Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCamera Calibration through Geometric Constraints from Rotation and Projection Matrices
The process of camera calibration involves estimating the intrinsic and extrinsic parameters, which are essential for accurately performing tasks such as 3D reconstruction, object tracking and augmented reality. In this work, we propose a novel constraints-based loss for measuring the intrinsic (focal length: (f_x, f_y) and principal point: (p_x, p_y)) and extrinsic (baseline: (b), disparity: (d), translation: (t_x, t_y, t_z), and rotation specifically pitch: (theta_p)) camera parameters. Our novel constraints are based on geometric properties inherent in the camera model, including the anatomy of the projection matrix (vanishing points, image of world origin, axis planes) and the orthonormality of the rotation matrix. Thus we proposed a novel Unsupervised Geometric Constraint Loss (UGCL) via a multitask learning framework. Our methodology is a hybrid approach that employs the learning power of a neural network to estimate the desired parameters along with the underlying mathematical properties inherent in the camera projection matrix. This distinctive approach not only enhances the interpretability of the model but also facilitates a more informed learning process. Additionally, we introduce a new CVGL Camera Calibration dataset, featuring over 900 configurations of camera parameters, incorporating 63,600 image pairs that closely mirror real-world conditions. By training and testing on both synthetic and real-world datasets, our proposed approach demonstrates improvements across all parameters when compared to the state-of-the-art (SOTA) benchmarks. The code and the updated dataset can be found here: https://github.com/CVLABLUMS/CVGL-Camera-Calibration
Memory-Efficient LLM Training with Online Subspace Descent
Recently, a wide range of memory-efficient LLM training algorithms have gained substantial popularity. These methods leverage the low-rank structure of gradients to project optimizer states into a subspace using projection matrix found by singular value decomposition (SVD). However, convergence of these algorithms is highly dependent on the update rules of their projection matrix. In this work, we provide the first convergence guarantee for arbitrary update rules of projection matrix. This guarantee is generally applicable to optimizers that can be analyzed with Hamiltonian Descent, including most common ones, such as LION, Adam. Inspired by our theoretical understanding, we propose Online Subspace Descent, a new family of subspace descent optimizer without SVD. Instead of updating the projection matrix with eigenvectors, Online Subspace Descent updates the projection matrix with online PCA. Online Subspace Descent is flexible and introduces only minimum overhead to training. We show that for the task of pretraining LLaMA models ranging from 60M to 7B parameters on the C4 dataset, Online Subspace Descent achieves lower perplexity and better downstream tasks performance than state-of-the-art low-rank training methods across different settings and narrows the gap with full-rank baselines.
LaMDA: Large Model Fine-Tuning via Spectrally Decomposed Low-Dimensional Adaptation
Low-rank adaptation (LoRA) has become the default approach to fine-tune large language models (LLMs) due to its significant reduction in trainable parameters. However, trainable parameter demand for LoRA increases with increasing model embedding dimensions, leading to high compute costs. Additionally, its backward updates require storing high-dimensional intermediate activations and optimizer states, demanding high peak GPU memory. In this paper, we introduce large model fine-tuning via spectrally decomposed low-dimensional adaptation (LaMDA), a novel approach to fine-tuning large language models, which leverages low-dimensional adaptation to achieve significant reductions in trainable parameters and peak GPU memory footprint. LaMDA freezes a first projection matrix (PMA) in the adaptation path while introducing a low-dimensional trainable square matrix, resulting in substantial reductions in trainable parameters and peak GPU memory usage. LaMDA gradually freezes a second projection matrix (PMB) during the early fine-tuning stages, reducing the compute cost associated with weight updates to enhance parameter efficiency further. We also present an enhancement, LaMDA++, incorporating a ``lite-weight" adaptive rank allocation for the LoRA path via normalized spectrum analysis of pre-trained model weights. We evaluate LaMDA/LaMDA++ across various tasks, including natural language understanding with the GLUE benchmark, text summarization, natural language generation, and complex reasoning on different LLMs. Results show that LaMDA matches or surpasses the performance of existing alternatives while requiring up to 17.7x fewer parameter updates and up to 1.32x lower peak GPU memory usage during fine-tuning. Code will be publicly available.
Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh Reconstruction
As it is hard to calibrate single-view RGB images in the wild, existing 3D human mesh reconstruction (3DHMR) methods either use a constant large focal length or estimate one based on the background environment context, which can not tackle the problem of the torso, limb, hand or face distortion caused by perspective camera projection when the camera is close to the human body. The naive focal length assumptions can harm this task with the incorrectly formulated projection matrices. To solve this, we propose Zolly, the first 3DHMR method focusing on perspective-distorted images. Our approach begins with analysing the reason for perspective distortion, which we find is mainly caused by the relative location of the human body to the camera center. We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body. We then estimate the distance from distortion scale features rather than environment context features. Afterwards, we integrate the distortion feature with image features to reconstruct the body mesh. To formulate the correct projection matrix and locate the human body position, we simultaneously use perspective and weak-perspective projection loss. Since existing datasets could not handle this task, we propose the first synthetic dataset PDHuman and extend two real-world datasets tailored for this task, all containing perspective-distorted human images. Extensive experiments show that Zolly outperforms existing state-of-the-art methods on both perspective-distorted datasets and the standard benchmark (3DPW).
Pit One Against Many: Leveraging Attention-head Embeddings for Parameter-efficient Multi-head Attention
Scaling pre-trained language models has resulted in large performance gains in various natural language processing tasks but comes with a large cost in memory requirements. Inspired by the position embeddings in transformers, we aim to simplify and reduce the memory footprint of the multi-head attention (MHA) mechanism. We propose an alternative module that uses only a single shared projection matrix and multiple head embeddings (MHE), i.e. one per head. We empirically demonstrate that our MHE attention is substantially more memory efficient compared to alternative attention mechanisms while achieving high predictive performance retention ratio to vanilla MHA on several downstream tasks. MHE attention only requires a negligible fraction of additional parameters (3nd, where n is the number of attention heads and d the size of the head embeddings) compared to a single-head attention, while MHA requires (3n^2-3n)d^2-3nd additional parameters.
MoSLD: An Extremely Parameter-Efficient Mixture-of-Shared LoRAs for Multi-Task Learning
Recently, LoRA has emerged as a crucial technique for fine-tuning large pre-trained models, yet its performance in multi-task learning scenarios often falls short. In contrast, the MoE architecture presents a natural solution to this issue. However, it introduces challenges such as mutual interference of data across multiple domains and knowledge forgetting of various tasks. Additionally, MoE significantly increases the number of parameters, posing a computational cost challenge. Therefore, in this paper, we propose MoSLD, a mixture-of-shared-LoRAs model with a dropout strategy. MoSLD addresses these challenges by sharing the upper projection matrix in LoRA among different experts, encouraging the model to learn general knowledge across tasks, while still allowing the lower projection matrix to focus on the unique features of each task. The application of dropout alleviates the imbalanced update of parameter matrix and mitigates parameter overfitting in LoRA. Extensive experiments demonstrate that our model exhibits excellent performance in both single-task and multi-task scenarios, with robust out-of-domain generalization capabilities.
Fine-Tuning CLIP's Last Visual Projector: A Few-Shot Cornucopia
We consider the problem of adapting a contrastively pretrained vision-language model like CLIP (Radford et al., 2021) for few-shot classification. The existing literature addresses this problem by learning a linear classifier of the frozen visual features, optimizing word embeddings, or learning external feature adapters. This paper introduces an alternative way for CLIP adaptation without adding 'external' parameters to optimize. We find that simply fine-tuning the last projection matrix of the vision encoder leads to strong performance compared to the existing baselines. Furthermore, we show that regularizing training with the distance between the fine-tuned and pretrained matrices adds reliability for adapting CLIP through this layer. Perhaps surprisingly, this approach, coined ProLIP, yields performances on par or better than state of the art on 11 few-shot classification benchmarks, few-shot domain generalization, cross-dataset transfer and test-time adaptation. Code will be made available at https://github.com/astra-vision/ProLIP .
TransMLA: Multi-head Latent Attention Is All You Need
Modern large language models (LLMs) often encounter communication bottlenecks on current hardware, rather than purely computational constraints. Multi-head Latent Attention (MLA) tackles this challenge by using low-rank matrices in the key-value (KV) layers, thereby allowing compressed latent KV states to be cached. This approach significantly reduces the KV cache size relative to traditional multi-head attention, leading to faster inference. Moreover, MLA employs an up-projection matrix to increase expressiveness, trading additional computation for reduced communication overhead. Although MLA has demonstrated efficiency and effectiveness in Deepseek V2/V3/R1, many major model providers still rely on Group Query Attention (GQA) and have not announced any plans to adopt MLA. In this paper, we show that GQA can always be represented by MLA while maintaining the same KV cache overhead, but the converse does not hold. To encourage broader use of MLA, we introduce **TransMLA**, a post-training method that converts widely used GQA-based pre-trained models (e.g., LLaMA, Qwen, Mixtral) into MLA-based models. After conversion, the model can undergo additional training to boost expressiveness without increasing the KV cache size. Furthermore, we plan to develop MLA-specific inference acceleration techniques to preserve low latency in transformed models, thus enabling more efficient distillation of Deepseek R1.
Householder Projector for Unsupervised Latent Semantics Discovery
Generative Adversarial Networks (GANs), especially the recent style-based generators (StyleGANs), have versatile semantics in the structured latent space. Latent semantics discovery methods emerge to move around the latent code such that only one factor varies during the traversal. Recently, an unsupervised method proposed a promising direction to directly use the eigenvectors of the projection matrix that maps latent codes to features as the interpretable directions. However, one overlooked fact is that the projection matrix is non-orthogonal and the number of eigenvectors is too large. The non-orthogonality would entangle semantic attributes in the top few eigenvectors, and the large dimensionality might result in meaningless variations among the directions even if the matrix is orthogonal. To avoid these issues, we propose Householder Projector, a flexible and general low-rank orthogonal matrix representation based on Householder transformations, to parameterize the projection matrix. The orthogonality guarantees that the eigenvectors correspond to disentangled interpretable semantics, while the low-rank property encourages that each identified direction has meaningful variations. We integrate our projector into pre-trained StyleGAN2/StyleGAN3 and evaluate the models on several benchmarks. Within only 1% of the original training steps for fine-tuning, our projector helps StyleGANs to discover more disentangled and precise semantic attributes without sacrificing image fidelity.
Stealing Part of a Production Language Model
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like OpenAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \20 USD, our attack extracts the entire projection matrix of OpenAI's Ada and Babbage language models. We thereby confirm, for the first time, that these black-box models have a hidden dimension of 1024 and 2048, respectively. We also recover the exact hidden dimension size of the gpt-3.5-turbo model, and estimate it would cost under 2,000 in queries to recover the entire projection matrix. We conclude with potential defenses and mitigations, and discuss the implications of possible future work that could extend our attack.
Debiasing Vision-Language Models via Biased Prompts
Machine learning models have been shown to inherit biases from their training datasets. This can be particularly problematic for vision-language foundation models trained on uncurated datasets scraped from the internet. The biases can be amplified and propagated to downstream applications like zero-shot classifiers and text-to-image generative models. In this study, we propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding. In particular, we show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models. The proposed closed-form solution enables easy integration into large-scale pipelines, and empirical results demonstrate that our approach effectively reduces social bias and spurious correlation in both discriminative and generative vision-language models without the need for additional data or training.
AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models
We present a novel Parameter-Efficient Fine-Tuning (PEFT) method, dubbed as Adaptive Freezing of Low Rank Adaptation (AFLoRA). Specifically, for each pre-trained frozen weight tensor, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector. Based on a novel freezing score, we the incrementally freeze these projection matrices during fine-tuning to reduce the computation and alleviate over-fitting. Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to 0.85% as evaluated on GLUE benchmark while yeilding up to 9.5times fewer average trainable parameters. While compared in terms of runtime, AFLoRA can yield up to 1.86times improvement as opposed to similar PEFT alternatives. Besides the practical utility of our approach, we provide insights on the trainability requirements of LoRA paths at different modules and the freezing schedule for the different projection matrices. Code will be released.
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Our method, matrix subspace projection, is much simpler than previous approaches to latent space factorisation, for example not requiring multiple discriminators or a careful weighting among their loss functions. Furthermore our new model can be applied to autoencoders as a plugin, and works across diverse domains such as images or text. We demonstrate the utility of our method for attribute manipulation in autoencoders trained across varied domains, using both human evaluation and automated methods. The quality of generation of our new model (e.g. reconstruction, conditional generation) is highly competitive to a number of strong baselines.
Gradient Weight-normalized Low-rank Projection for Efficient LLM Training
Large Language Models (LLMs) have shown remarkable performance across various tasks, but the escalating demands on computational resources pose significant challenges, particularly in the extensive utilization of full fine-tuning for downstream tasks. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed, but they often underperform compared to full fine-tuning and struggle with memory efficiency. In this work, we introduce Gradient Weight-Normalized Low-Rank Projection (GradNormLoRP), a novel approach that enhances both parameter and memory efficiency while maintaining comparable performance to full fine-tuning. GradNormLoRP normalizes the weight matrix to improve gradient conditioning, facilitating better convergence during optimization. Additionally, it applies low-rank approximations to the weight and gradient matrices, significantly reducing memory usage during training. Extensive experiments demonstrate that our 8-bit GradNormLoRP reduces optimizer memory usage by up to 89.5% and enables the pre-training of large LLMs, such as LLaMA 7B, on consumer-level GPUs like the NVIDIA RTX 4090, without additional inference costs. Moreover, GradNormLoRP outperforms existing low-rank methods in fine-tuning tasks. For instance, when fine-tuning the RoBERTa model on all GLUE tasks with a rank of 8, GradNormLoRP achieves an average score of 80.65, surpassing LoRA's score of 79.23. These results underscore GradNormLoRP as a promising alternative for efficient LLM pre-training and fine-tuning. Source code: https://github.com/Jhhuangkay/Gradient-Weight-normalized-Low-rank-Projection-for-Efficient-LLM-Training
DECOR:Decomposition and Projection of Text Embeddings for Text-to-Image Customization
Text-to-image (T2I) models can effectively capture the content or style of reference images to perform high-quality customization. A representative technique for this is fine-tuning using low-rank adaptations (LoRA), which enables efficient model customization with reference images. However, fine-tuning with a limited number of reference images often leads to overfitting, resulting in issues such as prompt misalignment or content leakage. These issues prevent the model from accurately following the input prompt or generating undesired objects during inference. To address this problem, we examine the text embeddings that guide the diffusion model during inference. This study decomposes the text embedding matrix and conducts a component analysis to understand the embedding space geometry and identify the cause of overfitting. Based on this, we propose DECOR, which projects text embeddings onto a vector space orthogonal to undesired token vectors, thereby reducing the influence of unwanted semantics in the text embeddings. Experimental results demonstrate that DECOR outperforms state-of-the-art customization models and achieves Pareto frontier performance across text and visual alignment evaluation metrics. Furthermore, it generates images more faithful to the input prompts, showcasing its effectiveness in addressing overfitting and enhancing text-to-image customization.
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs. We open-source our software.
Multi-matrix Factorization Attention
We propose novel attention architectures, Multi-matrix Factorization Attention (MFA) and MFA-Key-Reuse (MFA-KR). Existing variants for standard Multi-Head Attention (MHA), including SOTA methods like MLA, fail to maintain as strong performance under stringent Key-Value cache (KV cache) constraints. MFA enhances model capacity by efficiently scaling up both the number and dimension of attention heads through low-rank matrix factorization in the Query-Key (QK) circuit. Extending MFA, MFA-KR further reduces memory requirements by repurposing the key cache as value through value projection re-parameterization. MFA's design enables strong model capacity when working under tight KV cache budget, while MFA-KR is suitable for even harsher KV cache limits with minor performance trade-off. Notably, in our extensive and large-scale experiments, the proposed architecture outperforms MLA and performs comparably to MHA, while reducing KV cache usage by up to 56% and 93.7%, respectively.
