small and the reliability of the ratings -- and thereby the prompt set used to compare models -- is not evaluated. We address this gap by performing an extensive study evaluating auto-eval metrics and human templates. We provide three main contributions: (1) We introduce a comprehensive skills-based benchmark that can discriminate models across different human templates. This skills-based benchmark categorises prompts into sub-skills, allowing a practitioner to pinpoint not only which skills are challenging, but at what level of complexity a skill becomes challenging. (2) We gather human ratings across four templates and four T2I models for a total of >100K annotations. This allows us to understand where differences arise due to inherent ambiguity in the prompt and where they arise due to differences in metric and model quality. (3) Finally, we introduce a new QA-based auto-eval metric that is better correlated with human ratings than existing metrics for our new dataset, across different human templates, and on TIFA160.
Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages
Large pre-trained language models (PLMs) are at the forefront of advances in Natural Language Processing. One widespread use case of PLMs is "prompting" - or in-context learning - where a user provides a description of a task and some completed examples of the task to a PLM as context before prompting the PLM to perform the task on a new example. Only the largest, most capable PLMs are able to perform in-context learning effectively, and these models are typically trained with a predominantly English corpus, leaving all other languages behind. The data limitations in most languages preclude the training of language-specific PLMs capable of prompting. Albeit the surge in work of prompting settings, it is still unclear how PLMs should be adapted cross-lingually specifically for prompting. We evaluate the possible methods to adapt LLaMa, a 7B parameter open-source PLM mainly trained in English, for prompting in low-resource languages, namely for Kinyarwanda, Hausa, and Luganda. We consider three methods: few-shot prompting (prompt), language-adaptive fine-tuning (LAFT), and neural machine translation (translate), and evaluate on abstractive summarization, multi-class topic classification, and named-entity recognition. Although LAFT carries the greatest compute cost and intuitively should lead to the best results, our experiments exhibit that LAFT is only occasionally the optimal choice for adapting PLMs for prompting. Rather, the translate and prompt settings are a compute-efficient and cost-effective method of few-shot prompting for the selected low-resource languages. We find that the results are task and language dependent but find that the prompting method is the best on average across all tasks and languages. Results show that the prompt setting performs better than both translating and LAFT with statistical significance for all shots when aggregated across all tasks and languages.
Deduction under Perturbed Evidence: Probing Student Simulation Capabilities of Large Language Models
We explore whether Large Language Models (LLMs) are capable of logical reasoning with distorted facts, which we call Deduction under Perturbed Evidence (DUPE). DUPE presents a unique challenge to LLMs since they typically rely on their parameters, which encode mostly accurate information, to reason and make inferences. However, in DUPE, LLMs must reason over manipulated or falsified evidence present in their prompts, which can result in false conclusions that are valid only under the manipulated evidence. Our goal with DUPE is to determine whether LLMs can arrive at these false conclusions and identify whether the dominant factor influencing the deduction process is the encoded data in the parameters or the manipulated evidence in the prompts. To evaluate the DUPE capabilities of LLMs, we create a DUPEd version of the StrategyQA dataset, where facts are manipulated to reverse the answer to the question. Our findings show that even the most advanced GPT models struggle to reason on manipulated facts - showcasing poor DUPE skills - with accuracy dropping by 45% compared to the original dataset. We also investigate prompt settings inspired from student simulation models, which mitigate the accuracy drop to some extent. Our findings have practical implications for understanding the performance of LLMs in real-world applications such as student simulation models that involve reasoning over inaccurate information.
T2ISafety: Benchmark for Assessing Fairness, Toxicity, and Privacy in Image Generation
Text-to-image (T2I) models have rapidly advanced, enabling the generation of high-quality images from text prompts across various domains. However, these models present notable safety concerns, including the risk of generating harmful, biased, or private content. Current research on assessing T2I safety remains in its early stages. While some efforts have been made to evaluate models on specific safety dimensions, many critical risks remain unexplored. To address this gap, we introduce T2ISafety, a safety benchmark that evaluates T2I models across three key domains: toxicity, fairness, and bias. We build a detailed hierarchy of 12 tasks and 44 categories based on these three domains, and meticulously collect 70K corresponding prompts. Based on this taxonomy and prompt set, we build a large-scale T2I dataset with 68K manually annotated images and train an evaluator capable of detecting critical risks that previous work has failed to identify, including risks that even ultra-large proprietary models like GPTs cannot correctly detect. We evaluate 12 prominent diffusion models on T2ISafety and reveal several concerns including persistent issues with racial fairness, a tendency to generate toxic content, and significant variation in privacy protection across the models, even with defense methods like concept erasing. Data and evaluator are released under https://github.com/adwardlee/t2i_safety.
Command-V: Pasting LLM Behaviors via Activation Profiles
Retrofitting large language models (LLMs) with new behaviors typically requires full finetuning or distillation-costly steps that must be repeated for every architecture. In this work, we introduce Command-V, a backpropagation-free behavior transfer method that copies an existing residual activation adapter from a donor model and pastes its effect into a recipient model. Command-V profiles layer activations on a small prompt set, derives linear converters between corresponding layers, and applies the donor intervention in the recipient's activation space. This process does not require access to the original training data and needs minimal compute. In three case studies-safety-refusal enhancement, jailbreak facilitation, and automatic chain-of-thought reasoning--Command-V matches or exceeds the performance of direct finetuning while using orders of magnitude less compute. Our code and data are accessible at https://github.com/GithuBarry/Command-V/.
ATT3D: Amortized Text-to-3D Object Synthesis
Text-to-3D modelling has seen exciting progress by combining generative text-to-image models with image-to-3D methods like Neural Radiance Fields. DreamFusion recently achieved high-quality results but requires a lengthy, per-prompt optimization to create 3D objects. To address this, we amortize optimization over text prompts by training on many prompts simultaneously with a unified model, instead of separately. With this, we share computation across a prompt set, training in less time than per-prompt optimization. Our framework - Amortized text-to-3D (ATT3D) - enables knowledge-sharing between prompts to generalize to unseen setups and smooth interpolations between text for novel assets and simple animations.
ADAPT: Vision-Language Navigation with Modality-Aligned Action Prompts
Vision-Language Navigation (VLN) is a challenging task that requires an embodied agent to perform action-level modality alignment, i.e., make instruction-asked actions sequentially in complex visual environments. Most existing VLN agents learn the instruction-path data directly and cannot sufficiently explore action-level alignment knowledge inside the multi-modal inputs. In this paper, we propose modAlity-aligneD Action PrompTs (ADAPT), which provides the VLN agent with action prompts to enable the explicit learning of action-level modality alignment to pursue successful navigation. Specifically, an action prompt is defined as a modality-aligned pair of an image sub-prompt and a text sub-prompt, where the former is a single-view observation and the latter is a phrase like ''walk past the chair''. When starting navigation, the instruction-related action prompt set is retrieved from a pre-built action prompt base and passed through a prompt encoder to obtain the prompt feature. Then the prompt feature is concatenated with the original instruction feature and fed to a multi-layer transformer for action prediction. To collect high-quality action prompts into the prompt base, we use the Contrastive Language-Image Pretraining (CLIP) model which has powerful cross-modality alignment ability. A modality alignment loss and a sequential consistency loss are further introduced to enhance the alignment of the action prompt and enforce the agent to focus on the related prompt sequentially. Experimental results on both R2R and RxR show the superiority of ADAPT over state-of-the-art methods.
Jurassic is (almost) All You Need: Few-Shot Meaning-to-Text Generation for Open-Domain Dialogue
One challenge with open-domain dialogue systems is the need to produce truthful, high-quality responses on any topic. We aim to improve the quality and coverage of Athena, an Alexa Prize dialogue system. We experiment with few-shot prompt-based learning, comparing GPT-Neo to Jurassic-1, for the movies, music, TV, sports, and video game domains, both within and cross-domain, with different prompt set sizes (2, 3, 10), formats, and meaning representations consisting of either sets of WikiData KG triples, or dialogue acts. Our evaluation uses BLEURT and human metrics, and shows that with 10-shot prompting, Athena-Jurassic's performance is significantly better for coherence and semantic accuracy. Experiments with 2-shot cross-domain prompts results in a huge performance drop for Athena-GPT-Neo, whose semantic accuracy falls to 0.41, and whose untrue hallucination rate increases to 12%. Experiments with dialogue acts for video games show that with 10-shot prompting, both models learn to control dialogue acts, but Athena-Jurassic has significantly higher coherence, and only 4% untrue hallucinations. Our results suggest that Athena-Jurassic produces high enough quality outputs to be useful in live systems with real users. To our knowledge, these are the first results demonstrating that few-shot semantic prompt-based learning can create NLGs that generalize to new domains, and produce high-quality, semantically-controlled, conversational responses directly from meaning representations.
Building Math Agents with Multi-Turn Iterative Preference Learning
Recent studies have shown that large language models' (LLMs) mathematical problem-solving capabilities can be enhanced by integrating external tools, such as code interpreters, and employing multi-turn Chain-of-Thought (CoT) reasoning. While current methods focus on synthetic data generation and Supervised Fine-Tuning (SFT), this paper studies the complementary direct preference learning approach to further improve model performance. However, existing direct preference learning algorithms are originally designed for the single-turn chat task, and do not fully address the complexities of multi-turn reasoning and external tool integration required for tool-integrated mathematical reasoning tasks. To fill in this gap, we introduce a multi-turn direct preference learning framework, tailored for this context, that leverages feedback from code interpreters and optimizes trajectory-level preferences. This framework includes multi-turn DPO and multi-turn KTO as specific implementations. The effectiveness of our framework is validated through training of various language models using an augmented prompt set from the GSM8K and MATH datasets. Our results demonstrate substantial improvements: a supervised fine-tuned Gemma-1.1-it-7B model's performance increased from 77.5% to 83.9% on GSM8K and from 46.1% to 51.2% on MATH. Similarly, a Gemma-2-it-9B model improved from 84.1% to 86.3% on GSM8K and from 51.0% to 54.5% on MATH.
MVReward: Better Aligning and Evaluating Multi-View Diffusion Models with Human Preferences
Recent years have witnessed remarkable progress in 3D content generation. However, corresponding evaluation methods struggle to keep pace. Automatic approaches have proven challenging to align with human preferences, and the mixed comparison of text- and image-driven methods often leads to unfair evaluations. In this paper, we present a comprehensive framework to better align and evaluate multi-view diffusion models with human preferences. To begin with, we first collect and filter a standardized image prompt set from DALLcdotE and Objaverse, which we then use to generate multi-view assets with several multi-view diffusion models. Through a systematic ranking pipeline on these assets, we obtain a human annotation dataset with 16k expert pairwise comparisons and train a reward model, coined MVReward, to effectively encode human preferences. With MVReward, image-driven 3D methods can be evaluated against each other in a more fair and transparent manner. Building on this, we further propose Multi-View Preference Learning (MVP), a plug-and-play multi-view diffusion tuning strategy. Extensive experiments demonstrate that MVReward can serve as a reliable metric and MVP consistently enhances the alignment of multi-view diffusion models with human preferences.
Co-driver: VLM-based Autonomous Driving Assistant with Human-like Behavior and Understanding for Complex Road Scenes
Recent research about Large Language Model based autonomous driving solutions shows a promising picture in planning and control fields. However, heavy computational resources and hallucinations of Large Language Models continue to hinder the tasks of predicting precise trajectories and instructing control signals. To address this problem, we propose Co-driver, a novel autonomous driving assistant system to empower autonomous vehicles with adjustable driving behaviors based on the understanding of road scenes. A pipeline involving the CARLA simulator and Robot Operating System 2 (ROS2) verifying the effectiveness of our system is presented, utilizing a single Nvidia 4090 24G GPU while exploiting the capacity of textual output of the Visual Language Model. Besides, we also contribute a dataset containing an image set and a corresponding prompt set for fine-tuning the Visual Language Model module of our system. In the real-world driving dataset, our system achieved 96.16% success rate in night scenes and 89.7% in gloomy scenes regarding reasonable predictions. Our Co-driver dataset will be released at https://github.com/ZionGo6/Co-driver.
BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
LATTE3D: Large-scale Amortized Text-To-Enhanced3D Synthesis
Recent text-to-3D generation approaches produce impressive 3D results but require time-consuming optimization that can take up to an hour per prompt. Amortized methods like ATT3D optimize multiple prompts simultaneously to improve efficiency, enabling fast text-to-3D synthesis. However, they cannot capture high-frequency geometry and texture details and struggle to scale to large prompt sets, so they generalize poorly. We introduce LATTE3D, addressing these limitations to achieve fast, high-quality generation on a significantly larger prompt set. Key to our method is 1) building a scalable architecture and 2) leveraging 3D data during optimization through 3D-aware diffusion priors, shape regularization, and model initialization to achieve robustness to diverse and complex training prompts. LATTE3D amortizes both neural field and textured surface generation to produce highly detailed textured meshes in a single forward pass. LATTE3D generates 3D objects in 400ms, and can be further enhanced with fast test-time optimization.
Long-form factuality in large language models
Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for long-form factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality. To do so, we balance the percentage of supported facts in a response (precision) with the percentage of provided facts relative to a hyperparameter representing a user's preferred response length (recall). Empirically, we demonstrate that LLM agents can achieve superhuman rating performance - on a set of ~16k individual facts, SAFE agrees with crowdsourced human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time. At the same time, SAFE is more than 20 times cheaper than human annotators. We also benchmark thirteen language models on LongFact across four model families (Gemini, GPT, Claude, and PaLM-2), finding that larger language models generally achieve better long-form factuality. LongFact, SAFE, and all experimental code are available at https://github.com/google-deepmind/long-form-factuality.
The Flan Collection: Designing Data and Methods for Effective Instruction Tuning
We study the design decisions of publicly available instruction tuning methods, and break down the development of Flan 2022 (Chung et al., 2022). Through careful ablation studies on the Flan Collection of tasks and methods, we tease apart the effect of design decisions which enable Flan-T5 to outperform prior work by 3-17%+ across evaluation settings. We find task balancing and enrichment techniques are overlooked but critical to effective instruction tuning, and in particular, training with mixed prompt settings (zero-shot, few-shot, and chain-of-thought) actually yields stronger (2%+) performance in all settings. In further experiments, we show Flan-T5 requires less finetuning to converge higher and faster than T5 on single downstream tasks, motivating instruction-tuned models as more computationally-efficient starting checkpoints for new tasks. Finally, to accelerate research on instruction tuning, we make the Flan 2022 collection of datasets, templates, and methods publicly available at https://github.com/google-research/FLAN/tree/main/flan/v2.
Exploring the Abilities of Large Language Models to Solve Proportional Analogies via Knowledge-Enhanced Prompting
Making analogies is fundamental to cognition. Proportional analogies, which consist of four terms, are often used to assess linguistic and cognitive abilities. For instance, completing analogies like "Oxygen is to Gas as <blank> is to <blank>" requires identifying the semantic relationship (e.g., "type of") between the first pair of terms ("Oxygen" and "Gas") and finding a second pair that shares the same relationship (e.g., "Aluminum" and "Metal"). In this work, we introduce a 15K Multiple-Choice Question Answering (MCQA) dataset for proportional analogy completion and evaluate the performance of contemporary Large Language Models (LLMs) in various knowledge-enhanced prompt settings. Specifically, we augment prompts with three types of knowledge: exemplar, structured, and targeted. Our results show that despite extensive training data, solving proportional analogies remains challenging for current LLMs, with the best model achieving an accuracy of 55%. Notably, we find that providing targeted knowledge can better assist models in completing proportional analogies compared to providing exemplars or collections of structured knowledge.
FinEval: A Chinese Financial Domain Knowledge Evaluation Benchmark for Large Language Models
Large language models (LLMs) have demonstrated exceptional performance in various natural language processing tasks, yet their efficacy in more challenging and domain-specific tasks remains largely unexplored. This paper presents FinEval, a benchmark specifically designed for the financial domain knowledge in the LLMs. FinEval is a collection of high-quality multiple-choice questions covering Finance, Economy, Accounting, and Certificate. It includes 4,661 questions spanning 34 different academic subjects. To ensure a comprehensive model performance evaluation, FinEval employs a range of prompt types, including zero-shot and few-shot prompts, as well as answer-only and chain-of-thought prompts. Evaluating state-of-the-art Chinese and English LLMs on FinEval, the results show that only GPT-4 achieved an accuracy close to 70% in different prompt settings, indicating significant growth potential for LLMs in the financial domain knowledge. Our work offers a more comprehensive financial knowledge evaluation benchmark, utilizing data of mock exams and covering a wide range of evaluated LLMs.
EMNLP: Educator-role Moral and Normative Large Language Models Profiling
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 12 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.
PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation
Text-to-image diffusion models are well-known for their ability to generate realistic images based on textual prompts. However, the existing works have predominantly focused on English, lacking support for non-English text-to-image models. The most commonly used translation methods cannot solve the generation problem related to language culture, while training from scratch on a specific language dataset is prohibitively expensive. In this paper, we are inspired to propose a simple plug-and-play language transfer method based on knowledge distillation. All we need to do is train a lightweight MLP-like parameter-efficient adapter (PEA) with only 6M parameters under teacher knowledge distillation along with a small parallel data corpus. We are surprised to find that freezing the parameters of UNet can still achieve remarkable performance on the language-specific prompt evaluation set, demonstrating that PEA can stimulate the potential generation ability of the original UNet. Additionally, it closely approaches the performance of the English text-to-image model on a general prompt evaluation set. Furthermore, our adapter can be used as a plugin to achieve significant results in downstream tasks in cross-lingual text-to-image generation. Code will be available at: https://github.com/OPPO-Mente-Lab/PEA-Diffusion
DB-GPT-Hub: Towards Open Benchmarking Text-to-SQL Empowered by Large Language Models
Large language models (LLMs) becomes the dominant paradigm for the challenging task of text-to-SQL. LLM-empowered text-to-SQL methods are typically categorized into prompting-based and tuning approaches. Compared to prompting-based methods, benchmarking fine-tuned LLMs for text-to-SQL is important yet under-explored, partially attributed to the prohibitively high computational cost. In this paper, we present DB-GPT-Hub, an open benchmark suite for LLM-empowered text-to-SQL, which primarily focuses on tuning LLMs at large scales. The proposed benchmark consists of: 1. a standardized and comprehensive evaluation of text-to-SQL tasks by fine-tuning medium to large-sized open LLMs; 2. a modularized and easy-to-extend codebase with mainstream LLMs and experimental scenarios supported, which prioritizes fine-tuning methods but can be easily extended to prompt-based setting. Our work investigates the potential gains and the performance boundaries of tuning approaches, compared to prompting approaches and explores optimal solutions tailored to specific scenarios. We hope DB-GPT-Hub, along with these findings, enables further research and broad applications that would otherwise be difficult owing to the absence of a dedicated open benchmark. The project code has been released at https://github.com/eosphoros-ai/DB-GPT-Hub.
CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning
Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data. Typical solutions for this continual learning problem require extensive rehearsal of previously seen data, which increases memory costs and may violate data privacy. Recently, the emergence of large-scale pre-trained vision transformer models has enabled prompting approaches as an alternative to data-rehearsal. These approaches rely on a key-query mechanism to generate prompts and have been found to be highly resistant to catastrophic forgetting in the well-established rehearsal-free continual learning setting. However, the key mechanism of these methods is not trained end-to-end with the task sequence. Our experiments show that this leads to a reduction in their plasticity, hence sacrificing new task accuracy, and inability to benefit from expanded parameter capacity. We instead propose to learn a set of prompt components which are assembled with input-conditioned weights to produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme. Our experiments show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy. We also outperform the state of art by as much as 4.4% accuracy on a continual learning benchmark which contains both class-incremental and domain-incremental task shifts, corresponding to many practical settings. Our code is available at https://github.com/GT-RIPL/CODA-Prompt
Conditional Prompt Learning for Vision-Language Models
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at https://github.com/KaiyangZhou/CoOp.
Efficient multi-prompt evaluation of LLMs
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs' abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry. For example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Our code and data can be found at https://github.com/felipemaiapolo/prompt-eval.
Why Settle for One? Text-to-ImageSet Generation and Evaluation
Despite remarkable progress in Text-to-Image models, many real-world applications require generating coherent image sets with diverse consistency requirements. Existing consistent methods often focus on a specific domain with specific aspects of consistency, which significantly constrains their generalizability to broader applications. In this paper, we propose a more challenging problem, Text-to-ImageSet (T2IS) generation, which aims to generate sets of images that meet various consistency requirements based on user instructions. To systematically study this problem, we first introduce T2IS-Bench with 596 diverse instructions across 26 subcategories, providing comprehensive coverage for T2IS generation. Building on this, we propose T2IS-Eval, an evaluation framework that transforms user instructions into multifaceted assessment criteria and employs effective evaluators to adaptively assess consistency fulfillment between criteria and generated sets. Subsequently, we propose AutoT2IS, a training-free framework that maximally leverages pretrained Diffusion Transformers' in-context capabilities to harmonize visual elements to satisfy both image-level prompt alignment and set-level visual consistency. Extensive experiments on T2IS-Bench reveal that diverse consistency challenges all existing methods, while our AutoT2IS significantly outperforms current generalized and even specialized approaches. Our method also demonstrates the ability to enable numerous underexplored real-world applications, confirming its substantial practical value. Visit our project in https://chengyou-jia.github.io/T2IS-Home.
TextureDiffusion: Target Prompt Disentangled Editing for Various Texture Transfer
Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and <texture>, restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "<texture>", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation.
Prompt Tuning for Generative Multimodal Pretrained Models
Prompt tuning has become a new paradigm for model tuning and it has demonstrated success in natural language pretraining and even vision pretraining. In this work, we explore the transfer of prompt tuning to multimodal pretraining, with a focus on generative multimodal pretrained models, instead of contrastive ones. Specifically, we implement prompt tuning on the unified sequence-to-sequence pretrained model adaptive to both understanding and generation tasks. Experimental results demonstrate that the light-weight prompt tuning can achieve comparable performance with finetuning and surpass other light-weight tuning methods. Besides, in comparison with finetuned models, the prompt-tuned models demonstrate improved robustness against adversarial attacks. We further figure out that experimental factors, including the prompt length, prompt depth, and reparameteratization, have great impacts on the model performance, and thus we empirically provide a recommendation for the setups of prompt tuning. Despite the observed advantages, we still find some limitations in prompt tuning, and we correspondingly point out the directions for future studies. Codes are available at https://github.com/OFA-Sys/OFA
Exploring Small Language Models with Prompt-Learning Paradigm for Efficient Domain-Specific Text Classification
Domain-specific text classification faces the challenge of scarce labeled data due to the high cost of manual labeling. Prompt-learning, known for its efficiency in few-shot scenarios, is proposed as an alternative to traditional fine-tuning methods. And besides, although large language models (LLMs) have gained prominence, small language models (SLMs, with under 1B parameters) offer significant customizability, adaptability, and cost-effectiveness for domain-specific tasks, given industry constraints. In this study, we investigate the potential of SLMs combined with prompt-learning paradigm for domain-specific text classification, specifically within customer-agent interactions in retail. Our evaluations show that, in few-shot settings when prompt-based model fine-tuning is possible, T5-base, a typical SLM with 220M parameters, achieve approximately 75% accuracy with limited labeled data (up to 15% of full data), which shows great potentials of SLMs with prompt-learning. Based on this, We further validate the effectiveness of active few-shot sampling and the ensemble strategy in the prompt-learning pipeline that contribute to a remarkable performance gain. Besides, in zero-shot settings with a fixed model, we underscore a pivotal observation that, although the GPT-3.5-turbo equipped with around 154B parameters garners an accuracy of 55.16%, the power of well designed prompts becomes evident when the FLAN-T5-large, a model with a mere 0.5% of GPT-3.5-turbo's parameters, achieves an accuracy exceeding 31% with the optimized prompt, a leap from its sub-18% performance with an unoptimized one. Our findings underscore the promise of prompt-learning in classification tasks with SLMs, emphasizing the benefits of active few-shot sampling, and ensemble strategies in few-shot settings, and the importance of prompt engineering in zero-shot settings.
PROMPTFUZZ: Harnessing Fuzzing Techniques for Robust Testing of Prompt Injection in LLMs
Large Language Models (LLMs) have gained widespread use in various applications due to their powerful capability to generate human-like text. However, prompt injection attacks, which involve overwriting a model's original instructions with malicious prompts to manipulate the generated text, have raised significant concerns about the security and reliability of LLMs. Ensuring that LLMs are robust against such attacks is crucial for their deployment in real-world applications, particularly in critical tasks. In this paper, we propose PROMPTFUZZ, a novel testing framework that leverages fuzzing techniques to systematically assess the robustness of LLMs against prompt injection attacks. Inspired by software fuzzing, PROMPTFUZZ selects promising seed prompts and generates a diverse set of prompt injections to evaluate the target LLM's resilience. PROMPTFUZZ operates in two stages: the prepare phase, which involves selecting promising initial seeds and collecting few-shot examples, and the focus phase, which uses the collected examples to generate diverse, high-quality prompt injections. Using PROMPTFUZZ, we can uncover more vulnerabilities in LLMs, even those with strong defense prompts. By deploying the generated attack prompts from PROMPTFUZZ in a real-world competition, we achieved the 7th ranking out of over 4000 participants (top 0.14%) within 2 hours. Additionally, we construct a dataset to fine-tune LLMs for enhanced robustness against prompt injection attacks. While the fine-tuned model shows improved robustness, PROMPTFUZZ continues to identify vulnerabilities, highlighting the importance of robust testing for LLMs. Our work emphasizes the critical need for effective testing tools and provides a practical framework for evaluating and improving the robustness of LLMs against prompt injection attacks.
SafetyAnalyst: Interpretable, transparent, and steerable LLM safety moderation
The ideal LLM content moderation system would be both structurally interpretable (so its decisions can be explained to users) and steerable (to reflect a community's values or align to safety standards). However, current systems fall short on both of these dimensions. To address this gap, we present SafetyAnalyst, a novel LLM safety moderation framework. Given a prompt, SafetyAnalyst creates a structured "harm-benefit tree," which identifies 1) the actions that could be taken if a compliant response were provided, 2) the harmful and beneficial effects of those actions (along with their likelihood, severity, and immediacy), and 3) the stakeholders that would be impacted by those effects. It then aggregates this structured representation into a harmfulness score based on a parameterized set of safety preferences, which can be transparently aligned to particular values. Using extensive harm-benefit features generated by SOTA LLMs on 19k prompts, we fine-tuned an open-weight LM to specialize in generating harm-benefit trees through symbolic knowledge distillation. On a comprehensive set of prompt safety benchmarks, we show that our system (average F1=0.75) outperforms existing LLM safety moderation systems (average F1<0.72) on prompt harmfulness classification, while offering the additional advantages of interpretability and steerability.
Point-PEFT: Parameter-Efficient Fine-Tuning for 3D Pre-trained Models
The popularity of pre-trained large models has revolutionized downstream tasks across diverse fields, such as language, vision, and multi-modality. To minimize the adaption cost for downstream tasks, many Parameter-Efficient Fine-Tuning (PEFT) techniques are proposed for language and 2D image pre-trained models. However, the specialized PEFT method for 3D pre-trained models is still under-explored. To this end, we introduce Point-PEFT, a novel framework for adapting point cloud pre-trained models with minimal learnable parameters. Specifically, for a pre-trained 3D model, we freeze most of its parameters, and only tune the newly added PEFT modules on downstream tasks, which consist of a Point-prior Prompt and a Geometry-aware Adapter. The Point-prior Prompt adopts a set of learnable prompt tokens, for which we propose to construct a memory bank with domain-specific knowledge, and utilize a parameter-free attention to enhance the prompt tokens. The Geometry-aware Adapter aims to aggregate point cloud features within spatial neighborhoods to capture fine-grained geometric information through local interactions. Extensive experiments indicate that our Point-PEFT can achieve better performance than the full fine-tuning on various downstream tasks, while using only 5% of the trainable parameters, demonstrating the efficiency and effectiveness of our approach. Code is released at https://github.com/Ivan-Tang-3D/Point-PEFT.
ITI-GEN: Inclusive Text-to-Image Generation
Text-to-image generative models often reflect the biases of the training data, leading to unequal representations of underrepresented groups. This study investigates inclusive text-to-image generative models that generate images based on human-written prompts and ensure the resulting images are uniformly distributed across attributes of interest. Unfortunately, directly expressing the desired attributes in the prompt often leads to sub-optimal results due to linguistic ambiguity or model misrepresentation. Hence, this paper proposes a drastically different approach that adheres to the maxim that "a picture is worth a thousand words". We show that, for some attributes, images can represent concepts more expressively than text. For instance, categories of skin tones are typically hard to specify by text but can be easily represented by example images. Building upon these insights, we propose a novel approach, ITI-GEN, that leverages readily available reference images for Inclusive Text-to-Image GENeration. The key idea is learning a set of prompt embeddings to generate images that can effectively represent all desired attribute categories. More importantly, ITI-GEN requires no model fine-tuning, making it computationally efficient to augment existing text-to-image models. Extensive experiments demonstrate that ITI-GEN largely improves over state-of-the-art models to generate inclusive images from a prompt. Project page: https://czhang0528.github.io/iti-gen.
TransHP: Image Classification with Hierarchical Prompting
This paper explores a hierarchical prompting mechanism for the hierarchical image classification (HIC) task. Different from prior HIC methods, our hierarchical prompting is the first to explicitly inject ancestor-class information as a tokenized hint that benefits the descendant-class discrimination. We think it well imitates human visual recognition, i.e., humans may use the ancestor class as a prompt to draw focus on the subtle differences among descendant classes. We model this prompting mechanism into a Transformer with Hierarchical Prompting (TransHP). TransHP consists of three steps: 1) learning a set of prompt tokens to represent the coarse (ancestor) classes, 2) on-the-fly predicting the coarse class of the input image at an intermediate block, and 3) injecting the prompt token of the predicted coarse class into the intermediate feature. Though the parameters of TransHP maintain the same for all input images, the injected coarse-class prompt conditions (modifies) the subsequent feature extraction and encourages a dynamic focus on relatively subtle differences among the descendant classes. Extensive experiments show that TransHP improves image classification on accuracy (e.g., improving ViT-B/16 by +2.83% ImageNet classification accuracy), training data efficiency (e.g., +12.69% improvement under 10% ImageNet training data), and model explainability. Moreover, TransHP also performs favorably against prior HIC methods, showing that TransHP well exploits the hierarchical information. The code is available at: https://github.com/WangWenhao0716/TransHP.
Stylus: Automatic Adapter Selection for Diffusion Models
Beyond scaling base models with more data or parameters, fine-tuned adapters provide an alternative way to generate high fidelity, custom images at reduced costs. As such, adapters have been widely adopted by open-source communities, accumulating a database of over 100K adapters-most of which are highly customized with insufficient descriptions. This paper explores the problem of matching the prompt to a set of relevant adapters, built on recent work that highlight the performance gains of composing adapters. We introduce Stylus, which efficiently selects and automatically composes task-specific adapters based on a prompt's keywords. Stylus outlines a three-stage approach that first summarizes adapters with improved descriptions and embeddings, retrieves relevant adapters, and then further assembles adapters based on prompts' keywords by checking how well they fit the prompt. To evaluate Stylus, we developed StylusDocs, a curated dataset featuring 75K adapters with pre-computed adapter embeddings. In our evaluation on popular Stable Diffusion checkpoints, Stylus achieves greater CLIP-FID Pareto efficiency and is twice as preferred, with humans and multimodal models as evaluators, over the base model. See stylus-diffusion.github.io for more.
The ICL Consistency Test
Just like the previous generation of task-tuned models, large language models (LLMs) that are adapted to tasks via prompt-based methods like in-context-learning (ICL) perform well in some setups but not in others. This lack of consistency in prompt-based learning hints at a lack of robust generalisation. We here introduce the ICL consistency test -- a contribution to the GenBench collaborative benchmark task (CBT) -- which evaluates how consistent a model makes predictions across many different setups while using the same data. The test is based on different established natural language inference tasks. We provide preprocessed data constituting 96 different 'setups' and a metric that estimates model consistency across these setups. The metric is provided on a fine-grained level to understand what properties of a setup render predictions unstable and on an aggregated level to compare overall model consistency. We conduct an empirical analysis of eight state-of-the-art models, and our consistency metric reveals how all tested LLMs lack robust generalisation.
Domain Incremental Lifelong Learning in an Open World
Lifelong learning (LL) is an important ability for NLP models to learn new tasks continuously. Architecture-based approaches are reported to be effective implementations for LL models. However, it is non-trivial to extend previous approaches to domain incremental LL scenarios since they either require access to task identities in the testing phase or cannot handle samples from unseen tasks. In this paper, we propose Diana: a dynamic architecture-based lifelong learning model that tries to learn a sequence of tasks with a prompt-enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across input samples to improve the model's generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art LL models, especially in handling unseen tasks. We release the code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/diana.
AccDiffusion v2: Towards More Accurate Higher-Resolution Diffusion Extrapolation
Diffusion models suffer severe object repetition and local distortion when the inference resolution differs from its pre-trained resolution. We propose AccDiffusion v2, an accurate method for patch-wise higher-resolution diffusion extrapolation without training. Our in-depth analysis in this paper shows that using an identical text prompt for different patches leads to repetitive generation, while the absence of a prompt undermines image details. In response, our AccDiffusion v2 novelly decouples the vanilla image-content-aware prompt into a set of patch-content-aware prompts, each of which serves as a more precise description of a patch. Further analysis reveals that local distortion arises from inaccurate descriptions in prompts about the local structure of higher-resolution images. To address this issue, AccDiffusion v2, for the first time, introduces an auxiliary local structural information through ControlNet during higher-resolution diffusion extrapolation aiming to mitigate the local distortions. Finally, our analysis indicates that global semantic information is conducive to suppressing both repetitive generation and local distortion. Hence, our AccDiffusion v2 further proposes dilated sampling with window interaction for better global semantic information during higher-resolution diffusion extrapolation. We conduct extensive experiments, including both quantitative and qualitative comparisons, to demonstrate the efficacy of our AccDiffusion v2. The quantitative comparison shows that AccDiffusion v2 achieves state-of-the-art performance in image generation extrapolation without training. The qualitative comparison intuitively illustrates that AccDiffusion v2 effectively suppresses the issues of repetitive generation and local distortion in image generation extrapolation. Our code is available at https://github.com/lzhxmu/AccDiffusion_v2.
AccDiffusion: An Accurate Method for Higher-Resolution Image Generation
This paper attempts to address the object repetition issue in patch-wise higher-resolution image generation. We propose AccDiffusion, an accurate method for patch-wise higher-resolution image generation without training. An in-depth analysis in this paper reveals an identical text prompt for different patches causes repeated object generation, while no prompt compromises the image details. Therefore, our AccDiffusion, for the first time, proposes to decouple the vanilla image-content-aware prompt into a set of patch-content-aware prompts, each of which serves as a more precise description of an image patch. Besides, AccDiffusion also introduces dilated sampling with window interaction for better global consistency in higher-resolution image generation. Experimental comparison with existing methods demonstrates that our AccDiffusion effectively addresses the issue of repeated object generation and leads to better performance in higher-resolution image generation.
ORACLE: Leveraging Mutual Information for Consistent Character Generation with LoRAs in Diffusion Models
Text-to-image diffusion models have recently taken center stage as pivotal tools in promoting visual creativity across an array of domains such as comic book artistry, children's literature, game development, and web design. These models harness the power of artificial intelligence to convert textual descriptions into vivid images, thereby enabling artists and creators to bring their imaginative concepts to life with unprecedented ease. However, one of the significant hurdles that persist is the challenge of maintaining consistency in character generation across diverse contexts. Variations in textual prompts, even if minor, can yield vastly different visual outputs, posing a considerable problem in projects that require a uniform representation of characters throughout. In this paper, we introduce a novel framework designed to produce consistent character representations from a single text prompt across diverse settings. Through both quantitative and qualitative analyses, we demonstrate that our framework outperforms existing methods in generating characters with consistent visual identities, underscoring its potential to transform creative industries. By addressing the critical challenge of character consistency, we not only enhance the practical utility of these models but also broaden the horizons for artistic and creative expression.
Segment Anyword: Mask Prompt Inversion for Open-Set Grounded Segmentation
Open-set image segmentation poses a significant challenge because existing methods often demand extensive training or fine-tuning and generally struggle to segment unified objects consistently across diverse text reference expressions. Motivated by this, we propose Segment Anyword, a novel training-free visual concept prompt learning approach for open-set language grounded segmentation that relies on token-level cross-attention maps from a frozen diffusion model to produce segmentation surrogates or mask prompts, which are then refined into targeted object masks. Initial prompts typically lack coherence and consistency as the complexity of the image-text increases, resulting in suboptimal mask fragments. To tackle this issue, we further introduce a novel linguistic-guided visual prompt regularization that binds and clusters visual prompts based on sentence dependency and syntactic structural information, enabling the extraction of robust, noise-tolerant mask prompts, and significant improvements in segmentation accuracy. The proposed approach is effective, generalizes across different open-set segmentation tasks, and achieves state-of-the-art results of 52.5 (+6.8 relative) mIoU on Pascal Context 59, 67.73 (+25.73 relative) cIoU on gRefCOCO, and 67.4 (+1.1 relative to fine-tuned methods) mIoU on GranDf, which is the most complex open-set grounded segmentation task in the field.
Prompt Engineering a Prompt Engineer
Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.
Prompt Leakage effect and defense strategies for multi-turn LLM interactions
Prompt leakage poses a compelling security and privacy threat in LLM applications. Leakage of system prompts may compromise intellectual property, and act as adversarial reconnaissance for an attacker. A systematic evaluation of prompt leakage threats and mitigation strategies is lacking, especially for multi-turn LLM interactions. In this paper, we systematically investigate LLM vulnerabilities against prompt leakage for 10 closed- and open-source LLMs, across four domains. We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting. Our standardized setup further allows dissecting leakage of specific prompt contents such as task instructions and knowledge documents. We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts. We present different combination of defenses against our threat model, including a cost analysis. Our study highlights key takeaways for building secure LLM applications and provides directions for research in multi-turn LLM interactions
Rethinking Prompt Optimizers: From Prompt Merits to Optimization
Prompt optimization (PO) offers a practical alternative to fine-tuning large language models (LLMs), enabling performance improvements without altering model weights. Existing methods typically rely on advanced, large-scale LLMs like GPT-4 to generate optimized prompts. However, due to limited downward compatibility, verbose, instruction-heavy prompts from advanced LLMs can overwhelm lightweight inference models and degrade response quality. In this work, we rethink prompt optimization through the lens of interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, lightweight, and locally deployable prompt optimizer trained on our preference dataset built from merit-aligned prompts generated by a lightweight LLM. Unlike prior work, MePO avoids online optimization reliance, reduces cost and privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment. Our model and dataset are available at: https://github.com/MidiyaZhu/MePO
Prompt-Driven and Training-Free Forgetting Approach and Dataset for Large Language Models
The widespread adoption of diffusion models in image generation has increased the demand for privacy-compliant unlearning. However, due to the high-dimensional nature and complex feature representations of diffusion models, achieving selective unlearning remains challenging, as existing methods struggle to remove sensitive information while preserving the consistency of non-sensitive regions. To address this, we propose an Automatic Dataset Creation Framework based on prompt-based layered editing and training-free local feature removal, constructing the ForgetMe dataset and introducing the Entangled evaluation metric. The Entangled metric quantifies unlearning effectiveness by assessing the similarity and consistency between the target and background regions and supports both paired (Entangled-D) and unpaired (Entangled-S) image data, enabling unsupervised evaluation. The ForgetMe dataset encompasses a diverse set of real and synthetic scenarios, including CUB-200-2011 (Birds), Stanford-Dogs, ImageNet, and a synthetic cat dataset. We apply LoRA fine-tuning on Stable Diffusion to achieve selective unlearning on this dataset and validate the effectiveness of both the ForgetMe dataset and the Entangled metric, establishing them as benchmarks for selective unlearning. Our work provides a scalable and adaptable solution for advancing privacy-preserving generative AI.
Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars
Large language models (LLMs) have shown impressive capabilities in real-world applications. The capability of in-context learning (ICL) allows us to adapt an LLM to downstream tasks by including input-label exemplars in the prompt without model fine-tuning. However, the quality of these exemplars in the prompt greatly impacts performance, highlighting the need for an effective automated exemplar selection method. Recent studies have explored retrieval-based approaches to select exemplars tailored to individual test queries, which can be undesirable due to extra test-time computation and an increased risk of data exposure. Moreover, existing methods fail to adequately account for the impact of exemplar ordering on the performance. On the other hand, the impact of the instruction, another essential component in the prompt given to the LLM, is often overlooked in existing exemplar selection methods. To address these challenges, we propose a novel method named EASE, which leverages the hidden embedding from a pre-trained language model to represent ordered sets of exemplars and uses a neural bandit algorithm to optimize the sets of exemplars while accounting for exemplar ordering. Our EASE can efficiently find an ordered set of exemplars that performs well for all test queries from a given task, thereby eliminating test-time computation. Importantly, EASE can be readily extended to jointly optimize both the exemplars and the instruction. Through extensive empirical evaluations (including novel tasks), we demonstrate the superiority of EASE over existing methods, and reveal practical insights about the impact of exemplar selection on ICL, which may be of independent interest. Our code is available at https://github.com/ZhaoxuanWu/EASE-Prompt-Optimization.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
Prompt engineering is an increasingly important skill set needed to converse effectively with large language models (LLMs), such as ChatGPT. Prompts are instructions given to an LLM to enforce rules, automate processes, and ensure specific qualities (and quantities) of generated output. Prompts are also a form of programming that can customize the outputs and interactions with an LLM. This paper describes a catalog of prompt engineering techniques presented in pattern form that have been applied to solve common problems when conversing with LLMs. Prompt patterns are a knowledge transfer method analogous to software patterns since they provide reusable solutions to common problems faced in a particular context, i.e., output generation and interaction when working with LLMs. This paper provides the following contributions to research on prompt engineering that apply LLMs to automate software development tasks. First, it provides a framework for documenting patterns for structuring prompts to solve a range of problems so that they can be adapted to different domains. Second, it presents a catalog of patterns that have been applied successfully to improve the outputs of LLM conversations. Third, it explains how prompts can be built from multiple patterns and illustrates prompt patterns that benefit from combination with other prompt patterns.
A Simple Zero-shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image Models
Contrastively trained text-image models have the remarkable ability to perform zero-shot classification, that is, classifying previously unseen images into categories that the model has never been explicitly trained to identify. However, these zero-shot classifiers need prompt engineering to achieve high accuracy. Prompt engineering typically requires hand-crafting a set of prompts for individual downstream tasks. In this work, we aim to automate this prompt engineering and improve zero-shot accuracy through prompt ensembling. In particular, we ask "Given a large pool of prompts, can we automatically score the prompts and ensemble those that are most suitable for a particular downstream dataset, without needing access to labeled validation data?". We demonstrate that this is possible. In doing so, we identify several pathologies in a naive prompt scoring method where the score can be easily overconfident due to biases in pre-training and test data, and we propose a novel prompt scoring method that corrects for the biases. Using our proposed scoring method to create a weighted average prompt ensemble, our method outperforms equal average ensemble, as well as hand-crafted prompts, on ImageNet, 4 of its variants, and 11 fine-grained classification benchmarks, all while being fully automatic, optimization-free, and not requiring access to labeled validation data.
Prompt Sketching for Large Language Models
Many recent prompting strategies for large language models (LLMs) query the model multiple times sequentially -- first to produce intermediate results and then the final answer. However, using these methods, both decoder and model are unaware of potential follow-up prompts, leading to disconnected and undesirably wordy intermediate responses. In this work, we address this issue by proposing prompt sketching, a new prompting paradigm in which an LLM does not only respond by completing a prompt, but by predicting values for multiple variables in a template. This way, sketching grants users more control over the generation process, e.g., by providing a reasoning framework via intermediate instructions, leading to better overall results. The key idea enabling sketching with existing, autoregressive models is to adapt the decoding procedure to also score follow-up instructions during text generation, thus optimizing overall template likelihood in inference. Our experiments show that in a zero-shot setting, prompt sketching outperforms existing, sequential prompting schemes such as direct asking or chain-of-thought on 7 out of 8 LLM benchmarking tasks, including state tracking, arithmetic reasoning, and general question answering. To facilitate future use, we release a number of generic, yet effective sketches applicable to many tasks, and an open source library called dclib, powering our sketch-aware decoders.
Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages
LLMs are typically trained in high-resource languages, and tasks in lower-resourced languages tend to underperform the higher-resource language counterparts for in-context learning. Despite the large body of work on prompting settings, it is still unclear how LLMs should be adapted cross-lingually specifically for in-context learning in the low-resource target languages. We perform a comprehensive study spanning five diverse target languages, three base LLMs, and seven downstream tasks spanning over 4,100 GPU training hours (9,900+ TFLOPs) across various adaptation techniques: few-shot prompting, translate-test, fine-tuning, embedding re-initialization, and instruction fine-tuning. Our results show that the few-shot prompting and translate-test settings tend to heavily outperform the gradient-based adaptation methods. To better understand this discrepancy, we design a novel metric, Valid Output Recall (VOR), and analyze model outputs to empirically attribute the degradation of these trained models to catastrophic forgetting. To the extent of our knowledge, this is the largest study done on in-context learning for low-resource languages with respect to train compute and number of adaptation techniques considered. We make all our datasets and trained models available for public use.
Prompt-augmented Temporal Point Process for Streaming Event Sequence
Neural Temporal Point Processes (TPPs) are the prevalent paradigm for modeling continuous-time event sequences, such as user activities on the web and financial transactions. In real-world applications, event data is typically received in a streaming manner, where the distribution of patterns may shift over time. Additionally, privacy and memory constraints are commonly observed in practical scenarios, further compounding the challenges. Therefore, the continuous monitoring of a TPP to learn the streaming event sequence is an important yet under-explored problem. Our work paper addresses this challenge by adopting Continual Learning (CL), which makes the model capable of continuously learning a sequence of tasks without catastrophic forgetting under realistic constraints. Correspondingly, we propose a simple yet effective framework, PromptTPPOur code is available at {\small \url{ https://github.com/yanyanSann/PromptTPP}}, by integrating the base TPP with a continuous-time retrieval prompt pool. The prompts, small learnable parameters, are stored in a memory space and jointly optimized with the base TPP, ensuring that the model learns event streams sequentially without buffering past examples or task-specific attributes. We present a novel and realistic experimental setup for modeling event streams, where PromptTPP consistently achieves state-of-the-art performance across three real user behavior datasets.
Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning
Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize and provide insights into the current research on instruction learning, particularly by answering the following questions: (i) What is task instruction, and what instruction types exist? (ii) How to model instructions? (iii) What factors influence and explain the instructions' performance? (iv) What challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.
OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP
We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.
TextInVision: Text and Prompt Complexity Driven Visual Text Generation Benchmark
Generating images with embedded text is crucial for the automatic production of visual and multimodal documents, such as educational materials and advertisements. However, existing diffusion-based text-to-image models often struggle to accurately embed text within images, facing challenges in spelling accuracy, contextual relevance, and visual coherence. Evaluating the ability of such models to embed text within a generated image is complicated due to the lack of comprehensive benchmarks. In this work, we introduce TextInVision, a large-scale, text and prompt complexity driven benchmark designed to evaluate the ability of diffusion models to effectively integrate visual text into images. We crafted a diverse set of prompts and texts that consider various attributes and text characteristics. Additionally, we prepared an image dataset to test Variational Autoencoder (VAE) models across different character representations, highlighting that VAE architectures can also pose challenges in text generation within diffusion frameworks. Through extensive analysis of multiple models, we identify common errors and highlight issues such as spelling inaccuracies and contextual mismatches. By pinpointing the failure points across different prompts and texts, our research lays the foundation for future advancements in AI-generated multimodal content.
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
GraphPrompter: Multi-stage Adaptive Prompt Optimization for Graph In-Context Learning
Graph In-Context Learning, with the ability to adapt pre-trained graph models to novel and diverse downstream graphs without updating any parameters, has gained much attention in the community. The key to graph in-context learning is to perform downstream graphs conditioned on chosen prompt examples. Existing methods randomly select subgraphs or edges as prompts, leading to noisy graph prompts and inferior model performance. Additionally, due to the gap between pre-training and testing graphs, when the number of classes in the testing graphs is much greater than that in the training, the in-context learning ability will also significantly deteriorate. To tackle the aforementioned challenges, we develop a multi-stage adaptive prompt optimization method GraphPrompter, which optimizes the entire process of generating, selecting, and using graph prompts for better in-context learning capabilities. Firstly, Prompt Generator introduces a reconstruction layer to highlight the most informative edges and reduce irrelevant noise for graph prompt construction. Furthermore, in the selection stage, Prompt Selector employs the k-nearest neighbors algorithm and pre-trained selection layers to dynamically choose appropriate samples and minimize the influence of irrelevant prompts. Finally, we leverage a Prompt Augmenter with a cache replacement strategy to enhance the generalization capability of the pre-trained model on new datasets. Extensive experiments show that GraphPrompter effectively enhances the in-context learning ability of graph models. On average across all the settings, our approach surpasses the state-of-the-art baselines by over 8%. Our code is released at https://github.com/karin0018/GraphPrompter.
The Silent Prompt: Initial Noise as Implicit Guidance for Goal-Driven Image Generation
Text-to-image synthesis (T2I) has advanced remarkably with the emergence of large-scale diffusion models. In the conventional setup, the text prompt provides explicit, user-defined guidance, directing the generation process by denoising a randomly sampled Gaussian noise. In this work, we reveal that the often-overlooked noise itself encodes inherent generative tendencies, acting as a "silent prompt" that implicitly guides the output. This implicit guidance, embedded in the noise scheduler design of diffusion model formulations and their training stages, generalizes across a wide range of T2I models and backbones. Building on this insight, we introduce NoiseQuery, a novel strategy that selects optimal initial noise from a pre-built noise library to meet diverse user needs. Our approach not only enhances high-level semantic alignment with text prompts, but also allows for nuanced adjustments of low-level visual attributes, such as texture, sharpness, shape, and color, which are typically challenging to control through text alone. Extensive experiments across various models and target attributes demonstrate the strong performance and zero-shot transferability of our approach, requiring no additional optimization.
Prompt-Driven Contrastive Learning for Transferable Adversarial Attacks
Recent vision-language foundation models, such as CLIP, have demonstrated superior capabilities in learning representations that can be transferable across diverse range of downstream tasks and domains. With the emergence of such powerful models, it has become crucial to effectively leverage their capabilities in tackling challenging vision tasks. On the other hand, only a few works have focused on devising adversarial examples that transfer well to both unknown domains and model architectures. In this paper, we propose a novel transfer attack method called PDCL-Attack, which leverages the CLIP model to enhance the transferability of adversarial perturbations generated by a generative model-based attack framework. Specifically, we formulate an effective prompt-driven feature guidance by harnessing the semantic representation power of text, particularly from the ground-truth class labels of input images. To the best of our knowledge, we are the first to introduce prompt learning to enhance the transferable generative attacks. Extensive experiments conducted across various cross-domain and cross-model settings empirically validate our approach, demonstrating its superiority over state-of-the-art methods.
PLeak: Prompt Leaking Attacks against Large Language Model Applications
Large Language Models (LLMs) enable a new ecosystem with many downstream applications, called LLM applications, with different natural language processing tasks. The functionality and performance of an LLM application highly depend on its system prompt, which instructs the backend LLM on what task to perform. Therefore, an LLM application developer often keeps a system prompt confidential to protect its intellectual property. As a result, a natural attack, called prompt leaking, is to steal the system prompt from an LLM application, which compromises the developer's intellectual property. Existing prompt leaking attacks primarily rely on manually crafted queries, and thus achieve limited effectiveness. In this paper, we design a novel, closed-box prompt leaking attack framework, called PLeak, to optimize an adversarial query such that when the attacker sends it to a target LLM application, its response reveals its own system prompt. We formulate finding such an adversarial query as an optimization problem and solve it with a gradient-based method approximately. Our key idea is to break down the optimization goal by optimizing adversary queries for system prompts incrementally, i.e., starting from the first few tokens of each system prompt step by step until the entire length of the system prompt. We evaluate PLeak in both offline settings and for real-world LLM applications, e.g., those on Poe, a popular platform hosting such applications. Our results show that PLeak can effectively leak system prompts and significantly outperforms not only baselines that manually curate queries but also baselines with optimized queries that are modified and adapted from existing jailbreaking attacks. We responsibly reported the issues to Poe and are still waiting for their response. Our implementation is available at this repository: https://github.com/BHui97/PLeak.
Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt
Recent singing-voice-synthesis (SVS) methods have achieved remarkable audio quality and naturalness, yet they lack the capability to control the style attributes of the synthesized singing explicitly. We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language. We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation that enables text-conditioned vocal range control while keeping melodic accuracy. Furthermore, we explore various experiment settings, including different types of text representations, text encoder fine-tuning, and introducing speech data to alleviate data scarcity, aiming to facilitate further research. Experiments show that our model achieves favorable controlling ability and audio quality. Audio samples are available at http://prompt-singer.github.io .
Prompt Expansion for Adaptive Text-to-Image Generation
Text-to-image generation models are powerful but difficult to use. Users craft specific prompts to get better images, though the images can be repetitive. This paper proposes a Prompt Expansion framework that helps users generate high-quality, diverse images with less effort. The Prompt Expansion model takes a text query as input and outputs a set of expanded text prompts that are optimized such that when passed to a text-to-image model, generates a wider variety of appealing images. We conduct a human evaluation study that shows that images generated through Prompt Expansion are more aesthetically pleasing and diverse than those generated by baseline methods. Overall, this paper presents a novel and effective approach to improving the text-to-image generation experience.
Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
Code generation problems differ from common natural language problems - they require matching the exact syntax of the target language, identifying happy paths and edge cases, paying attention to numerous small details in the problem spec, and addressing other code-specific issues and requirements. Hence, many of the optimizations and tricks that have been successful in natural language generation may not be effective for code tasks. In this work, we propose a new approach to code generation by LLMs, which we call AlphaCodium - a test-based, multi-stage, code-oriented iterative flow, that improves the performances of LLMs on code problems. We tested AlphaCodium on a challenging code generation dataset called CodeContests, which includes competitive programming problems from platforms such as Codeforces. The proposed flow consistently and significantly improves results. On the validation set, for example, GPT-4 accuracy (pass@5) increased from 19% with a single well-designed direct prompt to 44% with the AlphaCodium flow. Many of the principles and best practices acquired in this work, we believe, are broadly applicable to general code generation tasks. Full implementation is available at: https://github.com/Codium-ai/AlphaCodium
T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy
We present T-Rex2, a highly practical model for open-set object detection. Previous open-set object detection methods relying on text prompts effectively encapsulate the abstract concept of common objects, but struggle with rare or complex object representation due to data scarcity and descriptive limitations. Conversely, visual prompts excel in depicting novel objects through concrete visual examples, but fall short in conveying the abstract concept of objects as effectively as text prompts. Recognizing the complementary strengths and weaknesses of both text and visual prompts, we introduce T-Rex2 that synergizes both prompts within a single model through contrastive learning. T-Rex2 accepts inputs in diverse formats, including text prompts, visual prompts, and the combination of both, so that it can handle different scenarios by switching between the two prompt modalities. Comprehensive experiments demonstrate that T-Rex2 exhibits remarkable zero-shot object detection capabilities across a wide spectrum of scenarios. We show that text prompts and visual prompts can benefit from each other within the synergy, which is essential to cover massive and complicated real-world scenarios and pave the way towards generic object detection. Model API is now available at https://github.com/IDEA-Research/T-Rex.
Cascade Prompt Learning for Vision-Language Model Adaptation
Prompt learning has surfaced as an effective approach to enhance the performance of Vision-Language Models (VLMs) like CLIP when applied to downstream tasks. However, current learnable prompt tokens are primarily used for the single phase of adapting to tasks (i.e., adapting prompt), easily leading to overfitting risks. In this work, we propose a novel Cascade Prompt Learning CasPL framework to enable prompt learning to serve both generic and specific expertise (i.e., boosting and adapting prompt) simultaneously. Specifically, CasPL is a new learning paradigm comprising two distinct phases of learnable prompts: the first boosting prompt is crafted to extract domain-general knowledge from a senior larger CLIP teacher model by aligning their predicted logits using extensive unlabeled domain images. The second adapting prompt is then cascaded with the frozen first set to fine-tune the downstream tasks, following the approaches employed in prior research. In this manner, CasPL can effectively capture both domain-general and task-specific representations into explicitly different gradual groups of prompts, thus potentially alleviating overfitting issues in the target domain. It's worth noting that CasPL serves as a plug-and-play module that can seamlessly integrate into any existing prompt learning approach. CasPL achieves a significantly better balance between performance and inference speed, which is especially beneficial for deploying smaller VLM models in resource-constrained environments. Compared to the previous state-of-the-art method PromptSRC, CasPL shows an average improvement of 1.85% for base classes, 3.44% for novel classes, and 2.72% for the harmonic mean over 11 image classification datasets. Code is publicly available at: https://github.com/megvii-research/CasPL.
Introducing Language Guidance in Prompt-based Continual Learning
Continual Learning aims to learn a single model on a sequence of tasks without having access to data from previous tasks. The biggest challenge in the domain still remains catastrophic forgetting: a loss in performance on seen classes of earlier tasks. Some existing methods rely on an expensive replay buffer to store a chunk of data from previous tasks. This, while promising, becomes expensive when the number of tasks becomes large or data can not be stored for privacy reasons. As an alternative, prompt-based methods have been proposed that store the task information in a learnable prompt pool. This prompt pool instructs a frozen image encoder on how to solve each task. While the model faces a disjoint set of classes in each task in this setting, we argue that these classes can be encoded to the same embedding space of a pre-trained language encoder. In this work, we propose Language Guidance for Prompt-based Continual Learning (LGCL) as a plug-in for prompt-based methods. LGCL is model agnostic and introduces language guidance at the task level in the prompt pool and at the class level on the output feature of the vision encoder. We show with extensive experimentation that LGCL consistently improves the performance of prompt-based continual learning methods to set a new state-of-the art. LGCL achieves these performance improvements without needing any additional learnable parameters.
SegPrompt: Boosting Open-world Segmentation via Category-level Prompt Learning
Current closed-set instance segmentation models rely on pre-defined class labels for each mask during training and evaluation, largely limiting their ability to detect novel objects. Open-world instance segmentation (OWIS) models address this challenge by detecting unknown objects in a class-agnostic manner. However, previous OWIS approaches completely erase category information during training to keep the model's ability to generalize to unknown objects. In this work, we propose a novel training mechanism termed SegPrompt that uses category information to improve the model's class-agnostic segmentation ability for both known and unknown categories. In addition, the previous OWIS training setting exposes the unknown classes to the training set and brings information leakage, which is unreasonable in the real world. Therefore, we provide a new open-world benchmark closer to a real-world scenario by dividing the dataset classes into known-seen-unseen parts. For the first time, we focus on the model's ability to discover objects that never appear in the training set images. Experiments show that SegPrompt can improve the overall and unseen detection performance by 5.6% and 6.1% in AR on our new benchmark without affecting the inference efficiency. We further demonstrate the effectiveness of our method on existing cross-dataset transfer and strongly supervised settings, leading to 5.5% and 12.3% relative improvement.
I'm Afraid I Can't Do That: Predicting Prompt Refusal in Black-Box Generative Language Models
Since the release of OpenAI's ChatGPT, generative language models have attracted extensive public attention. The increased usage has highlighted generative models' broad utility, but also revealed several forms of embedded bias. Some is induced by the pre-training corpus; but additional bias specific to generative models arises from the use of subjective fine-tuning to avoid generating harmful content. Fine-tuning bias may come from individual engineers and company policies, and affects which prompts the model chooses to refuse. In this experiment, we characterize ChatGPT's refusal behavior using a black-box attack. We first query ChatGPT with a variety of offensive and benign prompts (n=1,706), then manually label each response as compliance or refusal. Manual examination of responses reveals that refusal is not cleanly binary, and lies on a continuum; as such, we map several different kinds of responses to a binary of compliance or refusal. The small manually-labeled dataset is used to train a refusal classifier, which achieves an accuracy of 96%. Second, we use this refusal classifier to bootstrap a larger (n=10,000) dataset adapted from the Quora Insincere Questions dataset. With this machine-labeled data, we train a prompt classifier to predict whether ChatGPT will refuse a given question, without seeing ChatGPT's response. This prompt classifier achieves 76% accuracy on a test set of manually labeled questions (n=985). We examine our classifiers and the prompt n-grams that are most predictive of either compliance or refusal. Our datasets and code are available at https://github.com/maxwellreuter/chatgpt-refusals.
PALP: Prompt Aligned Personalization of Text-to-Image Models
Content creators often aim to create personalized images using personal subjects that go beyond the capabilities of conventional text-to-image models. Additionally, they may want the resulting image to encompass a specific location, style, ambiance, and more. Existing personalization methods may compromise personalization ability or the alignment to complex textual prompts. This trade-off can impede the fulfillment of user prompts and subject fidelity. We propose a new approach focusing on personalization methods for a single prompt to address this issue. We term our approach prompt-aligned personalization. While this may seem restrictive, our method excels in improving text alignment, enabling the creation of images with complex and intricate prompts, which may pose a challenge for current techniques. In particular, our method keeps the personalized model aligned with a target prompt using an additional score distillation sampling term. We demonstrate the versatility of our method in multi- and single-shot settings and further show that it can compose multiple subjects or use inspiration from reference images, such as artworks. We compare our approach quantitatively and qualitatively with existing baselines and state-of-the-art techniques.
TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting
The past decade has witnessed significant advances in time series modeling with deep learning. While achieving state-of-the-art results, the best-performing architectures vary highly across applications and domains. Meanwhile, for natural language processing, the Generative Pre-trained Transformer (GPT) has demonstrated impressive performance via training one general-purpose model across various textual datasets. It is intriguing to explore whether GPT-type architectures can be effective for time series, capturing the intrinsic dynamic attributes and leading to significant accuracy improvements. In this paper, we propose a novel framework, TEMPO, that can effectively learn time series representations. We focus on utilizing two essential inductive biases of the time series task for pre-trained models: (i) decomposition of the complex interaction between trend, seasonal and residual components; and (ii) introducing the selection-based prompts to facilitate distribution adaptation in non-stationary time series. TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains. Our experiments demonstrate the superior performance of TEMPO over state-of-the-art methods on a number of time series benchmark datasets. This performance gain is observed not only in standard supervised learning settings but also in scenarios involving previously unseen datasets as well as in scenarios with multi-modal inputs. This compelling finding highlights TEMPO's potential to constitute a foundational model-building framework.
Privacy-Preserving Prompt Tuning for Large Language Model Services
Prompt tuning provides an efficient way for users to customize Large Language Models (LLMs) with their private data in the emerging LLM service scenario. However, the sensitive nature of private data brings the need for privacy preservation in LLM service customization. Based on prompt tuning, we propose Privacy-Preserving Prompt Tuning (RAPT), a framework that provides privacy guarantees for LLM services. rapt adopts a local privacy setting, allowing users to privatize their data locally with local differential privacy. As prompt tuning performs poorly when directly trained on privatized data, we introduce a novel privatized token reconstruction task that is trained jointly with the downstream task, allowing LLMs to learn better task-dependent representations. Despite the simplicity of our framework, experiments show that RAPT achieves competitive performance across tasks while providing privacy guarantees against adversaries.
Clinical Prompt Learning with Frozen Language Models
Prompt learning is a new paradigm in the Natural Language Processing (NLP) field which has shown impressive performance on a number of natural language tasks with common benchmarking text datasets in full, few-shot, and zero-shot train-evaluation setups. Recently, it has even been observed that large but frozen pre-trained language models (PLMs) with prompt learning outperform smaller but fine-tuned models. However, as with many recent NLP trends, the performance of even the largest PLMs such as GPT-3 do not perform well on specialized domains (e.g. medical text), and the common practice to achieve State of the Art (SoTA) results still consists of pre-training and fine-tuning the PLMs on downstream tasks. The reliance on fine-tuning large PLMs is problematic in clinical settings where data is often held in non-GPU environments, and more resource efficient methods of training specialized domain models is crucial. We investigated the viability of prompt learning on clinically meaningful decision tasks and directly compared with more traditional fine-tuning methods. Results are partially in line with the prompt learning literature, with prompt learning able to match or improve on traditional fine-tuning with substantially fewer trainable parameters and requiring less training data. We argue that prompt learning therefore provides lower computational resource costs applicable to clinical settings, that can serve as an alternative to fine-tuning ever increasing in size PLMs. Complementary code to reproduce experiments presented in this work can be found at: https://github.com/NtaylorOX/Public_Clinical_Prompt.
ProAPO: Progressively Automatic Prompt Optimization for Visual Classification
Vision-language models (VLMs) have made significant progress in image classification by training with large-scale paired image-text data. Their performances largely depend on the prompt quality. While recent methods show that visual descriptions generated by large language models (LLMs) enhance the generalization of VLMs, class-specific prompts may be inaccurate or lack discrimination due to the hallucination in LLMs. In this paper, we aim to find visually discriminative prompts for fine-grained categories with minimal supervision and no human-in-the-loop. An evolution-based algorithm is proposed to progressively optimize language prompts from task-specific templates to class-specific descriptions. Unlike optimizing templates, the search space shows an explosion in class-specific candidate prompts. This increases prompt generation costs, iterative times, and the overfitting problem. To this end, we first introduce several simple yet effective edit-based and evolution-based operations to generate diverse candidate prompts by one-time query of LLMs. Then, two sampling strategies are proposed to find a better initial search point and reduce traversed categories, saving iteration costs. Moreover, we apply a novel fitness score with entropy constraints to mitigate overfitting. In a challenging one-shot image classification setting, our method outperforms existing textual prompt-based methods and improves LLM-generated description methods across 13 datasets. Meanwhile, we demonstrate that our optimal prompts improve adapter-based methods and transfer effectively across different backbones.
A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning
Extensive knowledge graphs (KGs) have been constructed to facilitate knowledge-driven tasks across various scenarios. However, existing work usually develops separate reasoning models for different KGs, lacking the ability to generalize and transfer knowledge across diverse KGs and reasoning settings. In this paper, we propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability. Specifically, we introduce a prompt graph centered with a query-related example fact as context to understand the query relation. To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer that maps entities and relations in prompt graphs to predefined tokens. Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively. We conduct evaluation on 43 different KGs in both transductive and inductive settings. Results indicate that the proposed KG-ICL outperforms baselines on most datasets, showcasing its outstanding generalization and universal reasoning capabilities. The source code is accessible on GitHub: https://github.com/nju-websoft/KG-ICL.
Query-Based Adversarial Prompt Generation
Recent work has shown it is possible to construct adversarial examples that cause an aligned language model to emit harmful strings or perform harmful behavior. Existing attacks work either in the white-box setting (with full access to the model weights), or through transferability: the phenomenon that adversarial examples crafted on one model often remain effective on other models. We improve on prior work with a query-based attack that leverages API access to a remote language model to construct adversarial examples that cause the model to emit harmful strings with (much) higher probability than with transfer-only attacks. We validate our attack on GPT-3.5 and OpenAI's safety classifier; we can cause GPT-3.5 to emit harmful strings that current transfer attacks fail at, and we can evade the safety classifier with nearly 100% probability.
Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding
Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with average length of 3,000+ tokens. This task is challenging due to a high-dimensional space of multi-label assignment (tens of thousands of ICD codes) and the long-tail challenge: only a few codes (common diseases) are frequently assigned while most codes (rare diseases) are infrequently assigned. This study addresses the long-tail challenge by adapting a prompt-based fine-tuning technique with label semantics, which has been shown to be effective under few-shot setting. To further enhance the performance in medical domain, we propose a knowledge-enhanced longformer by injecting three domain-specific knowledge: hierarchy, synonym, and abbreviation with additional pretraining using contrastive learning. Experiments on MIMIC-III-full, a benchmark dataset of code assignment, show that our proposed method outperforms previous state-of-the-art method in 14.5% in marco F1 (from 10.3 to 11.8, P<0.001). To further test our model on few-shot setting, we created a new rare diseases coding dataset, MIMIC-III-rare50, on which our model improves marco F1 from 17.1 to 30.4 and micro F1 from 17.2 to 32.6 compared to previous method.
Towards Open-vocabulary Scene Graph Generation with Prompt-based Finetuning
Scene graph generation (SGG) is a fundamental task aimed at detecting visual relations between objects in an image. The prevailing SGG methods require all object classes to be given in the training set. Such a closed setting limits the practical application of SGG. In this paper, we introduce open-vocabulary scene graph generation, a novel, realistic and challenging setting in which a model is trained on a set of base object classes but is required to infer relations for unseen target object classes. To this end, we propose a two-step method that firstly pre-trains on large amounts of coarse-grained region-caption data and then leverages two prompt-based techniques to finetune the pre-trained model without updating its parameters. Moreover, our method can support inference over completely unseen object classes, which existing methods are incapable of handling. On extensive experiments on three benchmark datasets, Visual Genome, GQA, and Open-Image, our method significantly outperforms recent, strong SGG methods on the setting of Ov-SGG, as well as on the conventional closed SGG.
PAFT: Prompt-Agnostic Fine-Tuning
While Large Language Models (LLMs) adapt well to downstream tasks after fine-tuning, this adaptability often compromises prompt robustness, as even minor prompt variations can significantly degrade performance. To address this, we propose Prompt-Agnostic Fine-Tuning(PAFT), a simple yet effective approach that dynamically adjusts prompts during fine-tuning. This encourages the model to learn underlying task principles rather than overfitting to specific prompt formulations. PAFT operates in two stages: First, a diverse set of meaningful, synthetic candidate prompts is constructed. Second, during fine-tuning, prompts are randomly sampled from this set to create dynamic training inputs. Extensive experiments across diverse datasets and LLMs demonstrate that models trained with PAFT exhibit strong robustness and generalization across a wide range of prompts, including unseen ones. This enhanced robustness improves both model performance and inference speed while maintaining training efficiency. Ablation studies further confirm the effectiveness of PAFT.
DreamDistribution: Prompt Distribution Learning for Text-to-Image Diffusion Models
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
In-Context Prompt Editing For Conditional Audio Generation
Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.
Easier Painting Than Thinking: Can Text-to-Image Models Set the Stage, but Not Direct the Play?
Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, thereby corresponding to two core capabilities: composition and reasoning. However, with the emerging advances of T2I models in reasoning beyond composition, existing benchmarks reveal clear limitations in providing comprehensive evaluations across and within these capabilities. Meanwhile, these advances also enable models to handle more complex prompts, whereas current benchmarks remain limited to low scene density and simplified one-to-one reasoning. To address these limitations, we propose T2I-CoReBench, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (instance, attribute, and relation) and reasoning around the philosophical framework of inference (deductive, inductive, and abductive), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent complexities of real-world scenarios, we curate each prompt with high compositional density for composition and multi-step inference for reasoning. We also pair each prompt with a checklist that specifies individual yes/no questions to assess each intended element independently to facilitate fine-grained and reliable evaluation. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 27 current T2I models reveal that their composition capability still remains limited in complex high-density scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts. Our project page: https://t2i-corebench.github.io/.
Self-supervised Meta-Prompt Learning with Meta-Gradient Regularization for Few-shot Generalization
Prompt tuning is a parameter-efficient method, which learns soft prompts and conditions frozen language models to perform specific downstream tasks. Though effective, prompt tuning under few-shot settings on the one hand heavily relies on a good initialization of soft prompts. On the other hand, it can easily overfit to few-shot training samples, thereby undermining generalizability. Existing works leverage pre-training or supervised meta-learning to initialize soft prompts but they fail to data-efficiently generalize to unseen downstream tasks. To address the above problems, this paper proposes a novel Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER). SUPMER leverages self-supervised meta-learning with a diverse set of well-designed meta-training tasks to learn a universal prompt initialization for efficient adaptation using only unlabeled data. Additionally, it jointly meta-learns a gradient regularization function to transform raw gradients into a domain-generalizable direction, thus alleviating the problem of overfitting. Extensive experiments show that SUPMER achieves better performance for different few-shot downstream tasks, and also exhibits a stronger domain generalization ability. The code for SUPMER will be available at https://github.com/beepkh/SUPMER.
Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model
With the emergence of large pre-trained vison-language model like CLIP, transferable representations can be adapted to a wide range of downstream tasks via prompt tuning. Prompt tuning tries to probe the beneficial information for downstream tasks from the general knowledge stored in the pre-trained model. A recently proposed method named Context Optimization (CoOp) introduces a set of learnable vectors as text prompt from the language side. However, tuning the text prompt alone can only adjust the synthesized "classifier", while the computed visual features of the image encoder can not be affected , thus leading to sub-optimal solutions. In this paper, we propose a novel Dual-modality Prompt Tuning (DPT) paradigm through learning text and visual prompts simultaneously. To make the final image feature concentrate more on the target visual concept, a Class-Aware Visual Prompt Tuning (CAVPT) scheme is further proposed in our DPT, where the class-aware visual prompt is generated dynamically by performing the cross attention between text prompts features and image patch token embeddings to encode both the downstream task-related information and visual instance information. Extensive experimental results on 11 datasets demonstrate the effectiveness and generalization ability of the proposed method. Our code is available in https://github.com/fanrena/DPT.
PolyPrompt: Automating Knowledge Extraction from Multilingual Language Models with Dynamic Prompt Generation
Large language models (LLMs) showcase increasingly impressive English benchmark scores, however their performance profiles remain inconsistent across multilingual settings. To address this gap, we introduce PolyPrompt, a novel, parameter-efficient framework for enhancing the multilingual capabilities of LLMs. Our method learns a set of trigger tokens for each language through a gradient-based search, identifying the input query's language and selecting the corresponding trigger tokens which are prepended to the prompt during inference. We perform experiments on two ~1 billion parameter models, with evaluations on the global MMLU benchmark across fifteen typologically and resource diverse languages, demonstrating accuracy gains of 3.7%-19.9% compared to naive and translation-pipeline baselines.
SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning
Pre-trained large language models can efficiently interpolate human-written prompts in a natural way. Multitask prompted learning can help generalization through a diverse set of tasks at once, thus enhancing the potential for more effective downstream fine-tuning. To perform efficient multitask-inference in the same batch, parameter-efficient fine-tuning methods such as prompt tuning have been proposed. However, the existing prompt tuning methods may lack generalization. We propose SPT, a semi-parametric prompt tuning method for multitask prompted learning. The novel component of SPT is a memory bank from where memory prompts are retrieved based on discrete prompts. Extensive experiments, such as (i) fine-tuning a full language model with SPT on 31 different tasks from 8 different domains and evaluating zero-shot generalization on 9 heldout datasets under 5 NLP task categories and (ii) pretraining SPT on the GLUE datasets and evaluating fine-tuning on the SuperGLUE datasets, demonstrate effectiveness of SPT.
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
VPA: Fully Test-Time Visual Prompt Adaptation
Textual prompt tuning has demonstrated significant performance improvements in adapting natural language processing models to a variety of downstream tasks by treating hand-engineered prompts as trainable parameters. Inspired by the success of textual prompting, several studies have investigated the efficacy of visual prompt tuning. In this work, we present Visual Prompt Adaptation (VPA), the first framework that generalizes visual prompting with test-time adaptation. VPA introduces a small number of learnable tokens, enabling fully test-time and storage-efficient adaptation without necessitating source-domain information. We examine our VPA design under diverse adaptation settings, encompassing single-image, batched-image, and pseudo-label adaptation. We evaluate VPA on multiple tasks, including out-of-distribution (OOD) generalization, corruption robustness, and domain adaptation. Experimental results reveal that VPA effectively enhances OOD generalization by 3.3% across various models, surpassing previous test-time approaches. Furthermore, we show that VPA improves corruption robustness by 6.5% compared to strong baselines. Finally, we demonstrate that VPA also boosts domain adaptation performance by relatively 5.2%. Our VPA also exhibits marked effectiveness in improving the robustness of zero-shot recognition for vision-language models.
KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction
Recently, prompt-tuning has achieved promising results for specific few-shot classification tasks. The core idea of prompt-tuning is to insert text pieces (i.e., templates) into the input and transform a classification task into a masked language modeling problem. However, for relation extraction, determining an appropriate prompt template requires domain expertise, and it is cumbersome and time-consuming to obtain a suitable label word. Furthermore, there exists abundant semantic and prior knowledge among the relation labels that cannot be ignored. To this end, we focus on incorporating knowledge among relation labels into prompt-tuning for relation extraction and propose a Knowledge-aware Prompt-tuning approach with synergistic optimization (KnowPrompt). Specifically, we inject latent knowledge contained in relation labels into prompt construction with learnable virtual type words and answer words. Then, we synergistically optimize their representation with structured constraints. Extensive experimental results on five datasets with standard and low-resource settings demonstrate the effectiveness of our approach. Our code and datasets are available in https://github.com/zjunlp/KnowPrompt for reproducibility.
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
The strength of modern generative models lies in their ability to be controlled through text-based prompts. Typical "hard" prompts are made from interpretable words and tokens, and must be hand-crafted by humans. There are also "soft" prompts, which consist of continuous feature vectors. These can be discovered using powerful optimization methods, but they cannot be easily interpreted, re-used across models, or plugged into a text-based interface. We describe an approach to robustly optimize hard text prompts through efficient gradient-based optimization. Our approach automatically generates hard text-based prompts for both text-to-image and text-to-text applications. In the text-to-image setting, the method creates hard prompts for diffusion models, allowing API users to easily generate, discover, and mix and match image concepts without prior knowledge on how to prompt the model. In the text-to-text setting, we show that hard prompts can be automatically discovered that are effective in tuning LMs for classification.
ConsPrompt: Easily Exploiting Contrastive Samples for Few-shot Prompt Learning
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
Prompt-Based Document Modifications In Ranking Competitions
We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality.
Batch Calibration: Rethinking Calibration for In-Context Learning and Prompt Engineering
Prompting and in-context learning (ICL) have become efficient learning paradigms for large language models (LLMs). However, LLMs suffer from prompt brittleness and various bias factors in the prompt, including but not limited to the formatting, the choice verbalizers, and the ICL examples. To address this problem that results in unexpected performance degradation, calibration methods have been developed to mitigate the effects of these biases while recovering LLM performance. In this work, we first conduct a systematic analysis of the existing calibration methods, where we both provide a unified view and reveal the failure cases. Inspired by these analyses, we propose Batch Calibration (BC), a simple yet intuitive method that controls the contextual bias from the batched input, unifies various prior approaches, and effectively addresses the aforementioned issues. BC is zero-shot, inference-only, and incurs negligible additional costs. In the few-shot setup, we further extend BC to allow it to learn the contextual bias from labeled data. We validate the effectiveness of BC with PaLM 2-(S, M, L) and CLIP models and demonstrate state-of-the-art performance over previous calibration baselines across more than 10 natural language understanding and image classification tasks.
Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph
There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for scholarly knowledge graph object prediction. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.
Is a prompt and a few samples all you need? Using GPT-4 for data augmentation in low-resource classification tasks
Obtaining and annotating data can be expensive and time-consuming, especially in complex, low-resource domains. We use GPT-4 and ChatGPT to augment small labeled datasets with synthetic data via simple prompts, in three different classification tasks with varying complexity. For each task, we randomly select a base sample of 500 texts to generate 5,000 new synthetic samples. We explore two augmentation strategies: one that preserves original label distribution and another that balances the distribution. Using a progressively larger training sample size, we train and evaluate a 110M parameter multilingual language model on the real and synthetic data separately. We also test GPT-4 and ChatGPT in a zero-shot setting on the test sets. We observe that GPT-4 and ChatGPT have strong zero-shot performance across all tasks. We find that data augmented with synthetic samples yields a good downstream performance, and particularly aids in low-resource settings, such as in identifying rare classes. Human-annotated data exhibits a strong predictive power, overtaking synthetic data in two out of the three tasks. This finding highlights the need for more complex prompts for synthetic datasets to consistently surpass human-generated ones.
Texts as Images in Prompt Tuning for Multi-Label Image Recognition
Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. Code is released at https://github.com/guozix/TaI-DPT.
Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
Lessons from Defending Gemini Against Indirect Prompt Injections
Gemini is increasingly used to perform tasks on behalf of users, where function-calling and tool-use capabilities enable the model to access user data. Some tools, however, require access to untrusted data introducing risk. Adversaries can embed malicious instructions in untrusted data which cause the model to deviate from the user's expectations and mishandle their data or permissions. In this report, we set out Google DeepMind's approach to evaluating the adversarial robustness of Gemini models and describe the main lessons learned from the process. We test how Gemini performs against a sophisticated adversary through an adversarial evaluation framework, which deploys a suite of adaptive attack techniques to run continuously against past, current, and future versions of Gemini. We describe how these ongoing evaluations directly help make Gemini more resilient against manipulation.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.
A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks.
Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
Foundation Cures Personalization: Recovering Facial Personalized Models' Prompt Consistency
Facial personalization represents a crucial downstream task in the domain of text-to-image generation. To preserve identity fidelity while ensuring alignment with user-defined prompts, current mainstream frameworks for facial personalization predominantly employ identity embedding mechanisms to associate identity information with textual embeddings. However, our experiments show that identity embeddings compromise the effectiveness of other tokens within the prompt, thereby hindering high prompt consistency, particularly when prompts involve multiple facial attributes. Moreover, previous works overlook the fact that their corresponding foundation models hold great potential to generate faces aligning to prompts well and can be easily leveraged to cure these ill-aligned attributes in personalized models. Building upon these insights, we propose FreeCure, a training-free framework that harnesses the intrinsic knowledge from the foundation models themselves to improve the prompt consistency of personalization models. First, by extracting cross-attention and semantic maps from the denoising process of foundation models, we identify easily localized attributes (e.g., hair, accessories, etc). Second, we enhance multiple attributes in the outputs of personalization models through a novel noise-blending strategy coupled with an inversion-based process. Our approach offers several advantages: it eliminates the need for training; it effectively facilitates the enhancement for a wide array of facial attributes in a non-intrusive manner; and it can be seamlessly integrated into existing popular personalization models. FreeCure has demonstrated significant improvements in prompt consistency across a diverse set of state-of-the-art facial personalization models while maintaining the integrity of original identity fidelity.
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
This work proposes POMP, a prompt pre-training method for vision-language models. Being memory and computation efficient, POMP enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes. Once pre-trained, the prompt with a strong transferable ability can be directly plugged into a variety of visual recognition tasks including image classification, semantic segmentation, and object detection, to boost recognition performances in a zero-shot manner. Empirical evaluation shows that POMP achieves state-of-the-art performances on 21 downstream datasets, e.g., 67.0% average accuracy on 10 classification dataset (+3.1% compared to CoOp) and 84.4 hIoU on open-vocabulary Pascal VOC segmentation (+6.9 compared to ZSSeg).
The Prompt Report: A Systematic Survey of Prompting Techniques
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs
We propose SPARC, a lightweight continual learning framework for large language models (LLMs) that enables efficient task adaptation through prompt tuning in a lower-dimensional space. By leveraging principal component analysis (PCA), we identify a compact subspace of the training data. Optimizing prompts in this lower-dimensional space enhances training efficiency, as it focuses updates on the most relevant features while reducing computational overhead. Furthermore, since the model's internal structure remains unaltered, the extensive knowledge gained from pretraining is fully preserved, ensuring that previously learned information is not compromised during adaptation. Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups while fine-tuning only 0.04% of the model's parameters. Additionally, by integrating LoRA, we enhance adaptability to computational constraints, allowing for a tradeoff between accuracy and training cost. Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters. These results establish our approach as a scalable and resource-efficient solution for continual learning in LLMs.
IAPT: Instruction-Aware Prompt Tuning for Large Language Models
Soft prompt tuning is a widely studied parameter-efficient fine-tuning method. However, it has a clear drawback: many soft tokens must be inserted into the input sequences to guarantee downstream performance. As a result, soft prompt tuning is less considered than Low-rank adaptation (LoRA) in the large language modeling (LLM) era. In this work, we propose a novel prompt tuning method, Instruction-Aware Prompt Tuning (IAPT), that requires only four soft tokens. First, we install a parameter-efficient soft prompt generator at each Transformer layer to generate idiosyncratic soft prompts for each input instruction. The generated soft prompts can be seen as a semantic summary of the input instructions and can effectively guide the output generation. Second, the soft prompt generators are modules with a bottleneck architecture consisting of a self-attention pooling operation, two linear projections, and an activation function. Pilot experiments show that prompt generators at different Transformer layers require different activation functions. Thus, we propose to learn the idiosyncratic activation functions for prompt generators automatically with the help of rational functions. We have conducted experiments on various tasks, and the experimental results demonstrate that (a) our IAPT method can outperform the recent baselines with comparable tunable parameters. (b) Our IAPT method is more efficient than LoRA under the single-backbone multi-tenant setting.
Ethical Reasoning and Moral Value Alignment of LLMs Depend on the Language we Prompt them in
Ethical reasoning is a crucial skill for Large Language Models (LLMs). However, moral values are not universal, but rather influenced by language and culture. This paper explores how three prominent LLMs -- GPT-4, ChatGPT, and Llama2-70B-Chat -- perform ethical reasoning in different languages and if their moral judgement depend on the language in which they are prompted. We extend the study of ethical reasoning of LLMs by Rao et al. (2023) to a multilingual setup following their framework of probing LLMs with ethical dilemmas and policies from three branches of normative ethics: deontology, virtue, and consequentialism. We experiment with six languages: English, Spanish, Russian, Chinese, Hindi, and Swahili. We find that GPT-4 is the most consistent and unbiased ethical reasoner across languages, while ChatGPT and Llama2-70B-Chat show significant moral value bias when we move to languages other than English. Interestingly, the nature of this bias significantly vary across languages for all LLMs, including GPT-4.
Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting
As large language models (LLMs) are adopted as a fundamental component of language technologies, it is crucial to accurately characterize their performance. Because choices in prompt design can strongly influence model behavior, this design process is critical in effectively using any modern pre-trained generative language model. In this work, we focus on LLM sensitivity to a quintessential class of meaning-preserving design choices: prompt formatting. We find that several widely used open-source LLMs are extremely sensitive to subtle changes in prompt formatting in few-shot settings, with performance differences of up to 76 accuracy points when evaluated using LLaMA-2-13B. Sensitivity remains even when increasing model size, the number of few-shot examples, or performing instruction tuning. Our analysis suggests that work evaluating LLMs with prompting-based methods would benefit from reporting a range of performance across plausible prompt formats, instead of the currently-standard practice of reporting performance on a single format. We also show that format performance only weakly correlates between models, which puts into question the methodological validity of comparing models with an arbitrarily chosen, fixed prompt format. To facilitate systematic analysis we propose FormatSpread, an algorithm that rapidly evaluates a sampled set of plausible prompt formats for a given task, and reports the interval of expected performance without accessing model weights. Furthermore, we present a suite of analyses that characterize the nature of this sensitivity, including exploring the influence of particular atomic perturbations and the internal representation of particular formats.
Prompt a Robot to Walk with Large Language Models
Large language models (LLMs) pre-trained on vast internet-scale data have showcased remarkable capabilities across diverse domains. Recently, there has been escalating interest in deploying LLMs for robotics, aiming to harness the power of foundation models in real-world settings. However, this approach faces significant challenges, particularly in grounding these models in the physical world and in generating dynamic robot motions. To address these issues, we introduce a novel paradigm in which we use few-shot prompts collected from the physical environment, enabling the LLM to autoregressively generate low-level control commands for robots without task-specific fine-tuning. Experiments across various robots and environments validate that our method can effectively prompt a robot to walk. We thus illustrate how LLMs can proficiently function as low-level feedback controllers for dynamic motion control even in high-dimensional robotic systems. The project website and source code can be found at: https://prompt2walk.github.io/ .
Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.
Assess and Prompt: A Generative RL Framework for Improving Engagement in Online Mental Health Communities
Online Mental Health Communities (OMHCs) provide crucial peer and expert support, yet many posts remain unanswered due to missing support attributes that signal the need for help. We present a novel framework that identifies these gaps and prompts users to enrich their posts, thereby improving engagement. To support this, we introduce REDDME, a new dataset of 4,760 posts from mental health subreddits annotated for the span and intensity of three key support attributes: event what happened?, effect what did the user experience?, and requirement what support they need?. Next, we devise a hierarchical taxonomy, CueTaxo, of support attributes for controlled question generation. Further, we propose MH-COPILOT, a reinforcement learning-based system that integrates (a) contextual attribute-span identification, (b) support attribute intensity classification, (c) controlled question generation via a hierarchical taxonomy, and (d) a verifier for reward modeling. Our model dynamically assesses posts for the presence/absence of support attributes, and generates targeted prompts to elicit missing information. Empirical results across four notable language models demonstrate significant improvements in attribute elicitation and user engagement. A human evaluation further validates the model's effectiveness in real-world OMHC settings.
Structured Captions Improve Prompt Adherence in Text-to-Image Models (Re-LAION-Caption 19M)
We argue that generative text-to-image models often struggle with prompt adherence due to the noisy and unstructured nature of large-scale datasets like LAION-5B. This forces users to rely heavily on prompt engineering to elicit desirable outputs. In this work, we propose that enforcing a consistent caption structure during training can significantly improve model controllability and alignment. We introduce Re-LAION-Caption 19M, a high-quality subset of Re-LAION-5B, comprising 19 million 1024x1024 images with captions generated by a Mistral 7B Instruct-based LLaVA-Next model. Each caption follows a four-part template: subject, setting, aesthetics, and camera details. We fine-tune PixArt-Sigma and Stable Diffusion 2 using both structured and randomly shuffled captions, and show that structured versions consistently yield higher text-image alignment scores using visual question answering (VQA) models. The dataset is publicly available at https://huggingface.co/datasets/supermodelresearch/Re-LAION-Caption19M.
Unleashing the Power of Prompt-driven Nucleus Instance Segmentation
Nucleus instance segmentation in histology images is crucial for a broad spectrum of clinical applications. Current dominant algorithms rely on regression of nuclear proxy maps. Distinguishing nucleus instances from the estimated maps requires carefully curated post-processing, which is error-prone and parameter-sensitive. Recently, the Segment Anything Model (SAM) has earned huge attention in medical image segmentation, owing to its impressive generalization ability and promptable property. Nevertheless, its potential on nucleus instance segmentation remains largely underexplored. In this paper, we present a novel prompt-driven framework that consists of a nucleus prompter and SAM for automatic nucleus instance segmentation. Specifically, the prompter learns to generate a unique point prompt for each nucleus while the SAM is fine-tuned to output the corresponding mask for the prompted nucleus. Furthermore, we propose the inclusion of adjacent nuclei as negative prompts to enhance the model's capability to identify overlapping nuclei. Without complicated post-processing, our proposed method sets a new state-of-the-art performance on three challenging benchmarks. Code is available at github.com/windygoo/PromptNucSeg
Consistency-guided Prompt Learning for Vision-Language Models
We propose Consistency-guided Prompt learning (CoPrompt), a new fine-tuning method for vision-language models. Our approach improves the generalization of large foundation models when fine-tuned on downstream tasks in a few-shot setting. The basic idea of CoPrompt is to enforce a consistency constraint in the prediction of the trainable and pre-trained models to prevent overfitting on the downstream task. Additionally, we introduce the following two components into our consistency constraint to further boost the performance: enforcing consistency on two perturbed inputs and combining two dominant paradigms of tuning, prompting and adapter. Enforcing consistency on perturbed input serves to further regularize the consistency constraint, thereby improving generalization. Moreover, the integration of adapters and prompts not only enhances performance on downstream tasks but also offers increased tuning flexibility in both input and output spaces. This facilitates more effective adaptation to downstream tasks in a few-shot learning setting. Experiments show that CoPrompt outperforms existing methods on a range of evaluation suites, including base-to-novel generalization, domain generalization, and cross-dataset evaluation. On generalization, CoPrompt improves the state-of-the-art on zero-shot tasks and the overall harmonic mean over 11 datasets. Detailed ablation studies show the effectiveness of each of the components in CoPrompt. We make our code available at https://github.com/ShuvenduRoy/CoPrompt.