Fast and Accurate Network Embeddings via Very Sparse Random Projection
We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.
GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.
Palu: Compressing KV-Cache with Low-Rank Projection
KV-Cache compression methods generally sample a KV-Cache of effectual tokens or quantize it into lower bits. However, these methods cannot exploit the redundancy of the hidden dimension of KV tensors. This paper investigates a unique hidden dimension approach called Palu, a novel KV-Cache compression framework that utilizes low-rank projection. Palu decomposes the linear layers into low-rank matrices, caches the smaller intermediate states, and reconstructs the full keys and values on the fly. To improve accuracy, compression rate, and efficiency, Palu further encompasses (1) a medium-grained low-rank decomposition scheme, (2) an efficient rank search algorithm, (3) a low-rank-aware quantization algorithm, and (4) matrix fusion with optimized GPU kernels. Our extensive experiments with popular LLMs show that Palu can compress KV-Cache by more than 91.25% while maintaining a significantly better accuracy (up to 1.19 lower perplexity) than state-of-the-art KV-Cache quantization methods at a similar or even higher memory usage. When compressing KV-Cache for 50%, Palu delivers up to 1.61x end-to-end speedup for the attention module. Our code is publicly available at https://github.com/shadowpa0327/Palu.
Fed-SB: A Silver Bullet for Extreme Communication Efficiency and Performance in (Private) Federated LoRA Fine-Tuning
Low-Rank Adaptation (LoRA) has become ubiquitous for efficiently fine-tuning foundation models. However, federated fine-tuning using LoRA is challenging due to suboptimal updates arising from traditional federated averaging of individual adapters. Existing solutions either incur prohibitively high communication cost that scales linearly with the number of clients or suffer from performance degradation due to limited expressivity. We introduce Federated Silver Bullet (Fed-SB), a novel approach for federated fine-tuning of LLMs using LoRA-SB, a recently proposed low-rank adaptation method. LoRA-SB optimally aligns the optimization trajectory with the ideal low-rank full fine-tuning projection by learning a small square matrix (R) between adapters B and A, keeping other components fixed. Direct averaging of R guarantees exact updates, substantially reducing communication cost, which remains independent of the number of clients, and enables scalability. Fed-SB achieves state-of-the-art performance across commonsense reasoning, arithmetic reasoning, and language inference tasks while reducing communication costs by up to 230x. In private settings, Fed-SB further improves performance by (1) reducing trainable parameters, thereby lowering the noise required for differential privacy and (2) avoiding noise amplification introduced by other methods. Overall, Fed-SB establishes a new Pareto frontier in the tradeoff between communication and performance, offering an efficient and scalable solution for both private and non-private federated fine-tuning. Our code is publicly available at https://github.com/CERT-Lab/fed-sb.
Fast Updating Truncated SVD for Representation Learning with Sparse Matrices
Updating a truncated Singular Value Decomposition (SVD) is crucial in representation learning, especially when dealing with large-scale data matrices that continuously evolve in practical scenarios. Aligning SVD-based models with fast-paced updates becomes increasingly important. Existing methods for updating truncated SVDs employ Rayleigh-Ritz projection procedures, where projection matrices are augmented based on original singular vectors. However, these methods suffer from inefficiency due to the densification of the update matrix and the application of the projection to all singular vectors. To address these limitations, we introduce a novel method for dynamically approximating the truncated SVD of a sparse and temporally evolving matrix. Our approach leverages sparsity in the orthogonalization process of augmented matrices and utilizes an extended decomposition to independently store projections in the column space of singular vectors. Numerical experiments demonstrate a remarkable efficiency improvement of an order of magnitude compared to previous methods. Remarkably, this improvement is achieved while maintaining a comparable precision to existing approaches.
Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients
Training Large Language Models (LLMs) is memory-intensive due to the large number of parameters and associated optimization states. GaLore, a recent method, reduces memory usage by projecting weight gradients into a low-rank subspace without compromising performance. However, GaLore relies on time-consuming Singular Value Decomposition (SVD) operations to identify the subspace, and the frequent subspace updates lead to significant training time overhead. Moreover, GaLore offers minimal improvements in accuracy and efficiency compared to LoRA in more accessible fine-tuning scenarios. To address these limitations, we introduce Q-Galore, a novel approach that substantially reduces memory usage by combining quantization and low-rank projection, surpassing the benefits of GaLore. Our method is based on two key observations: (i) the gradient subspace exhibits diverse properties, with some layers converging early in training while others are subject to frequent changes; (ii) the projection matrices are highly resilient to low-bit quantization. Leveraging these insights, Q-GaLore adaptively updates the gradient subspace based on its convergence statistics, achieving comparable performance while significantly reducing the number of SVD operations. We maintain the projection matrices in INT4 format and weights in INT8 format, incorporating stochastic rounding to capture accumulated gradient information. This approach enables a high-precision training trajectory using only low-precision weights. We demonstrate that Q-GaLore achieves highly competitive performance with exceptional memory efficiency. At pre-training, Q-GaLore facilitates training a LLaMA-7B model from scratch on a single NVIDIA RTX 4060 Ti with only 16 GB memory. At fine-tuning, it reduces memory consumption by up to 50% compared to LoRA and GaLore, while consistently outperforming QLoRA at the same memory cost.
MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection
KV cache has become a de facto technique for the inference of large language models (LLMs), where tensors of shape (layer number, head number, sequence length, feature dimension) are introduced to cache historical information for self-attention. As the size of the model and data grows, the KV cache can quickly become a bottleneck within the system in both storage and memory transfer. To address this, prior studies usually focus on the first three axes of the cache tensors for compression. This paper supplements them, focusing on the feature dimension axis, by utilizing low-rank projection matrices to transform the cache features into spaces with reduced dimensions. We begin by investigating the canonical orthogonal projection method for data compression through principal component analysis (PCA). We observe the issue with PCA projection where significant performance degradation is observed at low compression rates. To bridge the gap, we propose to directly tune the orthogonal projection matrices with a distillation objective using an elaborate Matryoshka training strategy. After training, we adaptively search for the optimal compression rates for various layers and heads given varying compression budgets. Compared to previous works, our method can easily embrace pre-trained LLMs and hold a smooth tradeoff between performance and compression rate. We empirically witness the high data efficiency of our training procedure and find that our method can sustain over 90% performance with an average KV cache compression rate of 60% (and up to 75% in certain extreme scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.
Editing Implicit Assumptions in Text-to-Image Diffusion Models
Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.
CompAct: Compressed Activations for Memory-Efficient LLM Training
We introduce CompAct, a technique that reduces peak memory utilization on GPU by 25-30% for pretraining and 50% for fine-tuning of LLMs. Peak device memory is a major limiting factor in training LLMs, with various recent works aiming to reduce model memory. However most works don't target the largest component of allocated memory during training: the model's compute graph, which is stored for the backward pass. By storing low-rank, compressed activations to be used in the backward pass we greatly reduce the required memory, unlike previous methods which only reduce optimizer overheads or the number of trained parameters. Our compression uses random projection matrices, thus avoiding additional memory overheads. Comparisons with previous techniques for either pretraining or fine-tuning show that CompAct substantially improves existing compute-performance tradeoffs. We expect CompAct's savings to scale even higher for larger models.
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Large language model (LLM) training and finetuning are often bottlenecked by limited GPU memory. While existing projection-based optimization methods address this by projecting gradients into a lower-dimensional subspace to reduce optimizer state memory, they typically rely on dense projection matrices, which can introduce computational and memory overheads. In this work, we propose Grass (GRAdient Stuctured Sparsification), a novel approach that leverages sparse projections to transform gradients into structured sparse updates. This design not only significantly reduces memory usage for optimizer states but also minimizes gradient memory footprint, computation, and communication costs, leading to substantial throughput improvements. Extensive experiments on pretraining and finetuning tasks demonstrate that Grass achieves competitive performance to full-rank training and existing projection-based methods. Notably, Grass enables half-precision pretraining of a 13B parameter LLaMA model on a single 40GB A100 GPU--a feat infeasible for previous methods--and yields up to a 2times throughput improvement on an 8-GPU system. Code can be found at https://github.com/aashiqmuhamed/GRASS .
Backtracing: Retrieving the Cause of the Query
Many online content portals allow users to ask questions to supplement their understanding (e.g., of lectures). While information retrieval (IR) systems may provide answers for such user queries, they do not directly assist content creators -- such as lecturers who want to improve their content -- identify segments that _caused_ a user to ask those questions. We introduce the task of backtracing, in which systems retrieve the text segment that most likely caused a user query. We formalize three real-world domains for which backtracing is important in improving content delivery and communication: understanding the cause of (a) student confusion in the Lecture domain, (b) reader curiosity in the News Article domain, and (c) user emotion in the Conversation domain. We evaluate the zero-shot performance of popular information retrieval methods and language modeling methods, including bi-encoder, re-ranking and likelihood-based methods and ChatGPT. While traditional IR systems retrieve semantically relevant information (e.g., details on "projection matrices" for a query "does projecting multiple times still lead to the same point?"), they often miss the causally relevant context (e.g., the lecturer states "projecting twice gets me the same answer as one projection"). Our results show that there is room for improvement on backtracing and it requires new retrieval approaches. We hope our benchmark serves to improve future retrieval systems for backtracing, spawning systems that refine content generation and identify linguistic triggers influencing user queries. Our code and data are open-sourced: https://github.com/rosewang2008/backtracing.
Flora: Low-Rank Adapters Are Secretly Gradient Compressors
Despite large neural networks demonstrating remarkable abilities to complete different tasks, they require excessive memory usage to store the optimization states for training. To alleviate this, the low-rank adaptation (LoRA) is proposed to reduce the optimization states by training fewer parameters. However, LoRA restricts overall weight update matrices to be low-rank, limiting the model performance. In this work, we investigate the dynamics of LoRA and identify that it can be approximated by a random projection. Based on this observation, we propose Flora, which is able to achieve high-rank updates by resampling the projection matrices while enjoying the sublinear space complexity of optimization states. We conduct experiments across different tasks and model architectures to verify the effectiveness of our approach.
The secret life of matrix factorizations: how matrix decompositions reveal and keep secrets of linear equations and what we can do about it
This paper explores the relationship between matrix factorizations and linear matrix equations. It shows that every matrix factorization defines two hidden projectors, one for the column space and one for the row space of a matrix, and how to calculate them. The projectors can be applied to solve linear matrix equations, generate low-rank approximations, or design randomized matrix algorithms. But also, as demonstrated, they can be applied in cryptography to encrypt and decrypt messages. The paper discusses some of the security implications of this application and leaves some questions open for further investigation. The basic concepts are illustrated with source code listings. Finally, this work shares some personal reflections on the meaning and importance of understanding in the time of the artificial intelligence revolution.
Shortened LLaMA: A Simple Depth Pruning for Large Language Models
Structured pruning of modern large language models (LLMs) has emerged as a way of decreasing their high computational needs. Width pruning reduces the size of projection weight matrices (e.g., by removing attention heads) while maintaining the number of layers. Depth pruning, in contrast, removes entire layers or blocks, while keeping the size of the remaining weights unchanged. Most current research focuses on either width-only or a blend of width and depth pruning, with little comparative analysis between the two units (width vs. depth) concerning their impact on LLM inference efficiency. In this work, we show that a simple depth pruning approach can compete with recent width pruning methods in terms of zero-shot task performance. Our pruning method boosts inference speeds, especially under memory-constrained conditions that require limited batch sizes for running LLMs, where width pruning is ineffective. We hope this work can help deploy LLMs on local and edge devices.
Break-for-Make: Modular Low-Rank Adaptations for Composable Content-Style Customization
Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.
Adaptive Estimation of Graphical Models under Total Positivity
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices lauritzen2019maximum,slawski2015estimation and even one observation for diagonally dominant M-matrices truell2021maximum. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted ell_1-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
Flat matrix models for quantum permutation groups
We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful.
ProjectedEx: Enhancing Generation in Explainable AI for Prostate Cancer
Prostate cancer, a growing global health concern, necessitates precise diagnostic tools, with Magnetic Resonance Imaging (MRI) offering high-resolution soft tissue imaging that significantly enhances diagnostic accuracy. Recent advancements in explainable AI and representation learning have significantly improved prostate cancer diagnosis by enabling automated and precise lesion classification. However, existing explainable AI methods, particularly those based on frameworks like generative adversarial networks (GANs), are predominantly developed for natural image generation, and their application to medical imaging often leads to suboptimal performance due to the unique characteristics and complexity of medical image. To address these challenges, our paper introduces three key contributions. First, we propose ProjectedEx, a generative framework that provides interpretable, multi-attribute explanations, effectively linking medical image features to classifier decisions. Second, we enhance the encoder module by incorporating feature pyramids, which enables multiscale feedback to refine the latent space and improves the quality of generated explanations. Additionally, we conduct comprehensive experiments on both the generator and classifier, demonstrating the clinical relevance and effectiveness of ProjectedEx in enhancing interpretability and supporting the adoption of AI in medical settings. Code will be released at https://github.com/Richardqiyi/ProjectedEx
Local Consensus Enhanced Siamese Network with Reciprocal Loss for Two-view Correspondence Learning
Recent studies of two-view correspondence learning usually establish an end-to-end network to jointly predict correspondence reliability and relative pose. We improve such a framework from two aspects. First, we propose a Local Feature Consensus (LFC) plugin block to augment the features of existing models. Given a correspondence feature, the block augments its neighboring features with mutual neighborhood consensus and aggregates them to produce an enhanced feature. As inliers obey a uniform cross-view transformation and share more consistent learned features than outliers, feature consensus strengthens inlier correlation and suppresses outlier distraction, which makes output features more discriminative for classifying inliers/outliers. Second, existing approaches supervise network training with the ground truth correspondences and essential matrix projecting one image to the other for an input image pair, without considering the information from the reverse mapping. We extend existing models to a Siamese network with a reciprocal loss that exploits the supervision of mutual projection, which considerably promotes the matching performance without introducing additional model parameters. Building upon MSA-Net, we implement the two proposals and experimentally achieve state-of-the-art performance on benchmark datasets.
Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model
With the rapid growth in model size, fine-tuning the large pre-trained language model has become increasingly difficult due to its extensive memory usage. Previous works usually focus on reducing the number of trainable parameters in the network. While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation. Notably, neural networks are usually trained using stochastic gradient descent. We argue that in stochastic optimization, models can handle noisy gradients as long as the gradient estimator is unbiased with reasonable variance. Following this motivation, we propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance, which only requires storing the sub-sampled activations for calculating the gradient. Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones. By replacing the linear operation with our approximated one in transformers, we can achieve up to 2.7times peak memory reduction with almost no accuracy drop and enables up to 6.4times larger batch size. Under the same hardware, WTA-CRS enables better down-streaming task performance by applying larger models and/or faster training speed with larger batch sizes.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
T-Projection: High Quality Annotation Projection for Sequence Labeling Tasks
In the absence of readily available labeled data for a given sequence labeling task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data. Annotation projection has often been formulated as the task of transporting, on parallel corpora, the labels pertaining to a given span in the source language into its corresponding span in the target language. In this paper we present T-Projection, a novel approach for annotation projection that leverages large pretrained text-to-text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) A candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) a candidate selection step, in which the generated candidates are ranked based on translation probabilities. We conducted experiments on intrinsic and extrinsic tasks in 5 Indo-European and 8 low-resource African languages. We demostrate that T-projection outperforms previous annotation projection methods by a wide margin. We believe that T-Projection can help to automatically alleviate the lack of high-quality training data for sequence labeling tasks. Code and data are publicly available.