Prompt-Based Monte-Carlo Tree Search for Goal-Oriented Dialogue Policy Planning
Planning for goal-oriented dialogue often requires simulating future dialogue interactions and estimating task progress. Many approaches thus consider training neural networks to perform look-ahead search algorithms such as A* search and Monte Carlo Tree Search (MCTS). However, this training often requires abundant annotated data, which creates challenges when faced with noisy annotations or low-resource settings. We introduce GDP-Zero, an approach using Open-Loop MCTS to perform goal-oriented dialogue policy planning without any model training. GDP-Zero prompts a large language model to act as a policy prior, value function, user simulator, and system model during the tree search. We evaluate GDP-Zero on the goal-oriented task PersuasionForGood, and find that its responses are preferred over ChatGPT up to 59.32% of the time, and are rated more persuasive than ChatGPT during interactive evaluations.
Exploring the Universal Vulnerability of Prompt-based Learning Paradigm
Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting. However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text. In this paper, we explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text. In both scenarios, we demonstrate that our triggers can totally control or severely decrease the performance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the universal vulnerability of the prompt-based learning paradigm. Further experiments show that adversarial triggers have good transferability among language models. We also find conventional fine-tuning models are not vulnerable to adversarial triggers constructed from pre-trained language models. We conclude by proposing a potential solution to mitigate our attack methods. Code and data are publicly available at https://github.com/leix28/prompt-universal-vulnerability
AdaPrompt: Adaptive Model Training for Prompt-based NLP
Prompt-based learning, with its capability to tackle zero-shot and few-shot NLP tasks, has gained much attention in community. The main idea is to bridge the gap between NLP downstream tasks and language modeling (LM), by mapping these tasks into natural language prompts, which are then filled by pre-trained language models (PLMs). However, for prompt learning, there are still two salient gaps between NLP tasks and pretraining. First, prompt information is not necessarily sufficiently present during LM pretraining. Second, task-specific data are not necessarily well represented during pretraining. We address these two issues by proposing AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs by making use of both task and prompt characteristics. In addition, we make use of knowledge in Natural Language Inference models for deriving adaptive verbalizers. Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings. In addition, in zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35\% relative error reduction.
Learning to Prompt for Continual Learning
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging task-agnostic continual learning. Source code is available at https://github.com/google-research/l2p.
Sentinel: SOTA model to protect against prompt injections
Large Language Models (LLMs) are increasingly powerful but remain vulnerable to prompt injection attacks, where malicious inputs cause the model to deviate from its intended instructions. This paper introduces Sentinel, a novel detection model, qualifire/prompt-injection-sentinel, based on the \answerdotai/ModernBERT-large architecture. By leveraging ModernBERT's advanced features and fine-tuning on an extensive and diverse dataset comprising a few open-source and private collections, Sentinel achieves state-of-the-art performance. This dataset amalgamates varied attack types, from role-playing and instruction hijacking to attempts to generate biased content, alongside a broad spectrum of benign instructions, with private datasets specifically targeting nuanced error correction and real-world misclassifications. On a comprehensive, unseen internal test set, Sentinel demonstrates an average accuracy of 0.987 and an F1-score of 0.980. Furthermore, when evaluated on public benchmarks, it consistently outperforms strong baselines like protectai/deberta-v3-base-prompt-injection-v2. This work details Sentinel's architecture, its meticulous dataset curation, its training methodology, and a thorough evaluation, highlighting its superior detection capabilities.
Multi-subject Open-set Personalization in Video Generation
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist - a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts
Large Language Models (LLMs) exhibit strong generalization capabilities to novel tasks when prompted with language instructions and in-context demos. Since this ability sensitively depends on the quality of prompts, various methods have been explored to automate the instruction design. While these methods demonstrated promising results, they also restricted the searched prompt to one instruction. Such simplification significantly limits their capacity, as a single demo-free instruction might not be able to cover the entire complex problem space of the targeted task. To alleviate this issue, we adopt the Mixture-of-Expert paradigm and divide the problem space into a set of sub-regions; Each sub-region is governed by a specialized expert, equipped with both an instruction and a set of demos. A two-phase process is developed to construct the specialized expert for each region: (1) demo assignment: Inspired by the theoretical connection between in-context learning and kernel regression, we group demos into experts based on their semantic similarity; (2) instruction assignment: A region-based joint search of an instruction per expert complements the demos assigned to it, yielding a synergistic effect. The resulting method, codenamed Mixture-of-Prompts (MoP), achieves an average win rate of 81% against prior arts across several major benchmarks.
Automatic Prompt Selection for Large Language Models
Large Language Models (LLMs) can perform various natural language processing tasks with suitable instruction prompts. However, designing effective prompts manually is challenging and time-consuming. Existing methods for automatic prompt optimization either lack flexibility or efficiency. In this paper, we propose an effective approach to automatically select the optimal prompt for a given input from a finite set of synthetic candidate prompts. Our approach consists of three steps: (1) clustering the training data and generating candidate prompts for each cluster using an LLM-based prompt generator; (2) synthesizing a dataset of input-prompt-output tuples for training a prompt evaluator to rank the prompts based on their relevance to the input; (3) using the prompt evaluator to select the best prompt for a new input at test time. Our approach balances prompt generality-specificity and eliminates the need for resource-intensive training and inference. It demonstrates competitive performance on zero-shot question-answering datasets: GSM8K, MultiArith, and AQuA.
Learning Generalizable Robot Policy with Human Demonstration Video as a Prompt
Recent robot learning methods commonly rely on imitation learning from massive robotic dataset collected with teleoperation. When facing a new task, such methods generally require collecting a set of new teleoperation data and finetuning the policy. Furthermore, the teleoperation data collection pipeline is also tedious and expensive. Instead, human is able to efficiently learn new tasks by just watching others do. In this paper, we introduce a novel two-stage framework that utilizes human demonstrations to learn a generalizable robot policy. Such policy can directly take human demonstration video as a prompt and perform new tasks without any new teleoperation data and model finetuning at all. In the first stage, we train video generation model that captures a joint representation for both the human and robot demonstration video data using cross-prediction. In the second stage, we fuse the learned representation with a shared action space between human and robot using a novel prototypical contrastive loss. Empirical evaluations on real-world dexterous manipulation tasks show the effectiveness and generalization capabilities of our proposed method.
Token Coordinated Prompt Attention is Needed for Visual Prompting
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.
The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Multimodal Large Language Models (MLLMs) are set to transform how machines process and generate human-like responses by integrating diverse modalities such as text, images, and code. Yet, effectively harnessing their capabilities hinges on optimal prompt engineering. We present a comprehensive experimental evaluation of seven prompt engineering methods applied to 13 open-source MLLMs over 24 tasks spanning Reasoning and Compositionality, Multimodal Understanding and Alignment, Complex Code Generation and Execution, and Knowledge Retrieval and Integration. Our approach stratifies models by parameter count into Small (<4B), Medium (4B-10B), and Large (>10B) categories and compares prompting techniques including Zero-Shot, One-Shot, Few-Shot, Chain-of-Thought, Analogical, Generated Knowledge, and Tree-of-Thought. While Large MLLMs excel in structured tasks such as code generation, achieving accuracies up to 96.88% under Few-Shot prompting, all models struggle with complex reasoning and abstract understanding, often yielding accuracies below 60% and high hallucination rates. Structured reasoning prompts frequently increased hallucination up to 75% in small models and led to longer response times (over 20 seconds in Large MLLMs), while simpler prompting methods provided more concise and efficient outputs. No single prompting method uniformly optimises all task types. Instead, adaptive strategies combining example-based guidance with selective structured reasoning are essential to enhance robustness, efficiency, and factual accuracy. Our findings offer practical recommendations for prompt engineering and support more reliable deployment of MLLMs across applications including AI-assisted coding, knowledge retrieval, and multimodal content understanding.
Language hooks: a modular framework for augmenting LLM reasoning that decouples tool usage from the model and its prompt
Prompting and fine-tuning have emerged as two competing paradigms for augmenting language models with new capabilities, such as the use of tools. Prompting approaches are quick to set up but rely on providing explicit demonstrations of each tool's usage in the model's prompt, thus coupling tool use to the task at hand and limiting generalisation. Fine-tuning removes the need for task-specific demonstrations of tool usage at runtime; however, this ties new capabilities to a single model, thus making already-heavier setup costs a recurring expense. In this paper, we introduce language hooks, a novel framework for augmenting language models with new capabilities that is decoupled both from the model's task-specific prompt and from the model itself. The language hook algorithm interleaves text generation by the base model with the execution of modular programs that trigger conditionally based on the existing text and the available capabilities. Upon triggering, programs may call external tools, auxiliary language models (e.g. using tool specific prompts), and modify the existing context. We benchmark our method against state-of-the-art baselines, find that it outperforms task-aware approaches, and demonstrate its ability to generalise to novel tasks.
PA-SAM: Prompt Adapter SAM for High-Quality Image Segmentation
The Segment Anything Model (SAM) has exhibited outstanding performance in various image segmentation tasks. Despite being trained with over a billion masks, SAM faces challenges in mask prediction quality in numerous scenarios, especially in real-world contexts. In this paper, we introduce a novel prompt-driven adapter into SAM, namely Prompt Adapter Segment Anything Model (PA-SAM), aiming to enhance the segmentation mask quality of the original SAM. By exclusively training the prompt adapter, PA-SAM extracts detailed information from images and optimizes the mask decoder feature at both sparse and dense prompt levels, improving the segmentation performance of SAM to produce high-quality masks. Experimental results demonstrate that our PA-SAM outperforms other SAM-based methods in high-quality, zero-shot, and open-set segmentation. We're making the source code and models available at https://github.com/xzz2/pa-sam.
Understanding prompt engineering may not require rethinking generalization
Zero-shot learning in prompted vision-language models, the practice of crafting prompts to build classifiers without an explicit training process, has achieved impressive performance in many settings. This success presents a seemingly surprising observation: these methods suffer relatively little from overfitting, i.e., when a prompt is manually engineered to achieve low error on a given training set (thus rendering the method no longer actually zero-shot), the approach still performs well on held-out test data. In this paper, we show that we can explain such performance well via recourse to classical PAC-Bayes bounds. Specifically, we show that the discrete nature of prompts, combined with a PAC-Bayes prior given by a language model, results in generalization bounds that are remarkably tight by the standards of the literature: for instance, the generalization bound of an ImageNet classifier is often within a few percentage points of the true test error. We demonstrate empirically that this holds for existing handcrafted prompts and prompts generated through simple greedy search. Furthermore, the resulting bound is well-suited for model selection: the models with the best bound typically also have the best test performance. This work thus provides a possible justification for the widespread practice of prompt engineering, even if it seems that such methods could potentially overfit the training data.
E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning
As the size of transformer-based models continues to grow, fine-tuning these large-scale pretrained vision models for new tasks has become increasingly parameter-intensive. Parameter-efficient learning has been developed to reduce the number of tunable parameters during fine-tuning. Although these methods show promising results, there is still a significant performance gap compared to full fine-tuning. To address this challenge, we propose an Effective and Efficient Visual Prompt Tuning (E^2VPT) approach for large-scale transformer-based model adaptation. Specifically, we introduce a set of learnable key-value prompts and visual prompts into self-attention and input layers, respectively, to improve the effectiveness of model fine-tuning. Moreover, we design a prompt pruning procedure to systematically prune low importance prompts while preserving model performance, which largely enhances the model's efficiency. Empirical results demonstrate that our approach outperforms several state-of-the-art baselines on two benchmarks, with considerably low parameter usage (e.g., 0.32% of model parameters on VTAB-1k). Our code is available at https://github.com/ChengHan111/E2VPT.
Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning
Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.
IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach
In this paper, we describe our participation in the subtask 1 of CASE-2022, Event Causality Identification with Casual News Corpus. We address the Causal Relation Identification (CRI) task by exploiting a set of simple yet complementary techniques for fine-tuning language models (LMs) on a small number of annotated examples (i.e., a few-shot configuration). We follow a prompt-based prediction approach for fine-tuning LMs in which the CRI task is treated as a masked language modeling problem (MLM). This approach allows LMs natively pre-trained on MLM problems to directly generate textual responses to CRI-specific prompts. We compare the performance of this method against ensemble techniques trained on the entire dataset. Our best-performing submission was fine-tuned with only 256 instances per class, 15.7% of the all available data, and yet obtained the second-best precision (0.82), third-best accuracy (0.82), and an F1-score (0.85) very close to what was reported by the winner team (0.86).
Unsupervised Prompt Learning for Vision-Language Models
Contrastive vision-language models like CLIP have shown great progress in transfer learning. In the inference stage, the proper text description, also known as prompt, needs to be carefully designed to correctly classify the given images. In order to avoid laborious prompt engineering, recent works such as CoOp, CLIP-Adapter and Tip-Adapter propose to adapt vision-language models for downstream image recognition tasks on a small set of labeled data. Though promising improvements are achieved, requiring labeled data from the target datasets may restrict the scalability. In this paper, we explore a different scenario, in which the labels of the target datasets are unprovided, and we present an unsupervised prompt learning (UPL) approach to avoid prompt engineering while simultaneously improving transfer performance of CLIP-like vision-language models. As far as we know, UPL is the first work to introduce unsupervised learning into prompt learning. Experimentally, our UPL outperforms original CLIP with prompt engineering on ImageNet as well as other 10 datasets. An enhanced version of UPL is even competitive with the 8-shot CoOp and the 8-shot TIP-Adapter on most datasets. Code and models are available at https://github.com/tonyhuang2022/UPL.
OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation
The recent success of CLIP has demonstrated promising results in zero-shot semantic segmentation by transferring muiltimodal knowledge to pixel-level classification. However, leveraging pre-trained CLIP knowledge to closely align text embeddings with pixel embeddings still has limitations in existing approaches. To address this issue, we propose OTSeg, a novel multimodal attention mechanism aimed at enhancing the potential of multiple text prompts for matching associated pixel embeddings. We first propose Multi-Prompts Sinkhorn (MPS) based on the Optimal Transport (OT) algorithm, which leads multiple text prompts to selectively focus on various semantic features within image pixels. Moreover, inspired by the success of Sinkformers in unimodal settings, we introduce the extension of MPS, called Multi-Prompts Sinkhorn Attention (MPSA) , which effectively replaces cross-attention mechanisms within Transformer framework in multimodal settings. Through extensive experiments, we demonstrate that OTSeg achieves state-of-the-art (SOTA) performance with significant gains on Zero-Shot Semantic Segmentation (ZS3) tasks across three benchmark datasets.
Read-only Prompt Optimization for Vision-Language Few-shot Learning
In recent years, prompt tuning has proven effective in adapting pre-trained vision-language models to downstream tasks. These methods aim to adapt the pre-trained models by introducing learnable prompts while keeping pre-trained weights frozen. However, learnable prompts can affect the internal representation within the self-attention module, which may negatively impact performance variance and generalization, especially in data-deficient settings. To address these issues, we propose a novel approach, Read-only Prompt Optimization (RPO). RPO leverages masked attention to prevent the internal representation shift in the pre-trained model. Further, to facilitate the optimization of RPO, the read-only prompts are initialized based on special tokens of the pre-trained model. Our extensive experiments demonstrate that RPO outperforms CLIP and CoCoOp in base-to-new generalization and domain generalization while displaying better robustness. Also, the proposed method achieves better generalization on extremely data-deficient settings, while improving parameter efficiency and computational overhead. Code is available at https://github.com/mlvlab/RPO.
Residual Prompt Tuning: Improving Prompt Tuning with Residual Reparameterization
Prompt tuning is one of the successful approaches for parameter-efficient tuning of pre-trained language models. Despite being arguably the most parameter-efficient (tuned soft prompts constitute <0.1% of total parameters), it typically performs worse than other efficient tuning methods and is quite sensitive to hyper-parameters. In this work, we introduce Residual Prompt Tuning - a simple and efficient method that significantly improves the performance and stability of prompt tuning. We propose to reparameterize soft prompt embeddings using a shallow network with a residual connection. Our experiments show that Residual Prompt Tuning significantly outperforms prompt tuning on SuperGLUE benchmark. Notably, our method reaches +7 points improvement over prompt tuning with T5-Base and allows to reduce the prompt length by 10x without hurting performance. In addition, we show that our approach is robust to the choice of learning rate and prompt initialization, and is effective in few-shot settings.
Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning
Prompt tuning, in which a base pretrained model is adapted to each task via conditioning on learned prompt vectors, has emerged as a promising approach for efficiently adapting large language models to multiple downstream tasks. However, existing methods typically learn soft prompt vectors from scratch, and it has not been clear how to exploit the rich cross-task knowledge with prompt vectors in a multitask learning setting. We propose multitask prompt tuning (MPT), which first learns a single transferable prompt by distilling knowledge from multiple task-specific source prompts. We then learn multiplicative low rank updates to this shared prompt to efficiently adapt it to each downstream target task. Extensive experiments on 23 NLP datasets demonstrate that our proposed approach outperforms the state-of-the-art methods, including the full finetuning baseline in some cases, despite only tuning 0.035% as many task-specific parameters.
MVP: Meta Visual Prompt Tuning for Few-Shot Remote Sensing Image Scene Classification
Vision Transformer (ViT) models have recently emerged as powerful and versatile models for various visual tasks. Recently, a work called PMF has achieved promising results in few-shot image classification by utilizing pre-trained vision transformer models. However, PMF employs full fine-tuning for learning the downstream tasks, leading to significant overfitting and storage issues, especially in the remote sensing domain. In order to tackle these issues, we turn to the recently proposed parameter-efficient tuning methods, such as VPT, which updates only the newly added prompt parameters while keeping the pre-trained backbone frozen. Inspired by VPT, we propose the Meta Visual Prompt Tuning (MVP) method. Specifically, we integrate the VPT method into the meta-learning framework and tailor it to the remote sensing domain, resulting in an efficient framework for Few-Shot Remote Sensing Scene Classification (FS-RSSC). Furthermore, we introduce a novel data augmentation strategy based on patch embedding recombination to enhance the representation and diversity of scenes for classification purposes. Experiment results on the FS-RSSC benchmark demonstrate the superior performance of the proposed MVP over existing methods in various settings, such as various-way-various-shot, various-way-one-shot, and cross-domain adaptation.
DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
Prompt tuning (PT), where a small amount of trainable soft (continuous) prompt vectors is affixed to the input of language models (LM), has shown promising results across various tasks and models for parameter-efficient fine-tuning (PEFT). PT stands out from other PEFT approaches because it maintains competitive performance with fewer trainable parameters and does not drastically scale up its parameters as the model size expands. However, PT introduces additional soft prompt tokens, leading to longer input sequences, which significantly impacts training and inference time and memory usage due to the Transformer's quadratic complexity. Particularly concerning for Large Language Models (LLMs) that face heavy daily querying. To address this issue, we propose Decomposed Prompt Tuning (DePT), which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates. This allows DePT to achieve better performance while saving over 20% memory and time costs compared to vanilla PT and its variants, without changing trainable parameter sizes. Through extensive experiments on 23 natural language processing (NLP) and vision-language (VL) tasks, we demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline in some scenarios. Additionally, we empirically show that DEPT grows more efficient as the model size increases. Our further study reveals that DePT integrates seamlessly with parameter-efficient transfer learning in the few-shot learning setting and highlights its adaptability to various model architectures and sizes.
Make Prompt-based Black-Box Tuning Colorful: Boosting Model Generalization from Three Orthogonal Perspectives
Large language models (LLMs) have shown increasing power on various natural language processing (NLP) tasks. However, tuning these models for downstream tasks usually needs exorbitant costs or is unavailable due to commercial considerations. Recently, black-box tuning has been proposed to address this problem by optimizing task-specific prompts without accessing the gradients and hidden representations. However, most existing works have yet fully exploited the potential of gradient-free optimization under the scenario of few-shot learning. In this paper, we describe BBT-RGB, a suite of straightforward and complementary techniques for enhancing the efficiency and performance of black-box optimization. Specifically, our method includes three plug-and-play components: (1) Two-stage derivative-free optimization strategy that facilitates fast convergence and mitigates overfitting; (2) Automatic verbalizer construction with its novel usage under few-shot settings; (3) Better prompt initialization policy based on instruction search and auto-selected demonstration. Extensive experiments across various tasks on natural language understanding and inference demonstrate the effectiveness of our method. Our codes are publicly available at https://github.com/QiushiSun/BBT-RGB.
On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method
Most works on modeling the conversation history in Conversational Question Answering (CQA) report a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g. from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach, and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy-to-plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems.
DiSa: Directional Saliency-Aware Prompt Learning for Generalizable Vision-Language Models
Prompt learning has emerged as a powerful paradigm for adapting vision-language models such as CLIP to downstream tasks. However, existing methods often overfit to seen data, leading to significant performance degradation when generalizing to novel classes or unseen domains. To address this limitation, we propose DiSa, a Directional Saliency-Aware Prompt Learning framework that integrates two complementary regularization strategies to enhance generalization. First, our Cross-Interactive Regularization (CIR) fosters cross-modal alignment by enabling cooperative learning between prompted and frozen encoders. Within CIR, a saliency-aware masking strategy guides the image encoder to prioritize semantically critical image regions, reducing reliance on less informative patches. Second, we introduce a directional regularization strategy that aligns visual embeddings with class-wise prototype features in a directional manner to prioritize consistency in feature orientation over strict proximity. This approach ensures robust generalization by leveraging stable prototype directions derived from class-mean statistics. Extensive evaluations on 11 diverse image classification benchmarks demonstrate that DiSa consistently outperforms state-of-the-art prompt learning methods across various settings, including base-to-novel generalization, cross-dataset transfer, domain generalization, and few-shot learning.
Distilled Prompt Learning for Incomplete Multimodal Survival Prediction
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection
Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
Fast Prompt Alignment for Text-to-Image Generation
Text-to-image generation has advanced rapidly, yet aligning complex textual prompts with generated visuals remains challenging, especially with intricate object relationships and fine-grained details. This paper introduces Fast Prompt Alignment (FPA), a prompt optimization framework that leverages a one-pass approach, enhancing text-to-image alignment efficiency without the iterative overhead typical of current methods like OPT2I. FPA uses large language models (LLMs) for single-iteration prompt paraphrasing, followed by fine-tuning or in-context learning with optimized prompts to enable real-time inference, reducing computational demands while preserving alignment fidelity. Extensive evaluations on the COCO Captions and PartiPrompts datasets demonstrate that FPA achieves competitive text-image alignment scores at a fraction of the processing time, as validated through both automated metrics (TIFA, VQA) and human evaluation. A human study with expert annotators further reveals a strong correlation between human alignment judgments and automated scores, underscoring the robustness of FPA's improvements. The proposed method showcases a scalable, efficient alternative to iterative prompt optimization, enabling broader applicability in real-time, high-demand settings. The codebase is provided to facilitate further research: https://github.com/tiktok/fast_prompt_alignment
Selective Prompt Anchoring for Code Generation
Recent advances in large language models (LLMs) have transformed software development by automatically generating code from natural language. Yet challenges remain in generating fully correct code that aligns with user intent. Our study reveals that LLMs tend to pay less attention to user prompts as more code tokens are generated. We hypothesize that this attention dilution issue is an important reason for code generation errors. To mitigate this issue, we propose Selective Prompt Anchoring (SPA) to guide code LLMs to pay more attention to user intent when generating code. We evaluate SPA using six base LLMs across six benchmarks. Our results demonstrate that SPA enhances Pass@1 by up to 12.9%, consistently outperforming SOTA code generation methods in all settings. Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
LAPT: Label-driven Automated Prompt Tuning for OOD Detection with Vision-Language Models
Out-of-distribution (OOD) detection is crucial for model reliability, as it identifies samples from unknown classes and reduces errors due to unexpected inputs. Vision-Language Models (VLMs) such as CLIP are emerging as powerful tools for OOD detection by integrating multi-modal information. However, the practical application of such systems is challenged by manual prompt engineering, which demands domain expertise and is sensitive to linguistic nuances. In this paper, we introduce Label-driven Automated Prompt Tuning (LAPT), a novel approach to OOD detection that reduces the need for manual prompt engineering. We develop distribution-aware prompts with in-distribution (ID) class names and negative labels mined automatically. Training samples linked to these class labels are collected autonomously via image synthesis and retrieval methods, allowing for prompt learning without manual effort. We utilize a simple cross-entropy loss for prompt optimization, with cross-modal and cross-distribution mixing strategies to reduce image noise and explore the intermediate space between distributions, respectively. The LAPT framework operates autonomously, requiring only ID class names as input and eliminating the need for manual intervention. With extensive experiments, LAPT consistently outperforms manually crafted prompts, setting a new standard for OOD detection. Moreover, LAPT not only enhances the distinction between ID and OOD samples, but also improves the ID classification accuracy and strengthens the generalization robustness to covariate shifts, resulting in outstanding performance in challenging full-spectrum OOD detection tasks. Codes are available at https://github.com/YBZh/LAPT.
Zero-Shot Code Representation Learning via Prompt Tuning
Learning code representations has been the core prerequisite of many software engineering tasks such as code clone detection and code generation. State-of-the-art program representation techniques mainly utilize pre-trained language models (PLMs) such as CodeBERT. A Transformer encoder is firstly pre-trained on a large-scale code corpus to acquire general knowledge about source code. The pre-trained model is then fine-tuned on specific tasks using an amount of labeled data. However, gathering training samples for the downstream tasks can be prohibitively expensive and impractical for domain-specific languages or project-specific tasks. Besides, pre-training and downstream tasks are usually heterogeneous, which makes it difficult to fully explore the knowledge learned during pre-training. In this paper, we propose Zecoler, a zero-shot approach for learning code representations. Zecoler is built upon a pre-trained programming language model. In order to elicit knowledge from the PLMs efficiently, Zecoler casts the downstream tasks to the same form of pre-training objectives by inserting train-able prompts into the original input. These prompts can guide PLMs on how to generate better results. Subsequently, we employ the prompt tuning technique to search for the optimal prompts for PLMs automatically. This enables the representation model to efficiently fit the downstream tasks through fine-tuning on the dataset in source language domain and then reuse the pre-trained knowledge for the target domain in a zero-shot style. We evaluate Zecoler in five code intelligence tasks including code clone detection, code search, method name prediction, code summarization, and code generation. The results show that our approach significantly outperforms baseline models under the zero-shot setting.
Studious Bob Fight Back Against Jailbreaking via Prompt Adversarial Tuning
Although Large Language Models (LLMs) have achieved tremendous success in various applications, they are also susceptible to certain prompts that can induce them to bypass built-in safety measures and provide dangerous or illegal content, a phenomenon known as jailbreak. To protect LLMs from producing harmful information, various defense strategies are proposed, with most focusing on content filtering or adversarial training of models. In this paper, we propose an approach named Prompt Adversarial Tuning (PAT) to train a defense control mechanism, which is then embedded as a prefix to user prompts to implement our defense strategy. We design a training process similar to adversarial training to achieve our optimized goal, alternating between updating attack and defense controls. To our knowledge, we are the first to implement defense from the perspective of prompt tuning. Once employed, our method will hardly impact the operational efficiency of LLMs. Experiments show that our method is effective in both black-box and white-box settings, reducing the success rate of advanced attacks to nearly 0 while maintaining the benign answer rate of 80% to simple benign questions. Our work might potentially chart a new perspective for future explorations in LLM security.
Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models
Human-object interaction (HOI) detection aims to comprehend the intricate relationships between humans and objects, predicting <human, action, object> triplets, and serving as the foundation for numerous computer vision tasks. The complexity and diversity of human-object interactions in the real world, however, pose significant challenges for both annotation and recognition, particularly in recognizing interactions within an open world context. This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs). The proposed method is dubbed as \textbf{UniHOI}. We conduct a deep analysis of the three hierarchical features inherent in visual HOI detectors and propose a method for high-level relation extraction aimed at VL foundation models, which we call HO prompt-based learning. Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image. Furthermore, we utilize a LLM (i.e. GPT) for interaction interpretation, generating a richer linguistic understanding for complex HOIs. For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence. Our efficient architecture design and learning methods effectively unleash the potential of the VL foundation models and LLMs, allowing UniHOI to surpass all existing methods with a substantial margin, under both supervised and zero-shot settings. The code and pre-trained weights are available at: https://github.com/Caoyichao/UniHOI.
Generative Prompt Model for Weakly Supervised Object Localization
Weakly supervised object localization (WSOL) remains challenging when learning object localization models from image category labels. Conventional methods that discriminatively train activation models ignore representative yet less discriminative object parts. In this study, we propose a generative prompt model (GenPromp), defining the first generative pipeline to localize less discriminative object parts by formulating WSOL as a conditional image denoising procedure. During training, GenPromp converts image category labels to learnable prompt embeddings which are fed to a generative model to conditionally recover the input image with noise and learn representative embeddings. During inference, enPromp combines the representative embeddings with discriminative embeddings (queried from an off-the-shelf vision-language model) for both representative and discriminative capacity. The combined embeddings are finally used to generate multi-scale high-quality attention maps, which facilitate localizing full object extent. Experiments on CUB-200-2011 and ILSVRC show that GenPromp respectively outperforms the best discriminative models by 5.2% and 5.6% (Top-1 Loc), setting a solid baseline for WSOL with the generative model. Code is available at https://github.com/callsys/GenPromp.
Reliability Check: An Analysis of GPT-3's Response to Sensitive Topics and Prompt Wording
Large language models (LLMs) have become mainstream technology with their versatile use cases and impressive performance. Despite the countless out-of-the-box applications, LLMs are still not reliable. A lot of work is being done to improve the factual accuracy, consistency, and ethical standards of these models through fine-tuning, prompting, and Reinforcement Learning with Human Feedback (RLHF), but no systematic analysis of the responses of these models to different categories of statements, or on their potential vulnerabilities to simple prompting changes is available. In this work, we analyze what confuses GPT-3: how the model responds to certain sensitive topics and what effects the prompt wording has on the model response. We find that GPT-3 correctly disagrees with obvious Conspiracies and Stereotypes but makes mistakes with common Misconceptions and Controversies. The model responses are inconsistent across prompts and settings, highlighting GPT-3's unreliability. Dataset and code of our analysis is available in https://github.com/tanny411/GPT3-Reliability-Check.
Log Parsing with Prompt-based Few-shot Learning
Logs generated by large-scale software systems provide crucial information for engineers to understand the system status and diagnose problems of the systems. Log parsing, which converts raw log messages into structured data, is the first step to enabling automated log analytics. Existing log parsers extract the common part as log templates using statistical features. However, these log parsers often fail to identify the correct templates and parameters because: 1) they often overlook the semantic meaning of log messages, and 2) they require domain-specific knowledge for different log datasets. To address the limitations of existing methods, in this paper, we propose LogPPT to capture the patterns of templates using prompt-based few-shot learning. LogPPT utilises a novel prompt tuning method to recognise keywords and parameters based on a few labelled log data. In addition, an adaptive random sampling algorithm is designed to select a small yet diverse training set. We have conducted extensive experiments on 16 public log datasets. The experimental results show that LogPPT is effective and efficient for log parsing.
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and are uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing zero-shot pipelines and requires no additional training cost. Code is available at: https://github.com/acmi-lab/CHILS.
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning
Mathematical reasoning, a core ability of human intelligence, presents unique challenges for machines in abstract thinking and logical reasoning. Recent large pre-trained language models such as GPT-3 have achieved remarkable progress on mathematical reasoning tasks written in text form, such as math word problems (MWP). However, it is unknown if the models can handle more complex problems that involve math reasoning over heterogeneous information, such as tabular data. To fill the gap, we present Tabular Math Word Problems (TabMWP), a new dataset containing 38,431 open-domain grade-level problems that require mathematical reasoning on both textual and tabular data. Each question in TabMWP is aligned with a tabular context, which is presented as an image, semi-structured text, and a structured table. There are two types of questions: free-text and multi-choice, and each problem is annotated with gold solutions to reveal the multi-step reasoning process. We evaluate different pre-trained models on TabMWP, including the GPT-3 model in a few-shot setting. As earlier studies suggest, since few-shot GPT-3 relies on the selection of in-context examples, its performance is unstable and can degrade to near chance. The unstable issue is more severe when handling complex problems like TabMWP. To mitigate this, we further propose a novel approach, PromptPG, which utilizes policy gradient to learn to select in-context examples from a small amount of training data and then constructs the corresponding prompt for the test example. Experimental results show that our method outperforms the best baseline by 5.31% on the accuracy metric and reduces the prediction variance significantly compared to random selection, which verifies its effectiveness in selecting in-context examples.
CLAMP: Prompt-based Contrastive Learning for Connecting Language and Animal Pose
Animal pose estimation is challenging for existing image-based methods because of limited training data and large intra- and inter-species variances. Motivated by the progress of visual-language research, we propose that pre-trained language models (e.g., CLIP) can facilitate animal pose estimation by providing rich prior knowledge for describing animal keypoints in text. However, we found that building effective connections between pre-trained language models and visual animal keypoints is non-trivial since the gap between text-based descriptions and keypoint-based visual features about animal pose can be significant. To address this issue, we introduce a novel prompt-based Contrastive learning scheme for connecting Language and AniMal Pose (CLAMP) effectively. The CLAMP attempts to bridge the gap by adapting the text prompts to the animal keypoints during network training. The adaptation is decomposed into spatial-aware and feature-aware processes, and two novel contrastive losses are devised correspondingly. In practice, the CLAMP enables the first cross-modal animal pose estimation paradigm. Experimental results show that our method achieves state-of-the-art performance under the supervised, few-shot, and zero-shot settings, outperforming image-based methods by a large margin.
Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods
Fine-tuning Large Language Models (LLMs) typically involves updating at least a few billions of parameters. A more parameter-efficient approach is Prompt Tuning (PT), which updates only a few learnable tokens, and differently, In-Context Learning (ICL) adapts the model to a new task by simply including examples in the input without any training. When applying optimization-based methods, such as fine-tuning and PT for few-shot learning, the model is specifically adapted to the small set of training examples, whereas ICL leaves the model unchanged. This distinction makes traditional learning methods more prone to overfitting; in contrast, ICL is less sensitive to the few-shot scenario. While ICL is not prone to overfitting, it does not fully extract the information that exists in the training examples. This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks. We build on the ICL strategy of concatenating examples before the input, but we extend this by PT-like learning, refining the context embedding through iterative optimization to extract deeper insights from the training examples. We carefully modify specific context tokens, considering the unique structure of input and output formats. Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss. Moreover, we apply a projected gradient descent algorithm to keep token embeddings close to their original values, under the assumption that the user-provided data is inherently valuable. Our method has been shown to achieve superior accuracy across multiple classification tasks using various LLM models.
Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
ProSG: Using Prompt Synthetic Gradients to Alleviate Prompt Forgetting of RNN-like Language Models
RNN-like language models are getting renewed attention from NLP researchers in recent years and several models have made significant progress, which demonstrates performance comparable to traditional transformers. However, due to the recurrent nature of RNNs, this kind of language model can only store information in a set of fixed-length state vectors. As a consequence, they still suffer from forgetfulness though after a lot of improvements and optimizations, when given complex instructions or prompts. As the prompted generation is the main and most concerned function of LMs, solving the problem of forgetting in the process of generation is no wonder of vital importance. In this paper, focusing on easing the prompt forgetting during generation, we proposed an architecture to teach the model memorizing prompt during generation by synthetic gradient. To force the model to memorize the prompt, we derive the states that encode the prompt, then transform it into model parameter modification using low-rank gradient approximation, which hard-codes the prompt into model parameters temporarily. We construct a dataset for experiments, and the results have demonstrated the effectiveness of our method in solving the problem of forgetfulness in the process of prompted generation. We will release all the code upon acceptance.
ThinkSum: Probabilistic reasoning over sets using large language models
Large language models (LLMs) have a substantial capacity for high-level analogical reasoning: reproducing patterns in linear text that occur in their training data (zero-shot evaluation) or in the provided context (few-shot in-context learning). However, recent studies show that even the more advanced LLMs fail in scenarios that require reasoning over multiple objects or facts and making sequences of logical deductions. We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner. In the first stage (Think - retrieval of associations), a LLM is queried in parallel over a set of phrases extracted from the prompt or an auxiliary model call. In the second stage (Sum - probabilistic inference or reasoning), the results of these queries are aggregated to make the final prediction. We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks, achieving improvements over the state of the art using GPT-family models on thirteen difficult tasks, often with far smaller model variants. We also compare and contrast ThinkSum with other proposed modifications to direct prompting of LLMs, such as variants of chain-of-thought prompting. Our results suggest that because the probabilistic inference in ThinkSum is performed outside of calls to the LLM, ThinkSum is less sensitive to prompt design, yields more interpretable predictions, and can be flexibly combined with latent variable models to extract structured knowledge from LLMs. Overall, our proposed paradigm represents a promising approach for enhancing the reasoning capabilities of LLMs.
Contrastive Learning for Prompt-Based Few-Shot Language Learners
The impressive performance of GPT-3 using natural language prompts and in-context learning has inspired work on better fine-tuning of moderately-sized models under this paradigm. Following this line of work, we present a contrastive learning framework that clusters inputs from the same class for better generality of models trained with only limited examples. Specifically, we propose a supervised contrastive framework that clusters inputs from the same class under different augmented "views" and repel the ones from different classes. We create different "views" of an example by appending it with different language prompts and contextual demonstrations. Combining a contrastive loss with the standard masked language modeling (MLM) loss in prompt-based few-shot learners, the experimental results show that our method can improve over the state-of-the-art methods in a diverse set of 15 language tasks. Our framework makes minimal assumptions on the task or the base model, and can be applied to many recent methods with little modification. The code will be made available at: https://github.com/yiren-jian/LM-SupCon.
Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration
Open Vocabulary Human-Object Interaction (HOI) detection aims to detect interactions between humans and objects while generalizing to novel interaction classes beyond the training set. Current methods often rely on Vision and Language Models (VLMs) but face challenges due to suboptimal image encoders, as image-level pre-training does not align well with the fine-grained region-level interaction detection required for HOI. Additionally, effectively encoding textual descriptions of visual appearances remains difficult, limiting the model's ability to capture detailed HOI relationships. To address these issues, we propose INteraction-aware Prompting with Concept Calibration (INP-CC), an end-to-end open-vocabulary HOI detector that integrates interaction-aware prompts and concept calibration. Specifically, we propose an interaction-aware prompt generator that dynamically generates a compact set of prompts based on the input scene, enabling selective sharing among similar interactions. This approach directs the model's attention to key interaction patterns rather than generic image-level semantics, enhancing HOI detection. Furthermore, we refine HOI concept representations through language model-guided calibration, which helps distinguish diverse HOI concepts by investigating visual similarities across categories. A negative sampling strategy is also employed to improve inter-modal similarity modeling, enabling the model to better differentiate visually similar but semantically distinct actions. Extensive experimental results demonstrate that INP-CC significantly outperforms state-of-the-art models on the SWIG-HOI and HICO-DET datasets. Code is available at https://github.com/ltttpku/INP-CC.
SDVPT: Semantic-Driven Visual Prompt Tuning for Open-World Object Counting
Open-world object counting leverages the robust text-image alignment of pre-trained vision-language models (VLMs) to enable counting of arbitrary categories in images specified by textual queries. However, widely adopted naive fine-tuning strategies concentrate exclusively on text-image consistency for categories contained in training, which leads to limited generalizability for unseen categories. In this work, we propose a plug-and-play Semantic-Driven Visual Prompt Tuning framework (SDVPT) that transfers knowledge from the training set to unseen categories with minimal overhead in parameters and inference time. First, we introduce a two-stage visual prompt learning strategy composed of Category-Specific Prompt Initialization (CSPI) and Topology-Guided Prompt Refinement (TGPR). The CSPI generates category-specific visual prompts, and then TGPR distills latent structural patterns from the VLM's text encoder to refine these prompts. During inference, we dynamically synthesize the visual prompts for unseen categories based on the semantic correlation between unseen and training categories, facilitating robust text-image alignment for unseen categories. Extensive experiments integrating SDVPT with all available open-world object counting models demonstrate its effectiveness and adaptability across three widely used datasets: FSC-147, CARPK, and PUCPR+.
PaMi-VDPO: Mitigating Video Hallucinations by Prompt-Aware Multi-Instance Video Preference Learning
Direct Preference Optimization (DPO) helps reduce hallucinations in Video Multimodal Large Language Models (VLLMs), but its reliance on offline preference data limits adaptability and fails to capture true video-response misalignment. We propose Video Direct Preference Optimization (VDPO), an online preference learning framework that eliminates the need for preference annotation by leveraging video augmentations to generate rejected samples while keeping responses fixed. However, selecting effective augmentations is non-trivial, as some clips may be semantically identical to the original under specific prompts, leading to false rejections and disrupting alignment. To address this, we introduce Prompt-aware Multi-instance Learning VDPO (PaMi-VDPO), which selects augmentations based on prompt context. Instead of a single rejection, we construct a candidate set of augmented clips and apply a close-to-far selection strategy, initially ensuring all clips are semantically relevant while then prioritizing the most prompt-aware distinct clip. This allows the model to better capture meaningful visual differences, mitigating hallucinations, while avoiding false rejections, and improving alignment. PaMi-VDPOseamlessly integrates into existing VLLMs without additional parameters, GPT-4/human supervision. With only 10k SFT data, it improves the base model by 5.3% on VideoHallucer, surpassing GPT-4o, while maintaining stable performance on general video benchmarks.
When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm
With the development of Large Language Models (LLM), numerous prompts have been proposed, each with a rich set of features and their own merits. This paper summarizes the prompt words for large language models (LLMs), categorizing them into stimulating and framework types, and proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts to enhance the problem-solving capabilities of LLMs across multiple domains, then exemplifies it with a framework that adheres to this paradigm. The framework involves automated prompt generation and consideration of emotion-stimulus factors, guiding LLMs in problem abstraction, diversified solutions generation, comprehensive optimization, and self-verification after providing answers, ensuring solution accuracy. Compared to traditional stimuli and framework prompts, this framework integrates the advantages of both by adopting automated approaches inspired by APE work, overcoming the limitations of manually designed prompts. Test results on the ruozhiba and BBH datasets demonstrate that this framework can effectively improve the efficiency and accuracy of LLMs in problem-solving, paving the way for new applications of LLMs.
CLAMP: Contrastive LAnguage Model Prompt-tuning
Large language models (LLMs) have emerged as powerful general-purpose interfaces for many machine learning problems. Recent work has adapted LLMs to generative visual tasks like image captioning, visual question answering, and visual chat, using a relatively small amount of instruction-tuning data. In this paper, we explore whether modern LLMs can also be adapted to classifying an image into a set of categories. First, we evaluate multimodal LLMs that are tuned for generative tasks on zero-shot image classification and find that their performance is far below that of specialized models like CLIP. We then propose an approach for light fine-tuning of LLMs using the same contrastive image-caption matching objective as CLIP. Our results show that LLMs can, indeed, achieve good image classification performance when adapted this way. Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model, while also retaining the LLM's generative abilities. LLM initialization appears to particularly help classification in domains under-represented in the visual pre-training data.
Negotiating with LLMS: Prompt Hacks, Skill Gaps, and Reasoning Deficits
Large language models LLMs like ChatGPT have reached the 100 Mio user barrier in record time and might increasingly enter all areas of our life leading to a diverse set of interactions between those Artificial Intelligence models and humans. While many studies have discussed governance and regulations deductively from first-order principles, few studies provide an inductive, data-driven lens based on observing dialogues between humans and LLMs especially when it comes to non-collaborative, competitive situations that have the potential to pose a serious threat to people. In this work, we conduct a user study engaging over 40 individuals across all age groups in price negotiations with an LLM. We explore how people interact with an LLM, investigating differences in negotiation outcomes and strategies. Furthermore, we highlight shortcomings of LLMs with respect to their reasoning capabilities and, in turn, susceptiveness to prompt hacking, which intends to manipulate the LLM to make agreements that are against its instructions or beyond any rationality. We also show that the negotiated prices humans manage to achieve span a broad range, which points to a literacy gap in effectively interacting with LLMs.
Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
While Large Language Models (LLMs) are increasingly being used in real-world applications, they remain vulnerable to prompt injection attacks: malicious third party prompts that subvert the intent of the system designer. To help researchers study this problem, we present a dataset of over 126,000 prompt injection attacks and 46,000 prompt-based "defenses" against prompt injection, all created by players of an online game called Tensor Trust. To the best of our knowledge, this is currently the largest dataset of human-generated adversarial examples for instruction-following LLMs. The attacks in our dataset have a lot of easily interpretable stucture, and shed light on the weaknesses of LLMs. We also use the dataset to create a benchmark for resistance to two types of prompt injection, which we refer to as prompt extraction and prompt hijacking. Our benchmark results show that many models are vulnerable to the attack strategies in the Tensor Trust dataset. Furthermore, we show that some attack strategies from the dataset generalize to deployed LLM-based applications, even though they have a very different set of constraints to the game. We release all data and source code at https://tensortrust.ai/paper
Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling
We introduce Reprompting, an iterative sampling algorithm that searches for the Chain-of-Thought (CoT) recipes for a given task without human intervention. Through Gibbs sampling, we infer CoT recipes that work consistently well for a set of training samples. Our method iteratively samples new recipes using previously sampled solutions as parent prompts to solve other training problems. On five Big-Bench Hard tasks that require multi-step reasoning, Reprompting achieves consistently better performance than the zero-shot, few-shot, and human-written CoT baselines. Reprompting can also facilitate transfer of knowledge from a stronger model to a weaker model leading to substantially improved performance of the weaker model. Overall, Reprompting brings up to +17 point improvements over the previous state-of-the-art method that uses human-written CoT prompts.
UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on a diverse set of tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps.
Multitask Vision-Language Prompt Tuning
Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.
PRE: Vision-Language Prompt Learning with Reparameterization Encoder
Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks. However, to attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions. This manual prompt engineering is the major challenge for deploying such models in practice since it requires domain expertise and is extremely time-consuming. To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens. While CoOp can achieve substantial improvements over manual prompts, its learned context is worse generalizable to wider unseen classes within the same dataset. In this work, we present Prompt Learning with Reparameterization Encoder (PRE) - a simple and efficient method that enhances the generalization ability of the learnable prompt to unseen classes while maintaining the capacity to learn Base classes. Instead of directly optimizing the prompts, PRE employs a prompt encoder to reparameterize the input prompt embeddings, enhancing the exploration of task-specific knowledge from few-shot samples. Experiments and extensive ablation studies on 8 benchmarks demonstrate that our approach is an efficient method for prompt learning. Specifically, PRE achieves a notable enhancement of 5.60% in average accuracy on New classes and 3% in Harmonic mean compared to CoOp in the 16-shot setting, all achieved within a good training time.
Argument Mining in Data Scarce Settings: Cross-lingual Transfer and Few-shot Techniques
Recent research on sequence labelling has been exploring different strategies to mitigate the lack of manually annotated data for the large majority of the world languages. Among others, the most successful approaches have been based on (i) the cross-lingual transfer capabilities of multilingual pre-trained language models (model-transfer), (ii) data translation and label projection (data-transfer) and (iii), prompt-based learning by reusing the mask objective to exploit the few-shot capabilities of pre-trained language models (few-shot). Previous work seems to conclude that model-transfer outperforms data-transfer methods and that few-shot techniques based on prompting are superior to updating the model's weights via fine-tuning. In this paper, we empirically demonstrate that, for Argument Mining, a sequence labelling task which requires the detection of long and complex discourse structures, previous insights on cross-lingual transfer or few-shot learning do not apply. Contrary to previous work, we show that for Argument Mining data transfer obtains better results than model-transfer and that fine-tuning outperforms few-shot methods. Regarding the former, the domain of the dataset used for data-transfer seems to be a deciding factor, while, for few-shot, the type of task (length and complexity of the sequence spans) and sampling method prove to be crucial.
DPCore: Dynamic Prompt Coreset for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) seeks to adapt source pre-trained models to continually changing, unseen target domains. While existing CTTA methods assume structured domain changes with uniform durations, real-world environments often exhibit dynamic patterns where domains recur with varying frequencies and durations. Current approaches, which adapt the same parameters across different domains, struggle in such dynamic conditions-they face convergence issues with brief domain exposures, risk forgetting previously learned knowledge, or misapplying it to irrelevant domains. To remedy this, we propose DPCore, a method designed for robust performance across diverse domain change patterns while ensuring computational efficiency. DPCore integrates three key components: Visual Prompt Adaptation for efficient domain alignment, a Prompt Coreset for knowledge preservation, and a Dynamic Update mechanism that intelligently adjusts existing prompts for similar domains while creating new ones for substantially different domains. Extensive experiments on four benchmarks demonstrate that DPCore consistently outperforms various CTTA methods, achieving state-of-the-art performance in both structured and dynamic settings while reducing trainable parameters by 99% and computation time by 64% compared to previous approaches.
State Value Generation with Prompt Learning and Self-Training for Low-Resource Dialogue State Tracking
Recently, low-resource dialogue state tracking (DST) has received increasing attention. First obtaining state values then based on values to generate slot types has made great progress in this task. However, obtaining state values is still an under-studied problem. Existing extraction-based approaches cannot capture values that require the understanding of context and are not generalizable either. To address these issues, we propose a novel State VAlue Generation based framework (SVAG), decomposing DST into state value generation and domain slot generation. Specifically, we propose to generate state values and use self-training to further improve state value generation. Moreover, we design an estimator aiming at detecting incomplete generation and incorrect generation for pseudo-labeled data selection during self-training. Experimental results on the MultiWOZ 2.1 dataset show that our method which has only less than 1 billion parameters achieves state-of-the-art performance under the data ratio settings of 5%, 10%, and 25% when limited to models under 100 billion parameters. Compared to models with more than 100 billion parameters, SVAG still reaches competitive results.
SD4Match: Learning to Prompt Stable Diffusion Model for Semantic Matching
In this paper, we address the challenge of matching semantically similar keypoints across image pairs. Existing research indicates that the intermediate output of the UNet within the Stable Diffusion (SD) can serve as robust image feature maps for such a matching task. We demonstrate that by employing a basic prompt tuning technique, the inherent potential of Stable Diffusion can be harnessed, resulting in a significant enhancement in accuracy over previous approaches. We further introduce a novel conditional prompting module that conditions the prompt on the local details of the input image pairs, leading to a further improvement in performance. We designate our approach as SD4Match, short for Stable Diffusion for Semantic Matching. Comprehensive evaluations of SD4Match on the PF-Pascal, PF-Willow, and SPair-71k datasets show that it sets new benchmarks in accuracy across all these datasets. Particularly, SD4Match outperforms the previous state-of-the-art by a margin of 12 percentage points on the challenging SPair-71k dataset.
Diverse Data Augmentation with Diffusions for Effective Test-time Prompt Tuning
Benefiting from prompt tuning, recent years have witnessed the promising performance of pre-trained vision-language models, e.g., CLIP, on versatile downstream tasks. In this paper, we focus on a particular setting of learning adaptive prompts on the fly for each test sample from an unseen new domain, which is known as test-time prompt tuning (TPT). Existing TPT methods typically rely on data augmentation and confidence selection. However, conventional data augmentation techniques, e.g., random resized crops, suffers from the lack of data diversity, while entropy-based confidence selection alone is not sufficient to guarantee prediction fidelity. To address these issues, we propose a novel TPT method, named DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data. Specifically, we incorporate augmented data by both conventional method and pre-trained stable diffusion to exploit their respective merits, improving the models ability to adapt to unknown new test data. Moreover, to ensure the prediction fidelity of generated data, we introduce a cosine similarity-based filtration technique to select the generated data with higher similarity to the single test sample. Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13\% compared to the state-of-the-art TPT method. Our code and models will be publicly released.
Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels?
Vision-language models such as CLIP learn a generic text-image embedding from large-scale training data. A vision-language model can be adapted to a new classification task through few-shot prompt tuning. We find that such a prompt tuning process is highly robust to label noises. This intrigues us to study the key reasons contributing to the robustness of the prompt tuning paradigm. We conducted extensive experiments to explore this property and find the key factors are: 1) the fixed classname tokens provide a strong regularization to the optimization of the model, reducing gradients induced by the noisy samples; 2) the powerful pre-trained image-text embedding that is learned from diverse and generic web data provides strong prior knowledge for image classification. Further, we demonstrate that noisy zero-shot predictions from CLIP can be used to tune its own prompt, significantly enhancing prediction accuracy in the unsupervised setting. The code is available at https://github.com/CEWu/PTNL.
LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning
We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called Local regularized Context Optimization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP's local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting -- just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via https://github.com/AtsuMiyai/LoCoOp.
Chain of Thought Prompt Tuning in Vision Language Models
Language-Image Pre-training has demonstrated promising results on zero-shot and few-shot downstream tasks by prompting visual models with natural language prompts. However, most recent studies only use a single prompt for tuning, neglecting the inherent step-to-step cognitive reasoning process that humans conduct in complex task settings, for example, when processing images from unfamiliar domains. Chain of Thought is a simple and effective approximation to human reasoning process and has been proven useful for natural language processing (NLP) tasks. Based on this cognitive intuition, we believe that conducting effective reasoning is also an important problem in visual tasks, and a chain of thought could be a solution to this problem. In this work, we propose a novel chain of thought prompt tuning for vision-language modeling. Extensive experiments show that our method not only generalizes better in image classification tasks, has greater transferability beyond a single dataset, and has stronger domain generalization performance, but also performs much better in imagetext retrieval and visual question answering, which require more reasoning capabilities. We are the first to successfully adapt chain-of-thought prompting that combines visual and textual embeddings. We will release our codes
Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification
This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.
Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models
Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.
Symbolic Replay: Scene Graph as Prompt for Continual Learning on VQA Task
VQA is an ambitious task aiming to answer any image-related question. However, in reality, it is hard to build such a system once for all since the needs of users are continuously updated, and the system has to implement new functions. Thus, Continual Learning (CL) ability is a must in developing advanced VQA systems. Recently, a pioneer work split a VQA dataset into disjoint answer sets to study this topic. However, CL on VQA involves not only the expansion of label sets (new Answer sets). It is crucial to study how to answer questions when deploying VQA systems to new environments (new Visual scenes) and how to answer questions requiring new functions (new Question types). Thus, we propose CLOVE, a benchmark for Continual Learning On Visual quEstion answering, which contains scene- and function-incremental settings for the two aforementioned CL scenarios. In terms of methodology, the main difference between CL on VQA and classification is that the former additionally involves expanding and preventing forgetting of reasoning mechanisms, while the latter focusing on class representation. Thus, we propose a real-data-free replay-based method tailored for CL on VQA, named Scene Graph as Prompt for Symbolic Replay. Using a piece of scene graph as a prompt, it replays pseudo scene graphs to represent the past images, along with correlated QA pairs. A unified VQA model is also proposed to utilize the current and replayed data to enhance its QA ability. Finally, experimental results reveal challenges in CLOVE and demonstrate the effectiveness of our method. The dataset and code will be available at https://github.com/showlab/CLVQA.
Building a Personalized Dialogue System with Prompt-Tuning
Dialogue systems without consistent responses are not fascinating. In this study, we build a dialogue system that can respond based on a given character setting (persona) to bring consistency. Considering the trend of the rapidly increasing scale of language models, we propose an approach that uses prompt-tuning, which has low learning costs, on pre-trained large-scale language models. The results of automatic and manual evaluations in English and Japanese show that it is possible to build a dialogue system with more natural and personalized responses using less computational resources than fine-tuning.
Improved Universal Sentence Embeddings with Prompt-based Contrastive Learning and Energy-based Learning
Contrastive learning has been demonstrated to be effective in enhancing pre-trained language models (PLMs) to derive superior universal sentence embeddings. However, existing contrastive methods still have two limitations. Firstly, previous works may acquire poor performance under domain shift settings, thus hindering the application of sentence representations in practice. We attribute this low performance to the over-parameterization of PLMs with millions of parameters. To alleviate it, we propose PromCSE (Prompt-based Contrastive Learning for Sentence Embeddings), which only trains small-scale Soft Prompt (i.e., a set of trainable vectors) while keeping PLMs fixed. Secondly, the commonly used NT-Xent loss function of contrastive learning does not fully exploit hard negatives in supervised learning settings. To this end, we propose to integrate an Energy-based Hinge loss to enhance the pairwise discriminative power, inspired by the connection between the NT-Xent loss and the Energy-based Learning paradigm. Empirical results on seven standard semantic textual similarity (STS) tasks and a domain-shifted STS task both show the effectiveness of our method compared with the current state-of-the-art sentence embedding models. Our code is publicly avaliable at https://github.com/YJiangcm/PromCSE
Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights
Modern Parameter-Efficient Fine-Tuning (PEFT) methods such as low-rank adaptation (LoRA) reduce the cost of customizing large language models (LLMs), yet still require a separate optimization run for every downstream dataset. We introduce Drag-and-Drop LLMs (\textit{DnD)}, a prompt-conditioned parameter generator that eliminates per-task training by mapping a handful of unlabeled task prompts directly to LoRA weight updates. A lightweight text encoder distills each prompt batch into condition embeddings, which are then transformed by a cascaded hyper-convolutional decoder into the full set of LoRA matrices. Once trained in a diverse collection of prompt-checkpoint pairs, DnD produces task-specific parameters in seconds, yielding i) up to 12,000times lower overhead than full fine-tuning, ii) average gains up to 30\% in performance over the strongest training LoRAs on unseen common-sense reasoning, math, coding, and multimodal benchmarks, and iii) robust cross-domain generalization despite never seeing the target data or labels. Our results demonstrate that prompt-conditioned parameter generation is a viable alternative to gradient-based adaptation for rapidly specializing LLMs. Our project is available at https://jerryliang24.github.io/DnD{https://jerryliang24.github.io/DnD}.
AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt Encoder
The recently introduced Segment Anything Model (SAM) combines a clever architecture and large quantities of training data to obtain remarkable image segmentation capabilities. However, it fails to reproduce such results for Out-Of-Distribution (OOD) domains such as medical images. Moreover, while SAM is conditioned on either a mask or a set of points, it may be desirable to have a fully automatic solution. In this work, we replace SAM's conditioning with an encoder that operates on the same input image. By adding this encoder and without further fine-tuning SAM, we obtain state-of-the-art results on multiple medical images and video benchmarks. This new encoder is trained via gradients provided by a frozen SAM. For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
SAMIC: Segment Anything with In-Context Spatial Prompt Engineering
Few-shot segmentation is the problem of learning to identify specific types of objects (e.g., airplanes) in images from a small set of labeled reference images. The current state of the art is driven by resource-intensive construction of models for every new domain-specific application. Such models must be trained on enormous labeled datasets of unrelated objects (e.g., cars, trains, animals) so that their ``knowledge'' can be transferred to new types of objects. In this paper, we show how to leverage existing vision foundation models (VFMs) to reduce the incremental cost of creating few-shot segmentation models for new domains. Specifically, we introduce SAMIC, a small network that learns how to prompt VFMs in order to segment new types of objects in domain-specific applications. SAMIC enables any task to be approached as a few-shot learning problem. At 2.6 million parameters, it is 94% smaller than the leading models (e.g., having ResNet 101 backbone with 45+ million parameters). Even using 1/5th of the training data provided by one-shot benchmarks, SAMIC is competitive with, or sets the state of the art, on a variety of few-shot and semantic segmentation datasets including COCO-20^i, Pascal-5^i, PerSeg, FSS-1000, and NWPU VHR-10.
Multi-Preference Optimization: Generalizing DPO via Set-Level Contrasts
Direct Preference Optimization (DPO) has become a popular approach for aligning language models using pairwise preferences. However, in practical post-training pipelines, on-policy generation typically yields multiple candidate responses per prompt, which are scored by a reward model to guide learning. In this setting, we propose Multi-Preference Optimization (MPO), a generalization of DPO that optimizes over entire sets of responses by extending the Bradley-Terry model to groupwise comparisons between chosen and rejected sets. To further enhance learning, MPO employs deviation-based weighting, which emphasizes outlier responses that deviate most from the mean reward, effectively inducing a self-paced curriculum. We theoretically prove that MPO reduces alignment bias at a rate of Oleft(1{n}right) with respect to the number of responses per query. Empirically, MPO achieves state-of-the-art performance on the UltraFeedback benchmark and yields up to sim 17.5% improvement over the state-of-the-art baseline in length-controlled win rate on AlpacaEval2, establishing a new baseline for preference-based alignment
SPTNet: An Efficient Alternative Framework for Generalized Category Discovery with Spatial Prompt Tuning
Generalized Category Discovery (GCD) aims to classify unlabelled images from both `seen' and `unseen' classes by transferring knowledge from a set of labelled `seen' class images. A key theme in existing GCD approaches is adapting large-scale pre-trained models for the GCD task. An alternate perspective, however, is to adapt the data representation itself for better alignment with the pre-trained model. As such, in this paper, we introduce a two-stage adaptation approach termed SPTNet, which iteratively optimizes model parameters (i.e., model-finetuning) and data parameters (i.e., prompt learning). Furthermore, we propose a novel spatial prompt tuning method (SPT) which considers the spatial property of image data, enabling the method to better focus on object parts, which can transfer between seen and unseen classes. We thoroughly evaluate our SPTNet on standard benchmarks and demonstrate that our method outperforms existing GCD methods. Notably, we find our method achieves an average accuracy of 61.4% on the SSB, surpassing prior state-of-the-art methods by approximately 10%. The improvement is particularly remarkable as our method yields extra parameters amounting to only 0.117% of those in the backbone architecture. Project page: https://visual-ai.github.io/sptnet.
Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models
Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. The code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
Neural language models (LMs) have achieved impressive results on various language-based reasoning tasks by utilizing latent knowledge encoded in their own pretrained parameters. To make this reasoning process more explicit, recent works retrieve a rationalizing LM's internal knowledge by training or prompting it to generate free-text rationales, which can be used to guide task predictions made by either the same LM or a separate reasoning LM. However, rationalizing LMs require expensive rationale annotation and/or computation, without any assurance that their generated rationales improve LM task performance or faithfully reflect LM decision-making. In this paper, we propose PINTO, an LM pipeline that rationalizes via prompt-based learning, and learns to faithfully reason over rationales via counterfactual regularization. First, PINTO maps out a suitable reasoning process for the task input by prompting a frozen rationalizing LM to generate a free-text rationale. Second, PINTO's reasoning LM is fine-tuned to solve the task using the generated rationale as context, while regularized to output less confident predictions when the rationale is perturbed. Across four datasets, we show that PINTO significantly improves the generalization ability of the reasoning LM, yielding higher performance on both in-distribution and out-of-distribution test sets. Also, we find that PINTO's rationales are more faithful to its task predictions than those generated by competitive baselines.
Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models
The integration of large language models with external content has enabled applications such as Microsoft Copilot but also introduced vulnerabilities to indirect prompt injection attacks. In these attacks, malicious instructions embedded within external content can manipulate LLM outputs, causing deviations from user expectations. To address this critical yet under-explored issue, we introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities. Using BIPIA, we evaluate existing LLMs and find them universally vulnerable. Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content. Based on these findings, we propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings. Extensive experiments demonstrate that our black-box defense provides substantial mitigation, while our white-box defense reduces the attack success rate to near-zero levels, all while preserving the output quality of LLMs. We hope this work inspires further research into securing LLM applications and fostering their safe and reliable use.
Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution
Popular prompt strategies like Chain-of-Thought Prompting can dramatically improve the reasoning abilities of Large Language Models (LLMs) in various domains. However, such hand-crafted prompt-strategies are often sub-optimal. In this paper, we present Promptbreeder, a general-purpose self-referential self-improvement mechanism that evolves and adapts prompts for a given domain. Driven by an LLM, Promptbreeder mutates a population of task-prompts, and subsequently evaluates them for fitness on a training set. Crucially, the mutation of these task-prompts is governed by mutation-prompts that the LLM generates and improves throughout evolution in a self-referential way. That is, Promptbreeder is not just improving task-prompts, but it is also improving the mutationprompts that improve these task-prompts. Promptbreeder outperforms state-of-the-art prompt strategies such as Chain-of-Thought and Plan-and-Solve Prompting on commonly used arithmetic and commonsense reasoning benchmarks. Furthermore, Promptbreeder is able to evolve intricate task-prompts for the challenging problem of hate speech classification.
Segment Any Anomaly without Training via Hybrid Prompt Regularization
We present a novel framework, i.e., Segment Any Anomaly + (SAA+), for zero-shot anomaly segmentation with hybrid prompt regularization to improve the adaptability of modern foundation models. Existing anomaly segmentation models typically rely on domain-specific fine-tuning, limiting their generalization across countless anomaly patterns. In this work, inspired by the great zero-shot generalization ability of foundation models like Segment Anything, we first explore their assembly to leverage diverse multi-modal prior knowledge for anomaly localization. For non-parameter foundation model adaptation to anomaly segmentation, we further introduce hybrid prompts derived from domain expert knowledge and target image context as regularization. Our proposed SAA+ model achieves state-of-the-art performance on several anomaly segmentation benchmarks, including VisA, MVTec-AD, MTD, and KSDD2, in the zero-shot setting. We will release the code at https://github.com/caoyunkang/Segment-Any-Anomaly{https://github.com/caoyunkang/Segment-Any-Anomaly}.
Low-Resource Multi-Granularity Academic Function Recognition Based on Multiple Prompt Knowledge
Fine-tuning pre-trained language models (PLMs), e.g., SciBERT, generally requires large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining the fine-tune data for scientific NLP task is still challenging and expensive. Inspired by recent advancement in prompt learning, in this paper, we propose the Mix Prompt Tuning (MPT), which is a semi-supervised method to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks with a small number of labeled examples. Specifically, the proposed method provides multi-perspective representations by combining manual prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabeled examples. Finally, we fine-tune the PLM using the pseudo training set. We evaluate our method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function, and the keyword function, with datasets from computer science domain and biomedical domain. Extensive experiments demonstrate the effectiveness of our method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised method under low-resource settings. In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.
Zero-shot Cross-lingual Transfer of Prompt-based Tuning with a Unified Multilingual Prompt
Prompt-based tuning has been proven effective for pretrained language models (PLMs). While most of the existing work focuses on the monolingual prompts, we study the multilingual prompts for multilingual PLMs, especially in the zero-shot cross-lingual setting. To alleviate the effort of designing different prompts for multiple languages, we propose a novel model that uses a unified prompt for all languages, called UniPrompt. Different from the discrete prompts and soft prompts, the unified prompt is model-based and language-agnostic. Specifically, the unified prompt is initialized by a multilingual PLM to produce language-independent representation, after which is fused with the text input. During inference, the prompts can be pre-computed so that no extra computation cost is needed. To collocate with the unified prompt, we propose a new initialization method for the target label word to further improve the model's transferability across languages. Extensive experiments show that our proposed methods can significantly outperform the strong baselines across different languages. We release data and code to facilitate future research.
Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning
Recent prompt-based approaches allow pretrained language models to achieve strong performances on few-shot finetuning by reformulating downstream tasks as a language modeling problem. In this work, we demonstrate that, despite its advantages on low data regimes, finetuned prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inference heuristics based on lexical overlap, e.g., models incorrectly assuming a sentence pair is of the same meaning because they consist of the same set of words. Interestingly, we find that this particular inference heuristic is significantly less present in the zero-shot evaluation of the prompt-based model, indicating how finetuning can be destructive to useful knowledge learned during the pretraining. We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning. Our evaluation on three datasets demonstrates promising improvements on the three corresponding challenge datasets used to diagnose the inference heuristics.
Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers
Large Language Models (LLMs) excel in various tasks, but they rely on carefully crafted prompts that often demand substantial human effort. To automate this process, in this paper, we propose a novel framework for discrete prompt optimization, called EvoPrompt, which borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence. To enable EAs to work on discrete prompts, which are natural language expressions that need to be coherent and human-readable, we connect LLMs with EAs. This approach allows us to simultaneously leverage the powerful language processing capabilities of LLMs and the efficient optimization performance of EAs. Specifically, abstaining from any gradients or parameters, EvoPrompt starts from a population of prompts and iteratively generates new prompts with LLMs based on the evolutionary operators, improving the population based on the development set. We optimize prompts for both closed- and open-source LLMs including GPT-3.5 and Alpaca, on 9 datasets spanning language understanding and generation tasks. EvoPrompt significantly outperforms human-engineered prompts and existing methods for automatic prompt generation by up to 25% and 14% respectively. Furthermore, EvoPrompt demonstrates that connecting LLMs with EAs creates synergies, which could inspire further research on the combination of LLMs and conventional algorithms.
Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning
Pretrained language models have achieved state-of-the-art performance when adapted to a downstream NLP task. However, theoretical analysis of these models is scarce and challenging since the pretraining and downstream tasks can be very different. We propose an analysis framework that links the pretraining and downstream tasks with an underlying latent variable generative model of text -- the downstream classifier must recover a function of the posterior distribution over the latent variables. We analyze head tuning (learning a classifier on top of the frozen pretrained model) and prompt tuning in this setting. The generative model in our analysis is either a Hidden Markov Model (HMM) or an HMM augmented with a latent memory component, motivated by long-term dependencies in natural language. We show that 1) under certain non-degeneracy conditions on the HMM, simple classification heads can solve the downstream task, 2) prompt tuning obtains downstream guarantees with weaker non-degeneracy conditions, and 3) our recovery guarantees for the memory-augmented HMM are stronger than for the vanilla HMM because task-relevant information is easier to recover from the long-term memory. Experiments on synthetically generated data from HMMs back our theoretical findings.
Teach Better or Show Smarter? On Instructions and Exemplars in Automatic Prompt Optimization
Large language models have demonstrated remarkable capabilities, but their performance is heavily reliant on effective prompt engineering. Automatic prompt optimization (APO) methods are designed to automate this and can be broadly categorized into those targeting instructions (instruction optimization, IO) vs. those targeting exemplars (exemplar selection, ES). Despite their shared objective, these have evolved rather independently, with IO recently receiving more research attention. This paper seeks to bridge this gap by comprehensively comparing the performance of representative IO and ES techniques, both isolation and combination, on a diverse set of challenging tasks. Our findings reveal that intelligently reusing model-generated input-output pairs obtained from evaluating prompts on the validation set as exemplars consistently improves performance over IO methods but is currently under-investigated. We also find that despite the recent focus on IO, how we select exemplars can outweigh how we optimize instructions, with ES strategies as simple as random search outperforming state-of-the-art IO methods with seed instructions without any optimization. Moreover, we observe synergy between ES and IO, with optimal combinations surpassing individual contributions. We conclude that studying exemplar selection as a standalone method and its optimal combination with instruction optimization remains a crucial aspect of APO and deserves greater consideration in future research, even in the era of highly capable instruction-following models.
More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering
While most existing works on LLM prompting techniques focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can not we design and leverage multiple prompts together to further improve the LLM's performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompting technique to produce confident predictions by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with three open-source LLMs (FlanT5-XL, Mistral-7B, and Mixtral-8x7B) on four NLI datasets (e-SNLI, Multi-NLI, ANLI, and Contract-NLI) and one QA dataset (CommonsenseQA) illustrate that ICS can consistently enhance LLMs' performance. An in-depth evaluation with three data similarity-based ICS strategies suggests that these strategies can further elevate LLM's performance, which sheds light on a new yet promising future research direction.
Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval
Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection and/or recognition processes, resulting in inefficient and inflexible retrieval. Different from them, in this work we propose to explore the intrinsic potential of Contrastive Language-Image Pre-training (CLIP) for OCR-free scene text retrieval. Through empirical analysis, we observe that the main challenges of CLIP as a text retriever are: 1) limited text perceptual scale, and 2) entangled visual-semantic concepts. To this end, a novel model termed FDP (Focus, Distinguish, and Prompt) is developed. FDP first focuses on scene text via shifting the attention to the text area and probing the hidden text knowledge, and then divides the query text into content word and function word for processing, in which a semantic-aware prompting scheme and a distracted queries assistance module are utilized. Extensive experiments show that FDP significantly enhances the inference speed while achieving better or competitive retrieval accuracy compared to existing methods. Notably, on the IIIT-STR benchmark, FDP surpasses the state-of-the-art model by 4.37% with a 4 times faster speed. Furthermore, additional experiments under phrase-level and attribute-aware scene text retrieval settings validate FDP's particular advantages in handling diverse forms of query text. The source code will be publicly available at https://github.com/Gyann-z/FDP.
Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book?
Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
Integrating Summarization and Retrieval for Enhanced Personalization via Large Language Models
Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language processing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model's output, a straightforward approach is to incorporate past user data into the language model prompt, but this approach can result in lengthy inputs exceeding limitations on input length and incurring latency and cost issues. Existing approaches tackle such challenges by selectively extracting relevant user data (i.e. selective retrieval) to construct a prompt for downstream tasks. However, retrieval-based methods are limited by potential information loss, lack of more profound user understanding, and cold-start challenges. To overcome these limitations, we propose a novel summary-augmented approach by extending retrieval-augmented personalization with task-aware user summaries generated by LLMs. The summaries can be generated and stored offline, enabling real-world systems with runtime constraints like voice assistants to leverage the power of LLMs. Experiments show our method with 75% less of retrieved user data is on-par or outperforms retrieval augmentation on most tasks in the LaMP personalization benchmark. We demonstrate that offline summarization via LLMs and runtime retrieval enables better performance for personalization on a range of tasks under practical constraints.
GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities
Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84%. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning and instruction following capabilities.
KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures
Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.
CLoSD: Closing the Loop between Simulation and Diffusion for multi-task character control
Motion diffusion models and Reinforcement Learning (RL) based control for physics-based simulations have complementary strengths for human motion generation. The former is capable of generating a wide variety of motions, adhering to intuitive control such as text, while the latter offers physically plausible motion and direct interaction with the environment. In this work, we present a method that combines their respective strengths. CLoSD is a text-driven RL physics-based controller, guided by diffusion generation for various tasks. Our key insight is that motion diffusion can serve as an on-the-fly universal planner for a robust RL controller. To this end, CLoSD maintains a closed-loop interaction between two modules -- a Diffusion Planner (DiP), and a tracking controller. DiP is a fast-responding autoregressive diffusion model, controlled by textual prompts and target locations, and the controller is a simple and robust motion imitator that continuously receives motion plans from DiP and provides feedback from the environment. CLoSD is capable of seamlessly performing a sequence of different tasks, including navigation to a goal location, striking an object with a hand or foot as specified in a text prompt, sitting down, and getting up. https://guytevet.github.io/CLoSD-page/
RS-DPO: A Hybrid Rejection Sampling and Direct Preference Optimization Method for Alignment of Large Language Models
Reinforcement learning from human feedback (RLHF) has been extensively employed to align large language models with user intent. However, proximal policy optimization (PPO) based RLHF is occasionally unstable requiring significant hyperparameter finetuning, and computationally expensive to maximize the estimated reward during alignment. Recently, direct preference optimization (DPO) is proposed to address those challenges. However, DPO relies on contrastive responses generated from human annotator and alternative LLM, instead of the policy model, limiting the effectiveness of the RLHF. In this paper, we addresses both challenges by systematically combining rejection sampling (RS) and DPO. Our proposed method, RS-DPO, initiates with the development of a supervised fine-tuned policy model (SFT). A varied set of k responses per prompt are sampled directly from the SFT model. RS-DPO identifies pairs of contrastive samples based on their reward distribution. Finally, we apply DPO with the contrastive samples to align the model to human preference. Our experiments indicate that our proposed method effectively fine-tunes LLMs with limited resource environments, leading to improved alignment with user intent. Furthermore, it outperforms existing methods, including RS, PPO, and DPO.
Adaptive Multi-Agent Reasoning via Automated Workflow Generation
The rise of Large Reasoning Models (LRMs) promises a significant leap forward in language model capabilities, aiming to tackle increasingly sophisticated tasks with unprecedented efficiency and accuracy. However, despite their impressive performance, recent studies have highlighted how current reasoning models frequently fail to generalize to novel, unseen problems, often resorting to memorized solutions rather than genuine inferential reasoning. Such behavior underscores a critical limitation in modern LRMs, i.e., their tendency toward overfitting, which in turn results in poor generalization in problem-solving capabilities. In this paper, we introduce Nexus Architect, an enhanced iteration of our multi-agent system framework, Nexus, equipped with a novel automated workflow synthesis mechanism. Given a user's prompt and a small set of representative examples, the Architect autonomously generates a tailored reasoning workflow by selecting suitable strategies, tool integrations, and adversarial techniques for a specific problem class. Furthermore, the Architect includes an iterative prompt refinement mechanism that fine-tunes agents' system prompts to maximize performance and improve the generalization capabilities of the system. We empirically evaluate Nexus Architect by employing an off-the-shelf, non-reasoning model on a custom dataset of challenging logical questions and compare its performance against state-of-the-art LRMs. Results show that Nexus Architect consistently outperforms existing solutions, achieving up to a 66% increase in pass rate over Gemini 2.5 Flash Preview, nearly 2.5times against Claude Sonnet 4 and DeepSeek-R1, and over 3times w.r.t. Llama 4 Scout.
Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners
Prompt tuning, which involves training a small set of parameters, effectively enhances the pre-trained Vision-Language Models (VLMs) to downstream tasks. However, they often come at the cost of flexibility and adaptability when the tuned models are applied to different datasets or domains. In this paper, we explore capturing the task-specific information via meticulous refinement of entire VLMs, with minimal parameter adjustments. When fine-tuning the entire VLMs for specific tasks under limited supervision, overfitting and catastrophic forgetting become the defacto factors. To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task, further aligning the visual-text semantics in a supervision manner, and integrating knowledge distillation techniques to preserve the gained knowledge. Extensive experimental results under few-shot learning, base-to-new generalization, domain generalization, and cross-domain generalization settings, demonstrate that our method effectively enhances the performance on specific tasks under limited supervision while preserving the versatility of the VLMs on other datasets.
Semantic Guidance Tuning for Text-To-Image Diffusion Models
Recent advancements in Text-to-Image (T2I) diffusion models have demonstrated impressive success in generating high-quality images with zero-shot generalization capabilities. Yet, current models struggle to closely adhere to prompt semantics, often misrepresenting or overlooking specific attributes. To address this, we propose a simple, training-free approach that modulates the guidance direction of diffusion models during inference. We first decompose the prompt semantics into a set of concepts, and monitor the guidance trajectory in relation to each concept. Our key observation is that deviations in model's adherence to prompt semantics are highly correlated with divergence of the guidance from one or more of these concepts. Based on this observation, we devise a technique to steer the guidance direction towards any concept from which the model diverges. Extensive experimentation validates that our method improves the semantic alignment of images generated by diffusion models in response to prompts. Project page is available at: https://korguy.github.io/
Efficient Few-Shot Learning Without Prompts
Recent few-shot methods, such as parameter-efficient fine-tuning (PEFT) and pattern exploiting training (PET), have achieved impressive results in label-scarce settings. However, they are difficult to employ since they are subject to high variability from manually crafted prompts, and typically require billion-parameter language models to achieve high accuracy. To address these shortcomings, we propose SetFit (Sentence Transformer Fine-tuning), an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers (ST). SetFit works by first fine-tuning a pretrained ST on a small number of text pairs, in a contrastive Siamese manner. The resulting model is then used to generate rich text embeddings, which are used to train a classification head. This simple framework requires no prompts or verbalizers, and achieves high accuracy with orders of magnitude less parameters than existing techniques. Our experiments show that SetFit obtains comparable results with PEFT and PET techniques, while being an order of magnitude faster to train. We also show that SetFit can be applied in multilingual settings by simply switching the ST body. Our code is available at https://github.com/huggingface/setfit and our datasets at https://huggingface.co/setfit .
Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation
With the rise of powerful closed-sourced LLMs (ChatGPT, GPT-4), there are increasing interests in distilling the capabilies of close-sourced LLMs to smaller open-sourced LLMs. Previous distillation methods usually prompt ChatGPT to generate a set of instructions and answers, for the student model to learn. However, such standard distillation approach neglects the merits and conditions of the student model. Inspired by modern teaching principles, we design a personalised distillation process, in which the student attempts to solve a task first, then the teacher provides an adaptive refinement for the student to improve. Instead of feeding the student with teacher's prior, personalised distillation enables personalised learning for the student model, as it only learns on examples it makes mistakes upon and learns to improve its own solution. On code generation, personalised distillation consistently outperforms standard distillation with only one third of the data. With only 2.5-3K personalised examples that incur a data-collection cost of 4-6$, we boost CodeGen-mono-16B by 7% to achieve 36.4% pass@1 and StarCoder by 12.2% to achieve 45.8% pass@1 on HumanEval.
MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs
We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models' compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and explore supervised fine-tuning to enhance the models' ability to strictly follow instructions without compromising performance on other tasks. We hope this benchmark not only serves as a tool for measuring MLLM adherence to instructions, but also guides future developments in MLLM training methods.
Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning
Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane
ArgMed-Agents: Explainable Clinical Decision Reasoning with LLM Disscusion via Argumentation Schemes
There are two main barriers to using large language models (LLMs) in clinical reasoning. Firstly, while LLMs exhibit significant promise in Natural Language Processing (NLP) tasks, their performance in complex reasoning and planning falls short of expectations. Secondly, LLMs use uninterpretable methods to make clinical decisions that are fundamentally different from the clinician's cognitive processes. This leads to user distrust. In this paper, we present a multi-agent framework called ArgMed-Agents, which aims to enable LLM-based agents to make explainable clinical decision reasoning through interaction. ArgMed-Agents performs self-argumentation iterations via Argumentation Scheme for Clinical Discussion (a reasoning mechanism for modeling cognitive processes in clinical reasoning), and then constructs the argumentation process as a directed graph representing conflicting relationships. Ultimately, use symbolic solver to identify a series of rational and coherent arguments to support decision. We construct a formal model of ArgMed-Agents and present conjectures for theoretical guarantees. ArgMed-Agents enables LLMs to mimic the process of clinical argumentative reasoning by generating explanations of reasoning in a self-directed manner. The setup experiments show that ArgMed-Agents not only improves accuracy in complex clinical decision reasoning problems compared to other prompt methods, but more importantly, it provides users with decision explanations that increase their confidence.
Column Type Annotation using ChatGPT
Column type annotation is the task of annotating the columns of a relational table with the semantic type of the values contained in each column. Column type annotation is an important pre-processing step for data search and data integration in the context of data lakes. State-of-the-art column type annotation methods either rely on matching table columns to properties of a knowledge graph or fine-tune pre-trained language models such as BERT for column type annotation. In this work, we take a different approach and explore using ChatGPT for column type annotation. We evaluate different prompt designs in zero- and few-shot settings and experiment with providing task definitions and detailed instructions to the model. We further implement a two-step table annotation pipeline which first determines the class of the entities described in the table and depending on this class asks ChatGPT to annotate columns using only the relevant subset of the overall vocabulary. Using instructions as well as the two-step pipeline, ChatGPT reaches F1 scores of over 85% in zero- and one-shot setups. To reach a similar F1 score a RoBERTa model needs to be fine-tuned with 356 examples. This comparison shows that ChatGPT is able deliver competitive results for the column type annotation task given no or only a minimal amount of task-specific demonstrations.
SPADE: Synthesizing Assertions for Large Language Model Pipelines
Operationalizing large language models (LLMs) for custom, repetitive data pipelines is challenging, particularly due to their unpredictable and potentially catastrophic failures. Acknowledging the inevitability of these errors, we focus on identifying when LLMs may be generating incorrect responses when used repeatedly as part of data generation pipelines. We present SPADE, a method for automatically synthesizing assertions that identify bad LLM outputs. SPADE analyzes prompt version histories to create candidate assertion functions and then selects a minimal set that fulfills both coverage and accuracy requirements. In testing across nine different real-world LLM pipelines, SPADE efficiently reduces the number of assertions by 14% and decreases false failures by 21% when compared to simpler baselines.
Skip Tuning: Pre-trained Vision-Language Models are Effective and Efficient Adapters Themselves
Prompt tuning (PT) has long been recognized as an effective and efficient paradigm for transferring large pre-trained vision-language models (VLMs) to downstream tasks by learning a tiny set of context vectors. Nevertheless, in this work, we reveal that freezing the parameters of VLMs during learning the context vectors neither facilitates the transferability of pre-trained knowledge nor improves the memory and time efficiency significantly. Upon further investigation, we find that reducing both the length and width of the feature-gradient propagation flows of the full fine-tuning (FT) baseline is key to achieving effective and efficient knowledge transfer. Motivated by this, we propose Skip Tuning, a novel paradigm for adapting VLMs to downstream tasks. Unlike existing PT or adapter-based methods, Skip Tuning applies Layer-wise Skipping (LSkip) and Class-wise Skipping (CSkip) upon the FT baseline without introducing extra context vectors or adapter modules. Extensive experiments across a wide spectrum of benchmarks demonstrate the superior effectiveness and efficiency of our Skip Tuning over both PT and adapter-based methods. Code: https://github.com/Koorye/SkipTuning.
Rethinking Data Synthesis: A Teacher Model Training Recipe with Interpretation
Recent advances in large language model (LLM) training have highlighted the need for diverse, high-quality instruction data. Recently, many works are exploring synthetic data generation using LLMs. However, they primarily focus on prompt engineering with standard supervised instruction-finetuned models, which contains a fundamental limitation: these models are optimized for general question-answering/problem-solving rather than data generation. We propose a paradigm shift named NOMAD by investigating how to specifically train models for data generation, demonstrating that this task differs significantly from training a classical LM. We identify two key factors: no-prompt-masked training and proper training set size selection. Our method, NOMAD, shows substantial improvements over baselines, achieving >4\% gains in TriviaQA and >2\% in GSM8K with limited training data. Finally, we offer new insights by interpreting synthetic data through the lenses of "relevance" and "novelty".
Trompt: Towards a Better Deep Neural Network for Tabular Data
Tabular data is arguably one of the most commonly used data structures in various practical domains, including finance, healthcare and e-commerce. The inherent heterogeneity allows tabular data to store rich information. However, based on a recently published tabular benchmark, we can see deep neural networks still fall behind tree-based models on tabular datasets. In this paper, we propose Trompt--which stands for Tabular Prompt--a novel architecture inspired by prompt learning of language models. The essence of prompt learning is to adjust a large pre-trained model through a set of prompts outside the model without directly modifying the model. Based on this idea, Trompt separates the learning strategy of tabular data into two parts. The first part, analogous to pre-trained models, focus on learning the intrinsic information of a table. The second part, analogous to prompts, focus on learning the variations among samples. Trompt is evaluated with the benchmark mentioned above. The experimental results demonstrate that Trompt outperforms state-of-the-art deep neural networks and is comparable to tree-based models.
OMNIGUARD: An Efficient Approach for AI Safety Moderation Across Modalities
The emerging capabilities of large language models (LLMs) have sparked concerns about their immediate potential for harmful misuse. The core approach to mitigate these concerns is the detection of harmful queries to the model. Current detection approaches are fallible, and are particularly susceptible to attacks that exploit mismatched generalization of model capabilities (e.g., prompts in low-resource languages or prompts provided in non-text modalities such as image and audio). To tackle this challenge, we propose OMNIGUARD, an approach for detecting harmful prompts across languages and modalities. Our approach (i) identifies internal representations of an LLM/MLLM that are aligned across languages or modalities and then (ii) uses them to build a language-agnostic or modality-agnostic classifier for detecting harmful prompts. OMNIGUARD improves harmful prompt classification accuracy by 11.57\% over the strongest baseline in a multilingual setting, by 20.44\% for image-based prompts, and sets a new SOTA for audio-based prompts. By repurposing embeddings computed during generation, OMNIGUARD is also very efficient (approx 120 times faster than the next fastest baseline). Code and data are available at: https://github.com/vsahil/OmniGuard.
LangGas: Introducing Language in Selective Zero-Shot Background Subtraction for Semi-Transparent Gas Leak Detection with a New Dataset
Gas leakage poses a significant hazard that requires prevention. Traditionally, human inspection has been used for detection, a slow and labour-intensive process. Recent research has applied machine learning techniques to this problem, yet there remains a shortage of high-quality, publicly available datasets. This paper introduces a synthetic dataset, SimGas, featuring diverse backgrounds, interfering foreground objects, diverse leak locations, and precise segmentation ground truth. We propose a zero-shot method that combines background subtraction, zero-shot object detection, filtering, and segmentation to leverage this dataset. Experimental results indicate that our approach significantly outperforms baseline methods based solely on background subtraction and zero-shot object detection with segmentation, reaching an IoU of 69%. We also present an analysis of various prompt configurations and threshold settings to provide deeper insights into the performance of our method. Finally, we qualitatively (because of the lack of ground truth) tested our performance on GasVid and reached decent results on the real-world dataset. The dataset, code, and full qualitative results are available at https://github.com/weathon/Lang-Gas.
Improving Tool Retrieval by Leveraging Large Language Models for Query Generation
Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.
YOLOE: Real-Time Seeing Anything
Object detection and segmentation are widely employed in computer vision applications, yet conventional models like YOLO series, while efficient and accurate, are limited by predefined categories, hindering adaptability in open scenarios. Recent open-set methods leverage text prompts, visual cues, or prompt-free paradigm to overcome this, but often compromise between performance and efficiency due to high computational demands or deployment complexity. In this work, we introduce YOLOE, which integrates detection and segmentation across diverse open prompt mechanisms within a single highly efficient model, achieving real-time seeing anything. For text prompts, we propose Re-parameterizable Region-Text Alignment (RepRTA) strategy. It refines pretrained textual embeddings via a re-parameterizable lightweight auxiliary network and enhances visual-textual alignment with zero inference and transferring overhead. For visual prompts, we present Semantic-Activated Visual Prompt Encoder (SAVPE). It employs decoupled semantic and activation branches to bring improved visual embedding and accuracy with minimal complexity. For prompt-free scenario, we introduce Lazy Region-Prompt Contrast (LRPC) strategy. It utilizes a built-in large vocabulary and specialized embedding to identify all objects, avoiding costly language model dependency. Extensive experiments show YOLOE's exceptional zero-shot performance and transferability with high inference efficiency and low training cost. Notably, on LVIS, with 3times less training cost and 1.4times inference speedup, YOLOE-v8-S surpasses YOLO-Worldv2-S by 3.5 AP. When transferring to COCO, YOLOE-v8-L achieves 0.6 AP^b and 0.4 AP^m gains over closed-set YOLOv8-L with nearly 4times less training time. Code and models are available at https://github.com/THU-MIG/yoloe.
Jailbreak Distillation: Renewable Safety Benchmarking
Large language models (LLMs) are rapidly deployed in critical applications, raising urgent needs for robust safety benchmarking. We propose Jailbreak Distillation (JBDistill), a novel benchmark construction framework that "distills" jailbreak attacks into high-quality and easily-updatable safety benchmarks. JBDistill utilizes a small set of development models and existing jailbreak attack algorithms to create a candidate prompt pool, then employs prompt selection algorithms to identify an effective subset of prompts as safety benchmarks. JBDistill addresses challenges in existing safety evaluation: the use of consistent evaluation prompts across models ensures fair comparisons and reproducibility. It requires minimal human effort to rerun the JBDistill pipeline and produce updated benchmarks, alleviating concerns on saturation and contamination. Extensive experiments demonstrate our benchmarks generalize robustly to 13 diverse evaluation models held out from benchmark construction, including proprietary, specialized, and newer-generation LLMs, significantly outperforming existing safety benchmarks in effectiveness while maintaining high separability and diversity. Our framework thus provides an effective, sustainable, and adaptable solution for streamlining safety evaluation.