Unified Projection-Free Algorithms for Adversarial DR-Submodular Optimization
This paper introduces unified projection-free Frank-Wolfe type algorithms for adversarial continuous DR-submodular optimization, spanning scenarios such as full information and (semi-)bandit feedback, monotone and non-monotone functions, different constraints, and types of stochastic queries. For every problem considered in the non-monotone setting, the proposed algorithms are either the first with proven sub-linear alpha-regret bounds or have better alpha-regret bounds than the state of the art, where alpha is a corresponding approximation bound in the offline setting. In the monotone setting, the proposed approach gives state-of-the-art sub-linear alpha-regret bounds among projection-free algorithms in 7 of the 8 considered cases while matching the result of the remaining case. Additionally, this paper addresses semi-bandit and bandit feedback for adversarial DR-submodular optimization, advancing the understanding of this optimization area.
Diverse Projection Ensembles for Distributional Reinforcement Learning
In contrast to classical reinforcement learning, distributional reinforcement learning algorithms aim to learn the distribution of returns rather than their expected value. Since the nature of the return distribution is generally unknown a priori or arbitrarily complex, a common approach finds approximations within a set of representable, parametric distributions. Typically, this involves a projection of the unconstrained distribution onto the set of simplified distributions. We argue that this projection step entails a strong inductive bias when coupled with neural networks and gradient descent, thereby profoundly impacting the generalization behavior of learned models. In order to facilitate reliable uncertainty estimation through diversity, this work studies the combination of several different projections and representations in a distributional ensemble. We establish theoretical properties of such projection ensembles and derive an algorithm that uses ensemble disagreement, measured by the average 1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm on the behavior suite benchmark and find that diverse projection ensembles lead to significant performance improvements over existing methods on a wide variety of tasks with the most pronounced gains in directed exploration problems.
Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
Random projection is a common technique for designing algorithms in a variety of areas, including information retrieval, compressive sensing and measuring of outlyingness. In this work, the original random projection outlyingness measure is modified and associated with a neural network to obtain an unsupervised anomaly detection method able to handle multimodal normality. Theoretical and experimental arguments are presented to justify the choice of the anomaly score estimator. The performance of the proposed neural network approach is comparable to a state-of-the-art anomaly detection method. Experiments conducted on the MNIST, Fashion-MNIST and CIFAR-10 datasets show the relevance of the proposed approach.
Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections
Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.
ProNeRF: Learning Efficient Projection-Aware Ray Sampling for Fine-Grained Implicit Neural Radiance Fields
Recent advances in neural rendering have shown that, albeit slow, implicit compact models can learn a scene's geometries and view-dependent appearances from multiple views. To maintain such a small memory footprint but achieve faster inference times, recent works have adopted `sampler' networks that adaptively sample a small subset of points along each ray in the implicit neural radiance fields. Although these methods achieve up to a 10times reduction in rendering time, they still suffer from considerable quality degradation compared to the vanilla NeRF. In contrast, we propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes). ProNeRF is equipped with a novel projection-aware sampling (PAS) network together with a new training strategy for ray exploration and exploitation, allowing for efficient fine-grained particle sampling. Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel. Our exploration and exploitation training strategy allows ProNeRF to learn the full scenes' color and density distributions while also learning efficient ray sampling focused on the highest-density regions. We provide extensive experimental results that support the effectiveness of our method on the widely adopted forward-facing and 360 datasets, LLFF and Blender, respectively.
Augmentation with Projection: Towards an Effective and Efficient Data Augmentation Paradigm for Distillation
Knowledge distillation is one of the primary methods of transferring knowledge from large to small models. However, it requires massive task-specific data, which may not be plausible in many real-world applications. Data augmentation methods such as representation interpolation, token replacement, or augmentation with models are applied to tackle this problem. However, these data augmentation methods either potentially cause shifts in decision boundaries (representation interpolation), are not expressive enough (token replacement), or introduce too much computational overhead (augmentation with models). To this end, we propose AugPro (Augmentation with Projection), an effective and efficient data augmentation method for distillation. Our method builds on top of representation interpolation augmentation methods to maintain the diversity of expressions and converts the augmented data to tokens to avoid shifting decision boundaries. It uses simple operations that come with little computational overhead. The results on multiple GLUE tasks show that our methods can improve distillation performance by a large margin at a low time cost. Codes are available at https://github.com/google-research/google-research/tree/master/augpro.
COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection
Training large-scale neural networks in vision, and multimodal domains demands substantial memory resources, primarily due to the storage of optimizer states. While LoRA, a popular parameter-efficient method, reduces memory usage, it often suffers from suboptimal performance due to the constraints of low-rank updates. Low-rank gradient projection methods (e.g., GaLore, Flora) reduce optimizer memory by projecting gradients and moment estimates into low-rank spaces via singular value decomposition or random projection. However, they fail to account for inter-projection correlation, causing performance degradation, and their projection strategies often incur high computational costs. In this paper, we present COAP (Correlation-Aware Gradient Projection), a memory-efficient method that minimizes computational overhead while maintaining training performance. Evaluated across various vision, language, and multimodal tasks, COAP outperforms existing methods in both training speed and model performance. For LLaMA-1B, it reduces optimizer memory by 61% with only 2% additional time cost, achieving the same PPL as AdamW. With 8-bit quantization, COAP cuts optimizer memory by 81% and achieves 4x speedup over GaLore for LLaVA-v1.5-7B fine-tuning, while delivering higher accuracy.
SO($N$) singlet-projection model on the pyrochlore lattice
We present an extensive quantum Monte Carlo study of a nearest-neighbor, singlet-projection model on the pyrochlore lattice that exhibits SO(N) symmetry and is sign-problem-free. We find that in contrast to the previously studied two-dimensional variations of this model that harbor critical points between their ground state phases, the non-bipartite pyrochlore lattice in three spatial dimensions appears to exhibit a first-order transition between a magnetically-ordered phase and some, as yet uncharacterized, paramagnetic phase. We also observe that the magnetically-ordered phase survives to a relatively large value of N=8, and that it is gone for N=9.
DeTox: Toxic Subspace Projection for Model Editing
Recent alignment algorithms such as direct preference optimization (DPO) have been developed to improve the safety of large language models (LLMs) by training these models to match human behaviors exemplified by preference data. However, these methods are both computationally intensive and lacking in controllability and transparency, making them prone to jailbreaking and inhibiting their widespread use. Furthermore, these tuning-based methods require large-scale preference data for training and are susceptible to noisy preference data. In this paper, we introduce a tuning-free alignment alternative (DeTox) and demonstrate its effectiveness under the use case of toxicity reduction. Grounded on theory from factor analysis, DeTox is a sample-efficient model editing approach that identifies a toxic subspace in the model parameter space and reduces model toxicity by projecting away the detected subspace. The toxic sub-space is identified by extracting preference data embeddings from the language model, and removing non-toxic information from these embeddings. We show that DeTox is more sample-efficient than DPO, further showcasing greater robustness to noisy data. Finally, we establish both theoretical and empirical connections between DeTox and DPO, showing that DeTox can be interpreted as a denoised version of a single DPO step.
Investigating the Benefits of Projection Head for Representation Learning
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
Improved Algorithm and Bounds for Successive Projection
Given a K-vertex simplex in a d-dimensional space, suppose we measure n points on the simplex with noise (hence, some of the observed points fall outside the simplex). Vertex hunting is the problem of estimating the K vertices of the simplex. A popular vertex hunting algorithm is successive projection algorithm (SPA). However, SPA is observed to perform unsatisfactorily under strong noise or outliers. We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise step to generate pseudo-points and feed them into SPA for vertex hunting. We derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly) high-dimensional random vectors. The results suggest that pp-SPA has faster rates and better numerical performances than SPA. Our analysis includes an improved non-asymptotic bound for the original SPA, which is of independent interest.
Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks
Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.
From Graphs to Hypergraphs: Hypergraph Projection and its Remediation
We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.
Pre-training with Random Orthogonal Projection Image Modeling
Masked Image Modeling (MIM) is a powerful self-supervised strategy for visual pre-training without the use of labels. MIM applies random crops to input images, processes them with an encoder, and then recovers the masked inputs with a decoder, which encourages the network to capture and learn structural information about objects and scenes. The intermediate feature representations obtained from MIM are suitable for fine-tuning on downstream tasks. In this paper, we propose an Image Modeling framework based on random orthogonal projection instead of binary masking as in MIM. Our proposed Random Orthogonal Projection Image Modeling (ROPIM) reduces spatially-wise token information under guaranteed bound on the noise variance and can be considered as masking entire spatial image area under locally varying masking degrees. Since ROPIM uses a random subspace for the projection that realizes the masking step, the readily available complement of the subspace can be used during unmasking to promote recovery of removed information. In this paper, we show that using random orthogonal projection leads to superior performance compared to crop-based masking. We demonstrate state-of-the-art results on several popular benchmarks.
RegFormer: An Efficient Projection-Aware Transformer Network for Large-Scale Point Cloud Registration
Although point cloud registration has achieved remarkable advances in object-level and indoor scenes, large-scale registration methods are rarely explored. Challenges mainly arise from the huge point number, complex distribution, and outliers of outdoor LiDAR scans. In addition, most existing registration works generally adopt a two-stage paradigm: They first find correspondences by extracting discriminative local features and then leverage estimators (eg. RANSAC) to filter outliers, which are highly dependent on well-designed descriptors and post-processing choices. To address these problems, we propose an end-to-end transformer network (RegFormer) for large-scale point cloud alignment without any further post-processing. Specifically, a projection-aware hierarchical transformer is proposed to capture long-range dependencies and filter outliers by extracting point features globally. Our transformer has linear complexity, which guarantees high efficiency even for large-scale scenes. Furthermore, to effectively reduce mismatches, a bijective association transformer is designed for regressing the initial transformation. Extensive experiments on KITTI and NuScenes datasets demonstrate that our RegFormer achieves competitive performance in terms of both accuracy and efficiency.
Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction
Max sliced Wasserstein (Max-SW) distance has been widely known as a solution for less discriminative projections of sliced Wasserstein (SW) distance. In applications that have various independent pairs of probability measures, amortized projection optimization is utilized to predict the ``max" projecting directions given two input measures instead of using projected gradient ascent multiple times. Despite being efficient, Max-SW and its amortized version cannot guarantee metricity property due to the sub-optimality of the projected gradient ascent and the amortization gap. Therefore, we propose to replace Max-SW with distributional sliced Wasserstein distance with von Mises-Fisher (vMF) projecting distribution (v-DSW). Since v-DSW is a metric with any non-degenerate vMF distribution, its amortized version can guarantee the metricity when performing amortization. Furthermore, current amortized models are not permutation invariant and symmetric. To address the issue, we design amortized models based on self-attention architecture. In particular, we adopt efficient self-attention architectures to make the computation linear in the number of supports. With the two improvements, we derive self-attention amortized distributional projection optimization and show its appealing performance in point-cloud reconstruction and its downstream applications.
Frustratingly Easy Label Projection for Cross-lingual Transfer
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect the end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
Multi-Grid Back-Projection Networks
Multi-Grid Back-Projection (MGBP) is a fully-convolutional network architecture that can learn to restore images and videos with upscaling artifacts. Using the same strategy of multi-grid partial differential equation (PDE) solvers this multiscale architecture scales computational complexity efficiently with increasing output resolutions. The basic processing block is inspired in the iterative back-projection (IBP) algorithm and constitutes a type of cross-scale residual block with feedback from low resolution references. The architecture performs in par with state-of-the-arts alternatives for regression targets that aim to recover an exact copy of a high resolution image or video from which only a downscale image is known. A perceptual quality target aims to create more realistic outputs by introducing artificial changes that can be different from a high resolution original content as long as they are consistent with the low resolution input. For this target we propose a strategy using noise inputs in different resolution scales to control the amount of artificial details generated in the output. The noise input controls the amount of innovation that the network uses to create artificial realistic details. The effectiveness of this strategy is shown in benchmarks and it is explained as a particular strategy to traverse the perception-distortion plane.
Parameter-Free Style Projection for Arbitrary Style Transfer
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on arbitrary style images. In this task the feature-level content-style transformation plays a vital role for proper fusion of features. Existing feature transformation algorithms often suffer from loss of content or style details, non-natural stroke patterns, and unstable training. To mitigate these issues, this paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation. This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer, which includes a regularization term for matching the semantics between input contents and stylized outputs. Extensive qualitative analysis, quantitative evaluation, and user study have demonstrated the effectiveness and efficiency of the proposed methods.
Towards Gradient Free and Projection Free Stochastic Optimization
This paper focuses on the problem of constrained stochastic optimization. A zeroth order Frank-Wolfe algorithm is proposed, which in addition to the projection-free nature of the vanilla Frank-Wolfe algorithm makes it gradient free. Under convexity and smoothness assumption, we show that the proposed algorithm converges to the optimal objective function at a rate Oleft(1/T^{1/3}right), where T denotes the iteration count. In particular, the primal sub-optimality gap is shown to have a dimension dependence of Oleft(d^{1/3}right), which is the best known dimension dependence among all zeroth order optimization algorithms with one directional derivative per iteration. For non-convex functions, we obtain the Frank-Wolfe gap to be Oleft(d^{1/3}T^{-1/4}right). Experiments on black-box optimization setups demonstrate the efficacy of the proposed algorithm.
TinyEmo: Scaling down Emotional Reasoning via Metric Projection
This paper introduces TinyEmo, a family of small multi-modal language models for emotional reasoning and classification. Our approach features: (1) a synthetic emotional instruct dataset for both pre-training and fine-tuning stages, (2) a Metric Projector that delegates classification from the language model allowing for more efficient training and inference, (3) a multi-modal large language model (MM-LLM) for emotional reasoning, and (4) a semi-automated framework for bias detection. TinyEmo is able to perform emotion classification and emotional reasoning, all while using substantially fewer parameters than comparable models. This efficiency allows us to freely incorporate more diverse emotional datasets, enabling strong performance on classification tasks, with our smallest model (700M parameters) outperforming larger state-of-the-art models based on general-purpose MM-LLMs with over 7B parameters. Additionally, the Metric Projector allows for interpretability and indirect bias detection in large models without additional training, offering an approach to understand and improve AI systems. We release code, models, and dataset at https://github.com/ggcr/TinyEmo
OwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for Memory-Efficient LLM Fine-tuning
The rapid advancements in Large Language Models (LLMs) have revolutionized various natural language processing tasks. However, the substantial size of LLMs presents significant challenges in training or fine-tuning. While parameter-efficient approaches such as low-rank adaptation (LoRA) have gained popularity, they often compromise performance compared to full-rank fine-tuning. In this paper, we propose Outlier-weighed Layerwise Sampled Low-Rank Projection (OwLore), a new memory-efficient fine-tuning approach, inspired by the layerwise outlier distribution of LLMs, which dynamically samples pre-trained layers to fine-tune instead of adding additional adaptors. We first interpret the outlier phenomenon through the lens of Heavy-Tailed Self-Regularization theory (HT-SR), discovering that layers with more outliers tend to be more heavy-tailed and consequently better trained. Inspired by this finding, OwLore strategically assigns higher sampling probabilities to layers with more outliers to better leverage the knowledge stored in pre-trained LLMs. To further mitigate the memory demands of fine-tuning, we integrate gradient low-rank projection into our approach, which facilitates each layer to be efficiently trained in a low-rank manner. By incorporating the efficient characteristics of low-rank and optimal layerwise sampling, OwLore significantly improves the memory-performance trade-off in LLM pruning. Our extensive experiments across various architectures, including LLaMa2, LLaMa3, and Mistral, demonstrate that OwLore consistently outperforms baseline approaches, including full fine-tuning. Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. OwLore allows us to fine-tune LLaMa2-7B with only 21GB of memory.