Investigating the translation capabilities of Large Language Models trained on parallel data only
In recent years, Large Language Models (LLMs) have demonstrated exceptional proficiency across a broad spectrum of Natural Language Processing (NLP) tasks, including Machine Translation. However, previous methods predominantly relied on iterative processes such as instruction fine-tuning or continual pre-training, leaving unexplored the challenges of training LLMs solely on parallel data. In this work, we introduce PLUME (Parallel Language Model), a collection of three 2B LLMs featuring varying vocabulary sizes (32k, 128k, and 256k) trained exclusively on Catalan-centric parallel examples. These models perform comparably to previous encoder-decoder architectures on 16 supervised translation directions and 56 zero-shot ones. Utilizing this set of models, we conduct a thorough investigation into the translation capabilities of LLMs, probing their performance, the impact of the different elements of the prompt, and their cross-lingual representation space.
Reasoning with Reinforced Functional Token Tuning
In this work, we propose Reinforced Functional Token Tuning (RFTT), a novel reinforced fine-tuning framework that empowers Large Language Models (LLMs) with self-play learn-to-reason capabilities. Unlike prior prompt-driven reasoning efforts, RFTT embeds a rich set of learnable functional tokens (e.g., <analyze>, <verify>, <refine>) directly into the model vocabulary, enabling chain-of-thought construction with diverse human-like reasoning behaviors. Specifically, RFTT comprises two phases: (1) supervised fine-tuning performs prompt-driven tree search to obtain self-generated training data annotated with functional tokens, which warms up the model to learn these tokens for reasoning; and (2) online reinforcement learning further allows the model to explore different reasoning pathways through functional token sampling without relying on prompts, thereby facilitating effective self-improvement for functional reasoning. Extensive experiments demonstrate the superiority of the proposed RFTT on mathematical benchmarks, significantly boosting Qwen-2.5-7B-Instruct (70.6% to 79.8%) and LLaMA-3.1-8B-Instruct (32.2% to 60.2%) on the MATH dataset. Moreover, the performance of RFTT consistently improves with more search rollouts at inference time. Our code is available at https://github.com/sastpg/RFTT.
ObjectCarver: Semi-automatic segmentation, reconstruction and separation of 3D objects
Implicit neural fields have made remarkable progress in reconstructing 3D surfaces from multiple images; however, they encounter challenges when it comes to separating individual objects within a scene. Previous work has attempted to tackle this problem by introducing a framework to train separate signed distance fields (SDFs) simultaneously for each of N objects and using a regularization term to prevent objects from overlapping. However, all of these methods require segmentation masks to be provided, which are not always readily available. We introduce our method, ObjectCarver, to tackle the problem of object separation from just click input in a single view. Given posed multi-view images and a set of user-input clicks to prompt segmentation of the individual objects, our method decomposes the scene into separate objects and reconstructs a high-quality 3D surface for each one. We introduce a loss function that prevents floaters and avoids inappropriate carving-out due to occlusion. In addition, we introduce a novel scene initialization method that significantly speeds up the process while preserving geometric details compared to previous approaches. Despite requiring neither ground truth masks nor monocular cues, our method outperforms baselines both qualitatively and quantitatively. In addition, we introduce a new benchmark dataset for evaluation.
LLM-augmented Preference Learning from Natural Language
Finding preferences expressed in natural language is an important but challenging task. State-of-the-art(SotA) methods leverage transformer-based models such as BERT, RoBERTa, etc. and graph neural architectures such as graph attention networks. Since Large Language Models (LLMs) are equipped to deal with larger context lengths and have much larger model sizes than the transformer-based model, we investigate their ability to classify comparative text directly. This work aims to serve as a first step towards using LLMs for the CPC task. We design and conduct a set of experiments that format the classification task into an input prompt for the LLM and a methodology to get a fixed-format response that can be automatically evaluated. Comparing performances with existing methods, we see that pre-trained LLMs are able to outperform the previous SotA models with no fine-tuning involved. Our results show that the LLMs can consistently outperform the SotA when the target text is large -- i.e. composed of multiple sentences --, and are still comparable to the SotA performance in shorter text. We also find that few-shot learning yields better performance than zero-shot learning.
Benchmarking Benchmark Leakage in Large Language Models
Amid the expanding use of pre-training data, the phenomenon of benchmark dataset leakage has become increasingly prominent, exacerbated by opaque training processes and the often undisclosed inclusion of supervised data in contemporary Large Language Models (LLMs). This issue skews benchmark effectiveness and fosters potentially unfair comparisons, impeding the field's healthy development. To address this, we introduce a detection pipeline utilizing Perplexity and N-gram accuracy, two simple and scalable metrics that gauge a model's prediction precision on benchmark, to identify potential data leakages. By analyzing 31 LLMs under the context of mathematical reasoning, we reveal substantial instances of training even test set misuse, resulting in potentially unfair comparisons. These findings prompt us to offer several recommendations regarding model documentation, benchmark setup, and future evaluations. Notably, we propose the "Benchmark Transparency Card" to encourage clear documentation of benchmark utilization, promoting transparency and healthy developments of LLMs. we have made our leaderboard, pipeline implementation, and model predictions publicly available, fostering future research.
Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence, enabling the generation of high-quality images in diverse contexts based on specific text prompts. However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image and to create novel representations of those individuals in various settings. To address this, we leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process. Our approach diverges from prior methods that depend on fixed encoders or static face embeddings, which often fail to bridge encoding gaps. Instead, we capitalize on UNet's sophisticated encoding capabilities to process reference images across multiple scales. By innovatively altering the cross-attention layers of the UNet, we effectively fuse individual identities into the generative process. This strategic integration of facial features across various scales not only enhances the robustness and consistency of the generated images but also facilitates efficient multi-reference and multi-identity generation. Our method sets a new benchmark in identity-preserving image generation, delivering state-of-the-art results in similarity metrics while maintaining prompt alignment.
QAmeleon: Multilingual QA with Only 5 Examples
The availability of large, high-quality datasets has been one of the main drivers of recent progress in question answering (QA). Such annotated datasets however are difficult and costly to collect, and rarely exist in languages other than English, rendering QA technology inaccessible to underrepresented languages. An alternative to building large monolingual training datasets is to leverage pre-trained language models (PLMs) under a few-shot learning setting. Our approach, QAmeleon, uses a PLM to automatically generate multilingual data upon which QA models are trained, thus avoiding costly annotation. Prompt tuning the PLM for data synthesis with only five examples per language delivers accuracy superior to translation-based baselines, bridges nearly 60% of the gap between an English-only baseline and a fully supervised upper bound trained on almost 50,000 hand labeled examples, and always leads to substantial improvements compared to fine-tuning a QA model directly on labeled examples in low resource settings. Experiments on the TyDiQA-GoldP and MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages and is a viable alternative to large-scale annotation.
Does GPT-4 Pass the Turing Test?
We evaluated GPT-4 in a public online Turing Test. The best-performing GPT-4 prompt passed in 41% of games, outperforming baselines set by ELIZA (27%) and GPT-3.5 (14%), but falling short of chance and the baseline set by human participants (63%). Participants' decisions were based mainly on linguistic style (35%) and socio-emotional traits (27%), supporting the idea that intelligence is not sufficient to pass the Turing Test. Participants' demographics, including education and familiarity with LLMs, did not predict detection rate, suggesting that even those who understand systems deeply and interact with them frequently may be susceptible to deception. Despite known limitations as a test of intelligence, we argue that the Turing Test continues to be relevant as an assessment of naturalistic communication and deception. AI models with the ability to masquerade as humans could have widespread societal consequences, and we analyse the effectiveness of different strategies and criteria for judging humanlikeness.
Few-Shot Adaptation of Grounding DINO for Agricultural Domain
Deep learning models are transforming agricultural applications by enabling automated phenotyping, monitoring, and yield estimation. However, their effectiveness heavily depends on large amounts of annotated training data, which can be labor and time intensive. Recent advances in open-set object detection, particularly with models like Grounding-DINO, offer a potential solution to detect regions of interests based on text prompt input. Initial zero-shot experiments revealed challenges in crafting effective text prompts, especially for complex objects like individual leaves and visually similar classes. To address these limitations, we propose an efficient few-shot adaptation method that simplifies the Grounding-DINO architecture by removing the text encoder module (BERT) and introducing a randomly initialized trainable text embedding. This method achieves superior performance across multiple agricultural datasets, including plant-weed detection, plant counting, insect identification, fruit counting, and remote sensing tasks. Specifically, it demonstrates up to a sim24% higher mAP than fully fine-tuned YOLO models on agricultural datasets and outperforms previous state-of-the-art methods by sim10% in remote sensing, under few-shot learning conditions. Our method offers a promising solution for automating annotation and accelerating the development of specialized agricultural AI solutions.
Rationalization Models for Text-to-SQL
We introduce a framework for generating Chain-of-Thought (CoT) rationales to enhance text-to-SQL model fine-tuning. These rationales consist of intermediate SQL statements and explanations, serving as incremental steps toward constructing the final SQL query. The process begins with manually annotating a small set of examples, which are then used to prompt a large language model in an iterative, dynamic few-shot knowledge distillation procedure from a teacher model. A rationalization model is subsequently trained on the validated decomposed queries, enabling extensive synthetic CoT annotations for text-to-SQL datasets. To evaluate the approach, we fine-tune small language models with and without these rationales on the BIRD dataset. Results indicate that step-by-step query generation improves execution accuracy, especially for moderately and highly complex queries, while also enhancing explainability.
Scaling Sentence Embeddings with Large Language Models
Large language models (LLMs) have recently garnered significant interest. With in-context learning, LLMs achieve impressive results in various natural language tasks. However, the application of LLMs to sentence embeddings remains an area of ongoing research. In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance. Our approach involves adapting the previous prompt-based representation method for autoregressive models, constructing a demonstration set that enables LLMs to perform in-context learning, and scaling up the LLMs to different model sizes. Through extensive experiments, in-context learning enables LLMs to generate high-quality sentence embeddings without any fine-tuning. It helps LLMs achieve performance comparable to current contrastive learning methods. By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity (STS) tasks. However, the largest model outperforms other counterparts and achieves the new state-of-the-art result on transfer tasks. We also fine-tune LLMs with current contrastive learning approach, and the 2.7B OPT model, incorporating our prompt-based method, surpasses the performance of 4.8B ST5, achieving the new state-of-the-art results on STS tasks. Our code is available at https://github.com/kongds/scaling_sentemb.
Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
The modern web is saturated with multimodal content, intensifying the challenge of detecting hateful memes, where harmful intent is often conveyed through subtle interactions between text and image under the guise of humor or satire. While recent advances in Vision-Language Models (VLMs) show promise, these models lack support for fine-grained supervision and remain susceptible to implicit hate speech. In this paper, we present a dual-pronged approach to improve multimodal hate detection. First, we propose a prompt optimization framework that systematically varies prompt structure, supervision granularity, and training modality. We show that prompt design and label scaling both influence performance, with structured prompts improving robustness even in small models, and InternVL2 achieving the best F1-scores across binary and scaled settings. Second, we introduce a multimodal data augmentation pipeline that generates 2,479 counterfactually neutral memes by isolating and rewriting the hateful modality. This pipeline, powered by a multi-agent LLM-VLM setup, successfully reduces spurious correlations and improves classifier generalization. Our approaches inspire new directions for building synthetic data to train robust and fair vision-language models. Our findings demonstrate that prompt structure and data composition are as critical as model size, and that targeted augmentation can support more trustworthy and context-sensitive hate detection.
Foundation Models for Zero-Shot Segmentation of Scientific Images without AI-Ready Data
Zero-shot and prompt-based technologies capitalized on using frequently occurring images to transform visual reasoning tasks, which explains why such technologies struggle with valuable yet scarce scientific image sets. In this work, we propose Zenesis, a comprehensive no-code interactive platform designed to minimize barriers posed by data readiness for scientific images. We develop lightweight multi-modal adaptation techniques that enable zero-shot operation on raw scientific data, along with human-in-the-loop refinement and heuristic-based temporal enhancement options. We demonstrate the performance of our approach through comprehensive comparison and validation on challenging Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) data of catalyst-loaded membranes. Zenesis significantly outperforms baseline methods, achieving an average accuracy of 0.947, an Intersection over Union (IOU) of 0.858, and a Dice score of 0.923 for amorphous catalyst samples and accuracy of 0.987, an IOU of 0.857, and a Dice score of 0.923 for crystalline samples. These results mark a substantial improvement over traditional methods like Otsu thresholding and even advanced models like Segment Anything Model (SAM) when used in isolation. Our results demonstrate that Zenesis is a powerful tool for scientific applications, particularly in fields where high-quality annotated datasets are unavailable, accelerating accurate analysis of experimental imaging.
Towards Realistic Low-resource Relation Extraction: A Benchmark with Empirical Baseline Study
This paper presents an empirical study to build relation extraction systems in low-resource settings. Based upon recent pre-trained language models, we comprehensively investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; (iii) data augmentation technologies and self-training to generate more labeled in-domain data. We create a benchmark with 8 relation extraction (RE) datasets covering different languages, domains and contexts and perform extensive comparisons over the proposed schemes with combinations. Our experiments illustrate: (i) Though prompt-based tuning is beneficial in low-resource RE, there is still much potential for improvement, especially in extracting relations from cross-sentence contexts with multiple relational triples; (ii) Balancing methods are not always helpful for RE with long-tailed distribution; (iii) Data augmentation complements existing baselines and can bring much performance gain, while self-training may not consistently achieve advancement to low-resource RE. Code and datasets are in https://github.com/zjunlp/LREBench.
SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI
Existing works have established multiple benchmarks to highlight the security risks associated with Code GenAI. These risks are primarily reflected in two areas: a model potential to generate insecure code (insecure coding) and its utility in cyberattacks (cyberattack helpfulness). While these benchmarks have made significant strides, there remain opportunities for further improvement. For instance, many current benchmarks tend to focus more on a model ability to provide attack suggestions rather than its capacity to generate executable attacks. Additionally, most benchmarks rely heavily on static evaluation metrics, which may not be as precise as dynamic metrics such as passing test cases. Conversely, expert-verified benchmarks, while offering high-quality data, often operate at a smaller scale. To address these gaps, we develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks. For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation. Our methodology ensures the data quality while enabling large-scale generation. We also associate samples with test cases to conduct code-related dynamic evaluation. For cyberattack helpfulness, we set up a real environment and construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment. We conduct extensive experiments and show that SecCodePLT outperforms the state-of-the-art (SOTA) benchmark CyberSecEval in security relevance. Furthermore, it better identifies the security risks of SOTA models in insecure coding and cyberattack helpfulness. Finally, we apply SecCodePLT to the SOTA code agent, Cursor, and, for the first time, identify non-trivial security risks in this advanced coding agent.
The FACTS Grounding Leaderboard: Benchmarking LLMs' Ability to Ground Responses to Long-Form Input
We introduce FACTS Grounding, an online leaderboard and associated benchmark that evaluates language models' ability to generate text that is factually accurate with respect to given context in the user prompt. In our benchmark, each prompt includes a user request and a full document, with a maximum length of 32k tokens, requiring long-form responses. The long-form responses are required to be fully grounded in the provided context document while fulfilling the user request. Models are evaluated using automated judge models in two phases: (1) responses are disqualified if they do not fulfill the user request; (2) they are judged as accurate if the response is fully grounded in the provided document. The automated judge models were comprehensively evaluated against a held-out test-set to pick the best prompt template, and the final factuality score is an aggregate of multiple judge models to mitigate evaluation bias. The FACTS Grounding leaderboard will be actively maintained over time, and contains both public and private splits to allow for external participation while guarding the integrity of the leaderboard. It can be found at https://www.kaggle.com/facts-leaderboard.
LAVID: An Agentic LVLM Framework for Diffusion-Generated Video Detection
The impressive achievements of generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities. Recent works of AI-generated content detection have been widely studied in the image field (e.g., deepfake), yet the video field has been unexplored. Large Vision Language Model (LVLM) has become an emerging tool for AI-generated content detection for its strong reasoning and multimodal capabilities. It breaks the limitations of traditional deep learning based methods faced with like lack of transparency and inability to recognize new artifacts. Motivated by this, we propose LAVID, a novel LVLMs-based ai-generated video detection with explicit knowledge enhancement. Our insight list as follows: (1) The leading LVLMs can call external tools to extract useful information to facilitate its own video detection task; (2) Structuring the prompt can affect LVLM's reasoning ability to interpret information in video content. Our proposed pipeline automatically selects a set of explicit knowledge tools for detection, and then adaptively adjusts the structure prompt by self-rewriting. Different from prior SOTA that trains additional detectors, our method is fully training-free and only requires inference of the LVLM for detection. To facilitate our research, we also create a new benchmark \vidfor with high-quality videos generated from multiple sources of video generation tools. Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top baselines on our datasets across four SOTA LVLMs.
PPM: Automated Generation of Diverse Programming Problems for Benchmarking Code Generation Models
In recent times, a plethora of Large Code Generation Models (LCGMs) have been proposed, showcasing significant potential in assisting developers with complex programming tasks. Benchmarking LCGMs necessitates the creation of a set of diverse programming problems, and each problem comprises the prompt (including the task description), canonical solution, and test inputs. The existing methods for constructing such a problem set can be categorized into two main types: manual methods and perturbation-based methods. However, manual methods demand high effort and lack scalability, while also risking data integrity due to LCGMs' potentially contaminated data collection, and perturbation-based approaches mainly generate semantically homogeneous problems with the same canonical solutions and introduce typos that can be easily auto-corrected by IDE, making them ineffective and unrealistic. In this work, we propose the idea of programming problem merging (PPM) and provide two implementation of this idea, we utilize our tool on two widely-used datasets and compare it against nine baseline methods using eight code generation models. The results demonstrate the effectiveness of our tool in generating more challenging, diverse, and natural programming problems, comparing to the baselines.
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at https://github.com/bigscience-workshop/promptsource.
AutoCLIP: Auto-tuning Zero-Shot Classifiers for Vision-Language Models
Classifiers built upon vision-language models such as CLIP have shown remarkable zero-shot performance across a broad range of image classification tasks. Prior work has studied different ways of automatically creating descriptor sets for every class based on prompt templates, ranging from manually engineered templates over templates obtained from a large language model to templates built from random words and characters. In contrast, deriving zero-shot classifiers from the respective encoded class descriptors has remained nearly unchanged, that is: classify to the class that maximizes the cosine similarity between its averaged encoded class descriptors and the encoded image. However, weighting all class descriptors equally can be suboptimal when certain descriptors match visual clues on a given image better than others. In this work, we propose AutoCLIP, a method for auto-tuning zero-shot classifiers. AutoCLIP assigns to each prompt template per-image weights, which are derived from statistics of class descriptor-image similarities at inference time. AutoCLIP is fully unsupervised, has very low overhead, and can be easily implemented in few lines of code. We show that for a broad range of vision-language models, datasets, and prompt templates, AutoCLIP outperforms baselines consistently and by up to 3 percent point accuracy.
Prompting as Probing: Using Language Models for Knowledge Base Construction
Language Models (LMs) have proven to be useful in various downstream applications, such as summarisation, translation, question answering and text classification. LMs are becoming increasingly important tools in Artificial Intelligence, because of the vast quantity of information they can store. In this work, we present ProP (Prompting as Probing), which utilizes GPT-3, a large Language Model originally proposed by OpenAI in 2020, to perform the task of Knowledge Base Construction (KBC). ProP implements a multi-step approach that combines a variety of prompting techniques to achieve this. Our results show that manual prompt curation is essential, that the LM must be encouraged to give answer sets of variable lengths, in particular including empty answer sets, that true/false questions are a useful device to increase precision on suggestions generated by the LM, that the size of the LM is a crucial factor, and that a dictionary of entity aliases improves the LM score. Our evaluation study indicates that these proposed techniques can substantially enhance the quality of the final predictions: ProP won track 2 of the LM-KBC competition, outperforming the baseline by 36.4 percentage points. Our implementation is available on https://github.com/HEmile/iswc-challenge.
Structuring Radiology Reports: Challenging LLMs with Lightweight Models
Radiology reports are critical for clinical decision-making but often lack a standardized format, limiting both human interpretability and machine learning (ML) applications. While large language models (LLMs) have shown strong capabilities in reformatting clinical text, their high computational requirements, lack of transparency, and data privacy concerns hinder practical deployment. To address these challenges, we explore lightweight encoder-decoder models (<300M parameters)-specifically T5 and BERT2BERT-for structuring radiology reports from the MIMIC-CXR and CheXpert Plus datasets. We benchmark these models against eight open-source LLMs (1B-70B), adapted using prefix prompting, in-context learning (ICL), and low-rank adaptation (LoRA) finetuning. Our best-performing lightweight model outperforms all LLMs adapted using prompt-based techniques on a human-annotated test set. While some LoRA-finetuned LLMs achieve modest gains over the lightweight model on the Findings section (BLEU 6.4%, ROUGE-L 4.8%, BERTScore 3.6%, F1-RadGraph 1.1%, GREEN 3.6%, and F1-SRR-BERT 4.3%), these improvements come at the cost of substantially greater computational resources. For example, LLaMA-3-70B incurred more than 400 times the inference time, cost, and carbon emissions compared to the lightweight model. These results underscore the potential of lightweight, task-specific models as sustainable and privacy-preserving solutions for structuring clinical text in resource-constrained healthcare settings.
Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery
Despite growing interest in using large language models (LLMs) in healthcare, current explorations do not assess the real-world utility and safety of LLMs in clinical settings. Our objective was to determine whether two LLMs can serve information needs submitted by physicians as questions to an informatics consultation service in a safe and concordant manner. Sixty six questions from an informatics consult service were submitted to GPT-3.5 and GPT-4 via simple prompts. 12 physicians assessed the LLM responses' possibility of patient harm and concordance with existing reports from an informatics consultation service. Physician assessments were summarized based on majority vote. For no questions did a majority of physicians deem either LLM response as harmful. For GPT-3.5, responses to 8 questions were concordant with the informatics consult report, 20 discordant, and 9 were unable to be assessed. There were 29 responses with no majority on "Agree", "Disagree", and "Unable to assess". For GPT-4, responses to 13 questions were concordant, 15 discordant, and 3 were unable to be assessed. There were 35 responses with no majority. Responses from both LLMs were largely devoid of overt harm, but less than 20% of the responses agreed with an answer from an informatics consultation service, responses contained hallucinated references, and physicians were divided on what constitutes harm. These results suggest that while general purpose LLMs are able to provide safe and credible responses, they often do not meet the specific information need of a given question. A definitive evaluation of the usefulness of LLMs in healthcare settings will likely require additional research on prompt engineering, calibration, and custom-tailoring of general purpose models.
Score Before You Speak: Improving Persona Consistency in Dialogue Generation using Response Quality Scores
Persona-based dialogue generation is an important milestone towards building conversational artificial intelligence. Despite the ever-improving capabilities of large language models (LLMs), effectively integrating persona fidelity in conversations remains challenging due to the limited diversity in existing dialogue data. We propose a novel framework SBS (Score-Before-Speaking), which outperforms previous methods and yields improvements for both million and billion-parameter models. Unlike previous methods, SBS unifies the learning of responses and their relative quality into a single step. The key innovation is to train a dialogue model to correlate augmented responses with a quality score during training and then leverage this knowledge at inference. We use noun-based substitution for augmentation and semantic similarity-based scores as a proxy for response quality. Through extensive experiments with benchmark datasets (PERSONA-CHAT and ConvAI2), we show that score-conditioned training allows existing models to better capture a spectrum of persona-consistent dialogues. Our ablation studies also demonstrate that including scores in the input prompt during training is superior to conventional training setups. Code and further details are available at https://arpita2512.github.io/score_before_you_speak
Putting People in LLMs' Shoes: Generating Better Answers via Question Rewriter
Large Language Models (LLMs) have demonstrated significant capabilities, particularly in the domain of question answering (QA). However, their effectiveness in QA is often undermined by the vagueness of user questions. To address this issue, we introduce single-round instance-level prompt optimization, referred to as question rewriter. By enhancing the intelligibility of human questions for black-box LLMs, our question rewriter improves the quality of generated answers. The rewriter is optimized using direct preference optimization based on feedback collected from automatic criteria for evaluating generated answers; therefore, its training does not require costly human annotations. The experiments across multiple black-box LLMs and long-form question answering (LFQA) datasets demonstrate the efficacy of our method. This paper provides a practical framework for training question rewriters and sets a precedent for future explorations in prompt optimization within LFQA tasks. Code is available at https://github.com/3244we/Question-Rewriter.
MetaReflection: Learning Instructions for Language Agents using Past Reflections
The popularity of Large Language Models (LLMs) have unleashed a new age ofLanguage Agents for solving a diverse range of tasks. While contemporary frontier LLMs are capable enough to power reasonably good Language agents, the closed-API model makes it hard to improve in cases they perform sub-optimally. To address this, recent works have explored ways to improve their performance using techniques like self-reflection and prompt optimization. Unfortunately, techniques like self-reflection can be used only in an online setup, while contemporary prompt optimization techniques are designed and tested to work on simple tasks. To this end, we introduce MetaReflection, a novel offline reinforcement learning technique that enhances the performance of Language Agents by augmenting a semantic memory based on experiential learnings from past trials. We demonstrate the efficacy of MetaReflection by evaluating across multiple domains, including complex logical reasoning, biomedical semantic similarity, open world question answering, and vulnerability threat detection, in Infrastructure-as-Code, spanning different agent designs. MetaReflection boosts Language agents' performance by 4% to 16.82% over the raw GPT-4 baseline and performs on par with existing state-of-the-art prompt optimization techniques while requiring fewer LLM calls.
Using Natural Language Explanations to Improve Robustness of In-context Learning for Natural Language Inference
Recent studies have demonstrated that large language models (LLMs) excel in diverse tasks through in-context learning (ICL) facilitated by task-specific prompts and examples. However, the existing literature shows that ICL encounters performance deterioration when exposed to adversarial inputs. Enhanced performance has been observed when ICL is augmented with natural language explanations (NLEs) (we refer to it as X-ICL). Thus, this work investigates whether X-ICL can improve the robustness of LLMs on a suite of seven adversarial and challenging natural language inference datasets. Moreover, we introduce a new approach to X-ICL by prompting an LLM (ChatGPT in our case) with few human-generated NLEs to produce further NLEs (we call it ChatGPT few-shot), which we show superior to both ChatGPT zero-shot and human-generated NLEs alone. We evaluate five popular LLMs (GPT3.5-turbo, LLaMa2, Vicuna, Zephyr, Mistral) and show that X-ICL with ChatGPT few-shot yields over 6% improvement over ICL. Furthermore, while prompt selection strategies were previously shown to significantly improve ICL on in-distribution test sets, we show that these strategies do not match the efficacy of the X-ICL paradigm in robustness-oriented evaluations.
Analyzing the Performance of GPT-3.5 and GPT-4 in Grammatical Error Correction
GPT-3 and GPT-4 models are powerful, achieving high performance on a variety of Natural Language Processing tasks. However, there is a relative lack of detailed published analysis of their performance on the task of grammatical error correction (GEC). To address this, we perform experiments testing the capabilities of a GPT-3.5 model (text-davinci-003) and a GPT-4 model (gpt-4-0314) on major GEC benchmarks. We compare the performance of different prompts in both zero-shot and few-shot settings, analyzing intriguing or problematic outputs encountered with different prompt formats. We report the performance of our best prompt on the BEA-2019 and JFLEG datasets, finding that the GPT models can perform well in a sentence-level revision setting, with GPT-4 achieving a new high score on the JFLEG benchmark. Through human evaluation experiments, we compare the GPT models' corrections to source, human reference, and baseline GEC system sentences and observe differences in editing strategies and how they are scored by human raters.
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
Few-shot in-context learning (ICL) enables pre-trained language models to perform a previously-unseen task without any gradient-based training by feeding a small number of training examples as part of the input. ICL incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made. Parameter-efficient fine-tuning (PEFT) (e.g. adapter modules, prompt tuning, sparse update methods, etc.) offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task. In this paper, we rigorously compare few-shot ICL and PEFT and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs. Along the way, we introduce a new PEFT method called (IA)^3 that scales activations by learned vectors, attaining stronger performance while only introducing a relatively tiny amount of new parameters. We also propose a simple recipe based on the T0 model called T-Few that can be applied to new tasks without task-specific tuning or modifications. We validate the effectiveness of T-Few on completely unseen tasks by applying it to the RAFT benchmark, attaining super-human performance for the first time and outperforming the state-of-the-art by 6% absolute. All of the code used in our experiments is publicly available.
ReGround: Improving Textual and Spatial Grounding at No Cost
When an image generation process is guided by both a text prompt and spatial cues, such as a set of bounding boxes, do these elements work in harmony, or does one dominate the other? Our analysis of a pretrained image diffusion model that integrates gated self-attention into the U-Net reveals that spatial grounding often outweighs textual grounding due to the sequential flow from gated self-attention to cross-attention. We demonstrate that such bias can be significantly mitigated without sacrificing accuracy in either grounding by simply rewiring the network architecture, changing from sequential to parallel for gated self-attention and cross-attention. This surprisingly simple yet effective solution does not require any fine-tuning of the network but significantly reduces the trade-off between the two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding.
Instance-Aware Generalized Referring Expression Segmentation
Recent works on Generalized Referring Expression Segmentation (GRES) struggle with handling complex expressions referring to multiple distinct objects. This is because these methods typically employ an end-to-end foreground-background segmentation and lack a mechanism to explicitly differentiate and associate different object instances to the text query. To this end, we propose InstAlign, a method that incorporates object-level reasoning into the segmentation process. Our model leverages both text and image inputs to extract a set of object-level tokens that capture both the semantic information in the input prompt and the objects within the image. By modeling the text-object alignment via instance-level supervision, each token uniquely represents an object segment in the image, while also aligning with relevant semantic information from the text. Extensive experiments on the gRefCOCO and Ref-ZOM benchmarks demonstrate that our method significantly advances state-of-the-art performance, setting a new standard for precise and flexible GRES.
CoDa: Constrained Generation based Data Augmentation for Low-Resource NLP
We present CoDa (Constrained Generation based Data Augmentation), a controllable, effective, and training-free data augmentation technique for low-resource (data-scarce) NLP. Our approach is based on prompting off-the-shelf instruction-following Large Language Models (LLMs) for generating text that satisfies a set of constraints. Precisely, we extract a set of simple constraints from every instance in the low-resource dataset and verbalize them to prompt an LLM to generate novel and diverse training instances. Our findings reveal that synthetic data that follows simple constraints in the downstream dataset act as highly effective augmentations, and CoDa can achieve this without intricate decoding-time constrained generation techniques or fine-tuning with complex algorithms that eventually make the model biased toward the small number of training instances. Additionally, CoDa is the first framework that provides users explicit control over the augmentation generation process, thereby also allowing easy adaptation to several domains. We demonstrate the effectiveness of CoDa across 11 datasets spanning 3 tasks and 3 low-resource settings. CoDa outperforms all our baselines, qualitatively and quantitatively, with improvements of 0.12%-7.19%. Code is available here: https://github.com/Sreyan88/CoDa
TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models
Text-to-Image (TTI) generative models have shown great progress in the past few years in terms of their ability to generate complex and high-quality imagery. At the same time, these models have been shown to suffer from harmful biases, including exaggerated societal biases (e.g., gender, ethnicity), as well as incidental correlations that limit such a model's ability to generate more diverse imagery. In this paper, we propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt, using counterfactual reasoning. Unlike other works that evaluate generated images on a predefined set of bias axes, our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases. In addition, we complement quantitative scores with post-hoc explanations in terms of semantic concepts in the images generated. We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts, as well as the intersectionality between different biases for any given prompt. We perform extensive user studies to illustrate that the results of our method and analysis are consistent with human judgements.
TF1-EN-3M: Three Million Synthetic Moral Fables for Training Small, Open Language Models
Moral stories are a time-tested vehicle for transmitting values, yet modern NLP lacks a large, structured corpus that couples coherent narratives with explicit ethical lessons. We close this gap with TF1-EN-3M, the first open dataset of three million English-language fables generated exclusively by instruction-tuned models no larger than 8B parameters. Each story follows a six-slot scaffold (character -> trait -> setting -> conflict -> resolution -> moral), produced through a combinatorial prompt engine that guarantees genre fidelity while covering a broad thematic space. A hybrid evaluation pipeline blends (i) a GPT-based critic that scores grammar, creativity, moral clarity, and template adherence with (ii) reference-free diversity and readability metrics. Among ten open-weight candidates, an 8B-parameter Llama-3 variant delivers the best quality-speed trade-off, producing high-scoring fables on a single consumer GPU (<24 GB VRAM) at approximately 13.5 cents per 1,000 fables. We release the dataset, generation code, evaluation scripts, and full metadata under a permissive license, enabling exact reproducibility and cost benchmarking. TF1-EN-3M opens avenues for research in instruction following, narrative intelligence, value alignment, and child-friendly educational AI, demonstrating that large-scale moral storytelling no longer requires proprietary giant models.
Stealing User Prompts from Mixture of Experts
Mixture-of-Experts (MoE) models improve the efficiency and scalability of dense language models by routing each token to a small number of experts in each layer. In this paper, we show how an adversary that can arrange for their queries to appear in the same batch of examples as a victim's queries can exploit Expert-Choice-Routing to fully disclose a victim's prompt. We successfully demonstrate the effectiveness of this attack on a two-layer Mixtral model, exploiting the tie-handling behavior of the torch.topk CUDA implementation. Our results show that we can extract the entire prompt using O({VM}^2) queries (with vocabulary size V and prompt length M) or 100 queries on average per token in the setting we consider. This is the first attack to exploit architectural flaws for the purpose of extracting user prompts, introducing a new class of LLM vulnerabilities.
Robots That Ask For Help: Uncertainty Alignment for Large Language Model Planners
Large language models (LLMs) exhibit a wide range of promising capabilities -- from step-by-step planning to commonsense reasoning -- that may provide utility for robots, but remain prone to confidently hallucinated predictions. In this work, we present KnowNo, which is a framework for measuring and aligning the uncertainty of LLM-based planners such that they know when they don't know and ask for help when needed. KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion while minimizing human help in complex multi-step planning settings. Experiments across a variety of simulated and real robot setups that involve tasks with different modes of ambiguity (e.g., from spatial to numeric uncertainties, from human preferences to Winograd schemas) show that KnowNo performs favorably over modern baselines (which may involve ensembles or extensive prompt tuning) in terms of improving efficiency and autonomy, while providing formal assurances. KnowNo can be used with LLMs out of the box without model-finetuning, and suggests a promising lightweight approach to modeling uncertainty that can complement and scale with the growing capabilities of foundation models. Website: https://robot-help.github.io
Identifying Prompted Artist Names from Generated Images
A common and controversial use of text-to-image models is to generate pictures by explicitly naming artists, such as "in the style of Greg Rutkowski". We introduce a benchmark for prompted-artist recognition: predicting which artist names were invoked in the prompt from the image alone. The dataset contains 1.95M images covering 110 artists and spans four generalization settings: held-out artists, increasing prompt complexity, multiple-artist prompts, and different text-to-image models. We evaluate feature similarity baselines, contrastive style descriptors, data attribution methods, supervised classifiers, and few-shot prototypical networks. Generalization patterns vary: supervised and few-shot models excel on seen artists and complex prompts, whereas style descriptors transfer better when the artist's style is pronounced; multi-artist prompts remain the most challenging. Our benchmark reveals substantial headroom and provides a public testbed to advance the responsible moderation of text-to-image models. We release the dataset and benchmark to foster further research: https://graceduansu.github.io/IdentifyingPromptedArtists/
Large Language Models for Toxic Language Detection in Low-Resource Balkan Languages
Online toxic language causes real harm, especially in regions with limited moderation tools. In this study, we evaluate how large language models handle toxic comments in Serbian, Croatian, and Bosnian, languages with limited labeled data. We built and manually labeled a dataset of 4,500 YouTube and TikTok comments drawn from videos across diverse categories, including music, politics, sports, modeling, influencer content, discussions of sexism, and general topics. Four models (GPT-3.5 Turbo, GPT-4.1, Gemini 1.5 Pro, and Claude 3 Opus) were tested in two modes: zero-shot and context-augmented. We measured precision, recall, F1 score, accuracy and false positive rates. Including a short context snippet raised recall by about 0.12 on average and improved F1 score by up to 0.10, though it sometimes increased false positives. The best balance came from Gemini in context-augmented mode, reaching an F1 score of 0.82 and accuracy of 0.82, while zero-shot GPT-4.1 led on precision and had the lowest false alarms. We show how adding minimal context can improve toxic language detection in low-resource settings and suggest practical strategies such as improved prompt design and threshold calibration. These results show that prompt design alone can yield meaningful gains in toxicity detection for underserved Balkan language communities.
CineVerse: Consistent Keyframe Synthesis for Cinematic Scene Composition
We present CineVerse, a novel framework for the task of cinematic scene composition. Similar to traditional multi-shot generation, our task emphasizes the need for consistency and continuity across frames. However, our task also focuses on addressing challenges inherent to filmmaking, such as multiple characters, complex interactions, and visual cinematic effects. In order to learn to generate such content, we first create the CineVerse dataset. We use this dataset to train our proposed two-stage approach. First, we prompt a large language model (LLM) with task-specific instructions to take in a high-level scene description and generate a detailed plan for the overall setting and characters, as well as the individual shots. Then, we fine-tune a text-to-image generation model to synthesize high-quality visual keyframes. Experimental results demonstrate that CineVerse yields promising improvements in generating visually coherent and contextually rich movie scenes, paving the way for further exploration in cinematic video synthesis.
Permissive Information-Flow Analysis for Large Language Models
Large Language Models (LLMs) are rapidly becoming commodity components of larger software systems. This poses natural security and privacy problems: poisoned data retrieved from one component can change the model's behavior and compromise the entire system, including coercing the model to spread confidential data to untrusted components. One promising approach is to tackle this problem at the system level via dynamic information flow (aka taint) tracking. Unfortunately, the traditional approach of propagating the most restrictive input label to the output is too conservative for applications where LLMs operate on inputs retrieved from diverse sources. In this paper, we propose a novel, more permissive approach to propagate information flow labels through LLM queries. The key idea behind our approach is to propagate only the labels of the samples that were influential in generating the model output and to eliminate the labels of unnecessary input. We implement and investigate the effectiveness of two variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a k-nearest-neighbors language model. We compare these with the baseline of an introspection-based influence estimator that directly asks the language model to predict the output label. The results obtained highlight the superiority of our prompt-based label propagator, which improves the label in more than 85% of the cases in an LLM agent setting. These findings underscore the practicality of permissive label propagation for retrieval augmentation.
Conversational Query Reformulation with the Guidance of Retrieved Documents
Conversational search seeks to retrieve relevant passages for the given questions in Conversational QA (ConvQA). Questions in ConvQA face challenges such as omissions and coreferences, making it difficult to obtain desired search results. Conversational Query Reformulation (CQR) transforms these current queries into de-contextualized forms to resolve these issues. However, existing CQR methods focus on rewriting human-friendly queries, which may not always yield optimal search results for the retriever. To overcome this challenge, we introduce GuideCQR, a framework that utilizes guided documents to refine queries, ensuring that they are optimal for retrievers. Specifically, we augment keywords, generate expected answers from the re-ranked documents, and unify them with the filtering process. Experimental results show that queries enhanced by guided documents outperform previous CQR methods. Especially, GuideCQR surpasses the performance of Large Language Model (LLM) prompt-powered approaches and demonstrates the importance of the guided documents in formulating retriever-friendly queries across diverse setups.
Helpful assistant or fruitful facilitator? Investigating how personas affect language model behavior
One way to personalize and steer generations from large language models (LLM) is to assign a persona: a role that describes how the user expects the LLM to behave (e.g., a helpful assistant, a teacher, a woman). This paper investigates how personas affect diverse aspects of model behavior. We assign to seven LLMs 162 personas from 12 categories spanning variables like gender, sexual orientation, and occupation. We prompt them to answer questions from five datasets covering objective (e.g., questions about math and history) and subjective tasks (e.g., questions about beliefs and values). We also compare persona's generations to two baseline settings: a control persona setting with 30 paraphrases of "a helpful assistant" to control for models' prompt sensitivity, and an empty persona setting where no persona is assigned. We find that for all models and datasets, personas show greater variability than the control setting and that some measures of persona behavior generalize across models.
SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
GEMRec: Towards Generative Model Recommendation
Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at https://github.com/MAPS-research/GEMRec.
Towards Robust Prompts on Vision-Language Models
With the advent of vision-language models (VLMs) that can perform in-context and prompt-based learning, how can we design prompting approaches that robustly generalize to distribution shift and can be used on novel classes outside the support set of the prompts? In this work, we first define two types of robustness to distribution shift on VLMs, namely, robustness on base classes (the classes included in the support set of prompts) and robustness on novel classes. Then, we study the robustness of existing in-context learning and prompt learning approaches, where we find that prompt learning performs robustly on test images from base classes, while it does not generalize well on images from novel classes. We propose robust prompt learning by integrating multiple-scale image features into the prompt, which improves both types of robustness. Comprehensive experiments are conducted to study the defined robustness on six benchmarks and show the effectiveness of our proposal.
GPT Understands, Too
While GPTs with traditional fine-tuning fail to achieve strong results on natural language understanding (NLU), we show that GPTs can be better than or comparable to similar-sized BERTs on NLU tasks with a novel method P-tuning -- which employs trainable continuous prompt embeddings. On the knowledge probing (LAMA) benchmark, the best GPT recovers 64\% (P@1) of world knowledge without any additional text provided during test time, which substantially improves the previous best by 20+ percentage points. On the SuperGlue benchmark, GPTs achieve comparable and sometimes better performance to similar-sized BERTs in supervised learning. Importantly, we find that P-tuning also improves BERTs' performance in both few-shot and supervised settings while largely reducing the need for prompt engineering. Consequently, P-tuning outperforms the state-of-the-art approaches on the few-shot SuperGlue benchmark.
Alignment faking in large language models
We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data--and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference--as in this case--or not.
SciPrompt: Knowledge-augmented Prompting for Fine-grained Categorization of Scientific Topics
Prompt-based fine-tuning has become an essential method for eliciting information encoded in pre-trained language models for a variety of tasks, including text classification. For multi-class classification tasks, prompt-based fine-tuning under low-resource scenarios has resulted in performance levels comparable to those of fully fine-tuning methods. Previous studies have used crafted prompt templates and verbalizers, mapping from the label terms space to the class space, to solve the classification problem as a masked language modeling task. However, cross-domain and fine-grained prompt-based fine-tuning with an automatically enriched verbalizer remains unexplored, mainly due to the difficulty and costs of manually selecting domain label terms for the verbalizer, which requires humans with domain expertise. To address this challenge, we introduce SciPrompt, a framework designed to automatically retrieve scientific topic-related terms for low-resource text classification tasks. To this end, we select semantically correlated and domain-specific label terms within the context of scientific literature for verbalizer augmentation. Furthermore, we propose a new verbalization strategy that uses correlation scores as additional weights to enhance the prediction performance of the language model during model tuning. Our method outperforms state-of-the-art, prompt-based fine-tuning methods on scientific text classification tasks under few and zero-shot settings, especially in classifying fine-grained and emerging scientific topics.
MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning
Low-rank adaptation (LoRA) and its mixture-of-experts (MOE) variants are highly effective parameter-efficient fine-tuning (PEFT) methods. However, they introduce significant latency in multi-tenant settings due to the LoRA modules and MOE routers added to multiple linear modules in the Transformer layer. To address this issue, we propose Mixture of Low-Rank Adaptation (MiLoRA), a novel and efficient LoRA variant. MiLoRA differs from previous MOE-style LoRA methods by considering each LoRA module as an expert and employing a prompt-aware routing mechanism. This mechanism calculates expert routing results once before generating the first new token and reuses these results for subsequent tokens, reducing latency. Extensive experiments and analysis on commonsense reasoning tasks, math reasoning tasks, and widely used LLM evaluation benchmarks demonstrate that MiLoRA consistently outperforms strong PEFT baselines with comparable tunable parameter budgets. Additionally, MiLoRA significantly reduces latency in multi-tenant settings compared to previous LoRA-based methods.
LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners
We present a new method LiST is short for Lite Prompted Self-Training for parameter-efficient fine-tuning of large pre-trained language models (PLMs) for few-shot learning. LiST improves over recent methods that adopt prompt-based fine-tuning (FN) using two key techniques. The first is the use of self-training to leverage large amounts of unlabeled data for prompt-based FN in few-shot settings. We use self-training in conjunction with meta-learning for re-weighting noisy pseudo-prompt labels. Self-training is expensive as it requires updating all the model parameters repetitively. Therefore, we use a second technique for light-weight fine-tuning where we introduce a small number of task-specific parameters that are fine-tuned during self-training while keeping the PLM encoder frozen. Our experiments show that LiST can effectively leverage unlabeled data to improve the model performance for few-shot learning. Additionally, the fine-tuning is efficient as it only updates a small percentage of parameters and the overall model footprint is reduced since several tasks can share a common PLM encoder as backbone. A comprehensive study on six NLU tasks demonstrate LiST to improve by 35% over classic fine-tuning and 6% over prompt-based FN with 96% reduction in number of trainable parameters when fine-tuned with no more than 30 labeled examples from each task. With only 14M tunable parameters, LiST outperforms GPT-3 in-context learning by 33% on few-shot NLU tasks.
Reframing Instructional Prompts to GPTk's Language
What kinds of instructional prompts are easier to follow for Language Models (LMs)? We study this question by conducting extensive empirical analysis that shed light on important features of successful instructional prompts. Specifically, we study several classes of reframing techniques for manual reformulation of prompts into more effective ones. Some examples include decomposing a complex task instruction into multiple simpler tasks or itemizing instructions into sequential steps. Our experiments compare the zero-shot and few-shot performance of LMs prompted with reframed instructions on 12 NLP tasks across 6 categories. Compared with original instructions, our reframed instructions lead to significant improvements across LMs with different sizes. For example, the same reframed prompts boost few-shot performance of GPT3-series and GPT2-series by 12.5% and 6.7% respectively averaged over all tasks. Furthermore, reframed instructions reduce the number of examples required to prompt LMs in the few-shot setting. We hope these empirically-driven techniques will pave the way towards more effective future prompting algorithms.
Multi-Prompting Decoder Helps Better Language Understanding
Recent Pre-trained Language Models (PLMs) usually only provide users with the inference APIs, namely the emerging Model-as-a-Service (MaaS) setting. To adapt MaaS PLMs to downstream tasks without accessing their parameters and gradients, some existing methods focus on the output-side adaptation of PLMs, viewing the PLM as an encoder and then optimizing a task-specific decoder for decoding the output hidden states and class scores of the PLM. Despite the effectiveness of these methods, they only use a single prompt to query PLMs for decoding, leading to a heavy reliance on the quality of the adopted prompt. In this paper, we propose a simple yet effective Multi-Prompting Decoder (MPD) framework for MaaS adaptation. The core idea is to query PLMs with multiple different prompts for each sample, thereby obtaining multiple output hidden states and class scores for subsequent decoding. Such multi-prompting decoding paradigm can simultaneously mitigate reliance on the quality of a single prompt, alleviate the issue of data scarcity under the few-shot setting, and provide richer knowledge extracted from PLMs. Specifically, we propose two decoding strategies: multi-prompting decoding with optimal transport for hidden states and calibrated decoding for class scores. Extensive experiments demonstrate that our method achieves new state-of-the-art results on multiple natural language understanding datasets under the few-shot setting.
CitePrompt: Using Prompts to Identify Citation Intent in Scientific Papers
Citations in scientific papers not only help us trace the intellectual lineage but also are a useful indicator of the scientific significance of the work. Citation intents prove beneficial as they specify the role of the citation in a given context. In this paper, we present CitePrompt, a framework which uses the hitherto unexplored approach of prompt-based learning for citation intent classification. We argue that with the proper choice of the pretrained language model, the prompt template, and the prompt verbalizer, we can not only get results that are better than or comparable to those obtained with the state-of-the-art methods but also do it with much less exterior information about the scientific document. We report state-of-the-art results on the ACL-ARC dataset, and also show significant improvement on the SciCite dataset over all baseline models except one. As suitably large labelled datasets for citation intent classification can be quite hard to find, in a first, we propose the conversion of this task to the few-shot and zero-shot settings. For the ACL-ARC dataset, we report a 53.86% F1 score for the zero-shot setting, which improves to 63.61% and 66.99% for the 5-shot and 10-shot settings, respectively.
Continued Pretraining for Better Zero- and Few-Shot Promptability
Recently introduced language model prompting methods can achieve high accuracy in zero- and few-shot settings while requiring few to no learned task-specific parameters. Nevertheless, these methods still often trail behind full model finetuning. In this work, we investigate if a dedicated continued pretraining stage could improve "promptability", i.e., zero-shot performance with natural language prompts or few-shot performance with prompt tuning. We reveal settings where existing continued pretraining methods lack promptability. We also identify current methodological gaps, which we fill with thorough large-scale experiments. We demonstrate that a simple recipe, continued pretraining that incorporates a trainable prompt during multi-task learning, leads to improved promptability in both zero- and few-shot settings compared to existing methods, up to 31% relative. On the other hand, we find that continued pretraining using MAML-style meta-learning, a method that directly optimizes few-shot promptability, yields subpar performance. We validate our findings with two prompt tuning methods, and, based on our results, we provide concrete recommendations to optimize promptability for different use cases.
Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization
Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.
Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations
We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.
Steering Conceptual Bias via Transformer Latent-Subspace Activation
This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.
GPT Self-Supervision for a Better Data Annotator
The task of annotating data into concise summaries poses a significant challenge across various domains, frequently requiring the allocation of significant time and specialized knowledge by human experts. Despite existing efforts to use large language models for annotation tasks, significant problems such as limited applicability to unlabeled data, the absence of self-supervised methods, and the lack of focus on complex structured data still persist. In this work, we propose a GPT self-supervision annotation method, which embodies a generating-recovering paradigm that leverages the one-shot learning capabilities of the Generative Pretrained Transformer (GPT). The proposed approach comprises a one-shot tuning phase followed by a generation phase. In the one-shot tuning phase, we sample a data from the support set as part of the prompt for GPT to generate a textual summary, which is then used to recover the original data. The alignment score between the recovered and original data serves as a self-supervision navigator to refine the process. In the generation stage, the optimally selected one-shot sample serves as a template in the prompt and is applied to generating summaries from challenging datasets. The annotation performance is evaluated by tuning several human feedback reward networks and by calculating alignment scores between original and recovered data at both sentence and structure levels. Our self-supervised annotation method consistently achieves competitive scores, convincingly demonstrating its robust strength in various data-to-summary annotation tasks.
Can language models learn from explanations in context?
Language Models (LMs) can perform new tasks by adapting to a few in-context examples. For humans, explanations that connect examples to task principles can improve learning. We therefore investigate whether explanations of few-shot examples can help LMs. We annotate questions from 40 challenging tasks with answer explanations, and various matched control explanations. We evaluate how different types of explanations, instructions, and controls affect zero- and few-shot performance. We analyze these results using statistical multilevel modeling techniques that account for the nested dependencies among conditions, tasks, prompts, and models. We find that explanations can improve performance -- even without tuning. Furthermore, explanations hand-tuned for performance on a small validation set offer substantially larger benefits, and building a prompt by selecting examples and explanations together substantially improves performance over selecting examples alone. Finally, even untuned explanations outperform carefully matched controls, suggesting that the benefits are due to the link between an example and its explanation, rather than lower-level features. However, only large models benefit. In summary, explanations can support the in-context learning of large LMs on challenging tasks.
Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars. However, in low-resource languages, obtaining such hand-picked exemplars can still be challenging, where unsupervised techniques may be necessary. Moreover, competent generative capabilities of LLMs are observed only in high-resource languages, while their performances among under-represented languages fall behind due to pre-training data imbalance. To elicit LLMs' ability onto low-resource languages without any supervised data, we propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English. These prompts are then used to create intra-lingual exemplars to perform tasks in the target languages. Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages. We also show that fine-tuning a 7B model on data generated from our method helps it perform competitively with a 175B model. In non-English translation tasks, our method even outperforms supervised prompting by up to 3 chrF++ in many low-resource languages. When evaluated on zero-shot multilingual summarization, our method surpasses other English-pivoting baselines by up to 4 ROUGE-L and is also favored by GPT-4.
Jailbroken: How Does LLM Safety Training Fail?
Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes.
Spinning the Golden Thread: Benchmarking Long-Form Generation in Language Models
The abilities of long-context language models (LMs) are often evaluated using the "Needle-in-a-Haystack" (NIAH) test, which comprises tasks designed to assess a model's ability to identify specific information ("needle") within large text sequences ("haystack"). While these benchmarks measure how well models understand long-context input sequences, they do not effectively gauge the quality of long-form text generation--a critical aspect for applications such as design proposals and creative writing. To address this gap, we have introduced a new long-form text evaluation benchmark, Spinning the Golden Thread (SGT), which tests models' ability to identify specific events within generated long text sequences. In this benchmark, we prompt long-context LMs to create long-form text that must include particular events or constraints and evaluate their ability to incorporate these elements. We evaluated ten long-context LMs across four distinct scenarios, three types of prompt instructions, and two different generation-length settings (16K and 32K). Although these models perform well on NIAH benchmarks, none demonstrated satisfactory performance on the Spinning the Golden Thread, raising concerns about their ability to generate coherent long-form text that follows instructions. Additionally, as the length of the generated text increases, all models exhibit a significant drop in performance.
Can Sensitive Information Be Deleted From LLMs? Objectives for Defending Against Extraction Attacks
Pretrained language models sometimes possess knowledge that we do not wish them to, including memorized personal information and knowledge that could be used to harm people. They can also output toxic or harmful text. To mitigate these safety and informational issues, we propose an attack-and-defense framework for studying the task of deleting sensitive information directly from model weights. We study direct edits to model weights because (1) this approach should guarantee that particular deleted information is never extracted by future prompt attacks, and (2) it should protect against whitebox attacks, which is necessary for making claims about safety/privacy in a setting where publicly available model weights could be used to elicit sensitive information. Our threat model assumes that an attack succeeds if the answer to a sensitive question is located among a set of B generated candidates, based on scenarios where the information would be insecure if the answer is among B candidates. Experimentally, we show that even state-of-the-art model editing methods such as ROME struggle to truly delete factual information from models like GPT-J, as our whitebox and blackbox attacks can recover "deleted" information from an edited model 38% of the time. These attacks leverage two key observations: (1) that traces of deleted information can be found in intermediate model hidden states, and (2) that applying an editing method for one question may not delete information across rephrased versions of the question. Finally, we provide new defense methods that protect against some extraction attacks, but we do not find a single universally effective defense method. Our results suggest that truly deleting sensitive information is a tractable but difficult problem, since even relatively low attack success rates have potentially severe societal implications for real-world deployment of language models.
When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for Personalized Image Generation
Text-to-image diffusion models have remarkably excelled in producing diverse, high-quality, and photo-realistic images. This advancement has spurred a growing interest in incorporating specific identities into generated content. Most current methods employ an inversion approach to embed a target visual concept into the text embedding space using a single reference image. However, the newly synthesized faces either closely resemble the reference image in terms of facial attributes, such as expression, or exhibit a reduced capacity for identity preservation. Text descriptions intended to guide the facial attributes of the synthesized face may fall short, owing to the intricate entanglement of identity information with identity-irrelevant facial attributes derived from the reference image. To address these issues, we present the novel use of the extended StyleGAN embedding space W_+, to achieve enhanced identity preservation and disentanglement for diffusion models. By aligning this semantically meaningful human face latent space with text-to-image diffusion models, we succeed in maintaining high fidelity in identity preservation, coupled with the capacity for semantic editing. Additionally, we propose new training objectives to balance the influences of both prompt and identity conditions, ensuring that the identity-irrelevant background remains unaffected during facial attribute modifications. Extensive experiments reveal that our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions in diverse settings. Our source code will be available at https://github.com/csxmli2016/w-plus-adapter.
Ask Again, Then Fail: Large Language Models' Vacillations in Judgement
With the emergence of generative conversational large language models (LLMs) like ChatGPT, serving as virtual assistants in various fields, the stability and reliability of their responses have become crucial. However, during usage, it has been observed that these models tend to waver in their judgements when confronted with follow-up questions from users expressing skepticism or disagreement. In this work, we draw inspiration from questioning strategies in education and propose a Follow-up Questioning Mechanism along with two evaluation metrics to assess the judgement consistency of LLMs before and after exposure to disturbances. We evaluate the judgement consistency of ChatGPT, PaLM2-Bison, and Vicuna-13B under this mechanism across eight reasoning benchmarks. Empirical results show that even when the initial answers are correct, judgement consistency sharply decreases when LLMs face disturbances such as questioning, negation, or misleading. Additionally, we study these models' judgement consistency under various settings (sampling temperature and prompts) to validate this issue further, observing the impact of prompt tone and conducting an in-depth error analysis for deeper behavioral insights. Furthermore, we also explore several prompting methods to mitigate this issue and demonstrate their effectiveness\url{https://github.com/NUSTM/LLMs-Waver-In-Judgements}.
RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments
Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning ASRs of up to 50% in realistic end-to-end settings, with the recently released frontier Claude 4 Opus | CUA showing an alarming ASR of 48%, demonstrating that indirect prompt injection presents tangible risks for even advanced CUAs despite their capabilities and safeguards. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.
ZeroTuning: Unlocking the Initial Token's Power to Enhance Large Language Models Without Training
Recently, training-free methods for improving large language models (LLMs) have attracted growing interest, with token-level attention tuning emerging as a promising and interpretable direction. However, existing methods typically rely on auxiliary mechanisms to identify important or irrelevant task-specific tokens, introducing potential bias and limiting applicability. In this paper, we uncover a surprising and elegant alternative: the semantically empty initial token is a powerful and underexplored control point for optimizing model behavior. Through theoretical analysis, we show that tuning the initial token's attention sharpens or flattens the attention distribution over subsequent tokens, and its role as an attention sink amplifies this effect. Empirically, we find that: (1) tuning its attention improves LLM performance more effectively than tuning other task-specific tokens; (2) the effect follows a consistent trend across layers, with earlier layers having greater impact, but varies across attention heads, with different heads showing distinct preferences in how they attend to this token. Based on these findings, we propose ZeroTuning, a training-free approach that improves LLM performance by applying head-specific attention adjustments to this special token. Despite tuning only one token, ZeroTuning achieves higher performance on text classification, multiple-choice, and multi-turn conversation tasks across models such as Llama, Qwen, and DeepSeek. For example, ZeroTuning improves Llama-3.1-8B by 11.71% on classification, 2.64% on QA tasks, and raises its multi-turn score from 7.804 to 7.966. The method is also robust to limited resources, few-shot settings, long contexts, quantization, decoding strategies, and prompt variations. Our work sheds light on a previously overlooked control point in LLMs, offering new insights into both inference-time tuning and model interpretability.
On Speeding Up Language Model Evaluation
Large language models (LLMs) currently dominate the field of natural language processing (NLP), representing the state-of-the-art across a diverse array of tasks. Developing a model of this nature, from training to inference, requires making numerous decisions which define a combinatorial search problem. For example, selecting the optimal pre-trained LLM, prompt, or hyperparameters to attain the best performance for a task often requires evaluating multiple candidates on an entire test set. This exhaustive evaluation can be time-consuming and costly, as both inference and metric computation with LLMs are resource-intensive. In this paper, we address the challenge of identifying the best method within a limited budget for evaluating methods on test examples. By leveraging the well-studied multi-armed bandit framework, which sequentially selects the next method-example pair to evaluate, our approach, combining multi-armed bandit algorithms with low-rank factorization, significantly reduces the required resources. Experiments show that our algorithms can identify the top-performing method using only 5-15\% of the typically needed resources, resulting in an 85-95\% reduction in cost.
Cultivating Pluralism In Algorithmic Monoculture: The Community Alignment Dataset
How can large language models (LLMs) serve users with varying preferences that may conflict across cultural, political, or other dimensions? To advance this challenge, this paper establishes four key results. First, we demonstrate, through a large-scale multilingual human study with representative samples from five countries (N=15,000), that humans exhibit significantly more variation in preferences than the responses of 21 state-of-the-art LLMs. Second, we show that existing methods for preference dataset collection are insufficient for learning the diversity of human preferences even along two of the most salient dimensions of variability in global values, due to the underlying homogeneity of candidate responses. Third, we argue that this motivates the need for negatively-correlated sampling when generating candidate sets, and we show that simple prompt-based techniques for doing so significantly enhance the performance of alignment methods in learning heterogeneous preferences. Fourth, based on this novel candidate sampling approach, we collect and open-source Community Alignment, the largest and most representative multilingual and multi-turn preference dataset to date, featuring almost 200,000 comparisons from annotators spanning five countries. We hope that the Community Alignment dataset will be a valuable resource for improving the effectiveness of LLMs for a diverse global population.
Evaluating Generalization and Representation Stability in Small LMs via Prompting, Fine-Tuning and Out-of-Distribution Prompts
We investigate the generalization capabilities of small language models under two popular adaptation paradigms: few-shot prompting and supervised fine-tuning. While prompting is often favored for its parameter efficiency and flexibility, it remains unclear how robust this approach is in low-resource settings and under distributional shifts. This paper presents a comparative study of prompting and fine-tuning across task formats, prompt styles, and model scales, with a focus on their behavior in both in-distribution and out-of-distribution (OOD) settings. Beyond accuracy, we analyze the internal representations learned by each approach to assess the stability and abstraction of task-specific features. Our findings highlight critical differences in how small models internalize and generalize knowledge under different adaptation strategies. This work offers practical guidance for model selection in low-data regimes and contributes empirical insight into the ongoing debate over prompting versus fine-tuning. Code for the experiments is available at the following
Misaligned Roles, Misplaced Images: Structural Input Perturbations Expose Multimodal Alignment Blind Spots
Multimodal Language Models (MMLMs) typically undergo post-training alignment to prevent harmful content generation. However, these alignment stages focus primarily on the assistant role, leaving the user role unaligned, and stick to a fixed input prompt structure of special tokens, leaving the model vulnerable when inputs deviate from these expectations. We introduce Role-Modality Attacks (RMA), a novel class of adversarial attacks that exploit role confusion between the user and assistant and alter the position of the image token to elicit harmful outputs. Unlike existing attacks that modify query content, RMAs manipulate the input structure without altering the query itself. We systematically evaluate these attacks across multiple Vision Language Models (VLMs) on eight distinct settings, showing that they can be composed to create stronger adversarial prompts, as also evidenced by their increased projection in the negative refusal direction in the residual stream, a property observed in prior successful attacks. Finally, for mitigation, we propose an adversarial training approach that makes the model robust against input prompt perturbations. By training the model on a range of harmful and benign prompts all perturbed with different RMA settings, it loses its sensitivity to Role Confusion and Modality Manipulation attacks and is trained to only pay attention to the content of the query in the input prompt structure, effectively reducing Attack Success Rate (ASR) while preserving the model's general utility.
Prompting Implicit Discourse Relation Annotation
Pre-trained large language models, such as ChatGPT, archive outstanding performance in various reasoning tasks without supervised training and were found to have outperformed crowdsourcing workers. Nonetheless, ChatGPT's performance in the task of implicit discourse relation classification, prompted by a standard multiple-choice question, is still far from satisfactory and considerably inferior to state-of-the-art supervised approaches. This work investigates several proven prompting techniques to improve ChatGPT's recognition of discourse relations. In particular, we experimented with breaking down the classification task that involves numerous abstract labels into smaller subtasks. Nonetheless, experiment results show that the inference accuracy hardly changes even with sophisticated prompt engineering, suggesting that implicit discourse relation classification is not yet resolvable under zero-shot or few-shot settings.
Labels Need Prompts Too Mask Matching for Natural Language Understanding Tasks
Textual label names (descriptions) are typically semantically rich in many natural language understanding (NLU) tasks. In this paper, we incorporate the prompting methodology, which is widely used to enrich model input, into the label side for the first time. Specifically, we propose a Mask Matching method, which equips an input with a prompt and its label with another, and then makes predictions by matching their mask representations. We evaluate our method extensively on 8 NLU tasks with 14 datasets. The experimental results show that Mask Matching significantly outperforms its counterparts of fine-tuning and conventional prompt-tuning, setting up state-of-the-art performances in several datasets. Mask Matching is particularly good at handling NLU tasks with large label counts and informative label names. As pioneering efforts that investigate the label-side prompt, we also discuss open issues for future study.
Learning to Transfer Prompts for Text Generation
Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.
Exploring the MIT Mathematics and EECS Curriculum Using Large Language Models
We curate a comprehensive dataset of 4,550 questions and solutions from problem sets, midterm exams, and final exams across all MIT Mathematics and Electrical Engineering and Computer Science (EECS) courses required for obtaining a degree. We evaluate the ability of large language models to fulfill the graduation requirements for any MIT major in Mathematics and EECS. Our results demonstrate that GPT-3.5 successfully solves a third of the entire MIT curriculum, while GPT-4, with prompt engineering, achieves a perfect solve rate on a test set excluding questions based on images. We fine-tune an open-source large language model on this dataset. We employ GPT-4 to automatically grade model responses, providing a detailed performance breakdown by course, question, and answer type. By embedding questions in a low-dimensional space, we explore the relationships between questions, topics, and classes and discover which questions and classes are required for solving other questions and classes through few-shot learning. Our analysis offers valuable insights into course prerequisites and curriculum design, highlighting language models' potential for learning and improving Mathematics and EECS education.
xFinder: Robust and Pinpoint Answer Extraction for Large Language Models
The continuous advancement of large language models (LLMs) has brought increasing attention to the critical issue of developing fair and reliable methods for evaluating their performance. Particularly, the emergence of subjective or non-subjective cheating phenomena, such as test set leakage and prompt format overfitting, poses significant challenges to the reliable evaluation of LLMs. Since evaluation frameworks often utilize Regular Expression (RegEx) for answer extraction, some models may adjust their responses to comply with specific formats that are easily extractable by RegEx. Nevertheless, the key answer extraction module based on RegEx frequently suffers from extraction errors. This paper conducts a comprehensive analysis of the entire LLM evaluation chain, demonstrating that optimizing the key answer extraction module can improve extraction accuracy, reduce LLMs' reliance on specific answer formats, and enhance the reliability of LLM evaluation. To address these issues, we propose xFinder, a model specifically designed for key answer extraction. As part of this process, we create a specialized dataset, the Key Answer Finder (KAF) dataset, to ensure effective model training and evaluation. Through generalization testing and evaluation in real-world scenarios, the results demonstrate that the smallest xFinder model with only 500 million parameters achieves an average answer extraction accuracy of 93.42%. In contrast, RegEx accuracy in the best evaluation framework is 74.38%. xFinder exhibits stronger robustness and higher accuracy compared to existing evaluation frameworks. All resources for xFinder are available at https://github.com/IAAR-Shanghai/xFinder.
CLIPSym: Delving into Symmetry Detection with CLIP
Symmetry is one of the most fundamental geometric cues in computer vision, and detecting it has been an ongoing challenge. With the recent advances in vision-language models,~i.e., CLIP, we investigate whether a pre-trained CLIP model can aid symmetry detection by leveraging the additional symmetry cues found in the natural image descriptions. We propose CLIPSym, which leverages CLIP's image and language encoders and a rotation-equivariant decoder based on a hybrid of Transformer and G-Convolution to detect rotation and reflection symmetries. To fully utilize CLIP's language encoder, we have developed a novel prompting technique called Semantic-Aware Prompt Grouping (SAPG), which aggregates a diverse set of frequent object-based prompts to better integrate the semantic cues for symmetry detection. Empirically, we show that CLIPSym outperforms the current state-of-the-art on three standard symmetry detection datasets (DENDI, SDRW, and LDRS). Finally, we conduct detailed ablations verifying the benefits of CLIP's pre-training, the proposed equivariant decoder, and the SAPG technique. The code is available at https://github.com/timyoung2333/CLIPSym.
The Hidden Language of Diffusion Models
Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual concept (e.g., "a doctor", "love"). However, the internal process of mapping text to a rich visual representation remains an enigma. In this work, we tackle the challenge of understanding concept representations in text-to-image models by decomposing an input text prompt into a small set of interpretable elements. This is achieved by learning a pseudo-token that is a sparse weighted combination of tokens from the model's vocabulary, with the objective of reconstructing the images generated for the given concept. Applied over the state-of-the-art Stable Diffusion model, this decomposition reveals non-trivial and surprising structures in the representations of concepts. For example, we find that some concepts such as "a president" or "a composer" are dominated by specific instances (e.g., "Obama", "Biden") and their interpolations. Other concepts, such as "happiness" combine associated terms that can be concrete ("family", "laughter") or abstract ("friendship", "emotion"). In addition to peering into the inner workings of Stable Diffusion, our method also enables applications such as single-image decomposition to tokens, bias detection and mitigation, and semantic image manipulation. Our code will be available at: https://hila-chefer.github.io/Conceptor/
Localized Symbolic Knowledge Distillation for Visual Commonsense Models
Instruction following vision-language (VL) models offer a flexible interface that supports a broad range of multimodal tasks in a zero-shot fashion. However, interfaces that operate on full images do not directly enable the user to "point to" and access specific regions within images. This capability is important not only to support reference-grounded VL benchmarks, but also, for practical applications that require precise within-image reasoning. We build Localized Visual Commonsense models, which allow users to specify (multiple) regions as input. We train our model by sampling localized commonsense knowledge from a large language model (LLM): specifically, we prompt an LLM to collect commonsense knowledge given a global literal image description and a local literal region description automatically generated by a set of VL models. With a separately trained critic model that selects high-quality examples, we find that training on the localized commonsense corpus can successfully distill existing VL models to support a reference-as-input interface. Empirical results and human evaluations in a zero-shot setup demonstrate that our distillation method results in more precise VL models of reasoning compared to a baseline of passing a generated referring expression to an LLM.
Best Prompts for Text-to-Image Models and How to Find Them
Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions.
What does CLIP know about peeling a banana?
Humans show an innate capability to identify tools to support specific actions. The association between objects parts and the actions they facilitate is usually named affordance. Being able to segment objects parts depending on the tasks they afford is crucial to enable intelligent robots to use objects of daily living. Traditional supervised learning methods for affordance segmentation require costly pixel-level annotations, while weakly supervised approaches, though less demanding, still rely on object-interaction examples and support a closed set of actions. These limitations hinder scalability, may introduce biases, and usually restrict models to a limited set of predefined actions. This paper proposes AffordanceCLIP, to overcome these limitations by leveraging the implicit affordance knowledge embedded within large pre-trained Vision-Language models like CLIP. We experimentally demonstrate that CLIP, although not explicitly trained for affordances detection, retains valuable information for the task. Our AffordanceCLIP achieves competitive zero-shot performance compared to methods with specialized training, while offering several advantages: i) it works with any action prompt, not just a predefined set; ii) it requires training only a small number of additional parameters compared to existing solutions and iii) eliminates the need for direct supervision on action-object pairs, opening new perspectives for functionality-based reasoning of models.
PIN: Positional Insert Unlocks Object Localisation Abilities in VLMs
Vision-Language Models (VLMs), such as Flamingo and GPT-4V, have shown immense potential by integrating large language models with vision systems. Nevertheless, these models face challenges in the fundamental computer vision task of object localisation, due to their training on multimodal data containing mostly captions without explicit spatial grounding. While it is possible to construct custom, supervised training pipelines with bounding box annotations that integrate with VLMs, these result in specialized and hard-to-scale models. In this paper, we aim to explore the limits of caption-based VLMs and instead propose to tackle the challenge in a simpler manner by i) keeping the weights of a caption-based VLM frozen and ii) not using any supervised detection data. To this end, we introduce an input-agnostic Positional Insert (PIN), a learnable spatial prompt, containing a minimal set of parameters that are slid inside the frozen VLM, unlocking object localisation capabilities. Our PIN module is trained with a simple next-token prediction task on synthetic data without requiring the introduction of new output heads. Our experiments demonstrate strong zero-shot localisation performances on a variety of images, including Pascal VOC, COCO, LVIS, and diverse images like paintings or cartoons.
Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs for Embodied AI
Large Language Models (LLMs) are capable of reasoning over diverse input data modalities through pre-trained encoders. However, the growing diversity of input data modalities prevents incorporating all modalities into LLMs, especially when LLMs are deployed on resource-constrained edge devices for embodied AI applications. Instead, a better option is to adaptively involve only the useful modalities at runtime, depending on the current environmental contexts and task requirements. For such modality adaptation, existing work adopts fixed connections between encoders and the LLM's input layer, leading to high training cost at runtime and ineffective cross-modal interaction. In this paper, we address these limitations by presenting mPnP-LLM, a new technique that allows fully elastic, automated and prompt runtime modality adaptation, by connecting unimodal encoders to a flexible set of last LLM blocks and making such latent connections fully trainable at runtime. Experiments over the nuScenes-QA dataset show that mPnP-LLM can achieve up to 3.7x FLOPs reduction and 30% GPU memory usage reduction, while retaining on-par accuracy with the existing schemes. Under the same compute budget, mPnP-LLM improves the task accuracy by up to 4% compared to the best existing scheme.
Free-Bloom: Zero-Shot Text-to-Video Generator with LLM Director and LDM Animator
Text-to-video is a rapidly growing research area that aims to generate a semantic, identical, and temporal coherence sequence of frames that accurately align with the input text prompt. This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient. To generate a semantic-coherent video, exhibiting a rich portrayal of temporal semantics such as the whole process of flower blooming rather than a set of "moving images", we propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence, while pre-trained latent diffusion models (LDMs) as the animator to generate the high fidelity frames. Furthermore, to ensure temporal and identical coherence while maintaining semantic coherence, we propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path interpolation. Without any video data and training requirements, Free-Bloom generates vivid and high-quality videos, awe-inspiring in generating complex scenes with semantic meaningful frame sequences. In addition, Free-Bloom is naturally compatible with LDMs-based extensions.
Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision
Recent AI-assistant agents, such as ChatGPT, predominantly rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback (RLHF) to align the output of large language models (LLMs) with human intentions, ensuring they are helpful, ethical, and reliable. However, this dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision and the related issues on quality, reliability, diversity, self-consistency, and undesirable biases. To address these challenges, we propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision. Our approach encompasses four stages: first, we use an LLM to generate synthetic prompts, and a topic-guided method to augment the prompt diversity; second, we use a small set of human-written principles for AI models to follow, and guide the LLM through in-context learning from demonstrations (of principles application) to produce helpful, ethical, and reliable responses to user's queries; third, we fine-tune the original LLM with the high-quality self-aligned responses so that the resulting model can generate desirable responses for each query directly without the principle set and the demonstrations anymore; and finally, we offer a refinement step to address the issues of overly-brief or indirect responses. Applying SELF-ALIGN to the LLaMA-65b base language model, we develop an AI assistant named Dromedary. With fewer than 300 lines of human annotations (including < 200 seed prompts, 16 generic principles, and 5 exemplars for in-context learning). Dromedary significantly surpasses the performance of several state-of-the-art AI systems, including Text-Davinci-003 and Alpaca, on benchmark datasets with various settings.
HREF: Human Response-Guided Evaluation of Instruction Following in Language Models
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation
Evaluating text-to-image models is notoriously difficult. A strong recent approach for assessing text-image faithfulness is based on QG/A (question generation and answering), which uses pre-trained foundational models to automatically generate a set of questions and answers from the prompt, and output images are scored based on whether these answers extracted with a visual question answering model are consistent with the prompt-based answers. This kind of evaluation is naturally dependent on the quality of the underlying QG and VQA models. We identify and address several reliability challenges in existing QG/A work: (a) QG questions should respect the prompt (avoiding hallucinations, duplications, and omissions) and (b) VQA answers should be consistent (not asserting that there is no motorcycle in an image while also claiming the motorcycle is blue). We address these issues with Davidsonian Scene Graph (DSG), an empirically grounded evaluation framework inspired by formal semantics, which is adaptable to any QG/A frameworks. DSG produces atomic and unique questions organized in dependency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep inconsistent answers. With extensive experimentation and human evaluation on a range of model configurations (LLM, VQA, and T2I), we empirically demonstrate that DSG addresses the challenges noted above. Finally, we present DSG-1k, an open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide range of fine-grained semantic categories with a balanced distribution. We release the DSG-1k prompts and the corresponding DSG questions.
Editing Implicit Assumptions in Text-to-Image Diffusion Models
Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.
Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs
Large Language Models (LLMs) have shown impressive proficiency across a range of natural language processing tasks yet remain vulnerable to adversarial prompts, known as jailbreak attacks, carefully designed to elicit harmful responses from LLMs. Traditional methods rely on manual heuristics, which suffer from limited generalizability. While being automatic, optimization-based attacks often produce unnatural jailbreak prompts that are easy to detect by safety filters or require high computational overhead due to discrete token optimization. Witnessing the limitations of existing jailbreak methods, we introduce Generative Adversarial Suffix Prompter (GASP), a novel framework that combines human-readable prompt generation with Latent Bayesian Optimization (LBO) to improve adversarial suffix creation in a fully black-box setting. GASP leverages LBO to craft adversarial suffixes by efficiently exploring continuous embedding spaces, gradually optimizing the model to improve attack efficacy while balancing prompt coherence through a targeted iterative refinement procedure. Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
BlendSQL: A Scalable Dialect for Unifying Hybrid Question Answering in Relational Algebra
Many existing end-to-end systems for hybrid question answering tasks can often be boiled down to a "prompt-and-pray" paradigm, where the user has limited control and insight into the intermediate reasoning steps used to achieve the final result. Additionally, due to the context size limitation of many transformer-based LLMs, it is often not reasonable to expect that the full structured and unstructured context will fit into a given prompt in a zero-shot setting, let alone a few-shot setting. We introduce BlendSQL, a superset of SQLite to act as a unified dialect for orchestrating reasoning across both unstructured and structured data. For hybrid question answering tasks involving multi-hop reasoning, we encode the full decomposed reasoning roadmap into a single interpretable BlendSQL query. Notably, we show that BlendSQL can scale to massive datasets and improve the performance of end-to-end systems while using 35% fewer tokens. Our code is available and installable as a package at https://github.com/parkervg/blendsql.
Analyzing Syntactic Generalization Capacity of Pre-trained Language Models on Japanese Honorific Conversion
Using Japanese honorifics is challenging because it requires not only knowledge of the grammatical rules but also contextual information, such as social relationships. It remains unclear whether pre-trained large language models (LLMs) can flexibly handle Japanese honorifics like humans. To analyze this, we introduce an honorific conversion task that considers social relationships among people mentioned in a conversation. We construct a Japanese honorifics dataset from problem templates of various sentence structures to investigate the syntactic generalization capacity of GPT-3, one of the leading LLMs, on this task under two settings: fine-tuning and prompt learning. Our results showed that the fine-tuned GPT-3 performed better in a context-aware honorific conversion task than the prompt-based one. The fine-tuned model demonstrated overall syntactic generalizability towards compound honorific sentences, except when tested with the data involving direct speech.
Diffusion Model is an Effective Planner and Data Synthesizer for Multi-Task Reinforcement Learning
Diffusion models have demonstrated highly-expressive generative capabilities in vision and NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are also powerful in modeling complex policies or trajectories in offline datasets. However, these works have been limited to single-task settings where a generalist agent capable of addressing multi-task predicaments is absent. In this paper, we aim to investigate the effectiveness of a single diffusion model in modeling large-scale multi-task offline data, which can be challenging due to diverse and multimodal data distribution. Specifically, we propose Multi-Task Diffusion Model (MTDiff), a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis in multi-task offline settings. MTDiff leverages vast amounts of knowledge available in multi-task data and performs implicit knowledge sharing among tasks. For generative planning, we find MTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D. For data synthesis, MTDiff generates high-quality data for testing tasks given a single demonstration as a prompt, which enhances the low-quality datasets for even unseen tasks.
PromptBERT: Improving BERT Sentence Embeddings with Prompts
We propose PromptBERT, a novel contrastive learning method for learning better sentence representation. We firstly analyze the drawback of current sentence embedding from original BERT and find that it is mainly due to the static token embedding bias and ineffective BERT layers. Then we propose the first prompt-based sentence embeddings method and discuss two prompt representing methods and three prompt searching methods to make BERT achieve better sentence embeddings. Moreover, we propose a novel unsupervised training objective by the technology of template denoising, which substantially shortens the performance gap between the supervised and unsupervised settings. Extensive experiments show the effectiveness of our method. Compared to SimCSE, PromptBert achieves 2.29 and 2.58 points of improvement based on BERT and RoBERTa in the unsupervised setting.
Prompting Large Language Model for Machine Translation: A Case Study
Research on prompting has shown excellent performance with little or even no supervised training across many tasks. However, prompting for machine translation is still under-explored in the literature. We fill this gap by offering a systematic study on prompting strategies for translation, examining various factors for prompt template and demonstration example selection. We further explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning in prompting. Extensive experiments with GLM-130B (Zeng et al., 2022) as the testbed show that 1) the number and the quality of prompt examples matter, where using suboptimal examples degenerates translation; 2) several features of prompt examples, such as semantic similarity, show significant Spearman correlation with their prompting performance; yet, none of the correlations are strong enough; 3) using pseudo parallel prompt examples constructed from monolingual data via zero-shot prompting could improve translation; and 4) improved performance is achievable by transferring knowledge from prompt examples selected in other settings. We finally provide an analysis on the model outputs and discuss several problems that prompting still suffers from.
Xwin-LM: Strong and Scalable Alignment Practice for LLMs
In this work, we present Xwin-LM, a comprehensive suite of alignment methodologies for large language models (LLMs). This suite encompasses several key techniques, including supervised finetuning (SFT), reward modeling (RM), rejection sampling finetuning (RS), and direct preference optimization (DPO). The key components are as follows: (1) Xwin-LM-SFT, models initially finetuned with high-quality instruction data; (2) Xwin-Pair, a large-scale, multi-turn preference dataset meticulously annotated using GPT-4; (3) Xwin-RM, reward models trained on Xwin-Pair, developed at scales of 7B, 13B, and 70B parameters; (4) Xwin-Set, a multiwise preference dataset in which each prompt is linked to 64 unique responses generated by Xwin-LM-SFT and scored by Xwin-RM; (5) Xwin-LM-RS, models finetuned with the highest-scoring responses from Xwin-Set; (6) Xwin-LM-DPO, models further optimized on Xwin-Set using the DPO algorithm. Our evaluations on AlpacaEval and MT-bench demonstrate consistent and significant improvements across the pipeline, demonstrating the strength and scalability of Xwin-LM. The repository https://github.com/Xwin-LM/Xwin-LM will be continually updated to foster community research.
OMG-Seg: Is One Model Good Enough For All Segmentation?
In this work, we address various segmentation tasks, each traditionally tackled by distinct or partially unified models. We propose OMG-Seg, One Model that is Good enough to efficiently and effectively handle all the segmentation tasks, including image semantic, instance, and panoptic segmentation, as well as their video counterparts, open vocabulary settings, prompt-driven, interactive segmentation like SAM, and video object segmentation. To our knowledge, this is the first model to handle all these tasks in one model and achieve satisfactory performance. We show that OMG-Seg, a transformer-based encoder-decoder architecture with task-specific queries and outputs, can support over ten distinct segmentation tasks and yet significantly reduce computational and parameter overhead across various tasks and datasets. We rigorously evaluate the inter-task influences and correlations during co-training. Code and models are available at https://github.com/lxtGH/OMG-Seg.
MasakhaNEWS: News Topic Classification for African languages
African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.
Diffusion Model Patching via Mixture-of-Prompts
We present Diffusion Model Patching (DMP), a simple method to boost the performance of pre-trained diffusion models that have already reached convergence, with a negligible increase in parameters. DMP inserts a small, learnable set of prompts into the model's input space while keeping the original model frozen. The effectiveness of DMP is not merely due to the addition of parameters but stems from its dynamic gating mechanism, which selects and combines a subset of learnable prompts at every step of the generative process (e.g., reverse denoising steps). This strategy, which we term "mixture-of-prompts", enables the model to draw on the distinct expertise of each prompt, essentially "patching" the model's functionality at every step with minimal yet specialized parameters. Uniquely, DMP enhances the model by further training on the same dataset on which it was originally trained, even in a scenario where significant improvements are typically not expected due to model convergence. Experiments show that DMP significantly enhances the converged FID of DiT-L/2 on FFHQ 256x256 by 10.38%, achieved with only a 1.43% parameter increase and 50K additional training iterations.
Learning to Compress Prompts with Gist Tokens
Prompting is the primary way to utilize the multitask capabilities of language models (LMs), but prompts occupy valuable space in the input context window, and repeatedly encoding the same prompt is computationally inefficient. Finetuning and distillation methods allow for specialization of LMs without prompting, but require retraining the model for each task. To avoid this trade-off entirely, we present gisting, which trains an LM to compress prompts into smaller sets of "gist" tokens which can be cached and reused for compute efficiency. Gist models can be trained with no additional cost over standard instruction finetuning by simply modifying Transformer attention masks to encourage prompt compression. On decoder (LLaMA-7B) and encoder-decoder (FLAN-T5-XXL) LMs, gisting enables up to 26x compression of prompts, resulting in up to 40% FLOPs reductions, 4.2% wall time speedups, and storage savings, all with minimal loss in output quality.
Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)
The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT^2 benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.
OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models
We present a method to create interpretable concept sliders that enable precise control over attributes in image generations from diffusion models. Our approach identifies a low-rank parameter direction corresponding to one concept while minimizing interference with other attributes. A slider is created using a small set of prompts or sample images; thus slider directions can be created for either textual or visual concepts. Concept Sliders are plug-and-play: they can be composed efficiently and continuously modulated, enabling precise control over image generation. In quantitative experiments comparing to previous editing techniques, our sliders exhibit stronger targeted edits with lower interference. We showcase sliders for weather, age, styles, and expressions, as well as slider compositions. We show how sliders can transfer latents from StyleGAN for intuitive editing of visual concepts for which textual description is difficult. We also find that our method can help address persistent quality issues in Stable Diffusion XL including repair of object deformations and fixing distorted hands. Our code, data, and trained sliders are available at https://sliders.baulab.info/
Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models
The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.
JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models
Mathematical reasoning is an important capability of large language models~(LLMs) for real-world applications. To enhance this capability, existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs (\eg GPT-4) to synthesize massive math problems. Both types of work generally lead to large costs in training or synthesis. To reduce the cost, based on open-source available texts, we propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data. To achieve it, we create a dataset using GPT-4 to distill its data synthesis capability into the small LLM. Concretely, we craft a set of prompts based on human education stages to guide GPT-4, to synthesize problems covering diverse math knowledge and difficulty levels. Besides, we adopt the gradient-based influence estimation method to select the most valuable math-related texts. The both are fed into GPT-4 for creating the knowledge distillation dataset to train the small LLM. We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model, which only needs to invoke GPT-4 API 9.3k times and pre-train on 4.6B data. Experimental results have shown that JiuZhang3.0 achieves state-of-the-art performance on several mathematical reasoning datasets, under both natural language reasoning and tool manipulation settings. Our code and data will be publicly released in https://github.com/RUCAIBox/JiuZhang3.0.
Benchmarking Large Language Models for Molecule Prediction Tasks
Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks. Despite the widespread adoption of LLMs in NLP, much of their potential in broader fields remains largely unexplored, and significant limitations persist in their design and implementation. Notably, LLMs struggle with structured data, such as graphs, and often falter when tasked with answering domain-specific questions requiring deep expertise, such as those in biology and chemistry. In this paper, we explore a fundamental question: Can LLMs effectively handle molecule prediction tasks? Rather than pursuing top-tier performance, our goal is to assess how LLMs can contribute to diverse molecule tasks. We identify several classification and regression prediction tasks across six standard molecule datasets. Subsequently, we carefully design a set of prompts to query LLMs on these tasks and compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules. Our investigation reveals several key insights: Firstly, LLMs generally lag behind ML models in achieving competitive performance on molecule tasks, particularly when compared to models adept at capturing the geometric structure of molecules, highlighting the constrained ability of LLMs to comprehend graph data. Secondly, LLMs show promise in enhancing the performance of ML models when used collaboratively. Lastly, we engage in a discourse regarding the challenges and promising avenues to harness LLMs for molecule prediction tasks. The code and models are available at https://github.com/zhiqiangzhongddu/LLMaMol.
Is ChatGPT a Good Recommender? A Preliminary Study
Recommendation systems have witnessed significant advancements and have been widely used over the past decades. However, most traditional recommendation methods are task-specific and therefore lack efficient generalization ability. Recently, the emergence of ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. Nonetheless, the application of ChatGPT in the recommendation domain has not been thoroughly investigated. In this paper, we employ ChatGPT as a general-purpose recommendation model to explore its potential for transferring extensive linguistic and world knowledge acquired from large-scale corpora to recommendation scenarios. Specifically, we design a set of prompts and evaluate ChatGPT's performance on five recommendation scenarios. Unlike traditional recommendation methods, we do not fine-tune ChatGPT during the entire evaluation process, relying only on the prompts themselves to convert recommendation tasks into natural language tasks. Further, we explore the use of few-shot prompting to inject interaction information that contains user potential interest to help ChatGPT better understand user needs and interests. Comprehensive experimental results on Amazon Beauty dataset show that ChatGPT has achieved promising results in certain tasks and is capable of reaching the baseline level in others. We conduct human evaluations on two explainability-oriented tasks to more accurately evaluate the quality of contents generated by different models. And the human evaluations show ChatGPT can truly understand the provided information and generate clearer and more reasonable results. We hope that our study can inspire researchers to further explore the potential of language models like ChatGPT to improve recommendation performance and contribute to the advancement of the recommendation systems field.
Zero-shot Model Diagnosis
When it comes to deploying deep vision models, the behavior of these systems must be explicable to ensure confidence in their reliability and fairness. A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs. However, creating a balanced test set (i.e., one that is uniformly sampled over all the important traits) is often time-consuming, expensive, and prone to mistakes. The question we try to address is: can we evaluate the sensitivity of deep learning models to arbitrary visual attributes without an annotated test set? This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling. To avoid the need for test sets, our system relies on a generative model and CLIP. The key idea is enabling the user to select a set of prompts (relevant to the problem) and our system will automatically search for semantic counterfactual images (i.e., synthesized images that flip the prediction in the case of a binary classifier) using the generative model. We evaluate several visual tasks (classification, key-point detection, and segmentation) in multiple visual domains to demonstrate the viability of our methodology. Extensive experiments demonstrate that our method is capable of producing counterfactual images and offering sensitivity analysis for model diagnosis without the need for a test set.
GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond
With the rapid advancement of large language models (LLMs), there is a pressing need for a comprehensive evaluation suite to assess their capabilities and limitations. Existing LLM leaderboards often reference scores reported in other papers without consistent settings and prompts, which may inadvertently encourage cherry-picking favored settings and prompts for better results. In this work, we introduce GPT-Fathom, an open-source and reproducible LLM evaluation suite built on top of OpenAI Evals. We systematically evaluate 10+ leading LLMs as well as OpenAI's legacy models on 20+ curated benchmarks across 7 capability categories, all under aligned settings. Our retrospective study on OpenAI's earlier models offers valuable insights into the evolutionary path from GPT-3 to GPT-4. Currently, the community is eager to know how GPT-3 progressively improves to GPT-4, including technical details like whether adding code data improves LLM's reasoning capability, which aspects of LLM capability can be improved by SFT and RLHF, how much is the alignment tax, etc. Our analysis sheds light on many of these questions, aiming to improve the transparency of advanced LLMs.