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
Efficient Prompt Tuning by Multi-Space Projection and Prompt Fusion
Prompt tuning is a promising method to fine-tune a pre-trained language model without retraining its large-scale parameters. Instead, it attaches a soft prompt to the input text, whereby downstream tasks can be well adapted by merely learning the embeddings of prompt tokens. Nevertheless, existing methods still suffer from two challenges: (i) they are hard to balance accuracy and efficiency. A longer (shorter) soft prompt generally leads to a better(worse) accuracy but at the cost of more (less) training time. (ii)The performance may not be consistent when adapting to different downstream tasks. We attribute it to the same embedding space but responsible for different requirements of downstream tasks. To address these issues, we propose an Efficient Prompt Tuning method (EPT) by multi-space projection and prompt fusion. Specifically, it decomposes a given soft prompt into a shorter prompt and two low-rank matrices, significantly reducing the training time. Accuracy is also enhanced by leveraging low-rank matrices and the short prompt as additional knowledge sources to enrich the semantics of the original short prompt. In addition, we project the soft prompt into multiple subspaces to improve the performance consistency, and then adaptively learn the combination weights of different spaces through a gating network. Experiments on 13 natural language processing downstream tasks show that our method significantly and consistently outperforms 11 comparison methods with the relative percentage of improvements up to 12.9%, and training time decreased by 14%.
Constrained Decoding for Cross-lingual Label Projection
Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data. However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods. Therefore, it is common to exploit translation and label projection to further improve the performance by (1) translating training data that is available in a high-resource language (e.g., English) together with the gold labels into low-resource languages, and/or (2) translating test data in low-resource languages to a high-source language to run inference on, then projecting the predicted span-level labels back onto the original test data. However, state-of-the-art marker-based label projection methods suffer from translation quality degradation due to the extra label markers injected in the input to the translation model. In this work, we explore a new direction that leverages constrained decoding for label projection to overcome the aforementioned issues. Our new method not only can preserve the quality of translated texts but also has the versatility of being applicable to both translating training and translating test data strategies. This versatility is crucial as our experiments reveal that translating test data can lead to a considerable boost in performance compared to translating only training data. We evaluate on two cross-lingual transfer tasks, namely Named Entity Recognition and Event Argument Extraction, spanning 20 languages. The results demonstrate that our approach outperforms the state-of-the-art marker-based method by a large margin and also shows better performance than other label projection methods that rely on external word alignment.
Principled Federated Domain Adaptation: Gradient Projection and Auto-Weighting
Federated Domain Adaptation (FDA) describes the federated learning (FL) setting where source clients and a server work collaboratively to improve the performance of a target client where limited data is available. The domain shift between the source and target domains, coupled with limited data of the target client, makes FDA a challenging problem, e.g., common techniques such as federated averaging and fine-tuning fail due to domain shift and data scarcity. To theoretically understand the problem, we introduce new metrics that characterize the FDA setting and a theoretical framework with novel theorems for analyzing the performance of server aggregation rules. Further, we propose a novel lightweight aggregation rule, Federated Gradient Projection (FedGP), which significantly improves the target performance with domain shift and data scarcity. Moreover, our theory suggests an auto-weighting scheme that finds the optimal combinations of the source and target gradients. This scheme improves both FedGP and a simpler heuristic aggregation rule. Extensive experiments verify the theoretical insights and illustrate the effectiveness of the proposed methods in practice.
Neural Face Identification in a 2D Wireframe Projection of a Manifold Object
In computer-aided design (CAD) systems, 2D line drawings are commonly used to illustrate 3D object designs. To reconstruct the 3D models depicted by a single 2D line drawing, an important key is finding the edge loops in the line drawing which correspond to the actual faces of the 3D object. In this paper, we approach the classical problem of face identification from a novel data-driven point of view. We cast it as a sequence generation problem: starting from an arbitrary edge, we adopt a variant of the popular Transformer model to predict the edges associated with the same face in a natural order. This allows us to avoid searching the space of all possible edge loops with various hand-crafted rules and heuristics as most existing methods do, deal with challenging cases such as curved surfaces and nested edge loops, and leverage additional cues such as face types. We further discuss how possibly imperfect predictions can be used for 3D object reconstruction.
Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection
The ability to control for the kinds of information encoded in neural representation has a variety of use cases, especially in light of the challenge of interpreting these models. We present Iterative Null-space Projection (INLP), a novel method for removing information from neural representations. Our method is based on repeated training of linear classifiers that predict a certain property we aim to remove, followed by projection of the representations on their null-space. By doing so, the classifiers become oblivious to that target property, making it hard to linearly separate the data according to it. While applicable for multiple uses, we evaluate our method on bias and fairness use-cases, and show that our method is able to mitigate bias in word embeddings, as well as to increase fairness in a setting of multi-class classification.
Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!
Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at http://github.com/UKPLab/coling2018-xling_argument_mining.
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
The Large Vision-Language Model (LVLM) has enhanced the performance of various downstream tasks in visual-language understanding. Most existing approaches encode images and videos into separate feature spaces, which are then fed as inputs to large language models. However, due to the lack of unified tokenization for images and videos, namely misalignment before projection, it becomes challenging for a Large Language Model (LLM) to learn multi-modal interactions from several poor projection layers. In this work, we unify visual representation into the language feature space to advance the foundational LLM towards a unified LVLM. As a result, we establish a simple but robust LVLM baseline, Video-LLaVA, which learns from a mixed dataset of images and videos, mutually enhancing each other. Video-LLaVA achieves superior performances on a broad range of 9 image benchmarks across 5 image question-answering datasets and 4 image benchmark toolkits. Additionally, our Video-LLaVA also outperforms Video-ChatGPT by 5.8%, 9.9%, 18.6%, and 10.1% on MSRVTT, MSVD, TGIF, and ActivityNet, respectively. Notably, extensive experiments demonstrate that Video-LLaVA mutually benefits images and videos within a unified visual representation, outperforming models designed specifically for images or videos.
Preserving Linear Separability in Continual Learning by Backward Feature Projection
Catastrophic forgetting has been a major challenge in continual learning, where the model needs to learn new tasks with limited or no access to data from previously seen tasks. To tackle this challenge, methods based on knowledge distillation in feature space have been proposed and shown to reduce forgetting. However, most feature distillation methods directly constrain the new features to match the old ones, overlooking the need for plasticity. To achieve a better stability-plasticity trade-off, we propose Backward Feature Projection (BFP), a method for continual learning that allows the new features to change up to a learnable linear transformation of the old features. BFP preserves the linear separability of the old classes while allowing the emergence of new feature directions to accommodate new classes. BFP can be integrated with existing experience replay methods and boost performance by a significant margin. We also demonstrate that BFP helps learn a better representation space, in which linear separability is well preserved during continual learning and linear probing achieves high classification accuracy. The code can be found at https://github.com/rvl-lab-utoronto/BFP
Motion-induced error reduction for high-speed dynamic digital fringe projection system
In phase-shifting profilometry (PSP), any motion during the acquisition of fringe patterns can introduce errors because it assumes both the object and measurement system are stationary. Therefore, we propose a method to pixel-wise reduce the errors when the measurement system is in motion due to a motorized linear stage. The proposed method introduces motion-induced error reduction algorithm, which leverages the motor's encoder and pinhole model of the camera and projector. 3D shape measurement is possible with only three fringe patterns by applying geometric constraints of the digital fringe projection system. We address the mismatch problem due to the motion-induced camera pixel disparities and reduce phase-shift errors. These processes are easy to implement and require low computational cost. Experimental results demonstrate that the presented method effectively reduces the errors even in non-uniform motion.
Decoding specialised feature neurons in LLMs with the final projection layer
Large Language Models (LLMs) typically have billions of parameters and are thus often difficult to interpret in their operation. Such black-box models can pose a significant risk to safety when trusted to make important decisions. The lack of interpretability of LLMs is more related to their sheer size, rather than the complexity of their individual components. The TARS method for knowledge removal (Davies et al 2024) provides strong evidence for the hypothesis that that linear layer weights which act directly on the residual stream may have high correlation with different concepts encoded in the residual stream. Building upon this, we attempt to decode neuron weights directly into token probabilities through the final projection layer of the model (the LM-head). Firstly, we show that with Llama 3.1 8B we can utilise the LM-head to decode specialised feature neurons that respond strongly to certain concepts, with examples such as "dog" and "California". This is then confirmed by demonstrating that these neurons can be clamped to affect the probability of the concept in the output. This extends to the fine-tuned assistant Llama 3.1 8B instruct model, where we find that over 75% of neurons in the up-projection layers have the same top associated token compared to the pretrained model. Finally, we demonstrate that clamping the "dog" neuron leads the instruct model to always discuss dogs when asked about its favourite animal. Through our method, it is possible to map the entirety of Llama 3.1 8B's up-projection neurons in less than 15 minutes with no parallelization.
GaLore$+$: Boosting Low-Rank Adaptation for LLMs with Cross-Head Projection
Recent low-rank training methods, such as GaLore, have significantly reduced the memory required to optimize large language models (LLMs). However, these methods often suffer from time-consuming low-rank projection estimations. In particular, the singular value decomposition (SVD) in GaLore can consume more than 80\% of the total training time. To address this issue, we propose GaLore+, which uses cross-head low-rank projection to reduce the substantial time consumption in estimating low-rank projections for multi-head attention. In addition, we employ randomized subspace iteration to achieve fast SVD. To further enhance performance, we propose sparsely coded residuals to reduce the errors caused by low-rank approximation on the first- and second-order moments of the optimizers and weight updates. We evaluate GaLore+ on arithmetic reasoning and natural language generation datasets. Our experiments demonstrate that GaLore+ delivers superior performance while achieving approximately 4times fine-tuning speed compared to vanilla GaLore.
Detailed Annotations of Chest X-Rays via CT Projection for Report Understanding
In clinical radiology reports, doctors capture important information about the patient's health status. They convey their observations from raw medical imaging data about the inner structures of a patient. As such, formulating reports requires medical experts to possess wide-ranging knowledge about anatomical regions with their normal, healthy appearance as well as the ability to recognize abnormalities. This explicit grasp on both the patient's anatomy and their appearance is missing in current medical image-processing systems as annotations are especially difficult to gather. This renders the models to be narrow experts e.g. for identifying specific diseases. In this work, we recover this missing link by adding human anatomy into the mix and enable the association of content in medical reports to their occurrence in associated imagery (medical phrase grounding). To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data. Our evaluation shows that methods that take advantage of anatomical information benefit heavily in visually grounding radiologists' findings, as our anatomical segmentations allow for up to absolute 50% better grounding results on the OpenI dataset as compared to commonly used region proposals. The PAXRay dataset is available at https://constantinseibold.github.io/paxray/.
G-SimCLR : Self-Supervised Contrastive Learning with Guided Projection via Pseudo Labelling
In the realms of computer vision, it is evident that deep neural networks perform better in a supervised setting with a large amount of labeled data. The representations learned with supervision are not only of high quality but also helps the model in enhancing its accuracy. However, the collection and annotation of a large dataset are costly and time-consuming. To avoid the same, there has been a lot of research going on in the field of unsupervised visual representation learning especially in a self-supervised setting. Amongst the recent advancements in self-supervised methods for visual recognition, in SimCLR Chen et al. shows that good quality representations can indeed be learned without explicit supervision. In SimCLR, the authors maximize the similarity of augmentations of the same image and minimize the similarity of augmentations of different images. A linear classifier trained with the representations learned using this approach yields 76.5% top-1 accuracy on the ImageNet ILSVRC-2012 dataset. In this work, we propose that, with the normalized temperature-scaled cross-entropy (NT-Xent) loss function (as used in SimCLR), it is beneficial to not have images of the same category in the same batch. In an unsupervised setting, the information of images pertaining to the same category is missing. We use the latent space representation of a denoising autoencoder trained on the unlabeled dataset and cluster them with k-means to obtain pseudo labels. With this apriori information we batch images, where no two images from the same category are to be found. We report comparable performance enhancements on the CIFAR10 dataset and a subset of the ImageNet dataset. We refer to our method as G-SimCLR.
iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
Recently, learning-based models have enhanced the performance of single-image super-resolution (SISR). However, applying SISR successively to each video frame leads to a lack of temporal coherency. Convolutional neural networks (CNNs) outperform traditional approaches in terms of image quality metrics such as peak signal to noise ratio (PSNR) and structural similarity (SSIM). However, generative adversarial networks (GANs) offer a competitive advantage by being able to mitigate the issue of a lack of finer texture details, usually seen with CNNs when super-resolving at large upscaling factors. We present iSeeBetter, a novel GAN-based spatio-temporal approach to video super-resolution (VSR) that renders temporally consistent super-resolution videos. iSeeBetter extracts spatial and temporal information from the current and neighboring frames using the concept of recurrent back-projection networks as its generator. Furthermore, to improve the "naturality" of the super-resolved image while eliminating artifacts seen with traditional algorithms, we utilize the discriminator from super-resolution generative adversarial network (SRGAN). Although mean squared error (MSE) as a primary loss-minimization objective improves PSNR/SSIM, these metrics may not capture fine details in the image resulting in misrepresentation of perceptual quality. To address this, we use a four-fold (MSE, perceptual, adversarial, and total-variation (TV)) loss function. Our results demonstrate that iSeeBetter offers superior VSR fidelity and surpasses state-of-the-art performance.
EliteKV: Scalable KV Cache Compression via RoPE Frequency Selection and Joint Low-Rank Projection
Rotary Position Embedding (RoPE) enables each attention head to capture multi-frequency information along the sequence dimension and is widely applied in foundation models. However, the nonlinearity introduced by RoPE complicates optimization of the key state in the Key-Value (KV) cache for RoPE-based attention. Existing KV cache compression methods typically store key state before rotation and apply the transformation during decoding, introducing additional computational overhead. This paper introduces EliteKV, a flexible modification framework for RoPE-based models supporting variable KV cache compression ratios. EliteKV first identifies the intrinsic frequency preference of each head using RoPElite, selectively restoring linearity to certain dimensions of key within attention computation. Building on this, joint low-rank compression of key and value enables partial cache sharing. Experimental results show that with minimal uptraining on only 0.6% of the original training data, RoPE-based models achieve a 75% reduction in KV cache size while preserving performance within a negligible margin. Furthermore, EliteKV consistently performs well across models of different scales within the same family.
SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
Identification of vessel structures of different sizes in biomedical images is crucial in the diagnosis of many neurodegenerative diseases. However, the sparsity of good-quality annotations of such images makes the task of vessel segmentation challenging. Deep learning offers an efficient way to segment vessels of different sizes by learning their high-level feature representations and the spatial continuity of such features across dimensions. Semi-supervised patch-based approaches have been effective in identifying small vessels of one to two voxels in diameter. This study focuses on improving the segmentation quality by considering the spatial correlation of the features using the Maximum Intensity Projection~(MIP) as an additional loss criterion. Two methods are proposed with the incorporation of MIPs of label segmentation on the single~(z-axis) and multiple perceivable axes of the 3D volume. The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs. Patch-based training is improved by introducing an additional loss term, MIP loss, to penalise the predicted discontinuity of vessels. A training set of 14 volumes is selected from the StudyForrest dataset comprising of 18 7-Tesla 3D Time-of-Flight~(ToF) Magnetic Resonance Angiography (MRA) images. The generalisation performance of the method is evaluated using the other unseen volumes in the dataset. It is observed that the proposed method with multi-axes MIP loss produces better quality segmentations with a median Dice of 80.245 pm 0.129. Also, the method with single-axis MIP loss produces segmentations with a median Dice of 79.749 pm 0.109. Furthermore, a visual comparison of the ROIs in the predicted segmentation reveals a significant improvement in the continuity of the vessels when MIP loss is incorporated into training.