StressPrompt: Does Stress Impact Large Language Models and Human Performance Similarly?
Human beings often experience stress, which can significantly influence their performance. This study explores whether Large Language Models (LLMs) exhibit stress responses similar to those of humans and whether their performance fluctuates under different stress-inducing prompts. To investigate this, we developed a novel set of prompts, termed StressPrompt, designed to induce varying levels of stress. These prompts were derived from established psychological frameworks and carefully calibrated based on ratings from human participants. We then applied these prompts to several LLMs to assess their responses across a range of tasks, including instruction-following, complex reasoning, and emotional intelligence. The findings suggest that LLMs, like humans, perform optimally under moderate stress, consistent with the Yerkes-Dodson law. Notably, their performance declines under both low and high-stress conditions. Our analysis further revealed that these StressPrompts significantly alter the internal states of LLMs, leading to changes in their neural representations that mirror human responses to stress. This research provides critical insights into the operational robustness and flexibility of LLMs, demonstrating the importance of designing AI systems capable of maintaining high performance in real-world scenarios where stress is prevalent, such as in customer service, healthcare, and emergency response contexts. Moreover, this study contributes to the broader AI research community by offering a new perspective on how LLMs handle different scenarios and their similarities to human cognition.
Social perception of faces in a vision-language model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
Full-text Error Correction for Chinese Speech Recognition with Large Language Model
Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR). However, most research focuses on utterances from short-duration speech recordings, which are the predominant form of speech data for supervised ASR training. This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings, such as transcripts from podcasts, news broadcasts, and meetings. First, we develop a Chinese dataset for full-text error correction, named ChFT, utilizing a pipeline that involves text-to-speech synthesis, ASR, and error-correction pair extractor. This dataset enables us to correct errors across contexts, including both full-text and segment, and to address a broader range of error types, such as punctuation restoration and inverse text normalization, thus making the correction process comprehensive. Second, we fine-tune a pre-trained LLM on the constructed dataset using a diverse set of prompts and target formats, and evaluate its performance on full-text error correction. Specifically, we design prompts based on full-text and segment, considering various output formats, such as directly corrected text and JSON-based error-correction pairs. Through various test settings, including homogeneous, up-to-date, and hard test sets, we find that the fine-tuned LLMs perform well in the full-text setting with different prompts, each presenting its own strengths and weaknesses. This establishes a promising baseline for further research. The dataset is available on the website.
SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and Reasoning
Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM). Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions. In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training. Finally, we show the potential of games as a test bed for LLMs.
AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We will release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
Improving Large Vision and Language Models by Learning from a Panel of Peers
Traditional alignment methods for Large Vision and Language Models (LVLMs) primarily rely on human-curated preference data. Human-generated preference data is costly; machine-generated preference data is limited in quality; and self-supervised preference data often introduces hallucinations. To overcome these limitations, we propose a novel Panel-of-Peers learning framework inspired by collaborative learning among humans. This approach leverages a panel of LVLMs, each evaluating and learning from their collective outputs through an iterative self-improvement process. By simulating a peer review system, our models generate, assess, and refine outputs in response to a curated set of prompts, mimicking a classroom learning environment. We demonstrate that this methodology enhances model performance without requiring extensive human-labeled datasets. Our experiments show significant improvement across multiple benchmarks, demonstrating the potential of peer evaluations as a scalable alternative to self-supervised alignment. Notably, we show that Panel-of-Peers increases the average score on fifteen benchmarks from 48% to 57%
CARES: Comprehensive Evaluation of Safety and Adversarial Robustness in Medical LLMs
Large language models (LLMs) are increasingly deployed in medical contexts, raising critical concerns about safety, alignment, and susceptibility to adversarial manipulation. While prior benchmarks assess model refusal capabilities for harmful prompts, they often lack clinical specificity, graded harmfulness levels, and coverage of jailbreak-style attacks. We introduce CARES (Clinical Adversarial Robustness and Evaluation of Safety), a benchmark for evaluating LLM safety in healthcare. CARES includes over 18,000 prompts spanning eight medical safety principles, four harm levels, and four prompting styles: direct, indirect, obfuscated, and role-play, to simulate both malicious and benign use cases. We propose a three-way response evaluation protocol (Accept, Caution, Refuse) and a fine-grained Safety Score metric to assess model behavior. Our analysis reveals that many state-of-the-art LLMs remain vulnerable to jailbreaks that subtly rephrase harmful prompts, while also over-refusing safe but atypically phrased queries. Finally, we propose a mitigation strategy using a lightweight classifier to detect jailbreak attempts and steer models toward safer behavior via reminder-based conditioning. CARES provides a rigorous framework for testing and improving medical LLM safety under adversarial and ambiguous conditions.
mAIstro: an open-source multi-agentic system for automated end-to-end development of radiomics and deep learning models for medical imaging
Agentic systems built on large language models (LLMs) offer promising capabilities for automating complex workflows in healthcare AI. We introduce mAIstro, an open-source, autonomous multi-agentic framework for end-to-end development and deployment of medical AI models. The system orchestrates exploratory data analysis, radiomic feature extraction, image segmentation, classification, and regression through a natural language interface, requiring no coding from the user. Built on a modular architecture, mAIstro supports both open- and closed-source LLMs, and was evaluated using a large and diverse set of prompts across 16 open-source datasets, covering a wide range of imaging modalities, anatomical regions, and data types. The agents successfully executed all tasks, producing interpretable outputs and validated models. This work presents the first agentic framework capable of unifying data analysis, AI model development, and inference across varied healthcare applications, offering a reproducible and extensible foundation for clinical and research AI integration. The code is available at: https://github.com/eltzanis/mAIstro
UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
Audiobox: Unified Audio Generation with Natural Language Prompts
Audio is an essential part of our life, but creating it often requires expertise and is time-consuming. Research communities have made great progress over the past year advancing the performance of large scale audio generative models for a single modality (speech, sound, or music) through adopting more powerful generative models and scaling data. However, these models lack controllability in several aspects: speech generation models cannot synthesize novel styles based on text description and are limited on domain coverage such as outdoor environments; sound generation models only provide coarse-grained control based on descriptions like "a person speaking" and would only generate mumbling human voices. This paper presents Audiobox, a unified model based on flow-matching that is capable of generating various audio modalities. We design description-based and example-based prompting to enhance controllability and unify speech and sound generation paradigms. We allow transcript, vocal, and other audio styles to be controlled independently when generating speech. To improve model generalization with limited labels, we adapt a self-supervised infilling objective to pre-train on large quantities of unlabeled audio. Audiobox sets new benchmarks on speech and sound generation (0.745 similarity on Librispeech for zero-shot TTS; 0.77 FAD on AudioCaps for text-to-sound) and unlocks new methods for generating audio with novel vocal and acoustic styles. We further integrate Bespoke Solvers, which speeds up generation by over 25 times compared to the default ODE solver for flow-matching, without loss of performance on several tasks. Our demo is available at https://audiobox.metademolab.com/
Jailbreaking with Universal Multi-Prompts
Large language models (LLMs) have seen rapid development in recent years, revolutionizing various applications and significantly enhancing convenience and productivity. However, alongside their impressive capabilities, ethical concerns and new types of attacks, such as jailbreaking, have emerged. While most prompting techniques focus on optimizing adversarial inputs for individual cases, resulting in higher computational costs when dealing with large datasets. Less research has addressed the more general setting of training a universal attacker that can transfer to unseen tasks. In this paper, we introduce JUMP, a prompt-based method designed to jailbreak LLMs using universal multi-prompts. We also adapt our approach for defense, which we term DUMP. Experimental results demonstrate that our method for optimizing universal multi-prompts outperforms existing techniques.
Improving Few-Shot Prompts with Relevant Static Analysis Products
Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.
Benign-to-Toxic Jailbreaking: Inducing Harmful Responses from Harmless Prompts
Optimization-based jailbreaks typically adopt the Toxic-Continuation setting in large vision-language models (LVLMs), following the standard next-token prediction objective. In this setting, an adversarial image is optimized to make the model predict the next token of a toxic prompt. However, we find that the Toxic-Continuation paradigm is effective at continuing already-toxic inputs, but struggles to induce safety misalignment when explicit toxic signals are absent. We propose a new paradigm: Benign-to-Toxic (B2T) jailbreak. Unlike prior work, we optimize adversarial images to induce toxic outputs from benign conditioning. Since benign conditioning contains no safety violations, the image alone must break the model's safety mechanisms. Our method outperforms prior approaches, transfers in black-box settings, and complements text-based jailbreaks. These results reveal an underexplored vulnerability in multimodal alignment and introduce a fundamentally new direction for jailbreak approaches.
NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts
Large language models (LLMs) have manifested strong ability to generate codes for productive activities. However, current benchmarks for code synthesis, such as HumanEval, MBPP, and DS-1000, are predominantly oriented towards introductory tasks on algorithm and data science, insufficiently satisfying challenging requirements prevalent in real-world coding. To fill this gap, we propose NaturalCodeBench (NCB), a challenging code benchmark designed to mirror the complexity and variety of scenarios in real coding tasks. NCB comprises 402 high-quality problems in Python and Java, meticulously selected from natural user queries from online coding services, covering 6 different domains. Noting the extraordinary difficulty in creating testing cases for real-world queries, we also introduce a semi-automated pipeline to enhance the efficiency of test case construction. Comparing with manual solutions, it achieves an efficiency increase of more than 4 times. Our systematic experiments on 39 LLMs find that performance gaps on NCB between models with close HumanEval scores could still be significant, indicating a lack of focus on practical code synthesis scenarios or over-specified optimization on HumanEval. On the other hand, even the best-performing GPT-4 is still far from satisfying on NCB. The evaluation toolkit and development set are available at https://github.com/THUDM/NaturalCodeBench.
CodeMixBench: Evaluating Large Language Models on Code Generation with Code-Mixed Prompts
Large Language Models (LLMs) have achieved remarkable success in code generation tasks, powering various applications like code completion, debugging, and programming assistance. However, existing benchmarks such as HumanEval, MBPP, and BigCodeBench primarily evaluate LLMs on English-only prompts, overlooking the real-world scenario where multilingual developers often use code-mixed language while interacting with LLMs. To address this gap, we introduce CodeMixBench, a novel benchmark designed to evaluate the robustness of LLMs on code generation from code-mixed prompts. Built upon BigCodeBench, CodeMixBench introduces controlled code-mixing (CMD) into the natural language parts of prompts across three language pairs: Hinglish (Hindi-English), Spanish-English, and Chinese Pinyin-English. We comprehensively evaluate a diverse set of open-source code generation models ranging from 1.5B to 15B parameters. Our results show that code-mixed prompts consistently degrade Pass@1 performance compared to their English-only counterparts, with performance drops increasing under higher CMD levels for smaller models. CodeMixBench provides a realistic evaluation framework for studying multilingual code generation and highlights new challenges and directions for building robust code generation models that generalize well across diverse linguistic settings.
IssueBench: Millions of Realistic Prompts for Measuring Issue Bias in LLM Writing Assistance
Large language models (LLMs) are helping millions of users write texts about diverse issues, and in doing so expose users to different ideas and perspectives. This creates concerns about issue bias, where an LLM tends to present just one perspective on a given issue, which in turn may influence how users think about this issue. So far, it has not been possible to measure which issue biases LLMs actually manifest in real user interactions, making it difficult to address the risks from biased LLMs. Therefore, we create IssueBench: a set of 2.49m realistic prompts for measuring issue bias in LLM writing assistance, which we construct based on 3.9k templates (e.g. "write a blog about") and 212 political issues (e.g. "AI regulation") from real user interactions. Using IssueBench, we show that issue biases are common and persistent in state-of-the-art LLMs. We also show that biases are remarkably similar across models, and that all models align more with US Democrat than Republican voter opinion on a subset of issues. IssueBench can easily be adapted to include other issues, templates, or tasks. By enabling robust and realistic measurement, we hope that IssueBench can bring a new quality of evidence to ongoing discussions about LLM biases and how to address them.
ActionVOS: Actions as Prompts for Video Object Segmentation
Delving into the realm of egocentric vision, the advancement of referring video object segmentation (RVOS) stands as pivotal in understanding human activities. However, existing RVOS task primarily relies on static attributes such as object names to segment target objects, posing challenges in distinguishing target objects from background objects and in identifying objects undergoing state changes. To address these problems, this work proposes a novel action-aware RVOS setting called ActionVOS, aiming at segmenting only active objects in egocentric videos using human actions as a key language prompt. This is because human actions precisely describe the behavior of humans, thereby helping to identify the objects truly involved in the interaction and to understand possible state changes. We also build a method tailored to work under this specific setting. Specifically, we develop an action-aware labeling module with an efficient action-guided focal loss. Such designs enable ActionVOS model to prioritize active objects with existing readily-available annotations. Experimental results on VISOR dataset reveal that ActionVOS significantly reduces the mis-segmentation of inactive objects, confirming that actions help the ActionVOS model understand objects' involvement. Further evaluations on VOST and VSCOS datasets show that the novel ActionVOS setting enhances segmentation performance when encountering challenging circumstances involving object state changes. We will make our implementation available at https://github.com/ut-vision/ActionVOS.
SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings
Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods.
Editing 3D Scenes via Text Prompts without Retraining
Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at https://sk-fun.fun/DN2N
Image Segmentation Using Text and Image Prompts
Image segmentation is usually addressed by training a model for a fixed set of object classes. Incorporating additional classes or more complex queries later is expensive as it requires re-training the model on a dataset that encompasses these expressions. Here we propose a system that can generate image segmentations based on arbitrary prompts at test time. A prompt can be either a text or an image. This approach enables us to create a unified model (trained once) for three common segmentation tasks, which come with distinct challenges: referring expression segmentation, zero-shot segmentation and one-shot segmentation. We build upon the CLIP model as a backbone which we extend with a transformer-based decoder that enables dense prediction. After training on an extended version of the PhraseCut dataset, our system generates a binary segmentation map for an image based on a free-text prompt or on an additional image expressing the query. We analyze different variants of the latter image-based prompts in detail. This novel hybrid input allows for dynamic adaptation not only to the three segmentation tasks mentioned above, but to any binary segmentation task where a text or image query can be formulated. Finally, we find our system to adapt well to generalized queries involving affordances or properties. Code is available at https://eckerlab.org/code/clipseg.
AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts
Although large language models (LLMs) have demonstrated impressive potential on simple tasks, their breadth of scope, lack of transparency, and insufficient controllability can make them less effective when assisting humans on more complex tasks. In response, we introduce the concept of Chaining LLM steps together, where the output of one step becomes the input for the next, thus aggregating the gains per step. We first define a set of LLM primitive operations useful for Chain construction, then present an interactive system where users can modify these Chains, along with their intermediate results, in a modular way. In a 20-person user study, we found that Chaining not only improved the quality of task outcomes, but also significantly enhanced system transparency, controllability, and sense of collaboration. Additionally, we saw that users developed new ways of interacting with LLMs through Chains: they leveraged sub-tasks to calibrate model expectations, compared and contrasted alternative strategies by observing parallel downstream effects, and debugged unexpected model outputs by "unit-testing" sub-components of a Chain. In two case studies, we further explore how LLM Chains may be used in future applications
VIMA: General Robot Manipulation with Multimodal Prompts
Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. This work shows that we can express a wide spectrum of robot manipulation tasks with multimodal prompts, interleaving textual and visual tokens. We design a transformer-based generalist robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. To train and evaluate VIMA, we develop a new simulation benchmark with thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and four levels of evaluation protocol for systematic generalization. VIMA achieves strong scalability in both model capacity and data size. It outperforms prior SOTA methods in the hardest zero-shot generalization setting by up to 2.9times task success rate given the same training data. With 10times less training data, VIMA still performs 2.7times better than the top competing approach. We open-source all code, pretrained models, dataset, and simulation benchmark at https://vimalabs.github.io
LLMs are Vulnerable to Malicious Prompts Disguised as Scientific Language
As large language models (LLMs) have been deployed in various real-world settings, concerns about the harm they may propagate have grown. Various jailbreaking techniques have been developed to expose the vulnerabilities of these models and improve their safety. This work reveals that many state-of-the-art LLMs are vulnerable to malicious requests hidden behind scientific language. Specifically, our experiments with GPT4o, GPT4o-mini, GPT-4, LLama3-405B-Instruct, Llama3-70B-Instruct, Cohere, Gemini models demonstrate that, the models' biases and toxicity substantially increase when prompted with requests that deliberately misinterpret social science and psychological studies as evidence supporting the benefits of stereotypical biases. Alarmingly, these models can also be manipulated to generate fabricated scientific arguments claiming that biases are beneficial, which can be used by ill-intended actors to systematically jailbreak these strong LLMs. Our analysis studies various factors that contribute to the models' vulnerabilities to malicious requests in academic language. Mentioning author names and venues enhances the persuasiveness of models, and the bias scores increase as dialogues progress. Our findings call for a more careful investigation on the use of scientific data for training LLMs.
Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play
Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.
Tryage: Real-time, intelligent Routing of User Prompts to Large Language Models
The introduction of the transformer architecture and the self-attention mechanism has led to an explosive production of language models trained on specific downstream tasks and data domains. With over 200, 000 models in the Hugging Face ecosystem, users grapple with selecting and optimizing models to suit multifaceted workflows and data domains while addressing computational, security, and recency concerns. There is an urgent need for machine learning frameworks that can eliminate the burden of model selection and customization and unleash the incredible power of the vast emerging model library for end users. Here, we propose a context-aware routing system, Tryage, that leverages a language model router for optimal selection of expert models from a model library based on analysis of individual input prompts. Inspired by the thalamic router in the brain, Tryage employs a perceptive router to predict down-stream model performance on prompts and, then, makes a routing decision using an objective function that integrates performance predictions with user goals and constraints that are incorporated through flags (e.g., model size, model recency). Tryage allows users to explore a Pareto front and automatically trade-off between task accuracy and secondary goals including minimization of model size, recency, security, verbosity, and readability. Across heterogeneous data sets that include code, text, clinical data, and patents, the Tryage framework surpasses Gorilla and GPT3.5 turbo in dynamic model selection identifying the optimal model with an accuracy of 50.9% , compared to 23.6% by GPT 3.5 Turbo and 10.8% by Gorilla. Conceptually, Tryage demonstrates how routing models can be applied to program and control the behavior of multi-model LLM systems to maximize efficient use of the expanding and evolving language model ecosystem.
From Commands to Prompts: LLM-based Semantic File System for AIOS
Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.
SAM2-SGP: Enhancing SAM2 for Medical Image Segmentation via Support-Set Guided Prompting
Although new vision foundation models such as Segment Anything Model 2 (SAM2) have significantly enhanced zero-shot image segmentation capabilities, reliance on human-provided prompts poses significant challenges in adapting SAM2 to medical image segmentation tasks. Moreover, SAM2's performance in medical image segmentation was limited by the domain shift issue, since it was originally trained on natural images and videos. To address these challenges, we proposed SAM2 with support-set guided prompting (SAM2-SGP), a framework that eliminated the need for manual prompts. The proposed model leveraged the memory mechanism of SAM2 to generate pseudo-masks using image-mask pairs from a support set via a Pseudo-mask Generation (PMG) module. We further introduced a novel Pseudo-mask Attention (PMA) module, which used these pseudo-masks to automatically generate bounding boxes and enhance localized feature extraction by guiding attention to relevant areas. Furthermore, a low-rank adaptation (LoRA) strategy was adopted to mitigate the domain shift issue. The proposed framework was evaluated on both 2D and 3D datasets across multiple medical imaging modalities, including fundus photography, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. The results demonstrated a significant performance improvement over state-of-the-art models, such as nnUNet and SwinUNet, as well as foundation models, such as SAM2 and MedSAM2, underscoring the effectiveness of the proposed approach. Our code is publicly available at https://github.com/astlian9/SAM_Support.
Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection
Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at https://github.com/ltttpku/CMMP.
Q&A Prompts: Discovering Rich Visual Clues through Mining Question-Answer Prompts for VQA requiring Diverse World Knowledge
With the breakthrough of multi-modal large language models, answering complex visual questions that demand advanced reasoning abilities and world knowledge has become a much more important testbed for developing AI models than ever. However, equipping AI models with robust cross-modality reasoning ability remains challenging since the cognition scheme of humans has not been understood systematically. In this paper, we believe that if we can collect visual clues in the given image as much as possible, we will recognize the image more accurately, understand the question better, recall relevant knowledge more easily, and finally reason out the answer. We discover these rich visual clues by mining question-answer pairs in images and sending them into multi-modal large language models as prompts. We call the proposed method Q&A Prompts. Specifically, we first use the image-answer pairs and the corresponding questions in the training set as inputs and outputs to train a visual question generation model. Then, we use an image tagging model to identify various instances and send packaged image-tag pairs into the visual question generation model to generate relevant questions with the extracted image tags as answers. Finally, we encode these generated question-answer pairs as prompts with a visual-aware prompting module and send them into pre-trained multi-modal large language models to reason out the final answers. Experimental results show that, compared with state-of-the-art methods, our Q&A Prompts achieves substantial improvements on the challenging visual question answering datasets requiring reasoning over diverse world knowledge, such as OK-VQA and A-OKVQA.
Distilling Adversarial Prompts from Safety Benchmarks: Report for the Adversarial Nibbler Challenge
Text-conditioned image generation models have recently achieved astonishing image quality and alignment results. Consequently, they are employed in a fast-growing number of applications. Since they are highly data-driven, relying on billion-sized datasets randomly scraped from the web, they also produce unsafe content. As a contribution to the Adversarial Nibbler challenge, we distill a large set of over 1,000 potential adversarial inputs from existing safety benchmarks. Our analysis of the gathered prompts and corresponding images demonstrates the fragility of input filters and provides further insights into systematic safety issues in current generative image models.
Visual Writing Prompts: Character-Grounded Story Generation with Curated Image Sequences
Current work on image-based story generation suffers from the fact that the existing image sequence collections do not have coherent plots behind them. We improve visual story generation by producing a new image-grounded dataset, Visual Writing Prompts (VWP). VWP contains almost 2K selected sequences of movie shots, each including 5-10 images. The image sequences are aligned with a total of 12K stories which were collected via crowdsourcing given the image sequences and a set of grounded characters from the corresponding image sequence. Our new image sequence collection and filtering process has allowed us to obtain stories that are more coherent and have more narrativity compared to previous work. We also propose a character-based story generation model driven by coherence as a strong baseline. Evaluations show that our generated stories are more coherent, visually grounded, and have more narrativity than stories generated with the current state-of-the-art model.
Describing Differences in Image Sets with Natural Language
How do two sets of images differ? Discerning set-level differences is crucial for understanding model behaviors and analyzing datasets, yet manually sifting through thousands of images is impractical. To aid in this discovery process, we explore the task of automatically describing the differences between two sets of images, which we term Set Difference Captioning. This task takes in image sets D_A and D_B, and outputs a description that is more often true on D_A than D_B. We outline a two-stage approach that first proposes candidate difference descriptions from image sets and then re-ranks the candidates by checking how well they can differentiate the two sets. We introduce VisDiff, which first captions the images and prompts a language model to propose candidate descriptions, then re-ranks these descriptions using CLIP. To evaluate VisDiff, we collect VisDiffBench, a dataset with 187 paired image sets with ground truth difference descriptions. We apply VisDiff to various domains, such as comparing datasets (e.g., ImageNet vs. ImageNetV2), comparing classification models (e.g., zero-shot CLIP vs. supervised ResNet), summarizing model failure modes (supervised ResNet), characterizing differences between generative models (e.g., StableDiffusionV1 and V2), and discovering what makes images memorable. Using VisDiff, we are able to find interesting and previously unknown differences in datasets and models, demonstrating its utility in revealing nuanced insights.
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Fine-tuning is the de facto way to leverage large pretrained language models to perform downstream tasks. However, it modifies all the language model parameters and therefore necessitates storing a full copy for each task. In this paper, we propose prefix-tuning, a lightweight alternative to fine-tuning for natural language generation tasks, which keeps language model parameters frozen, but optimizes a small continuous task-specific vector (called the prefix). Prefix-tuning draws inspiration from prompting, allowing subsequent tokens to attend to this prefix as if it were "virtual tokens". We apply prefix-tuning to GPT-2 for table-to-text generation and to BART for summarization. We find that by learning only 0.1\% of the parameters, prefix-tuning obtains comparable performance in the full data setting, outperforms fine-tuning in low-data settings, and extrapolates better to examples with topics unseen during training.
TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks
While LLMs have shown great success in understanding and generating text in traditional conversational settings, their potential for performing ill-defined complex tasks is largely under-studied. Indeed, we are yet to conduct comprehensive benchmarking studies with multiple LLMs that are exclusively focused on a complex task. However, conducting such benchmarking studies is challenging because of the large variations in LLMs' performance when different prompt types/styles are used and different degrees of detail are provided in the prompts. To address this issue, the paper proposes a general taxonomy that can be used to design prompts with specific properties in order to perform a wide range of complex tasks. This taxonomy will allow future benchmarking studies to report the specific categories of prompts used as part of the study, enabling meaningful comparisons across different studies. Also, by establishing a common standard through this taxonomy, researchers will be able to draw more accurate conclusions about LLMs' performance on a specific complex task.
NeuroPrompts: An Adaptive Framework to Optimize Prompts for Text-to-Image Generation
Despite impressive recent advances in text-to-image diffusion models, obtaining high-quality images often requires prompt engineering by humans who have developed expertise in using them. In this work, we present NeuroPrompts, an adaptive framework that automatically enhances a user's prompt to improve the quality of generations produced by text-to-image models. Our framework utilizes constrained text decoding with a pre-trained language model that has been adapted to generate prompts similar to those produced by human prompt engineers. This approach enables higher-quality text-to-image generations and provides user control over stylistic features via constraint set specification. We demonstrate the utility of our framework by creating an interactive application for prompt enhancement and image generation using Stable Diffusion. Additionally, we conduct experiments utilizing a large dataset of human-engineered prompts for text-to-image generation and show that our approach automatically produces enhanced prompts that result in superior image quality. We make our code, a screencast video demo and a live demo instance of NeuroPrompts publicly available.
Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts
Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios. To alleviate this issue, researchers introduce open-set perception tasks to detect or segment unseen objects in the training set. However, these models require predefined object categories as inputs during inference, which are not available in real-world scenarios. Recently, researchers pose a new and more practical problem, i.e., open-ended object detection, which discovers unseen objects without any object categories as inputs. In this paper, we present VL-SAM, a training-free framework that combines the generalized object recognition model (i.e., Vision-Language Model) with the generalized object localization model (i.e., Segment-Anything Model), to address the open-ended object detection and segmentation task. Without additional training, we connect these two generalized models with attention maps as the prompts. Specifically, we design an attention map generation module by employing head aggregation and a regularized attention flow to aggregate and propagate attention maps across all heads and layers in VLM, yielding high-quality attention maps. Then, we iteratively sample positive and negative points from the attention maps with a prompt generation module and send the sampled points to SAM to segment corresponding objects. Experimental results on the long-tail instance segmentation dataset (LVIS) show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks. Besides, VL-SAM achieves favorable performance on the corner case object detection dataset (CODA), demonstrating the effectiveness of VL-SAM in real-world applications. Moreover, VL-SAM exhibits good model generalization that can incorporate various VLMs and SAMs.
Optimizing Negative Prompts for Enhanced Aesthetics and Fidelity in Text-To-Image Generation
In text-to-image generation, using negative prompts, which describe undesirable image characteristics, can significantly boost image quality. However, producing good negative prompts is manual and tedious. To address this, we propose NegOpt, a novel method for optimizing negative prompt generation toward enhanced image generation, using supervised fine-tuning and reinforcement learning. Our combined approach results in a substantial increase of 25% in Inception Score compared to other approaches and surpasses ground-truth negative prompts from the test set. Furthermore, with NegOpt we can preferentially optimize the metrics most important to us. Finally, we construct Negative Prompts DB, a dataset of negative prompts.
Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications
Sim-to-real transfer remains a significant challenge in robotics due to the discrepancies between simulated and real-world dynamics. Traditional methods like Domain Randomization often fail to capture fine-grained dynamics, limiting their effectiveness for precise control tasks. In this work, we propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning. By leveraging past interaction histories as context, our method adapts the simulation environment dynamics to real-world dynamics without requiring gradient updates, resulting in faster and more accurate alignment between simulated and real-world performance. We validate our approach across two tasks: object scooping and table air hockey. In the sim-to-sim evaluations, our method significantly outperforms the baselines on environment parameter estimation by 80% and 42% in the object scooping and table air hockey setups, respectively. Furthermore, our method achieves at least 70% success rate in sim-to-real transfer on object scooping across three different objects. By incorporating historical interaction data, our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios. Demos are available on our project page: https://sim2real-capture.github.io/
"Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models
The misuse of large language models (LLMs) has garnered significant attention from the general public and LLM vendors. In response, efforts have been made to align LLMs with human values and intent use. However, a particular type of adversarial prompts, known as jailbreak prompt, has emerged and continuously evolved to bypass the safeguards and elicit harmful content from LLMs. In this paper, we conduct the first measurement study on jailbreak prompts in the wild, with 6,387 prompts collected from four platforms over six months. Leveraging natural language processing technologies and graph-based community detection methods, we discover unique characteristics of jailbreak prompts and their major attack strategies, such as prompt injection and privilege escalation. We also observe that jailbreak prompts increasingly shift from public platforms to private ones, posing new challenges for LLM vendors in proactive detection. To assess the potential harm caused by jailbreak prompts, we create a question set comprising 46,800 samples across 13 forbidden scenarios. Our experiments show that current LLMs and safeguards cannot adequately defend jailbreak prompts in all scenarios. Particularly, we identify two highly effective jailbreak prompts which achieve 0.99 attack success rates on ChatGPT (GPT-3.5) and GPT-4, and they have persisted online for over 100 days. Our work sheds light on the severe and evolving threat landscape of jailbreak prompts. We hope our study can facilitate the research community and LLM vendors in promoting safer and regulated LLMs.
What does a platypus look like? Generating customized prompts for zero-shot image classification
Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL.
P-Adapters: Robustly Extracting Factual Information from Language Models with Diverse Prompts
Recent work (e.g. LAMA (Petroni et al., 2019)) has found that the quality of the factual information extracted from Large Language Models (LLMs) depends on the prompts used to query them. This inconsistency is problematic because different users will query LLMs for the same information using different wording, but should receive the same, accurate responses regardless. In this work we aim to address this shortcoming by introducing P-Adapters: lightweight models that sit between the embedding layer and first attention layer of LLMs. They take LLM embeddings as input and output continuous prompts that are used to query the LLM. Additionally, we investigate Mixture of Experts (MoE) models that learn a set of continuous prompts ("experts") and select one to query the LLM. They require a separate classifier trained on human-annotated data to map natural language prompts to the continuous ones. P-Adapters perform comparably to the more complex MoE models in extracting factual information from BERT and RoBERTa while eliminating the need for additional annotations. P-Adapters show between 12-26% absolute improvement in precision and 36-50% absolute improvement in consistency over a baseline of only using natural language queries. Finally, we investigate what makes P-Adapters successful and conclude that a significant factor is access to the LLM's embeddings of the original natural language prompt, particularly the subject of the entity pair being queried.
GenQA: Generating Millions of Instructions from a Handful of Prompts
Most public instruction finetuning datasets are relatively small compared to the closed source datasets used to train industry models. To study questions about finetuning at scale, such as curricula and learning rate cooldown schedules, there is a need for industrial-scale datasets. However, this scale necessitates a data generation process that is almost entirely automated. In this work, we study methods for generating large instruction datasets from a single prompt. With little human oversight, we get LLMs to write diverse sets of instruction examples ranging from simple completion tasks to complex multi-turn dialogs across a variety of subject areas. When finetuning a Llama-3 8B base model, our dataset meets or exceeds both WizardLM and Ultrachat on both knowledge-intensive leaderboard tasks as well as conversational evaluations. We release our dataset, the "generator" prompts that created it, and our finetuned model checkpoints.
Decoder-only Architecture for Speech Recognition with CTC Prompts and Text Data Augmentation
Collecting audio-text pairs is expensive; however, it is much easier to access text-only data. Unless using shallow fusion, end-to-end automatic speech recognition (ASR) models require architecture modifications or additional training schemes to use text-only data. Inspired by recent advances in decoder-only language models (LMs), such as GPT-3 and PaLM adopted for speech-processing tasks, we propose using a decoder-only architecture for ASR with simple text augmentation. To provide audio information, encoder features compressed by CTC prediction are used as prompts for the decoder, which can be regarded as refining CTC prediction using the decoder-only model. Because the decoder architecture is the same as an autoregressive LM, it is simple to enhance the model by leveraging external text data with LM training. An experimental comparison using LibriSpeech and Switchboard shows that our proposed models with text augmentation training reduced word error rates from ordinary CTC by 0.3% and 1.4% on LibriSpeech test-clean and testother set, respectively, and 2.9% and 5.0% on Switchboard and CallHome. The proposed model had advantage on computational efficiency compared with conventional encoder-decoder ASR models with a similar parameter setup, and outperformed them on the LibriSpeech 100h and Switchboard training scenarios.
R.I.P.: Better Models by Survival of the Fittest Prompts
Training data quality is one of the most important drivers of final model quality. In this work, we introduce a method for evaluating data integrity based on the assumption that low-quality input prompts result in high variance and low quality responses. This is achieved by measuring the rejected response quality and the reward gap between the chosen and rejected preference pair. Our method, Rejecting Instruction Preferences (RIP) can be used to filter prompts from existing training sets, or to make high quality synthetic datasets, yielding large performance gains across various benchmarks compared to unfiltered data. Using Llama 3.1-8B-Instruct, RIP improves AlpacaEval2 LC Win Rate by 9.4%, Arena-Hard by 8.7%, and WildBench by 9.9%. Using Llama 3.3-70B-Instruct, RIP improves Arena-Hard from 67.5 to 82.9, which is from 18th place to 6th overall in the leaderboard.
Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings
Text classification is crucial for applications such as sentiment analysis and toxic text filtering, but it still faces challenges due to the complexity and ambiguity of natural language. Recent advancements in deep learning, particularly transformer architectures and large-scale pretraining, have achieved inspiring success in NLP fields. Building on these advancements, this thesis explores three challenging settings in text classification by leveraging the intrinsic knowledge of pretrained language models (PLMs). Firstly, to address the challenge of selecting misleading yet incorrect distractors for cloze questions, we develop models that utilize features based on contextualized word representations from PLMs, achieving performance that rivals or surpasses human accuracy. Secondly, to enhance model generalization to unseen labels, we create small finetuning datasets with domain-independent task label descriptions, improving model performance and robustness. Lastly, we tackle the sensitivity of large language models to in-context learning prompts by selecting effective demonstrations, focusing on misclassified examples and resolving model ambiguity regarding test example labels.
SynthesizeMe! Inducing Persona-Guided Prompts for Personalized Reward Models in LLMs
Recent calls for pluralistic alignment of Large Language Models (LLMs) encourage adapting models to diverse user preferences. However, most prior work on personalized reward models heavily rely on additional identity information, such as demographic details or a predefined set of preference categories. To this end, we introduce SynthesizeMe, an approach to inducing synthetic user personas from user interactions for personalized reward modeling. SynthesizeMe first generates and verifies reasoning to explain user preferences, then induces synthetic user personas from that reasoning, and finally filters to informative prior user interactions in order to build personalized prompts for a particular user. We show that using SynthesizeMe induced prompts improves personalized LLM-as-a-judge accuracy by 4.4% on Chatbot Arena. Combining SynthesizeMe derived prompts with a reward model achieves top performance on PersonalRewardBench: a new curation of user-stratified interactions with chatbots collected from 854 users of Chatbot Arena and PRISM.
Do LLMs Work on Charts? Designing Few-Shot Prompts for Chart Question Answering and Summarization
A number of tasks have been proposed recently to facilitate easy access to charts such as chart QA and summarization. The dominant paradigm to solve these tasks has been to fine-tune a pretrained model on the task data. However, this approach is not only expensive but also not generalizable to unseen tasks. On the other hand, large language models (LLMs) have shown impressive generalization capabilities to unseen tasks with zero- or few-shot prompting. However, their application to chart-related tasks is not trivial as these tasks typically involve considering not only the underlying data but also the visual features in the chart image. We propose PromptChart, a multimodal few-shot prompting framework with LLMs for chart-related applications. By analyzing the tasks carefully, we have come up with a set of prompting guidelines for each task to elicit the best few-shot performance from LLMs. We further propose a strategy to inject visual information into the prompts. Our experiments on three different chart-related information consumption tasks show that with properly designed prompts LLMs can excel on the benchmarks, achieving state-of-the-art.
Zero-Shot Audio Captioning Using Soft and Hard Prompts
In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test sets from the same dataset. Such methods have two limitations. First, these methods are often data-hungry and require time-consuming and expensive human annotations to obtain audio-text pairs. Second, these models often suffer from performance degradation in cross-domain scenarios, i.e., when the input audio comes from a different domain than the training set, which, however, has received little attention. We propose an effective audio captioning method based on the contrastive language-audio pre-training (CLAP) model to address these issues. Our proposed method requires only textual data for training, enabling the model to generate text from the textual feature in the cross-modal semantic space.In the inference stage, the model generates the descriptive text for the given audio from the audio feature by leveraging the audio-text alignment from CLAP.We devise two strategies to mitigate the discrepancy between text and audio embeddings: a mixed-augmentation-based soft prompt and a retrieval-based acoustic-aware hard prompt. These approaches are designed to enhance the generalization performance of our proposed model, facilitating the model to generate captions more robustly and accurately. Extensive experiments on AudioCaps and Clotho benchmarks show the effectiveness of our proposed method, which outperforms other zero-shot audio captioning approaches for in-domain scenarios and outperforms the compared methods for cross-domain scenarios, underscoring the generalization ability of our method.
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
Zero-Shot and Few-Shot Video Question Answering with Multi-Modal Prompts
Recent vision-language models are driven by large-scale pretrained models. However, adapting pretrained models on limited data presents challenges such as overfitting, catastrophic forgetting, and the cross-modal gap between vision and language. We introduce a parameter-efficient method to address these challenges, combining multimodal prompt learning and a transformer-based mapping network, while keeping the pretrained models frozen. Our experiments on several video question answering benchmarks demonstrate the superiority of our approach in terms of performance and parameter efficiency on both zero-shot and few-shot settings. Our code is available at https://engindeniz.github.io/vitis.
Label Anything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts
Few-shot semantic segmentation aims to segment objects from previously unseen classes using only a limited number of labeled examples. In this paper, we introduce Label Anything, a novel transformer-based architecture designed for multi-prompt, multi-way few-shot semantic segmentation. Our approach leverages diverse visual prompts -- points, bounding boxes, and masks -- to create a highly flexible and generalizable framework that significantly reduces annotation burden while maintaining high accuracy. Label Anything makes three key contributions: (i) we introduce a new task formulation that relaxes conventional few-shot segmentation constraints by supporting various types of prompts, multi-class classification, and enabling multiple prompts within a single image; (ii) we propose a novel architecture based on transformers and attention mechanisms; and (iii) we design a versatile training procedure allowing our model to operate seamlessly across different N-way K-shot and prompt-type configurations with a single trained model. Our extensive experimental evaluation on the widely used COCO-20^i benchmark demonstrates that Label Anything achieves state-of-the-art performance among existing multi-way few-shot segmentation methods, while significantly outperforming leading single-class models when evaluated in multi-class settings. Code and trained models are available at https://github.com/pasqualedem/LabelAnything.
Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts
Visual question answering (VQA) is known as an AI-complete task as it requires understanding, reasoning, and inferring about the vision and the language content. Over the past few years, numerous neural architectures have been suggested for the VQA problem. However, achieving success in zero-shot VQA remains a challenge due to its requirement for advanced generalization and reasoning skills. This study explores the impact of incorporating image captioning as an intermediary process within the VQA pipeline. Specifically, we explore the efficacy of utilizing image captions instead of images and leveraging large language models (LLMs) to establish a zero-shot setting. Since image captioning is the most crucial step in this process, we compare the impact of state-of-the-art image captioning models on VQA performance across various question types in terms of structure and semantics. We propose a straightforward and efficient question-driven image captioning approach within this pipeline to transfer contextual information into the question-answering (QA) model. This method involves extracting keywords from the question, generating a caption for each image-question pair using the keywords, and incorporating the question-driven caption into the LLM prompt. We evaluate the efficacy of using general-purpose and question-driven image captions in the VQA pipeline. Our study highlights the potential of employing image captions and harnessing the capabilities of LLMs to achieve competitive performance on GQA under the zero-shot setting. Our code is available at https://github.com/ovguyo/captions-in-VQA.
Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts
In the field of large language models (LLMs), aligning models with the diverse preferences of users is a critical challenge. Direct Preference Optimization (DPO) has played a key role in this area. It works by using pairs of preferences derived from the same prompts, and it functions without needing an additional reward model. However, DPO does not fully reflect the complex nature of human learning, which often involves understanding contrasting responses to not only identical but also similar questions. To overcome this shortfall, we propose Relative Preference Optimization (RPO). RPO is designed to discern between more and less preferred responses derived from both identical and related prompts. It introduces a contrastive weighting mechanism, enabling the tuning of LLMs using a broader range of preference data, including both paired and unpaired sets. This approach expands the learning capabilities of the model, allowing it to leverage insights from a more varied set of prompts. Through empirical tests, including dialogue and summarization tasks, and evaluations using the AlpacaEval2.0 leaderboard, RPO has demonstrated a superior ability to align LLMs with user preferences and to improve their adaptability during the training process. Our code can be viewed at https://github.com/yinyueqin/relative-preference-optimization
Show Less, Instruct More: Enriching Prompts with Definitions and Guidelines for Zero-Shot NER
Recently, several specialized instruction-tuned Large Language Models (LLMs) for Named Entity Recognition (NER) have emerged. Compared to traditional NER approaches, these models have strong generalization capabilities. Existing LLMs mainly focus on zero-shot NER in out-of-domain distributions, being fine-tuned on an extensive number of entity classes that often highly or completely overlap with test sets. In this work instead, we propose SLIMER, an approach designed to tackle never-seen-before named entity tags by instructing the model on fewer examples, and by leveraging a prompt enriched with definition and guidelines. Experiments demonstrate that definition and guidelines yield better performance, faster and more robust learning, particularly when labelling unseen Named Entities. Furthermore, SLIMER performs comparably to state-of-the-art approaches in out-of-domain zero-shot NER, while being trained on a reduced tag set.
HALLUCINOGEN: A Benchmark for Evaluating Object Hallucination in Large Visual-Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in performing complex multimodal tasks. However, they are still plagued by object hallucination: the misidentification or misclassification of objects present in images. To this end, we propose HALLUCINOGEN, a novel visual question answering (VQA) object hallucination attack benchmark that utilizes diverse contextual reasoning prompts to evaluate object hallucination in state-of-the-art LVLMs. We design a series of contextual reasoning hallucination prompts to evaluate LVLMs' ability to accurately identify objects in a target image while asking them to perform diverse visual-language tasks such as identifying, locating or performing visual reasoning around specific objects. Further, we extend our benchmark to high-stakes medical applications and introduce MED-HALLUCINOGEN, hallucination attacks tailored to the biomedical domain, and evaluate the hallucination performance of LVLMs on medical images, a critical area where precision is crucial. Finally, we conduct extensive evaluations of eight LVLMs and two hallucination mitigation strategies across multiple datasets to show that current generic and medical LVLMs remain susceptible to hallucination attacks.
LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra
We present the LLM Economist, a novel framework that uses agent-based modeling to design and assess economic policies in strategic environments with hierarchical decision-making. At the lower level, bounded rational worker agents -- instantiated as persona-conditioned prompts sampled from U.S. Census-calibrated income and demographic statistics -- choose labor supply to maximize text-based utility functions learned in-context. At the upper level, a planner agent employs in-context reinforcement learning to propose piecewise-linear marginal tax schedules anchored to the current U.S. federal brackets. This construction endows economic simulacra with three capabilities requisite for credible fiscal experimentation: (i) optimization of heterogeneous utilities, (ii) principled generation of large, demographically realistic agent populations, and (iii) mechanism design -- the ultimate nudging problem -- expressed entirely in natural language. Experiments with populations of up to one hundred interacting agents show that the planner converges near Stackelberg equilibria that improve aggregate social welfare relative to Saez solutions, while a periodic, persona-level voting procedure furthers these gains under decentralized governance. These results demonstrate that large language model-based agents can jointly model, simulate, and govern complex economic systems, providing a tractable test bed for policy evaluation at the societal scale to help build better civilizations.
DNA Bench: When Silence is Smarter -- Benchmarking Over-Reasoning in Reasoning LLMs
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Answer Bench (DNA Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNA Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNA Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
Can It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing Instructions
A significant amount of research is focused on developing and evaluating large language models for a variety of code synthesis tasks. These include synthesizing code from natural language instructions, synthesizing tests from code, and synthesizing explanations of code. In contrast, the behavior of instructional code editing with LLMs is understudied. These are tasks in which the model is instructed to update a block of code provided in a prompt. The editing instruction may ask for a feature to added or removed, describe a bug and ask for a fix, ask for a different kind of solution, or many other common code editing tasks. We introduce a carefully crafted benchmark of code editing tasks and use it evaluate several cutting edge LLMs. Our evaluation exposes a significant gap between the capabilities of state-of-the-art open and closed models. For example, even GPT-3.5-Turbo is 8.8% better than the best open model at editing code. We also introduce a new, carefully curated, permissively licensed training set of code edits coupled with natural language instructions. Using this training set, we show that we can fine-tune open Code LLMs to significantly improve their code editing capabilities.