Learning a More Continuous Zero Level Set in Unsigned Distance Fields through Level Set Projection
Latest methods represent shapes with open surfaces using unsigned distance functions (UDFs). They train neural networks to learn UDFs and reconstruct surfaces with the gradients around the zero level set of the UDF. However, the differential networks struggle from learning the zero level set where the UDF is not differentiable, which leads to large errors on unsigned distances and gradients around the zero level set, resulting in highly fragmented and discontinuous surfaces. To resolve this problem, we propose to learn a more continuous zero level set in UDFs with level set projections. Our insight is to guide the learning of zero level set using the rest non-zero level sets via a projection procedure. Our idea is inspired from the observations that the non-zero level sets are much smoother and more continuous than the zero level set. We pull the non-zero level sets onto the zero level set with gradient constraints which align gradients over different level sets and correct unsigned distance errors on the zero level set, leading to a smoother and more continuous unsigned distance field. We conduct comprehensive experiments in surface reconstruction for point clouds, real scans or depth maps, and further explore the performance in unsupervised point cloud upsampling and unsupervised point normal estimation with the learned UDF, which demonstrate our non-trivial improvements over the state-of-the-art methods. Code is available at https://github.com/junshengzhou/LevelSetUDF .
Idempotent Generative Network
We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution.
Projected GANs Converge Faster
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train. They need careful regularization, vast amounts of compute, and expensive hyper-parameter sweeps. We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space. Motivated by the finding that the discriminator cannot fully exploit features from deeper layers of the pretrained model, we propose a more effective strategy that mixes features across channels and resolutions. Our Projected GAN improves image quality, sample efficiency, and convergence speed. It is further compatible with resolutions of up to one Megapixel and advances the state-of-the-art Fr\'echet Inception Distance (FID) on twenty-two benchmark datasets. Importantly, Projected GANs match the previously lowest FIDs up to 40 times faster, cutting the wall-clock time from 5 days to less than 3 hours given the same computational resources.
DELFlow: Dense Efficient Learning of Scene Flow for Large-Scale Point Clouds
Point clouds are naturally sparse, while image pixels are dense. The inconsistency limits feature fusion from both modalities for point-wise scene flow estimation. Previous methods rarely predict scene flow from the entire point clouds of the scene with one-time inference due to the memory inefficiency and heavy overhead from distance calculation and sorting involved in commonly used farthest point sampling, KNN, and ball query algorithms for local feature aggregation. To mitigate these issues in scene flow learning, we regularize raw points to a dense format by storing 3D coordinates in 2D grids. Unlike the sampling operation commonly used in existing works, the dense 2D representation 1) preserves most points in the given scene, 2) brings in a significant boost of efficiency, and 3) eliminates the density gap between points and pixels, allowing us to perform effective feature fusion. We also present a novel warping projection technique to alleviate the information loss problem resulting from the fact that multiple points could be mapped into one grid during projection when computing cost volume. Sufficient experiments demonstrate the efficiency and effectiveness of our method, outperforming the prior-arts on the FlyingThings3D and KITTI dataset.
A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee
Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.
A theory of meta-factorization
We introduce meta-factorization, a theory that describes matrix decompositions as solutions of linear matrix equations: the projector and the reconstruction equation. Meta-factorization reconstructs known factorizations, reveals their internal structures, and allows for introducing modifications, as illustrated with SVD, QR, and UTV factorizations. The prospect of meta-factorization also provides insights into computational aspects of generalized matrix inverses and randomized linear algebra algorithms. The relations between the Moore-Penrose pseudoinverse, generalized Nystr\"{o}m method, and the CUR decomposition are revealed here as an illustration. Finally, meta-factorization offers hints on the structure of new factorizations and provides the potential of creating them.
Mysterious Projections: Multimodal LLMs Gain Domain-Specific Visual Capabilities Without Richer Cross-Modal Projections
Multimodal large language models (MLLMs) like LLaVA and GPT-4(V) enable general-purpose conversations about images with the language modality. As off-the-shelf MLLMs may have limited capabilities on images from domains like dermatology and agriculture, they must be fine-tuned to unlock domain-specific applications. The prevalent architecture of current open-source MLLMs comprises two major modules: an image-language (cross-modal) projection network and a large language model. It is desirable to understand the roles of these two modules in modeling domain-specific visual attributes to inform the design of future models and streamline the interpretability efforts on the current models. To this end, via experiments on 4 datasets and under 2 fine-tuning settings, we find that as the MLLM is fine-tuned, it indeed gains domain-specific visual capabilities, but the updates do not lead to the projection extracting relevant domain-specific visual attributes. Our results indicate that the domain-specific visual attributes are modeled by the LLM, even when only the projection is fine-tuned. Through this study, we offer a potential reinterpretation of the role of cross-modal projections in MLLM architectures. Projection webpage: https://claws-lab.github.io/projection-in-MLLMs/
Optimal piecewise linear data compression for solutions of parametrized partial differential equations
Model order reduction has been extensively studied over the last two decades. Projection-based methods such as the Proper Orthogonal Decomposition and the Reduced Basis Method enjoy the important advantages of Galerkin methods in the derivation of the reduced problem, but are limited to linear data compression for which the reduced solution is sought as a linear combination of spatial modes. Nonlinear data compression must be used when the solution manifold is not embedded in a low-dimensional subspace. Early methods involve piecewise linear data compression, by constructing a dictionary of reduced-order models tailored to a partition of the solution manifold. In this work, we introduce the concept of optimal partition of the solution manifold in terms of normalized Kolmogorov widths, and prove that the optimal partitions can be found by means of a representative-based clustering algorithm using the sine dissimilarity measure on the solution manifold.
Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
We reveal that low-bit quantization favors undertrained large language models (LLMs) by observing that models with larger sizes or fewer training tokens experience less quantization-induced degradation (QiD) when applying low-bit quantization, whereas smaller models with extensive training tokens suffer significant QiD. To gain deeper insights into this trend, we study over 1500 quantized LLM checkpoints of various sizes and at different training levels (undertrained or fully trained) in a controlled setting, deriving scaling laws for understanding the relationship between QiD and factors such as the number of training tokens, model size and bit width. With the derived scaling laws, we propose a novel perspective that we can use QiD to measure an LLM's training levels and determine the number of training tokens required for fully training LLMs of various sizes. Moreover, we use the scaling laws to predict the quantization performance of different-sized LLMs trained with 100 trillion tokens. Our projection shows that the low-bit quantization performance of future models, which are expected to be trained with over 100 trillion tokens, may NOT be desirable. This poses a potential challenge for low-bit quantization in the future and highlights the need for awareness of a model's training level when evaluating low-bit quantization research. To facilitate future research on this problem, we release all the 1500+ quantized checkpoints used in this work at https://huggingface.co/Xu-Ouyang.
Cross-Lingual Transfer for Low-Resource Natural Language Processing
Natural Language Processing (NLP) has seen remarkable advances in recent years, particularly with the emergence of Large Language Models that have achieved unprecedented performance across many tasks. However, these developments have mainly benefited a small number of high-resource languages such as English. The majority of languages still face significant challenges due to the scarcity of training data and computational resources. To address this issue, this thesis focuses on cross-lingual transfer learning, a research area aimed at leveraging data and models from high-resource languages to improve NLP performance for low-resource languages. Specifically, we focus on Sequence Labeling tasks such as Named Entity Recognition, Opinion Target Extraction, and Argument Mining. The research is structured around three main objectives: (1) advancing data-based cross-lingual transfer learning methods through improved translation and annotation projection techniques, (2) developing enhanced model-based transfer learning approaches utilizing state-of-the-art multilingual models, and (3) applying these methods to real-world problems while creating open-source resources that facilitate future research in low-resource NLP. More specifically, this thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method that leverages text-to-text multilingual models and machine translation systems. T-Projection significantly outperforms previous annotation projection methods by a wide margin. For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings using text-to-text models. Finally, we develop Medical mT5, the first multilingual text-to-text medical model, demonstrating the practical impact of our research on real-world applications.
FB-BEV: BEV Representation from Forward-Backward View Transformations
View Transformation Module (VTM), where transformations happen between multi-view image features and Bird-Eye-View (BEV) representation, is a crucial step in camera-based BEV perception systems. Currently, the two most prominent VTM paradigms are forward projection and backward projection. Forward projection, represented by Lift-Splat-Shoot, leads to sparsely projected BEV features without post-processing. Backward projection, with BEVFormer being an example, tends to generate false-positive BEV features from incorrect projections due to the lack of utilization on depth. To address the above limitations, we propose a novel forward-backward view transformation module. Our approach compensates for the deficiencies in both existing methods, allowing them to enhance each other to obtain higher quality BEV representations mutually. We instantiate the proposed module with FB-BEV, which achieves a new state-of-the-art result of 62.4% NDS on the nuScenes test set. Code and models are available at https://github.com/NVlabs/FB-BEV.
GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.
Tell me what you see: A zero-shot action recognition method based on natural language descriptions
This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have explored the detection and classification of objects to obtain semantic information from videos with remarkable performance. Inspired by them, we propose using video captioning methods to extract semantic information about objects, scenes, humans, and their relationships. To the best of our knowledge, this is the first work to represent both videos and labels with descriptive sentences. More specifically, we represent videos using sentences generated via video captioning methods and classes using sentences extracted from documents acquired through search engines on the Internet. Using these representations, we build a shared semantic space employing BERT-based embedders pre-trained in the paraphrasing task on multiple text datasets. The projection of both visual and semantic information onto this space is straightforward, as they are sentences, enabling classification using the nearest neighbor rule. We demonstrate that representing videos and labels with sentences alleviates the domain adaptation problem. Additionally, we show that word vectors are unsuitable for building the semantic embedding space of our descriptions. Our method outperforms the state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe protocol and achieves competitive results on both the UCF101 and HMDB51 datasets under the conventional protocol (0/50\% - training/testing split). Our code is available at https://github.com/valterlej/zsarcap.
Transductive Multi-view Zero-Shot Learning
Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and is applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
Multimodal Neurons in Pretrained Text-Only Transformers
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
ReCLIP: Refine Contrastive Language Image Pre-Training with Source Free Domain Adaptation
Large-scale Pre-Training Vision-Language Model such as CLIP has demonstrated outstanding performance in zero-shot classification, e.g. achieving 76.3% top-1 accuracy on ImageNet without seeing any example, which leads to potential benefits to many tasks that have no labeled data. However, while applying CLIP to a downstream target domain, the presence of visual and text domain gaps and cross-modality misalignment can greatly impact the model performance. To address such challenges, we propose ReCLIP, the first source-free domain adaptation method for vision-language models, which does not require any source data or target labeled data. ReCLIP first learns a projection space to mitigate the misaligned visual-text embeddings and learns pseudo labels, and then deploys cross-modality self-training with the pseudo labels, to update visual and text encoders, refine labels and reduce domain gaps and misalignments iteratively. With extensive experiments, we demonstrate ReCLIP reduces the average error rate of CLIP from 30.17% to 25.06% on 22 image classification benchmarks.
MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response
Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains relatively unexplored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with the frozen LLaMA language model, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from MusicCaps, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones.
Real-time Neural Rendering of LiDAR Point Clouds
Static LiDAR scanners produce accurate, dense, colored point clouds, but often contain obtrusive artifacts which makes them ill-suited for direct display. We propose an efficient method to render photorealistic images of such scans without any expensive preprocessing or training of a scene-specific model. A naive projection of the point cloud to the output view using 1x1 pixels is fast and retains the available detail, but also results in unintelligible renderings as background points leak in between the foreground pixels. The key insight is that these projections can be transformed into a realistic result using a deep convolutional model in the form of a U-Net, and a depth-based heuristic that prefilters the data. The U-Net also handles LiDAR-specific problems such as missing parts due to occlusion, color inconsistencies and varying point densities. We also describe a method to generate synthetic training data to deal with imperfectly-aligned ground truth images. Our method achieves real-time rendering rates using an off-the-shelf GPU and outperforms the state-of-the-art in both speed and quality.
On the local analyticity for the Euler equations
In this paper, we study the existence and uniqueness of solutions to the Euler equations with initial conditions that exhibit analytic regularity near the boundary and Sobolev regularity away from it. A key contribution of this work is the introduction of the diamond-analyticity framework, which captures the spatial decay of the analyticity radius in a structured manner, improving upon uniform analyticity approaches. We employ the Leray projection and a nonstandard mollification technique to demonstrate that the quotient between the imaginary and real parts of the analyticity radius remains unrestricted, thus extending the analyticity persistence results beyond traditional constraints. Our methodology combines analytic-Sobolev estimates with an iterative scheme which is nonstandard in the Cauchy-Kowalevskaya framework, ensuring rigorous control over the evolution of the solution. These results contribute to a deeper understanding of the interplay between analyticity and boundary effects in fluid equations. They might have implications for the study of the inviscid limit of the Navier-Stokes equations and the role of complex singularities in fluid dynamics.
Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera
While recent depth estimation methods exhibit strong zero-shot generalization, achieving accurate metric depth across diverse camera types-particularly those with large fields of view (FoV) such as fisheye and 360-degree cameras-remains a significant challenge. This paper presents Depth Any Camera (DAC), a powerful zero-shot metric depth estimation framework that extends a perspective-trained model to effectively handle cameras with varying FoVs. The framework is designed to ensure that all existing 3D data can be leveraged, regardless of the specific camera types used in new applications. Remarkably, DAC is trained exclusively on perspective images but generalizes seamlessly to fisheye and 360-degree cameras without the need for specialized training data. DAC employs Equi-Rectangular Projection (ERP) as a unified image representation, enabling consistent processing of images with diverse FoVs. Its key components include a pitch-aware Image-to-ERP conversion for efficient online augmentation in ERP space, a FoV alignment operation to support effective training across a wide range of FoVs, and multi-resolution data augmentation to address resolution disparities between training and testing. DAC achieves state-of-the-art zero-shot metric depth estimation, improving delta-1 (delta_1) accuracy by up to 50% on multiple fisheye and 360-degree datasets compared to prior metric depth foundation models, demonstrating robust generalization across camera types.
Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation
Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to sim16times speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
ViewFormer: Exploring Spatiotemporal Modeling for Multi-View 3D Occupancy Perception via View-Guided Transformers
3D occupancy, an advanced perception technology for driving scenarios, represents the entire scene without distinguishing between foreground and background by quantifying the physical space into a grid map. The widely adopted projection-first deformable attention, efficient in transforming image features into 3D representations, encounters challenges in aggregating multi-view features due to sensor deployment constraints. To address this issue, we propose our learning-first view attention mechanism for effective multi-view feature aggregation. Moreover, we showcase the scalability of our view attention across diverse multi-view 3D tasks, including map construction and 3D object detection. Leveraging the proposed view attention as well as an additional multi-frame streaming temporal attention, we introduce ViewFormer, a vision-centric transformer-based framework for spatiotemporal feature aggregation. To further explore occupancy-level flow representation, we present FlowOcc3D, a benchmark built on top of existing high-quality datasets. Qualitative and quantitative analyses on this benchmark reveal the potential to represent fine-grained dynamic scenes. Extensive experiments show that our approach significantly outperforms prior state-of-the-art methods. The codes are available at https://github.com/ViewFormerOcc/ViewFormer-Occ.
RSTAR: Rotational Streak Artifact Reduction in 4D CBCT using Separable and Circular Convolutions
Four-dimensional cone-beam computed tomography (4D CBCT) provides respiration-resolved images and can be used for image-guided radiation therapy. However, the ability to reveal respiratory motion comes at the cost of image artifacts. As raw projection data are sorted into multiple respiratory phases, the cone-beam projections become much sparser and the reconstructed 4D CBCT images will be covered by severe streak artifacts. Although several deep learning-based methods have been proposed to address this issue, most algorithms employ 2D network models as backbones, neglecting the intrinsic structural priors within 4D CBCT images. In this paper, we first explore the origin and appearance of streak artifacts in 4D CBCT images. We find that streak artifacts exhibit a unique rotational motion along with the patient's respiration, distinguishable from diaphragm-driven respiratory motion in the spatiotemporal domain. Therefore, we propose a novel 4D neural network model, RSTAR4D-Net, designed to address Rotational STreak Artifact Reduction by integrating the spatial and temporal information within 4D CBCT images. Specifically, we overcome the computational and training difficulties of a 4D neural network. The specially designed model adopts an efficient implementation of 4D convolutions to reduce computational costs and thus can process the whole 4D image in one pass. Additionally, a Tetris training strategy pertinent to the separable 4D convolutions is proposed to effectively train the model using limited 4D training samples. Extensive experiments substantiate the effectiveness of our proposed method, and the RSTAR4D-Net shows superior performance compared to other methods. The source code and dynamic demos are available at https://github.com/ivy9092111111/RSTAR.
Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting
Open-vocabulary 3D scene understanding presents a significant challenge in computer vision, withwide-ranging applications in embodied agents and augmented reality systems. Previous approaches haveadopted Neural Radiance Fields (NeRFs) to analyze 3D scenes. In this paper, we introduce SemanticGaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting. Our keyidea is distilling pre-trained 2D semantics into 3D Gaussians. We design a versatile projection approachthat maps various 2Dsemantic features from pre-trained image encoders into a novel semantic component of 3D Gaussians, withoutthe additional training required by NeRFs. We further build a 3D semantic network that directly predictsthe semantic component from raw 3D Gaussians for fast inference. We explore several applications ofSemantic Gaussians: semantic segmentation on ScanNet-20, where our approach attains a 4.2% mIoU and 4.0%mAcc improvement over prior open-vocabulary scene understanding counterparts; object part segmentation,sceneediting, and spatial-temporal segmentation with better qualitative results over 2D and 3D baselines,highlighting its versatility and effectiveness on supporting diverse downstream tasks.
Aperture Diffraction for Compact Snapshot Spectral Imaging
We demonstrate a compact, cost-effective snapshot spectral imaging system named Aperture Diffraction Imaging Spectrometer (ADIS), which consists only of an imaging lens with an ultra-thin orthogonal aperture mask and a mosaic filter sensor, requiring no additional physical footprint compared to common RGB cameras. Then we introduce a new optical design that each point in the object space is multiplexed to discrete encoding locations on the mosaic filter sensor by diffraction-based spatial-spectral projection engineering generated from the orthogonal mask. The orthogonal projection is uniformly accepted to obtain a weakly calibration-dependent data form to enhance modulation robustness. Meanwhile, the Cascade Shift-Shuffle Spectral Transformer (CSST) with strong perception of the diffraction degeneration is designed to solve a sparsity-constrained inverse problem, realizing the volume reconstruction from 2D measurements with Large amount of aliasing. Our system is evaluated by elaborating the imaging optical theory and reconstruction algorithm with demonstrating the experimental imaging under a single exposure. Ultimately, we achieve the sub-super-pixel spatial resolution and high spectral resolution imaging. The code will be available at: https://github.com/Krito-ex/CSST.
Event Camera Data Pre-training
This paper proposes a pre-trained neural network for handling event camera data. Our model is a self-supervised learning framework, and uses paired event camera data and natural RGB images for training. Our method contains three modules connected in a sequence: i) a family of event data augmentations, generating meaningful event images for self-supervised training; ii) a conditional masking strategy to sample informative event patches from event images, encouraging our model to capture the spatial layout of a scene and accelerating training; iii) a contrastive learning approach, enforcing the similarity of embeddings between matching event images, and between paired event and RGB images. An embedding projection loss is proposed to avoid the model collapse when enforcing the event image embedding similarities. A probability distribution alignment loss is proposed to encourage the event image to be consistent with its paired RGB image in the feature space. Transfer learning performance on downstream tasks shows the superiority of our method over state-of-the-art methods. For example, we achieve top-1 accuracy at 64.83% on the N-ImageNet dataset.
Graph-Based Multilingual Label Propagation for Low-Resource Part-of-Speech Tagging
Part-of-Speech (POS) tagging is an important component of the NLP pipeline, but many low-resource languages lack labeled data for training. An established method for training a POS tagger in such a scenario is to create a labeled training set by transferring from high-resource languages. In this paper, we propose a novel method for transferring labels from multiple high-resource source to low-resource target languages. We formalize POS tag projection as graph-based label propagation. Given translations of a sentence in multiple languages, we create a graph with words as nodes and alignment links as edges by aligning words for all language pairs. We then propagate node labels from source to target using a Graph Neural Network augmented with transformer layers. We show that our propagation creates training sets that allow us to train POS taggers for a diverse set of languages. When combined with enhanced contextualized embeddings, our method achieves a new state-of-the-art for unsupervised POS tagging of low-resource languages.
Physical-World Optical Adversarial Attacks on 3D Face Recognition
2D face recognition has been proven insecure for physical adversarial attacks. However, few studies have investigated the possibility of attacking real-world 3D face recognition systems. 3D-printed attacks recently proposed cannot generate adversarial points in the air. In this paper, we attack 3D face recognition systems through elaborate optical noises. We took structured light 3D scanners as our attack target. End-to-end attack algorithms are designed to generate adversarial illumination for 3D faces through the inherent or an additional projector to produce adversarial points at arbitrary positions. Nevertheless, face reflectance is a complex procedure because the skin is translucent. To involve this projection-and-capture procedure in optimization loops, we model it by Lambertian rendering model and use SfSNet to estimate the albedo. Moreover, to improve the resistance to distance and angle changes while maintaining the perturbation unnoticeable, a 3D transform invariant loss and two kinds of sensitivity maps are introduced. Experiments are conducted in both simulated and physical worlds. We successfully attacked point-cloud-based and depth-image-based 3D face recognition algorithms while needing fewer perturbations than previous state-of-the-art physical-world 3D adversarial attacks.
Tiny Neural Models for Seq2Seq
Semantic parsing models with applications in task oriented dialog systems require efficient sequence to sequence (seq2seq) architectures to be run on-device. To this end, we propose a projection based encoder-decoder model referred to as pQRNN-MAtt. Studies based on projection methods were restricted to encoder-only models, and we believe this is the first study extending it to seq2seq architectures. The resulting quantized models are less than 3.5MB in size and are well suited for on-device latency critical applications. We show that on MTOP, a challenging multilingual semantic parsing dataset, the average model performance surpasses LSTM based seq2seq model that uses pre-trained embeddings despite being 85x smaller. Furthermore, the model can be an effective student for distilling large pre-trained models such as T5/BERT.
RC-DARTS: Resource Constrained Differentiable Architecture Search
Recent advances show that Neural Architectural Search (NAS) method is able to find state-of-the-art image classification deep architectures. In this paper, we consider the one-shot NAS problem for resource constrained applications. This problem is of great interest because it is critical to choose different architectures according to task complexity when the resource is constrained. Previous techniques are either too slow for one-shot learning or does not take the resource constraint into consideration. In this paper, we propose the resource constrained differentiable architecture search (RC-DARTS) method to learn architectures that are significantly smaller and faster while achieving comparable accuracy. Specifically, we propose to formulate the RC-DARTS task as a constrained optimization problem by adding the resource constraint. An iterative projection method is proposed to solve the given constrained optimization problem. We also propose a multi-level search strategy to enable layers at different depths to adaptively learn different types of neural architectures. Through extensive experiments on the Cifar10 and ImageNet datasets, we show that the RC-DARTS method learns lightweight neural architectures which have smaller model size and lower computational complexity while achieving comparable or better performances than the state-of-the-art methods.
Toward Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria Learning
The ambiguous annotation criteria lead to divergence of Chinese Word Segmentation (CWS) datasets in various granularities. Multi-criteria Chinese word segmentation aims to capture various annotation criteria among datasets and leverage their common underlying knowledge. In this paper, we propose a domain adaptive segmenter to exploit diverse criteria of various datasets. Our model is based on Bidirectional Encoder Representations from Transformers (BERT), which is responsible for introducing open-domain knowledge. Private and shared projection layers are proposed to capture domain-specific knowledge and common knowledge, respectively. We also optimize computational efficiency via distillation, quantization, and compiler optimization. Experiments show that our segmenter outperforms the previous state of the art (SOTA) models on 10 CWS datasets with superior efficiency.
Biomedical Document Clustering and Visualization based on the Concepts of Diseases
Document clustering is a text mining technique used to provide better document search and browsing in digital libraries or online corpora. A lot of research has been done on biomedical document clustering that is based on using existing ontology. But, associations and co-occurrences of the medical concepts are not well represented by using ontology. In this research, a vector representation of concepts of diseases and similarity measurement between concepts are proposed. They identify the closest concepts of diseases in the context of a corpus. Each document is represented by using the vector space model. A weight scheme is proposed to consider both local content and associations between concepts. A Self-Organizing Map is used as document clustering algorithm. The vector projection and visualization features of SOM enable visualization and analysis of the clusters distributions and relationships on the two dimensional space. The experimental results show that the proposed document clustering framework generates meaningful clusters and facilitate visualization of the clusters based on the concepts of diseases.
Lagrangian basis method for dimensionality reduction of convection dominated nonlinear flows
Foundations of a new projection-based model reduction approach for convection dominated nonlinear fluid flows are summarized. In this method the evolution of the flow is approximated in the Lagrangian frame of reference. Global basis functions are used to approximate both the state and the position of the Lagrangian computational domain. It is demonstrated that in this framework, certain wave-like solutions exhibit low-rank structure and thus, can be efficiently compressed using relatively few global basis. The proposed approach is successfully demonstrated for the reduction of several simple but representative problems.
LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models Fine-tuning
The low-rank adaptation (LoRA) method can largely reduce the amount of trainable parameters for fine-tuning large language models (LLMs), however, it still requires expensive activation memory to update low-rank weights. Reducing the number of LoRA layers or using activation recomputation could harm the fine-tuning performance or increase the computational overhead. In this work, we present LoRA-FA, a memory-efficient fine-tuning method that reduces the activation memory without performance degradation and expensive recomputation. LoRA-FA chooses to freeze the projection-down weight of A and update the projection-up weight of B in each LoRA layer. It ensures the change of model weight reside in a low-rank space during LLMs fine-tuning, while eliminating the requirement to store full-rank input activations. We conduct extensive experiments across multiple model types (RoBERTa, T5, LLaMA) and model scales. Our results show that LoRA-FA can always achieve close fine-tuning accuracy across different tasks compared to full parameter fine-tuning and LoRA. Furthermore, LoRA-FA can reduce the overall memory cost by up to 1.4times compared to LoRA.
MuQ: Self-Supervised Music Representation Learning with Mel Residual Vector Quantization
Recent years have witnessed the success of foundation models pre-trained with self-supervised learning (SSL) in various music informatics understanding tasks, including music tagging, instrument classification, key detection, and more. In this paper, we propose a self-supervised music representation learning model for music understanding. Distinguished from previous studies adopting random projection or existing neural codec, the proposed model, named MuQ, is trained to predict tokens generated by Mel Residual Vector Quantization (Mel-RVQ). Our Mel-RVQ utilizes residual linear projection structure for Mel spectrum quantization to enhance the stability and efficiency of target extraction and lead to better performance. Experiments in a large variety of downstream tasks demonstrate that MuQ outperforms previous self-supervised music representation models with only 0.9K hours of open-source pre-training data. Scaling up the data to over 160K hours and adopting iterative training consistently improve the model performance. To further validate the strength of our model, we present MuQ-MuLan, a joint music-text embedding model based on contrastive learning, which achieves state-of-the-art performance in the zero-shot music tagging task on the MagnaTagATune dataset. Code and checkpoints are open source in https://github.com/tencent-ailab/MuQ.
Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction
The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Source code is released at https://github.com/yanzq95/DHD.
CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Canonicalization
In the field of digital content creation, generating high-quality 3D characters from single images is challenging, especially given the complexities of various body poses and the issues of self-occlusion and pose ambiguity. In this paper, we present CharacterGen, a framework developed to efficiently generate 3D characters. CharacterGen introduces a streamlined generation pipeline along with an image-conditioned multi-view diffusion model. This model effectively calibrates input poses to a canonical form while retaining key attributes of the input image, thereby addressing the challenges posed by diverse poses. A transformer-based, generalizable sparse-view reconstruction model is the other core component of our approach, facilitating the creation of detailed 3D models from multi-view images. We also adopt a texture-back-projection strategy to produce high-quality texture maps. Additionally, we have curated a dataset of anime characters, rendered in multiple poses and views, to train and evaluate our model. Our approach has been thoroughly evaluated through quantitative and qualitative experiments, showing its proficiency in generating 3D characters with high-quality shapes and textures, ready for downstream applications such as rigging and animation.
360-GS: Layout-guided Panoramic Gaussian Splatting For Indoor Roaming
3D Gaussian Splatting (3D-GS) has recently attracted great attention with real-time and photo-realistic renderings. This technique typically takes perspective images as input and optimizes a set of 3D elliptical Gaussians by splatting them onto the image planes, resulting in 2D Gaussians. However, applying 3D-GS to panoramic inputs presents challenges in effectively modeling the projection onto the spherical surface of {360^circ} images using 2D Gaussians. In practical applications, input panoramas are often sparse, leading to unreliable initialization of 3D Gaussians and subsequent degradation of 3D-GS quality. In addition, due to the under-constrained geometry of texture-less planes (e.g., walls and floors), 3D-GS struggles to model these flat regions with elliptical Gaussians, resulting in significant floaters in novel views. To address these issues, we propose 360-GS, a novel 360^{circ} Gaussian splatting for a limited set of panoramic inputs. Instead of splatting 3D Gaussians directly onto the spherical surface, 360-GS projects them onto the tangent plane of the unit sphere and then maps them to the spherical projections. This adaptation enables the representation of the projection using Gaussians. We guide the optimization of 360-GS by exploiting layout priors within panoramas, which are simple to obtain and contain strong structural information about the indoor scene. Our experimental results demonstrate that 360-GS allows panoramic rendering and outperforms state-of-the-art methods with fewer artifacts in novel view synthesis, thus providing immersive roaming in indoor scenarios.
RED-PSM: Regularization by Denoising of Partially Separable Models for Dynamic Imaging
Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. In this work, we propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are partially separable models, which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent Regularization by Denoising (RED), which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show the performance advantages of RED-PSM in a cardiac dynamic MRI setting.
Learning with Local Gradients at the Edge
To enable learning on edge devices with fast convergence and low memory, we present a novel backpropagation-free optimization algorithm dubbed Target Projection Stochastic Gradient Descent (tpSGD). tpSGD generalizes direct random target projection to work with arbitrary loss functions and extends target projection for training recurrent neural networks (RNNs) in addition to feedforward networks. tpSGD uses layer-wise stochastic gradient descent (SGD) and local targets generated via random projections of the labels to train the network layer-by-layer with only forward passes. tpSGD doesn't require retaining gradients during optimization, greatly reducing memory allocation compared to SGD backpropagation (BP) methods that require multiple instances of the entire neural network weights, input/output, and intermediate results. Our method performs comparably to BP gradient-descent within 5% accuracy on relatively shallow networks of fully connected layers, convolutional layers, and recurrent layers. tpSGD also outperforms other state-of-the-art gradient-free algorithms in shallow models consisting of multi-layer perceptrons, convolutional neural networks (CNNs), and RNNs with competitive accuracy and less memory and time. We evaluate the performance of tpSGD in training deep neural networks (e.g. VGG) and extend the approach to multi-layer RNNs. These experiments highlight new research directions related to optimized layer-based adaptor training for domain-shift using tpSGD at the edge.
Improving Generalization Performance by Switching from Adam to SGD
Despite superior training outcomes, adaptive optimization methods such as Adam, Adagrad or RMSprop have been found to generalize poorly compared to Stochastic gradient descent (SGD). These methods tend to perform well in the initial portion of training but are outperformed by SGD at later stages of training. We investigate a hybrid strategy that begins training with an adaptive method and switches to SGD when appropriate. Concretely, we propose SWATS, a simple strategy which switches from Adam to SGD when a triggering condition is satisfied. The condition we propose relates to the projection of Adam steps on the gradient subspace. By design, the monitoring process for this condition adds very little overhead and does not increase the number of hyperparameters in the optimizer. We report experiments on several standard benchmarks such as: ResNet, SENet, DenseNet and PyramidNet for the CIFAR-10 and CIFAR-100 data sets, ResNet on the tiny-ImageNet data set and language modeling with recurrent networks on the PTB and WT2 data sets. The results show that our strategy is capable of closing the generalization gap between SGD and Adam on a majority of the tasks.