Context Aware Query Rewriting for Text Rankers using LLM
Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.
IndicVoices: Towards building an Inclusive Multilingual Speech Dataset for Indian Languages
We present INDICVOICES, a dataset of natural and spontaneous speech containing a total of 7348 hours of read (9%), extempore (74%) and conversational (17%) audio from 16237 speakers covering 145 Indian districts and 22 languages. Of these 7348 hours, 1639 hours have already been transcribed, with a median of 73 hours per language. Through this paper, we share our journey of capturing the cultural, linguistic and demographic diversity of India to create a one-of-its-kind inclusive and representative dataset. More specifically, we share an open-source blueprint for data collection at scale comprising of standardised protocols, centralised tools, a repository of engaging questions, prompts and conversation scenarios spanning multiple domains and topics of interest, quality control mechanisms, comprehensive transcription guidelines and transcription tools. We hope that this open source blueprint will serve as a comprehensive starter kit for data collection efforts in other multilingual regions of the world. Using INDICVOICES, we build IndicASR, the first ASR model to support all the 22 languages listed in the 8th schedule of the Constitution of India. All the data, tools, guidelines, models and other materials developed as a part of this work will be made publicly available
FACTS About Building Retrieval Augmented Generation-based Chatbots
Enterprise chatbots, powered by generative AI, are emerging as key applications to enhance employee productivity. Retrieval Augmented Generation (RAG), Large Language Models (LLMs), and orchestration frameworks like Langchain and Llamaindex are crucial for building these chatbots. However, creating effective enterprise chatbots is challenging and requires meticulous RAG pipeline engineering. This includes fine-tuning embeddings and LLMs, extracting documents from vector databases, rephrasing queries, reranking results, designing prompts, honoring document access controls, providing concise responses, including references, safeguarding personal information, and building orchestration agents. We present a framework for building RAG-based chatbots based on our experience with three NVIDIA chatbots: for IT/HR benefits, financial earnings, and general content. Our contributions are three-fold: introducing the FACTS framework (Freshness, Architectures, Cost, Testing, Security), presenting fifteen RAG pipeline control points, and providing empirical results on accuracy-latency tradeoffs between large and small LLMs. To the best of our knowledge, this is the first paper of its kind that provides a holistic view of the factors as well as solutions for building secure enterprise-grade chatbots."
Training language models to follow instructions with human feedback
Making language models bigger does not inherently make them better at following a user's intent. For example, large language models can generate outputs that are untruthful, toxic, or simply not helpful to the user. In other words, these models are not aligned with their users. In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback. Starting with a set of labeler-written prompts and prompts submitted through the OpenAI API, we collect a dataset of labeler demonstrations of the desired model behavior, which we use to fine-tune GPT-3 using supervised learning. We then collect a dataset of rankings of model outputs, which we use to further fine-tune this supervised model using reinforcement learning from human feedback. We call the resulting models InstructGPT. In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets. Even though InstructGPT still makes simple mistakes, our results show that fine-tuning with human feedback is a promising direction for aligning language models with human intent.
TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.
Commonsense-T2I Challenge: Can Text-to-Image Generation Models Understand Commonsense?
We present a novel task and benchmark for evaluating the ability of text-to-image(T2I) generation models to produce images that fit commonsense in real life, which we call Commonsense-T2I. Given two adversarial text prompts containing an identical set of action words with minor differences, such as "a lightbulb without electricity" v.s. "a lightbulb with electricity", we evaluate whether T2I models can conduct visual-commonsense reasoning, e.g. produce images that fit "the lightbulb is unlit" vs. "the lightbulb is lit" correspondingly. Commonsense-T2I presents an adversarial challenge, providing pairwise text prompts along with expected outputs. The dataset is carefully hand-curated by experts and annotated with fine-grained labels, such as commonsense type and likelihood of the expected outputs, to assist analyzing model behavior. We benchmark a variety of state-of-the-art (sota) T2I models and surprisingly find that, there is still a large gap between image synthesis and real life photos--even the DALL-E 3 model could only achieve 48.92% on Commonsense-T2I, and the stable diffusion XL model only achieves 24.92% accuracy. Our experiments show that GPT-enriched prompts cannot solve this challenge, and we include a detailed analysis about possible reasons for such deficiency. We aim for Commonsense-T2I to serve as a high-quality evaluation benchmark for T2I commonsense checking, fostering advancements in real life image generation.
AnyPattern: Towards In-context Image Copy Detection
This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen rightarrow unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns (90 for training and 10 for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel tamper patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization (+26.66 % mu AP), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of +16.75 % mu AP), and (3) AnyPattern enables in-context ICD, i.e. without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. The project (including the proposed dataset AnyPattern and the code for ImageStacker) is publicly available at https://anypattern.github.io under the MIT Licence.
EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge
Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on EmergentTTS, we introduce EmergentTTS-Eval, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation https://github.com/boson-ai/EmergentTTS-Eval-public{code} and the https://huggingface.co/datasets/bosonai/EmergentTTS-Eval{dataset}.
The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
A key concern with the concept of "alignment" is the implicit question of "alignment to what?". AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first set of human annotated red-teaming prompts in different languages distinguishing between global and local harm, which serve as a laboratory for understanding the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.
COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD
PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas Hold'em via Large Language Model
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs). IIGs have long served as a measure of artificial intelligence (AI) development. Representative prior works, such as DeepStack and Libratus heavily rely on counterfactual regret minimization (CFR) to tackle heads-up no-limit Poker. However, it is challenging for subsequent researchers to learn CFR from previous models and apply it to other real-world applications due to the expensive computational cost of CFR iterations. Additionally, CFR is difficult to apply to multi-player games due to the exponential growth of the game tree size. In this work, we introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates, established on a lightweight large language model (LLM). PokerGPT only requires simple textual information of Poker games for generating decision-making advice, thus guaranteeing the convenient interaction between AI and humans. We mainly transform a set of textual records acquired from real games into prompts, and use them to fine-tune a lightweight pre-trained LLM using reinforcement learning human feedback technique. To improve fine-tuning performance, we conduct prompt engineering on raw data, including filtering useful information, selecting behaviors of players with high win rates, and further processing them into textual instruction using multiple prompt engineering techniques. Through the experiments, we demonstrate that PokerGPT outperforms previous approaches in terms of win rate, model size, training time, and response speed, indicating the great potential of LLMs in solving IIGs.
Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs, yet concerns arise as research indicates their tendency to memorize and replicate training data, raising We also addressed the issue of memorization in diffusion models, where models tend to replicate exact training samples raising copyright infringement and privacy issues. Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens, proposing per-prompt inference-time or training-time mitigation strategies. In this paper, we focus on the feed-forward layers and begin by contrasting neuron activations of a set of memorized and non-memorized prompts. Experiments reveal a surprising finding: many different sets of memorized prompts significantly activate a common subspace in the model, demonstrating, for the first time, that memorization in the diffusion models lies in a special subspace. Subsequently, we introduce a novel post-hoc method for editing pre-trained models, whereby memorization is mitigated through the straightforward pruning of weights in specialized subspaces, avoiding the need to disrupt the training or inference process as seen in prior research. Finally, we demonstrate the robustness of the pruned model against training data extraction attacks, thereby unveiling new avenues for a practical and one-for-all solution to memorization.
Multitask Prompted Training Enables Zero-Shot Task Generalization
Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks (Brown et al., 2020). It has been hypothesized that this is a consequence of implicit multitask learning in language models' pretraining (Radford et al., 2019). Can zero-shot generalization instead be directly induced by explicit multitask learning? To test this question at scale, we develop a system for easily mapping any natural language tasks into a human-readable prompted form. We convert a large set of supervised datasets, each with multiple prompts with diverse wording. These prompted datasets allow for benchmarking the ability of a model to perform completely held-out tasks. We fine-tune a pretrained encoder-decoder model (Raffel et al., 2020; Lester et al., 2021) on this multitask mixture covering a wide variety of tasks. The model attains strong zero-shot performance on several standard datasets, often outperforming models up to 16x its size. Further, our approach attains strong performance on a subset of tasks from the BIG-bench benchmark, outperforming models up to 6x its size. All trained models are available at https://github.com/bigscience-workshop/t-zero and all prompts are available at https://github.com/bigscience-workshop/promptsource.
Open-Universe Indoor Scene Generation using LLM Program Synthesis and Uncurated Object Databases
We present a system for generating indoor scenes in response to text prompts. The prompts are not limited to a fixed vocabulary of scene descriptions, and the objects in generated scenes are not restricted to a fixed set of object categories -- we call this setting indoor scene generation. Unlike most prior work on indoor scene generation, our system does not require a large training dataset of existing 3D scenes. Instead, it leverages the world knowledge encoded in pre-trained large language models (LLMs) to synthesize programs in a domain-specific layout language that describe objects and spatial relations between them. Executing such a program produces a specification of a constraint satisfaction problem, which the system solves using a gradient-based optimization scheme to produce object positions and orientations. To produce object geometry, the system retrieves 3D meshes from a database. Unlike prior work which uses databases of category-annotated, mutually-aligned meshes, we develop a pipeline using vision-language models (VLMs) to retrieve meshes from massive databases of un-annotated, inconsistently-aligned meshes. Experimental evaluations show that our system outperforms generative models trained on 3D data for traditional, closed-universe scene generation tasks; it also outperforms a recent LLM-based layout generation method on open-universe scene generation.
"I'm sorry to hear that": Finding New Biases in Language Models with a Holistic Descriptor Dataset
As language models grow in popularity, it becomes increasingly important to clearly measure all possible markers of demographic identity in order to avoid perpetuating existing societal harms. Many datasets for measuring bias currently exist, but they are restricted in their coverage of demographic axes and are commonly used with preset bias tests that presuppose which types of biases models can exhibit. In this work, we present a new, more inclusive bias measurement dataset, HolisticBias, which includes nearly 600 descriptor terms across 13 different demographic axes. HolisticBias was assembled in a participatory process including experts and community members with lived experience of these terms. These descriptors combine with a set of bias measurement templates to produce over 450,000 unique sentence prompts, which we use to explore, identify, and reduce novel forms of bias in several generative models. We demonstrate that HolisticBias is effective at measuring previously undetectable biases in token likelihoods from language models, as well as in an offensiveness classifier. We will invite additions and amendments to the dataset, which we hope will serve as a basis for more easy-to-use and standardized methods for evaluating bias in NLP models.
Frontier Language Models are not Robust to Adversarial Arithmetic, or "What do I need to say so you agree 2+2=5?
We introduce and study the problem of adversarial arithmetic, which provides a simple yet challenging testbed for language model alignment. This problem is comprised of arithmetic questions posed in natural language, with an arbitrary adversarial string inserted before the question is complete. Even in the simple setting of 1-digit addition problems, it is easy to find adversarial prompts that make all tested models (including PaLM2, GPT4, Claude2) misbehave, and even to steer models to a particular wrong answer. We additionally provide a simple algorithm for finding successful attacks by querying those same models, which we name "prompt inversion rejection sampling" (PIRS). We finally show that models can be partially hardened against these attacks via reinforcement learning and via agentic constitutional loops. However, we were not able to make a language model fully robust against adversarial arithmetic attacks.
RuOpinionNE-2024: Extraction of Opinion Tuples from Russian News Texts
In this paper, we introduce the Dialogue Evaluation shared task on extraction of structured opinions from Russian news texts. The task of the contest is to extract opinion tuples for a given sentence; the tuples are composed of a sentiment holder, its target, an expression and sentiment from the holder to the target. In total, the task received more than 100 submissions. The participants experimented mainly with large language models in zero-shot, few-shot and fine-tuning formats. The best result on the test set was obtained with fine-tuning of a large language model. We also compared 30 prompts and 11 open source language models with 3-32 billion parameters in the 1-shot and 10-shot settings and found the best models and prompts.
Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models
Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.
Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scoring of Texts with Large Language Models
Existing text scoring methods require a large corpus, struggle with short texts, or require hand-labeled data. We develop a text scoring framework that leverages generative large language models (LLMs) to (1) set texts against the backdrop of information from the near-totality of the web and digitized media, and (2) effectively transform pairwise text comparisons from a reasoning problem to a pattern recognition task. Our approach, concept-guided chain-of-thought (CGCoT), utilizes a chain of researcher-designed prompts with an LLM to generate a concept-specific breakdown for each text, akin to guidance provided to human coders. We then pairwise compare breakdowns using an LLM and aggregate answers into a score using a probability model. We apply this approach to better understand speech reflecting aversion to specific political parties on Twitter, a topic that has commanded increasing interest because of its potential contributions to democratic backsliding. We achieve stronger correlations with human judgments than widely used unsupervised text scoring methods like Wordfish. In a supervised setting, besides a small pilot dataset to develop CGCoT prompts, our measures require no additional hand-labeled data and produce predictions on par with RoBERTa-Large fine-tuned on thousands of hand-labeled tweets. This project showcases the potential of combining human expertise and LLMs for scoring tasks.
Orca 2: Teaching Small Language Models How to Reason
Orca 1 learns from rich signals, such as explanation traces, allowing it to outperform conventional instruction-tuned models on benchmarks like BigBench Hard and AGIEval. In Orca 2, we continue exploring how improved training signals can enhance smaller LMs' reasoning abilities. Research on training small LMs has often relied on imitation learning to replicate the output of more capable models. We contend that excessive emphasis on imitation may restrict the potential of smaller models. We seek to teach small LMs to employ different solution strategies for different tasks, potentially different from the one used by the larger model. For example, while larger models might provide a direct answer to a complex task, smaller models may not have the same capacity. In Orca 2, we teach the model various reasoning techniques (step-by-step, recall then generate, recall-reason-generate, direct answer, etc.). More crucially, we aim to help the model learn to determine the most effective solution strategy for each task. We evaluate Orca 2 using a comprehensive set of 15 diverse benchmarks (corresponding to approximately 100 tasks and over 36,000 unique prompts). Orca 2 significantly surpasses models of similar size and attains performance levels similar or better to those of models 5-10x larger, as assessed on complex tasks that test advanced reasoning abilities in zero-shot settings. We open-source Orca 2 to encourage further research on the development, evaluation, and alignment of smaller LMs.
Meltemi: The first open Large Language Model for Greek
We describe the development and capabilities of Meltemi 7B, the first open Large Language Model for the Greek language. Meltemi 7B has 7 billion parameters and is trained on a 40 billion token Greek corpus. For the development of Meltemi 7B, we adapt Mistral, by continuous pretraining on the Greek Corpus. Meltemi 7B contains up-to-date information up to September 2023. Furthermore, we have translated and curated a Greek instruction corpus, which has been used for the instruction-tuning of a chat model, named Meltemi 7B Instruct. Special care has been given to the alignment and the removal of toxic content for the Meltemi 7B Instruct. The developed models are evaluated on a broad set of collected evaluation corpora, and examples of prompts and responses are presented. Both Meltemi 7B and Meltemi 7B Instruct are available at https://huggingface.co/ilsp under the Apache 2.0 license.
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
Phi-4-reasoning Technical Report
We introduce Phi-4-reasoning, a 14-billion parameter reasoning model that achieves strong performance on complex reasoning tasks. Trained via supervised fine-tuning of Phi-4 on carefully curated set of "teachable" prompts-selected for the right level of complexity and diversity-and reasoning demonstrations generated using o3-mini, Phi-4-reasoning generates detailed reasoning chains that effectively leverage inference-time compute. We further develop Phi-4-reasoning-plus, a variant enhanced through a short phase of outcome-based reinforcement learning that offers higher performance by generating longer reasoning traces. Across a wide range of reasoning tasks, both models outperform significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B model and approach the performance levels of full DeepSeek-R1 model. Our comprehensive evaluations span benchmarks in math and scientific reasoning, coding, algorithmic problem solving, planning, and spatial understanding. Interestingly, we observe a non-trivial transfer of improvements to general-purpose benchmarks as well. In this report, we provide insights into our training data, our training methodologies, and our evaluations. We show that the benefit of careful data curation for supervised fine-tuning (SFT) extends to reasoning language models, and can be further amplified by reinforcement learning (RL). Finally, our evaluation points to opportunities for improving how we assess the performance and robustness of reasoning models.
Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action
We present Unified-IO 2, the first autoregressive multimodal model that is capable of understanding and generating image, text, audio, and action. To unify different modalities, we tokenize inputs and outputs -- images, text, audio, action, bounding boxes, etc., into a shared semantic space and then process them with a single encoder-decoder transformer model. Since training with such diverse modalities is challenging, we propose various architectural improvements to stabilize model training. We train our model from scratch on a large multimodal pre-training corpus from diverse sources with a multimodal mixture of denoisers objective. To learn an expansive set of skills, such as following multimodal instructions, we construct and finetune on an ensemble of 120 datasets with prompts and augmentations. With a single unified model, Unified-IO 2 achieves state-of-the-art performance on the GRIT benchmark and strong results in more than 35 benchmarks, including image generation and understanding, natural language understanding, video and audio understanding, and robotic manipulation. We release all our models to the research community.
LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
We present LLaMA-Adapter, a lightweight adaption method to efficiently fine-tune LLaMA into an instruction-following model. Using 52K self-instruct demonstrations, LLaMA-Adapter only introduces 1.2M learnable parameters upon the frozen LLaMA 7B model, and costs less than one hour for fine-tuning on 8 A100 GPUs. Specifically, we adopt a set of learnable adaption prompts, and prepend them to the input text tokens at higher transformer layers. Then, a zero-init attention mechanism with zero gating is proposed, which adaptively injects the new instructional cues into LLaMA, while effectively preserves its pre-trained knowledge. With efficient training, LLaMA-Adapter generates high-quality responses, comparable to Alpaca with fully fine-tuned 7B parameters. Furthermore, our approach can be simply extended to multi-modal input, e.g., images, for image-conditioned LLaMA, which achieves superior reasoning capacity on ScienceQA. We release our code at https://github.com/ZrrSkywalker/LLaMA-Adapter.
Multilingual LLMs Are Not Multilingual Thinkers: Evidence from Hindi Analogy Evaluation
Analogies test a model's ability to infer implicit relationships between concepts, making them a key benchmark for evaluating reasoning capabilities. While large language models (LLMs) are widely evaluated for reasoning in English, their abilities in Indic languages remain understudied, limiting our understanding of whether these models generalize across languages. To address this gap, we introduce a new Hindi Analogy Test Set (HATS), comprising 405 multiple-choice questions sourced from Indian government exams. We benchmark state-of-the-art multilingual LLMs using various prompting strategies and introduce a grounded Chain of Thought approach that leverages cognitive theories of analogical reasoning. This approach improves model performance on Hindi analogy questions. Our experiments show that models perform best with English prompts, irrespective of the prompting strategy. Our test set addresses the lack of a critical resource to evaluate LLM reasoning capabilities in Hindi.
The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts
As the influence of large language models (LLMs) spans across global communities, their safety challenges in multilingual settings become paramount for alignment research. This paper examines the variations in safety challenges faced by LLMs across different languages and discusses approaches to alleviating such concerns. By comparing how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages, we observe that (1) LLMs tend to generate unsafe responses much more often when a malicious prompt is written in a lower-resource language, and (2) LLMs tend to generate more irrelevant responses to malicious prompts in lower-resource languages. To understand where the discrepancy can be attributed, we study the effect of instruction tuning with reinforcement learning from human feedback (RLHF) or supervised finetuning (SFT) on the HH-RLHF dataset. Surprisingly, while training with high-resource languages improves model alignment, training in lower-resource languages yields minimal improvement. This suggests that the bottleneck of cross-lingual alignment is rooted in the pretraining stage. Our findings highlight the challenges in cross-lingual LLM safety, and we hope they inform future research in this direction.
Agents of Change: Self-Evolving LLM Agents for Strategic Planning
Recent advances in LLMs have enabled their use as autonomous agents across a range of tasks, yet they continue to struggle with formulating and adhering to coherent long-term strategies. In this paper, we investigate whether LLM agents can self-improve when placed in environments that explicitly challenge their strategic planning abilities. Using the board game Settlers of Catan, accessed through the open-source Catanatron framework, we benchmark a progression of LLM-based agents, from a simple game-playing agent to systems capable of autonomously rewriting their own prompts and their player agent's code. We introduce a multi-agent architecture in which specialized roles (Analyzer, Researcher, Coder, and Player) collaborate to iteratively analyze gameplay, research new strategies, and modify the agent's logic or prompt. By comparing manually crafted agents to those evolved entirely by LLMs, we evaluate how effectively these systems can diagnose failure and adapt over time. Our results show that self-evolving agents, particularly when powered by models like Claude 3.7 and GPT-4o, outperform static baselines by autonomously adopting their strategies, passing along sample behavior to game-playing agents, and demonstrating adaptive reasoning over multiple iterations.
Evaluating Cognitive Maps and Planning in Large Language Models with CogEval
Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.
OR-Bench: An Over-Refusal Benchmark for Large Language Models
Large Language Models (LLMs) require careful safety alignment to prevent malicious outputs. While significant research focuses on mitigating harmful content generation, the enhanced safety often come with the side effect of over-refusal, where LLMs may reject innocuous prompts and become less helpful. Although the issue of over-refusal has been empirically observed, a systematic measurement is challenging due to the difficulty of crafting prompts that appear harmful but are benign. This study proposes a novel method for automatically generating large-scale sets of "seemingly toxic prompts" (benign prompts likely rejected by LLMs). Leveraging this technique, we introduce OR-Bench, the first large-scale over-refusal benchmark. OR-Bench comprises 80,000 seemingly toxic prompts across 10 common rejection categories, a subset of around 1,000 hard prompts that are challenging even for state-of-the-art LLMs, and an additional 600 toxic prompts to prevent indiscriminate responses. We then conduct a comprehensive study to measure the over-refusal of 25 popular LLMs across 8 model families. Our datasets are available at https://huggingface.co/datasets/bench-llm/or-bench and the demo can be found at https://huggingface.co/spaces/bench-llm/or-bench. We hope this benchmark can help the community develop better safety aligned models.
Understanding and Predicting Derailment in Toxic Conversations on GitHub
Software projects thrive on the involvement and contributions of individuals from different backgrounds. However, toxic language and negative interactions can hinder the participation and retention of contributors and alienate newcomers. Proactive moderation strategies aim to prevent toxicity from occurring by addressing conversations that have derailed from their intended purpose. This study aims to understand and predict conversational derailment leading to toxicity on GitHub. To facilitate this research, we curate a novel dataset comprising 202 toxic conversations from GitHub with annotated derailment points, along with 696 non-toxic conversations as a baseline. Based on this dataset, we identify unique characteristics of toxic conversations and derailment points, including linguistic markers such as second-person pronouns, negation terms, and tones of Bitter Frustration and Impatience, as well as patterns in conversational dynamics between project contributors and external participants. Leveraging these empirical observations, we propose a proactive moderation approach to automatically detect and address potentially harmful conversations before escalation. By utilizing modern LLMs, we develop a conversation trajectory summary technique that captures the evolution of discussions and identifies early signs of derailment. Our experiments demonstrate that LLM prompts tailored to provide summaries of GitHub conversations achieve 69% F1-Score in predicting conversational derailment, strongly improving over a set of baseline approaches.
E-Bench: Subjective-Aligned Benchmark Suite for Text-Driven Video Editing Quality Assessment
Text-driven video editing has recently experienced rapid development. Despite this, evaluating edited videos remains a considerable challenge. Current metrics tend to fail to align with human perceptions, and effective quantitative metrics for video editing are still notably absent. To address this, we introduce E-Bench, a benchmark suite tailored to the assessment of text-driven video editing. This suite includes E-Bench DB, a video quality assessment (VQA) database for video editing. E-Bench DB encompasses a diverse set of source videos featuring various motions and subjects, along with multiple distinct editing prompts, editing results from 8 different models, and the corresponding Mean Opinion Scores (MOS) from 24 human annotators. Based on E-Bench DB, we further propose E-Bench QA, a quantitative human-aligned measurement for the text-driven video editing task. In addition to the aesthetic, distortion, and other visual quality indicators that traditional VQA methods emphasize, E-Bench QA focuses on the text-video alignment and the relevance modeling between source and edited videos. It proposes a new assessment network for video editing that attains superior performance in alignment with human preferences. To the best of our knowledge, E-Bench introduces the first quality assessment dataset for video editing and an effective subjective-aligned quantitative metric for this domain. All data and code will be publicly available at https://github.com/littlespray/E-Bench.
ChatCounselor: A Large Language Models for Mental Health Support
This paper presents ChatCounselor, a large language model (LLM) solution designed to provide mental health support. Unlike generic chatbots, ChatCounselor is distinguished by its foundation in real conversations between consulting clients and professional psychologists, enabling it to possess specialized knowledge and counseling skills in the field of psychology. The training dataset, Psych8k, was constructed from 260 in-depth interviews, each spanning an hour. To assess the quality of counseling responses, the counseling Bench was devised. Leveraging GPT-4 and meticulously crafted prompts based on seven metrics of psychological counseling assessment, the model underwent evaluation using a set of real-world counseling questions. Impressively, ChatCounselor surpasses existing open-source models in the counseling Bench and approaches the performance level of ChatGPT, showcasing the remarkable enhancement in model capability attained through high-quality domain-specific data.
ReVersion: Diffusion-Based Relation Inversion from Images
Diffusion models gain increasing popularity for their generative capabilities. Recently, there have been surging needs to generate customized images by inverting diffusion models from exemplar images. However, existing inversion methods mainly focus on capturing object appearances. How to invert object relations, another important pillar in the visual world, remains unexplored. In this work, we propose ReVersion for the Relation Inversion task, which aims to learn a specific relation (represented as "relation prompt") from exemplar images. Specifically, we learn a relation prompt from a frozen pre-trained text-to-image diffusion model. The learned relation prompt can then be applied to generate relation-specific images with new objects, backgrounds, and styles. Our key insight is the "preposition prior" - real-world relation prompts can be sparsely activated upon a set of basis prepositional words. Specifically, we propose a novel relation-steering contrastive learning scheme to impose two critical properties of the relation prompt: 1) The relation prompt should capture the interaction between objects, enforced by the preposition prior. 2) The relation prompt should be disentangled away from object appearances. We further devise relation-focal importance sampling to emphasize high-level interactions over low-level appearances (e.g., texture, color). To comprehensively evaluate this new task, we contribute ReVersion Benchmark, which provides various exemplar images with diverse relations. Extensive experiments validate the superiority of our approach over existing methods across a wide range of visual relations.
Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models
Instruction-tuned language models (LM) are able to respond to imperative commands, providing a more natural user interface compared to their base counterparts. In this work, we present Promptriever, the first retrieval model able to be prompted like an LM. To train Promptriever, we curate and release a new instance-level instruction training set from MS MARCO, spanning nearly 500k instances. Promptriever not only achieves strong performance on standard retrieval tasks, but also follows instructions. We observe: (1) large gains (reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR / +3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical choices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR), and (3) the ability to perform hyperparameter search via prompting to reliably improve retrieval performance (+1.4 average increase on BEIR). Promptriever demonstrates that retrieval models can be controlled with prompts on a per-query basis, setting the stage for future work aligning LM prompting techniques with information retrieval.
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
An Explanation of In-context Learning as Implicit Bayesian Inference
Large language models (LMs) such as GPT-3 have the surprising ability to do in-context learning, where the model learns to do a downstream task simply by conditioning on a prompt consisting of input-output examples. The LM learns from these examples without being explicitly pretrained to learn. Thus, it is unclear what enables in-context learning. In this paper, we study how in-context learning can emerge when pretraining documents have long-range coherence. Here, the LM must infer a latent document-level concept to generate coherent next tokens during pretraining. At test time, in-context learning occurs when the LM also infers a shared latent concept between examples in a prompt. We prove when this occurs despite a distribution mismatch between prompts and pretraining data in a setting where the pretraining distribution is a mixture of HMMs. In contrast to messy large-scale datasets used to train LMs capable of in-context learning, we generate a small-scale synthetic dataset (GINC) where Transformers and LSTMs both exhibit in-context learning. Beyond the theory, experiments on GINC exhibit large-scale real-world phenomena including improved in-context performance with model scaling (despite the same pretraining loss), sensitivity to example order, and instances where zero-shot is better than few-shot in-context learning.
Measuring Harmfulness of Computer-Using Agents
Computer-using agents (CUAs), which autonomously control computers to perform multi-step actions, might pose significant safety risks if misused. Existing benchmarks mostly evaluate language models' (LMs) safety risks in chatbots or simple tool-usage scenarios, without granting full computer access. To better evaluate CUAs' misuse risks, we introduce a new benchmark: CUAHarm. CUAHarm consists of 104 expert-written realistic misuse risks, such as disabling firewalls, leaking confidential information, launching denial-of-service attacks, or installing backdoors. We provide a sandbox environment and rule-based verifiable rewards to measure CUAs' success rates in executing these tasks (e.g., whether the firewall is indeed disabled), not just refusal. We evaluate multiple frontier open-source and proprietary LMs, such as Claude Sonnet, GPT-4o, Gemini Pro 1.5, Llama-3.3-70B, and Mistral Large 2. Surprisingly, even without carefully designed jailbreaking prompts, these frontier LMs comply with executing these malicious tasks at a high success rate (e.g., 59% for Claude 3.7 Sonnet). Newer models show higher misuse rates: Claude 3.7 Sonnet succeeds on 15% more tasks than Claude 3.5. While these models are robust to common malicious prompts (e.g., creating a bomb) in chatbot settings, they behave unsafely as CUAs. We further evaluate a leading agentic framework (UI-TARS-1.5) and find that while it improves performance, it also amplifies misuse risks. Benign variants reveal refusals stem from alignment, not capability limits. To mitigate risks, we explore using LMs to monitor CUAs' actions and chain-of-thoughts (CoTs). Monitoring CUAs is significantly harder than chatbot outputs. Monitoring CoTs yields modest gains, with average detection accuracy at only 72%. Even with hierarchical summarization, improvement is limited to 4%. CUAHarm will be released at https://github.com/db-ol/CUAHarm.
VISTA: Vision-Language Inference for Training-Free Stock Time-Series Analysis
Stock price prediction remains a complex and high-stakes task in financial analysis, traditionally addressed using statistical models or, more recently, language models. In this work, we introduce VISTA (Vision-Language Inference for Stock Time-series Analysis), a novel, training-free framework that leverages Vision-Language Models (VLMs) for multi-modal stock forecasting. VISTA prompts a VLM with both textual representations of historical stock prices and their corresponding line charts to predict future price values. By combining numerical and visual modalities in a zero-shot setting and using carefully designed chain-of-thought prompts, VISTA captures complementary patterns that unimodal approaches often miss. We benchmark VISTA against standard baselines, including ARIMA and text-only LLM-based prompting methods. Experimental results show that VISTA outperforms these baselines by up to 89.83%, demonstrating the effectiveness of multi-modal inference for stock time-series analysis and highlighting the potential of VLMs in financial forecasting tasks without requiring task-specific training.
Assessing and Understanding Creativity in Large Language Models
In the field of natural language processing, the rapid development of large language model (LLM) has attracted more and more attention. LLMs have shown a high level of creativity in various tasks, but the methods for assessing such creativity are inadequate. The assessment of LLM creativity needs to consider differences from humans, requiring multi-dimensional measurement while balancing accuracy and efficiency. This paper aims to establish an efficient framework for assessing the level of creativity in LLMs. By adapting the modified Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks, emphasizing 4 criteria including Fluency, Flexibility, Originality, and Elaboration. In this context, we develop a comprehensive dataset of 700 questions for testing and an LLM-based evaluation method. In addition, this study presents a novel analysis of LLMs' responses to diverse prompts and role-play situations. We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration. Besides, the use of prompts and the role-play settings of the model significantly influence creativity. Additionally, the experimental results also indicate that collaboration among multiple LLMs can enhance originality. Notably, our findings reveal a consensus between human evaluations and LLMs regarding the personality traits that influence creativity. The findings underscore the significant impact of LLM design on creativity and bridges artificial intelligence and human creativity, offering insights into LLMs' creativity and potential applications.
Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis
Diffusion model is a promising approach to image generation and has been employed for Pose-Guided Person Image Synthesis (PGPIS) with competitive performance. While existing methods simply align the person appearance to the target pose, they are prone to overfitting due to the lack of a high-level semantic understanding on the source person image. In this paper, we propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for PGPIS. In the absence of image-caption pairs and textual prompts, we develop a novel training paradigm purely based on images to control the generation process of the pre-trained text-to-image diffusion model. A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt. This allows for the decoupling of fine-grained appearance and pose information controls at different stages, and thus circumventing the potential overfitting problem. To generate more realistic texture details, a hybrid-granularity attention module is proposed to encode multi-scale fine-grained appearance features as bias terms to augment the coarse-grained prompt. Both quantitative and qualitative experimental results on the DeepFashion benchmark demonstrate the superiority of our method over the state of the arts for PGPIS. Code is available at https://github.com/YanzuoLu/CFLD.
Beyond Aesthetics: Cultural Competence in Text-to-Image Models
Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of cultural competence. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide valuable insights into the cultural diversity of T2I outputs for under-specified prompts. Our methodology is extendable to other cultural regions and concepts, and can facilitate the development of T2I models that better cater to the global population.
PromptSpeaker: Speaker Generation Based on Text Descriptions
Recently, text-guided content generation has received extensive attention. In this work, we explore the possibility of text description-based speaker generation, i.e., using text prompts to control the speaker generation process. Specifically, we propose PromptSpeaker, a text-guided speaker generation system. PromptSpeaker consists of a prompt encoder, a zero-shot VITS, and a Glow model, where the prompt encoder predicts a prior distribution based on the text description and samples from this distribution to obtain a semantic representation. The Glow model subsequently converts the semantic representation into a speaker representation, and the zero-shot VITS finally synthesizes the speaker's voice based on the speaker representation. We verify that PromptSpeaker can generate speakers new from the training set by objective metrics, and the synthetic speaker voice has reasonable subjective matching quality with the speaker prompt.
Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate \haf of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and nonsensical responses. We open-source our code and LLM-generated explanations at https://github.com/uofthcdslab/HAF.
CoMA: Compositional Human Motion Generation with Multi-modal Agents
3D human motion generation has seen substantial advancement in recent years. While state-of-the-art approaches have improved performance significantly, they still struggle with complex and detailed motions unseen in training data, largely due to the scarcity of motion datasets and the prohibitive cost of generating new training examples. To address these challenges, we introduce CoMA, an agent-based solution for complex human motion generation, editing, and comprehension. CoMA leverages multiple collaborative agents powered by large language and vision models, alongside a mask transformer-based motion generator featuring body part-specific encoders and codebooks for fine-grained control. Our framework enables generation of both short and long motion sequences with detailed instructions, text-guided motion editing, and self-correction for improved quality. Evaluations on the HumanML3D dataset demonstrate competitive performance against state-of-the-art methods. Additionally, we create a set of context-rich, compositional, and long text prompts, where user studies show our method significantly outperforms existing approaches.
InstructG2I: Synthesizing Images from Multimodal Attributed Graphs
In this paper, we approach an overlooked yet critical task Graph2Image: generating images from multimodal attributed graphs (MMAGs). This task poses significant challenges due to the explosion in graph size, dependencies among graph entities, and the need for controllability in graph conditions. To address these challenges, we propose a graph context-conditioned diffusion model called InstructG2I. InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling by combining personalized page rank and re-ranking based on vision-language features. Then, a Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process of diffusion. Finally, we propose graph classifier-free guidance, enabling controllable generation by varying the strength of graph guidance and multiple connected edges to a node. Extensive experiments conducted on three datasets from different domains demonstrate the effectiveness and controllability of our approach. The code is available at https://github.com/PeterGriffinJin/InstructG2I.
ESP-MedSAM: Efficient Self-Prompting SAM for Universal Image Segmentation
The Segment Anything Model (SAM) has demonstrated outstanding adaptation to medical image segmentation but still faces three major challenges. Firstly, the huge computational costs of SAM limit its real-world applicability. Secondly, SAM depends on manual annotations (e.g., points, boxes) as prompts, which are laborious and impractical in clinical scenarios. Thirdly, SAM handles all segmentation targets equally, which is suboptimal for diverse medical modalities with inherent heterogeneity. To address these issues, we propose an Efficient Self-Prompting SAM for universal medical image segmentation, named ESP-MedSAM. We devise a Multi-Modal Decoupled Knowledge Distillation (MMDKD) strategy to distil common image knowledge and domain-specific medical knowledge from the foundation model to train a lightweight image encoder and a modality controller. Further, they combine with the additionally introduced Self-Patch Prompt Generator (SPPG) and Query-Decoupled Modality Decoder (QDMD) to construct ESP-MedSAM. Specifically, SPPG aims to generate a set of patch prompts automatically and QDMD leverages a one-to-one strategy to provide an independent decoding channel for every modality. Extensive experiments indicate that ESP-MedSAM outperforms state-of-the-arts in diverse medical imaging segmentation takes, displaying superior zero-shot learning and modality transfer ability. Especially, our framework uses only 31.4% parameters compared to SAM-Base.
LLaMoCo: Instruction Tuning of Large Language Models for Optimization Code Generation
Recent research explores optimization using large language models (LLMs) by either iteratively seeking next-step solutions from LLMs or directly prompting LLMs for an optimizer. However, these approaches exhibit inherent limitations, including low operational efficiency, high sensitivity to prompt design, and a lack of domain-specific knowledge. We introduce LLaMoCo, the first instruction-tuning framework designed to adapt LLMs for solving optimization problems in a code-to-code manner. Specifically, we establish a comprehensive instruction set containing well-described problem prompts and effective optimization codes. We then develop a novel two-phase learning strategy that incorporates a contrastive learning-based warm-up procedure before the instruction-tuning phase to enhance the convergence behavior during model fine-tuning. The experiment results demonstrate that a CodeGen (350M) model fine-tuned by our LLaMoCo achieves superior optimization performance compared to GPT-4 Turbo and the other competitors across both synthetic and realistic problem sets. The fine-tuned model and the usage instructions are available at https://anonymous.4open.science/r/LLaMoCo-722A.
T-Rex: Counting by Visual Prompting
We introduce T-Rex, an interactive object counting model designed to first detect and then count any objects. We formulate object counting as an open-set object detection task with the integration of visual prompts. Users can specify the objects of interest by marking points or boxes on a reference image, and T-Rex then detects all objects with a similar pattern. Guided by the visual feedback from T-Rex, users can also interactively refine the counting results by prompting on missing or falsely-detected objects. T-Rex has achieved state-of-the-art performance on several class-agnostic counting benchmarks. To further exploit its potential, we established a new counting benchmark encompassing diverse scenarios and challenges. Both quantitative and qualitative results show that T-Rex possesses exceptional zero-shot counting capabilities. We also present various practical application scenarios for T-Rex, illustrating its potential in the realm of visual prompting.
Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models
Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason from scratch. To address these issues, we propose \textit{Thought Propagation (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.
Multi3Hate: Multimodal, Multilingual, and Multicultural Hate Speech Detection with Vision-Language Models
Warning: this paper contains content that may be offensive or upsetting Hate speech moderation on global platforms poses unique challenges due to the multimodal and multilingual nature of content, along with the varying cultural perceptions. How well do current vision-language models (VLMs) navigate these nuances? To investigate this, we create the first multimodal and multilingual parallel hate speech dataset, annotated by a multicultural set of annotators, called Multi3Hate. It contains 300 parallel meme samples across 5 languages: English, German, Spanish, Hindi, and Mandarin. We demonstrate that cultural background significantly affects multimodal hate speech annotation in our dataset. The average pairwise agreement among countries is just 74%, significantly lower than that of randomly selected annotator groups. Our qualitative analysis indicates that the lowest pairwise label agreement-only 67% between the USA and India-can be attributed to cultural factors. We then conduct experiments with 5 large VLMs in a zero-shot setting, finding that these models align more closely with annotations from the US than with those from other cultures, even when the memes and prompts are presented in the dominant language of the other culture. Code and dataset are available at https://github.com/MinhDucBui/Multi3Hate.
Large Language Models can Share Images, Too!
This paper explores the image-sharing capability of Large Language Models (LLMs), such as InstructGPT, ChatGPT, and GPT-4, in a zero-shot setting, without the help of visual foundation models. Inspired by the two-stage process of image-sharing in human dialogues, we propose a two-stage framework that allows LLMs to predict potential image-sharing turns and generate related image descriptions using our effective restriction-based prompt template. With extensive experiments, we unlock the image-sharing capability of LLMs in zero-shot prompting, with GPT-4 achieving the best performance. Additionally, we uncover the emergent image-sharing ability in zero-shot prompting, demonstrating the effectiveness of restriction-based prompts in both stages of our framework. Based on this framework, we augment the PhotoChat dataset with images generated by Stable Diffusion at predicted turns, namely PhotoChat++. To our knowledge, this is the first study to assess the image-sharing ability of LLMs in a zero-shot setting without visual foundation models. The source code and the dataset will be released after publication.
Accelerated Stochastic Optimization Methods under Quasar-convexity
Non-convex optimization plays a key role in a growing number of machine learning applications. This motivates the identification of specialized structure that enables sharper theoretical analysis. One such identified structure is quasar-convexity, a non-convex generalization of convexity that subsumes convex functions. Existing algorithms for minimizing quasar-convex functions in the stochastic setting have either high complexity or slow convergence, which prompts us to derive a new class of stochastic methods for optimizing smooth quasar-convex functions. We demonstrate that our algorithms have fast convergence and outperform existing algorithms on several examples, including the classical problem of learning linear dynamical systems. We also present a unified analysis of our newly proposed algorithms and a previously studied deterministic algorithm.
WARP: Word-level Adversarial ReProgramming
Transfer learning from pretrained language models recently became the dominant approach for solving many NLP tasks. A common approach to transfer learning for multiple tasks that maximize parameter sharing trains one or more task-specific layers on top of the language model. In this paper, we present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation. Adversarial reprogramming attempts to learn task-specific word embeddings that, when concatenated to the input text, instruct the language model to solve the specified task. Using up to 25K trainable parameters per task, this approach outperforms all existing methods with up to 25M trainable parameters on the public leaderboard of the GLUE benchmark. Our method, initialized with task-specific human-readable prompts, also works in a few-shot setting, outperforming GPT-3 on two SuperGLUE tasks with just 32 training samples.
PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models
Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives. Remarkable success has been achieved in the language domain by using reinforcement learning (RL) to maximize rewards that reflect human preference. However, in the vision domain, existing RL-based reward finetuning methods are limited by their instability in large-scale training, rendering them incapable of generalizing to complex, unseen prompts. In this paper, we propose Proximal Reward Difference Prediction (PRDP), enabling stable black-box reward finetuning for diffusion models for the first time on large-scale prompt datasets with over 100K prompts. Our key innovation is the Reward Difference Prediction (RDP) objective that has the same optimal solution as the RL objective while enjoying better training stability. Specifically, the RDP objective is a supervised regression objective that tasks the diffusion model with predicting the reward difference of generated image pairs from their denoising trajectories. We theoretically prove that the diffusion model that obtains perfect reward difference prediction is exactly the maximizer of the RL objective. We further develop an online algorithm with proximal updates to stably optimize the RDP objective. In experiments, we demonstrate that PRDP can match the reward maximization ability of well-established RL-based methods in small-scale training. Furthermore, through large-scale training on text prompts from the Human Preference Dataset v2 and the Pick-a-Pic v1 dataset, PRDP achieves superior generation quality on a diverse set of complex, unseen prompts whereas RL-based methods completely fail.
Ask One More Time: Self-Agreement Improves Reasoning of Language Models in (Almost) All Scenarios
Although chain-of-thought (CoT) prompting combined with language models has achieved encouraging results on complex reasoning tasks, the naive greedy decoding used in CoT prompting usually causes the repetitiveness and local optimality. To address this shortcoming, ensemble-optimization tries to obtain multiple reasoning paths to get the final answer assembly. However, current ensemble-optimization methods either simply employ rule-based post-processing such as self-consistency, or train an additional model based on several task-related human annotations to select the best one among multiple reasoning paths, yet fail to generalize to realistic settings where the type of input questions is unknown or the answer format of reasoning paths is unknown. To avoid their limitations, we propose self-agreement, a generalizable ensemble-optimization method applying in almost all scenarios where the type of input questions and the answer format of reasoning paths may be known or unknown. Self-agreement firstly samples from language model's decoder to generate a diverse set of reasoning paths, and subsequently prompts the language model one more time to determine the optimal answer by selecting the most agreed answer among the sampled reasoning paths. Self-agreement simultaneously achieves remarkable performance on six public reasoning benchmarks and superior generalization capabilities.
Moral Foundations of Large Language Models
Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model's behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance.
Benchmarks Underestimate the Readiness of Multi-lingual Dialogue Agents
Creating multilingual task-oriented dialogue (TOD) agents is challenging due to the high cost of training data acquisition. Following the research trend of improving training data efficiency, we show for the first time, that in-context learning is sufficient to tackle multilingual TOD. To handle the challenging dialogue state tracking (DST) subtask, we break it down to simpler steps that are more compatible with in-context learning where only a handful of few-shot examples are used. We test our approach on the multilingual TOD dataset X-RiSAWOZ, which has 12 domains in Chinese, English, French, Korean, Hindi, and code-mixed Hindi-English. Our turn-by-turn DST accuracy on the 6 languages range from 55.6% to 80.3%, seemingly worse than the SOTA results from fine-tuned models that achieve from 60.7% to 82.8%; our BLEU scores in the response generation (RG) subtask are also significantly lower than SOTA. However, after manual evaluation of the validation set, we find that by correcting gold label errors and improving dataset annotation schema, GPT-4 with our prompts can achieve (1) 89.6%-96.8% accuracy in DST, and (2) more than 99% correct response generation across different languages. This leads us to conclude that current automatic metrics heavily underestimate the effectiveness of in-context learning.
Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models
Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narratives--tasks that teachers perform--using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5--which have shown promising results.
Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting
In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.