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
BLADE: Single-view Body Mesh Learning through Accurate Depth Estimation
Single-image human mesh recovery is a challenging task due to the ill-posed nature of simultaneous body shape, pose, and camera estimation. Existing estimators work well on images taken from afar, but they break down as the person moves close to the camera. Moreover, current methods fail to achieve both accurate 3D pose and 2D alignment at the same time. Error is mainly introduced by inaccurate perspective projection heuristically derived from orthographic parameters. To resolve this long-standing challenge, we present our method BLADE which accurately recovers perspective parameters from a single image without heuristic assumptions. We start from the inverse relationship between perspective distortion and the person's Z-translation Tz, and we show that Tz can be reliably estimated from the image. We then discuss the important role of Tz for accurate human mesh recovery estimated from close-range images. Finally, we show that, once Tz and the 3D human mesh are estimated, one can accurately recover the focal length and full 3D translation. Extensive experiments on standard benchmarks and real-world close-range images show that our method is the first to accurately recover projection parameters from a single image, and consequently attain state-of-the-art accuracy on 3D pose estimation and 2D alignment for a wide range of images. https://research.nvidia.com/labs/amri/projects/blade/
OpenDlign: Enhancing Open-World 3D Learning with Depth-Aligned Images
Recent open-world 3D representation learning methods using Vision-Language Models (VLMs) to align 3D data with image-text information have shown superior 3D zero-shot performance. However, CAD-rendered images for this alignment often lack realism and texture variation, compromising alignment robustness. Moreover, the volume discrepancy between 3D and 2D pretraining datasets highlights the need for effective strategies to transfer the representational abilities of VLMs to 3D learning. In this paper, we present OpenDlign, a novel open-world 3D model using depth-aligned images generated from a diffusion model for robust multimodal alignment. These images exhibit greater texture diversity than CAD renderings due to the stochastic nature of the diffusion model. By refining the depth map projection pipeline and designing depth-specific prompts, OpenDlign leverages rich knowledge in pre-trained VLM for 3D representation learning with streamlined fine-tuning. Our experiments show that OpenDlign achieves high zero-shot and few-shot performance on diverse 3D tasks, despite only fine-tuning 6 million parameters on a limited ShapeNet dataset. In zero-shot classification, OpenDlign surpasses previous models by 8.0% on ModelNet40 and 16.4% on OmniObject3D. Additionally, using depth-aligned images for multimodal alignment consistently enhances the performance of other state-of-the-art models.
Masked Autoencoders with Multi-Window Local-Global Attention Are Better Audio Learners
In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fitted with a novel Multi-Window Multi-Head Attention (MW-MHA) module that facilitates the modelling of local-global interactions in every decoder transformer block through attention heads of several distinct local and global windows. Empirical results on ten downstream audio tasks show that MW-MAEs consistently outperform standard MAEs in overall performance and learn better general-purpose audio representations, along with demonstrating considerably better scaling characteristics. Investigating attention distances and entropies reveals that MW-MAE encoders learn heads with broader local and global attention. Analyzing attention head feature representations through Projection Weighted Canonical Correlation Analysis (PWCCA) shows that attention heads with the same window sizes across the decoder layers of the MW-MAE learn correlated feature representations which enables each block to independently capture local and global information, leading to a decoupled decoder feature hierarchy. Code for feature extraction and downstream experiments along with pre-trained models will be released publically.
Faithful and Efficient Explanations for Neural Networks via Neural Tangent Kernel Surrogate Models
A recent trend in explainable AI research has focused on surrogate modeling, where neural networks are approximated as simpler ML algorithms such as kernel machines. A second trend has been to utilize kernel functions in various explain-by-example or data attribution tasks. In this work, we combine these two trends to analyze approximate empirical neural tangent kernels (eNTK) for data attribution. Approximation is critical for eNTK analysis due to the high computational cost to compute the eNTK. We define new approximate eNTK and perform novel analysis on how well the resulting kernel machine surrogate models correlate with the underlying neural network. We introduce two new random projection variants of approximate eNTK which allow users to tune the time and memory complexity of their calculation. We conclude that kernel machines using approximate neural tangent kernel as the kernel function are effective surrogate models, with the introduced trace NTK the most consistent performer. Open source software allowing users to efficiently calculate kernel functions in the PyTorch framework is available (https://github.com/pnnl/projection\_ntk).
MultiTACRED: A Multilingual Version of the TAC Relation Extraction Dataset
Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 83% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance.
Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages
We introduce the Universal Speech Model (USM), a single large model that performs automatic speech recognition (ASR) across 100+ languages. This is achieved by pre-training the encoder of the model on a large unlabeled multilingual dataset of 12 million (M) hours spanning over 300 languages, and fine-tuning on a smaller labeled dataset. We use multilingual pre-training with random-projection quantization and speech-text modality matching to achieve state-of-the-art performance on downstream multilingual ASR and speech-to-text translation tasks. We also demonstrate that despite using a labeled training set 1/7-th the size of that used for the Whisper model, our model exhibits comparable or better performance on both in-domain and out-of-domain speech recognition tasks across many languages.
Learning to Decouple Complex Systems
A complex system with cluttered observations may be a coupled mixture of multiple simple sub-systems corresponding to latent entities. Such sub-systems may hold distinct dynamics in the continuous-time domain; therein, complicated interactions between sub-systems also evolve over time. This setting is fairly common in the real world but has been less considered. In this paper, we propose a sequential learning approach under this setting by decoupling a complex system for handling irregularly sampled and cluttered sequential observations. Such decoupling brings about not only subsystems describing the dynamics of each latent entity but also a meta-system capturing the interaction between entities over time. Specifically, we argue that the meta-system evolving within a simplex is governed by projected differential equations (ProjDEs). We further analyze and provide neural-friendly projection operators in the context of Bregman divergence. Experimental results on synthetic and real-world datasets show the advantages of our approach when facing complex and cluttered sequential data compared to the state-of-the-art.
Structured Like a Language Model: Analysing AI as an Automated Subject
Drawing from the resources of psychoanalysis and critical media studies, in this paper we develop an analysis of Large Language Models (LLMs) as automated subjects. We argue the intentional fictional projection of subjectivity onto LLMs can yield an alternate frame through which AI behaviour, including its productions of bias and harm, can be analysed. First, we introduce language models, discuss their significance and risks, and outline our case for interpreting model design and outputs with support from psychoanalytic concepts. We trace a brief history of language models, culminating with the releases, in 2022, of systems that realise state-of-the-art natural language processing performance. We engage with one such system, OpenAI's InstructGPT, as a case study, detailing the layers of its construction and conducting exploratory and semi-structured interviews with chatbots. These interviews probe the model's moral imperatives to be helpful, truthful and harmless by design. The model acts, we argue, as the condensation of often competing social desires, articulated through the internet and harvested into training data, which must then be regulated and repressed. This foundational structure can however be redirected via prompting, so that the model comes to identify with, and transfer, its commitments to the immediate human subject before it. In turn, these automated productions of language can lead to the human subject projecting agency upon the model, effecting occasionally further forms of countertransference. We conclude that critical media methods and psychoanalytic theory together offer a productive frame for grasping the powerful new capacities of AI-driven language systems.
InfoOT: Information Maximizing Optimal Transport
Optimal transport aligns samples across distributions by minimizing the transportation cost between them, e.g., the geometric distances. Yet, it ignores coherence structure in the data such as clusters, does not handle outliers well, and cannot integrate new data points. To address these drawbacks, we propose InfoOT, an information-theoretic extension of optimal transport that maximizes the mutual information between domains while minimizing geometric distances. The resulting objective can still be formulated as a (generalized) optimal transport problem, and can be efficiently solved by projected gradient descent. This formulation yields a new projection method that is robust to outliers and generalizes to unseen samples. Empirically, InfoOT improves the quality of alignments across benchmarks in domain adaptation, cross-domain retrieval, and single-cell alignment.
SurfGen: Adversarial 3D Shape Synthesis with Explicit Surface Discriminators
Recent advances in deep generative models have led to immense progress in 3D shape synthesis. While existing models are able to synthesize shapes represented as voxels, point-clouds, or implicit functions, these methods only indirectly enforce the plausibility of the final 3D shape surface. Here we present a 3D shape synthesis framework (SurfGen) that directly applies adversarial training to the object surface. Our approach uses a differentiable spherical projection layer to capture and represent the explicit zero isosurface of an implicit 3D generator as functions defined on the unit sphere. By processing the spherical representation of 3D object surfaces with a spherical CNN in an adversarial setting, our generator can better learn the statistics of natural shape surfaces. We evaluate our model on large-scale shape datasets, and demonstrate that the end-to-end trained model is capable of generating high fidelity 3D shapes with diverse topology.
UniFuse: Unidirectional Fusion for 360$^{\circ}$ Panorama Depth Estimation
Learning depth from spherical panoramas is becoming a popular research topic because a panorama has a full field-of-view of the environment and provides a relatively complete description of a scene. However, applying well-studied CNNs for perspective images to the standard representation of spherical panoramas, i.e., the equirectangular projection, is suboptimal, as it becomes distorted towards the poles. Another representation is the cubemap projection, which is distortion-free but discontinued on edges and limited in the field-of-view. This paper introduces a new framework to fuse features from the two projections, unidirectionally feeding the cubemap features to the equirectangular features only at the decoding stage. Unlike the recent bidirectional fusion approach operating at both the encoding and decoding stages, our fusion scheme is much more efficient. Besides, we also designed a more effective fusion module for our fusion scheme. Experiments verify the effectiveness of our proposed fusion strategy and module, and our model achieves state-of-the-art performance on four popular datasets. Additional experiments show that our model also has the advantages of model complexity and generalization capability.The code is available at https://github.com/alibaba/UniFuse-Unidirectional-Fusion.
Adversarial Robustness by Design through Analog Computing and Synthetic Gradients
We propose a new defense mechanism against adversarial attacks inspired by an optical co-processor, providing robustness without compromising natural accuracy in both white-box and black-box settings. This hardware co-processor performs a nonlinear fixed random transformation, where the parameters are unknown and impossible to retrieve with sufficient precision for large enough dimensions. In the white-box setting, our defense works by obfuscating the parameters of the random projection. Unlike other defenses relying on obfuscated gradients, we find we are unable to build a reliable backward differentiable approximation for obfuscated parameters. Moreover, while our model reaches a good natural accuracy with a hybrid backpropagation - synthetic gradient method, the same approach is suboptimal if employed to generate adversarial examples. We find the combination of a random projection and binarization in the optical system also improves robustness against various types of black-box attacks. Finally, our hybrid training method builds robust features against transfer attacks. We demonstrate our approach on a VGG-like architecture, placing the defense on top of the convolutional features, on CIFAR-10 and CIFAR-100. Code is available at https://github.com/lightonai/adversarial-robustness-by-design.
SalsaNet: Fast Road and Vehicle Segmentation in LiDAR Point Clouds for Autonomous Driving
In this paper, we introduce a deep encoder-decoder network, named SalsaNet, for efficient semantic segmentation of 3D LiDAR point clouds. SalsaNet segments the road, i.e. drivable free-space, and vehicles in the scene by employing the Bird-Eye-View (BEV) image projection of the point cloud. To overcome the lack of annotated point cloud data, in particular for the road segments, we introduce an auto-labeling process which transfers automatically generated labels from the camera to LiDAR. We also explore the role of imagelike projection of LiDAR data in semantic segmentation by comparing BEV with spherical-front-view projection and show that SalsaNet is projection-agnostic. We perform quantitative and qualitative evaluations on the KITTI dataset, which demonstrate that the proposed SalsaNet outperforms other state-of-the-art semantic segmentation networks in terms of accuracy and computation time. Our code and data are publicly available at https://gitlab.com/aksoyeren/salsanet.git.
SpatialTracker: Tracking Any 2D Pixels in 3D Space
Recovering dense and long-range pixel motion in videos is a challenging problem. Part of the difficulty arises from the 3D-to-2D projection process, leading to occlusions and discontinuities in the 2D motion domain. While 2D motion can be intricate, we posit that the underlying 3D motion can often be simple and low-dimensional. In this work, we propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection. Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators, represents the 3D content of each frame efficiently using a triplane representation, and performs iterative updates using a transformer to estimate 3D trajectories. Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts. Extensive evaluation shows that our approach achieves state-of-the-art tracking performance both qualitatively and quantitatively, particularly in challenging scenarios such as out-of-plane rotation.
Mixture-of-Mamba: Enhancing Multi-Modal State-Space Models with Modality-Aware Sparsity
State Space Models (SSMs) have emerged as efficient alternatives to Transformers for sequential modeling, but their inability to leverage modality-specific features limits their performance in multi-modal pretraining. Here, we propose Mixture-of-Mamba, a novel SSM architecture that introduces modality-aware sparsity through modality-specific parameterization of the Mamba block. Building on Mixture-of-Transformers (W. Liang et al. arXiv:2411.04996; 2024), we extend the benefits of modality-aware sparsity to SSMs while preserving their computational efficiency. We evaluate Mixture-of-Mamba across three multi-modal pretraining settings: Transfusion (interleaved text and continuous image tokens with diffusion loss), Chameleon (interleaved text and discrete image tokens), and an extended three-modality framework incorporating speech. Mixture-of-Mamba consistently reaches the same loss values at earlier training steps with significantly reduced computational costs. In the Transfusion setting, Mixture-of-Mamba achieves equivalent image loss using only 34.76% of the training FLOPs at the 1.4B scale. In the Chameleon setting, Mixture-of-Mamba reaches similar image loss with just 42.50% of the FLOPs at the 1.4B scale, and similar text loss with just 65.40% of the FLOPs. In the three-modality setting, MoM matches speech loss at 24.80% of the FLOPs at the 1.4B scale. Our ablation study highlights the synergistic effects of decoupling projection components, where joint decoupling yields greater gains than individual modifications. These results establish modality-aware sparsity as a versatile and effective design principle, extending its impact from Transformers to SSMs and setting new benchmarks in multi-modal pretraining. Our code can be accessed at https://github.com/Weixin-Liang/Mixture-of-Mamba
MVD$^2$: Efficient Multiview 3D Reconstruction for Multiview Diffusion
As a promising 3D generation technique, multiview diffusion (MVD) has received a lot of attention due to its advantages in terms of generalizability, quality, and efficiency. By finetuning pretrained large image diffusion models with 3D data, the MVD methods first generate multiple views of a 3D object based on an image or text prompt and then reconstruct 3D shapes with multiview 3D reconstruction. However, the sparse views and inconsistent details in the generated images make 3D reconstruction challenging. We present MVD^2, an efficient 3D reconstruction method for multiview diffusion (MVD) images. MVD^2 aggregates image features into a 3D feature volume by projection and convolution and then decodes volumetric features into a 3D mesh. We train MVD^2 with 3D shape collections and MVD images prompted by rendered views of 3D shapes. To address the discrepancy between the generated multiview images and ground-truth views of the 3D shapes, we design a simple-yet-efficient view-dependent training scheme. MVD^2 improves the 3D generation quality of MVD and is fast and robust to various MVD methods. After training, it can efficiently decode 3D meshes from multiview images within one second. We train MVD^2 with Zero-123++ and ObjectVerse-LVIS 3D dataset and demonstrate its superior performance in generating 3D models from multiview images generated by different MVD methods, using both synthetic and real images as prompts.
DeViDe: Faceted medical knowledge for improved medical vision-language pre-training
Vision-language pre-training for chest X-rays has made significant strides, primarily by utilizing paired radiographs and radiology reports. However, existing approaches often face challenges in encoding medical knowledge effectively. While radiology reports provide insights into the current disease manifestation, medical definitions (as used by contemporary methods) tend to be overly abstract, creating a gap in knowledge. To address this, we propose DeViDe, a novel transformer-based method that leverages radiographic descriptions from the open web. These descriptions outline general visual characteristics of diseases in radiographs, and when combined with abstract definitions and radiology reports, provide a holistic snapshot of knowledge. DeViDe incorporates three key features for knowledge-augmented vision language alignment: First, a large-language model-based augmentation is employed to homogenise medical knowledge from diverse sources. Second, this knowledge is aligned with image information at various levels of granularity. Third, a novel projection layer is proposed to handle the complexity of aligning each image with multiple descriptions arising in a multi-label setting. In zero-shot settings, DeViDe performs comparably to fully supervised models on external datasets and achieves state-of-the-art results on three large-scale datasets. Additionally, fine-tuning DeViDe on four downstream tasks and six segmentation tasks showcases its superior performance across data from diverse distributions.
Diff3DS: Generating View-Consistent 3D Sketch via Differentiable Curve Rendering
3D sketches are widely used for visually representing the 3D shape and structure of objects or scenes. However, the creation of 3D sketch often requires users to possess professional artistic skills. Existing research efforts primarily focus on enhancing the ability of interactive sketch generation in 3D virtual systems. In this work, we propose Diff3DS, a novel differentiable rendering framework for generating view-consistent 3D sketch by optimizing 3D parametric curves under various supervisions. Specifically, we perform perspective projection to render the 3D rational B\'ezier curves into 2D curves, which are subsequently converted to a 2D raster image via our customized differentiable rasterizer. Our framework bridges the domains of 3D sketch and raster image, achieving end-toend optimization of 3D sketch through gradients computed in the 2D image domain. Our Diff3DS can enable a series of novel 3D sketch generation tasks, including textto-3D sketch and image-to-3D sketch, supported by the popular distillation-based supervision, such as Score Distillation Sampling (SDS). Extensive experiments have yielded promising results and demonstrated the potential of our framework.
Interpreting Transformer's Attention Dynamic Memory and Visualizing the Semantic Information Flow of GPT
Recent advances in interpretability suggest we can project weights and hidden states of transformer-based language models (LMs) to their vocabulary, a transformation that makes them human interpretable and enables us to assign semantics to what was seen only as numerical vectors. In this paper, we interpret LM attention heads and memory values, the vectors the models dynamically create and recall while processing a given input. By analyzing the tokens they represent through this projection, we identify patterns in the information flow inside the attention mechanism. Based on these discoveries, we create a tool to visualize a forward pass of Generative Pre-trained Transformers (GPTs) as an interactive flow graph, with nodes representing neurons or hidden states and edges representing the interactions between them. Our visualization simplifies huge amounts of data into easy-to-read plots that reflect why models output their results. We demonstrate the utility of our modeling by identifying the effect LM components have on the intermediate processing in the model before outputting a prediction. For instance, we discover that layer norms are used as semantic filters and find neurons that act as regularization vectors.
Augmentation-Driven Metric for Balancing Preservation and Modification in Text-Guided Image Editing
The development of vision-language and generative models has significantly advanced text-guided image editing, which seeks preservation of core elements in the source image while implementing modifications based on the target text. However, in the absence of evaluation metrics specifically tailored for text-guided image editing, existing metrics are limited in balancing the consideration of preservation and modification. Especially, our analysis reveals that CLIPScore, the most commonly used metric, tends to favor modification and ignore core attributes to be preserved, resulting in inaccurate evaluations. To address this problem, we propose AugCLIP, which balances preservation and modification by estimating the representation of an ideal edited image that aligns with the target text with minimum alteration on the source image. We augment detailed textual descriptions on the source image and the target text using a multi-modal large language model, to model a hyperplane that separates CLIP space into source or target. The representation of the ideal edited image is an orthogonal projection of the source image into the hyperplane, which encapsulates the relative importance of each attribute considering the interdependent relationships. Our extensive experiments on five benchmark datasets, encompassing a diverse range of editing scenarios, demonstrate that AugCLIP aligns remarkably well with human evaluation standards compared to existing metrics. The code for evaluation will be open-sourced to contribute to the community.
ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding
Understanding biological processes, drug development, and biotechnological advancements requires detailed analysis of protein structures and sequences, a task in protein research that is inherently complex and time-consuming when performed manually. To streamline this process, we introduce ProteinGPT, a state-of-the-art multi-modal protein chat system, that allows users to upload protein sequences and/or structures for comprehensive protein analysis and responsive inquiries. ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation, coupled with a large language model (LLM) to generate accurate and contextually relevant responses. To train ProteinGPT, we construct a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o. This innovative system ensures accurate alignment between the user-uploaded data and prompts, simplifying protein analysis. Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders
Existing zero-shot skeleton-based action recognition methods utilize projection networks to learn a shared latent space of skeleton features and semantic embeddings. The inherent imbalance in action recognition datasets, characterized by variable skeleton sequences yet constant class labels, presents significant challenges for alignment. To address the imbalance, we propose SA-DVAE -- Semantic Alignment via Disentangled Variational Autoencoders, a method that first adopts feature disentanglement to separate skeleton features into two independent parts -- one is semantic-related and another is irrelevant -- to better align skeleton and semantic features. We implement this idea via a pair of modality-specific variational autoencoders coupled with a total correction penalty. We conduct experiments on three benchmark datasets: NTU RGB+D, NTU RGB+D 120 and PKU-MMD, and our experimental results show that SA-DAVE produces improved performance over existing methods. The code is available at https://github.com/pha123661/SA-DVAE.
Reducing Task Discrepancy of Text Encoders for Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve a target image based on a reference image and conditioning text, enabling controllable searches. Due to the expensive dataset construction cost for CIR triplets, a zero-shot (ZS) CIR setting has been actively studied to eliminate the need for human-collected triplet datasets. The mainstream of ZS-CIR employs an efficient projection module that projects a CLIP image embedding to the CLIP text token embedding space, while fixing the CLIP encoders. Using the projected image embedding, these methods generate image-text composed features by using the pre-trained text encoder. However, their CLIP image and text encoders suffer from the task discrepancy between the pre-training task (text leftrightarrow image) and the target CIR task (image + text leftrightarrow image). Conceptually, we need expensive triplet samples to reduce the discrepancy, but we use cheap text triplets instead and update the text encoder. To that end, we introduce the Reducing Task Discrepancy of text encoders for Composed Image Retrieval (RTD), a plug-and-play training scheme for the text encoder that enhances its capability using a novel target-anchored text contrastive learning. We also propose two additional techniques to improve the proposed learning scheme: a hard negatives-based refined batch sampling strategy and a sophisticated concatenation scheme. Integrating RTD into the state-of-the-art projection-based ZS-CIR methods significantly improves performance across various datasets and backbones, demonstrating its efficiency and generalizability.
BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial Imagery
In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.
Learning invariant representations of time-homogeneous stochastic dynamical systems
We consider the general class of time-homogeneous stochastic dynamical systems, both discrete and continuous, and study the problem of learning a representation of the state that faithfully captures its dynamics. This is instrumental to learning the transfer operator or the generator of the system, which in turn can be used for numerous tasks, such as forecasting and interpreting the system dynamics. We show that the search for a good representation can be cast as an optimization problem over neural networks. Our approach is supported by recent results in statistical learning theory, highlighting the role of approximation error and metric distortion in the learning problem. The objective function we propose is associated with projection operators from the representation space to the data space, overcomes metric distortion, and can be empirically estimated from data. In the discrete-time setting, we further derive a relaxed objective function that is differentiable and numerically well-conditioned. We compare our method against state-of-the-art approaches on different datasets, showing better performance across the board.
PAXQA: Generating Cross-lingual Question Answering Examples at Training Scale
Existing question answering (QA) systems owe much of their success to large, high-quality training data. Such annotation efforts are costly, and the difficulty compounds in the cross-lingual setting. Therefore, prior cross-lingual QA work has focused on releasing evaluation datasets, and then applying zero-shot methods as baselines. This work proposes a synthetic data generation method for cross-lingual QA which leverages indirect supervision from existing parallel corpora. Our method termed PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages. First, we apply a question generation (QG) model to the English side. Second, we apply annotation projection to translate both the questions and answers. To better translate questions, we propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts. We apply PAXQA to generate cross-lingual QA examples in 4 languages (662K examples total), and perform human evaluation on a subset to create validation and test splits. We then show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets. The largest performance gains are for directions with non-English questions and English contexts. Ablation studies show that our dataset generation method is relatively robust to noise from automatic word alignments, showing the sufficient quality of our generations. To facilitate follow-up work, we release our code and datasets at https://github.com/manestay/paxqa .
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such underspecified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.
Model and Data Transfer for Cross-Lingual Sequence Labelling in Zero-Resource Settings
Zero-resource cross-lingual transfer approaches aim to apply supervised models from a source language to unlabelled target languages. In this paper we perform an in-depth study of the two main techniques employed so far for cross-lingual zero-resource sequence labelling, based either on data or model transfer. Although previous research has proposed translation and annotation projection (data-based cross-lingual transfer) as an effective technique for cross-lingual sequence labelling, in this paper we experimentally demonstrate that high capacity multilingual language models applied in a zero-shot (model-based cross-lingual transfer) setting consistently outperform data-based cross-lingual transfer approaches. A detailed analysis of our results suggests that this might be due to important differences in language use. More specifically, machine translation often generates a textual signal which is different to what the models are exposed to when using gold standard data, which affects both the fine-tuning and evaluation processes. Our results also indicate that data-based cross-lingual transfer approaches remain a competitive option when high-capacity multilingual language models are not available.
Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation
How to learn highly compact yet effective sentence representation? Pre-trained language models have been effective in many NLP tasks. However, these models are often huge and produce large sentence embeddings. Moreover, there is a big performance gap between large and small models. In this paper, we propose Homomorphic Projective Distillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. We evaluate our method with different model sizes on both semantic textual similarity (STS) and semantic retrieval (SR) tasks. Experiments show that our method achieves 2.7-4.5 points performance gain on STS tasks compared with previous best representations of the same size. In SR tasks, our method improves retrieval speed (8.2times) and memory usage (8.0times) compared with state-of-the-art large models.
Structure and Semantics Preserving Document Representations
Retrieving relevant documents from a corpus is typically based on the semantic similarity between the document content and query text. The inclusion of structural relationship between documents can benefit the retrieval mechanism by addressing semantic gaps. However, incorporating these relationships requires tractable mechanisms that balance structure with semantics and take advantage of the prevalent pre-train/fine-tune paradigm. We propose here a holistic approach to learning document representations by integrating intra-document content with inter-document relations. Our deep metric learning solution analyzes the complex neighborhood structure in the relationship network to efficiently sample similar/dissimilar document pairs and defines a novel quintuplet loss function that simultaneously encourages document pairs that are semantically relevant to be closer and structurally unrelated to be far apart in the representation space. Furthermore, the separation margins between the documents are varied flexibly to encode the heterogeneity in relationship strengths. The model is fully fine-tunable and natively supports query projection during inference. We demonstrate that it outperforms competing methods on multiple datasets for document retrieval tasks.
Effects of Plasticity Functions on Neural Assemblies
We explore the effects of various plasticity functions on assemblies of neurons. To bridge the gap between experimental and computational theories we make use of a conceptual framework, the Assembly Calculus, which is a formal system for the description of brain function based on assemblies of neurons. The Assembly Calculus includes operations for projecting, associating, and merging assemblies of neurons. Our research is focused on simulating different plasticity functions with Assembly Calculus. Our main contribution is the modification and evaluation of the projection operation. We experiment with Oja's and Spike Time-Dependent Plasticity (STDP) rules and test the effect of various hyper-parameters.
Choose a Transformer: Fourier or Galerkin
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.
Topological street-network characterization through feature-vector and cluster analysis
Complex networks provide a means to describe cities through their street mesh, expressing characteristics that refer to the structure and organization of an urban zone. Although other studies have used complex networks to model street meshes, we observed a lack of methods to characterize the relationship between cities by using their topological features. Accordingly, this paper aims to describe interactions between cities by using vectors of topological features extracted from their street meshes represented as complex networks. The methodology of this study is based on the use of digital maps. Over the computational representation of such maps, we extract global complex-network features that embody the characteristics of the cities. These vectors allow for the use of multidimensional projection and clustering techniques, enabling a similarity-based comparison of the street meshes. We experiment with 645 cities from the Brazilian state of Sao Paulo. Our results show how the joint of global features describes urban indicators that are deep-rooted in the network's topology and how they reveal characteristics and similarities among sets of cities that are separated from each other.
Sketch2Scene: Automatic Generation of Interactive 3D Game Scenes from User's Casual Sketches
3D Content Generation is at the heart of many computer graphics applications, including video gaming, film-making, virtual and augmented reality, etc. This paper proposes a novel deep-learning based approach for automatically generating interactive and playable 3D game scenes, all from the user's casual prompts such as a hand-drawn sketch. Sketch-based input offers a natural, and convenient way to convey the user's design intention in the content creation process. To circumvent the data-deficient challenge in learning (i.e. the lack of large training data of 3D scenes), our method leverages a pre-trained 2D denoising diffusion model to generate a 2D image of the scene as the conceptual guidance. In this process, we adopt the isometric projection mode to factor out unknown camera poses while obtaining the scene layout. From the generated isometric image, we use a pre-trained image understanding method to segment the image into meaningful parts, such as off-ground objects, trees, and buildings, and extract the 2D scene layout. These segments and layouts are subsequently fed into a procedural content generation (PCG) engine, such as a 3D video game engine like Unity or Unreal, to create the 3D scene. The resulting 3D scene can be seamlessly integrated into a game development environment and is readily playable. Extensive tests demonstrate that our method can efficiently generate high-quality and interactive 3D game scenes with layouts that closely follow the user's intention.
OneLLM: One Framework to Align All Modalities with Language
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
Modeling animatable human avatars from RGB videos is a long-standing and challenging problem. Recent works usually adopt MLP-based neural radiance fields (NeRF) to represent 3D humans, but it remains difficult for pure MLPs to regress pose-dependent garment details. To this end, we introduce Animatable Gaussians, a new avatar representation that leverages powerful 2D CNNs and 3D Gaussian splatting to create high-fidelity avatars. To associate 3D Gaussians with the animatable avatar, we learn a parametric template from the input videos, and then parameterize the template on two front \& back canonical Gaussian maps where each pixel represents a 3D Gaussian. The learned template is adaptive to the wearing garments for modeling looser clothes like dresses. Such template-guided 2D parameterization enables us to employ a powerful StyleGAN-based CNN to learn the pose-dependent Gaussian maps for modeling detailed dynamic appearances. Furthermore, we introduce a pose projection strategy for better generalization given novel poses. Overall, our method can create lifelike avatars with dynamic, realistic and generalized appearances. Experiments show that our method outperforms other state-of-the-art approaches. Code: https://github.com/lizhe00/AnimatableGaussians
Learning Super-Resolution Ultrasound Localization Microscopy from Radio-Frequency Data
Ultrasound Localization Microscopy (ULM) enables imaging of vascular structures in the micrometer range by accumulating contrast agent particle locations over time. Precise and efficient target localization accuracy remains an active research topic in the ULM field to further push the boundaries of this promising medical imaging technology. Existing work incorporates Delay-And-Sum (DAS) beamforming into particle localization pipelines, which ultimately determines the ULM image resolution capability. In this paper we propose to feed unprocessed Radio-Frequency (RF) data into a super-resolution network while bypassing DAS beamforming and its limitations. To facilitate this, we demonstrate label projection and inverse point transformation between B-mode and RF coordinate space as required by our approach. We assess our method against state-of-the-art techniques based on a public dataset featuring in silico and in vivo data. Results from our RF-trained network suggest that excluding DAS beamforming offers a great potential to optimize on the ULM resolution performance.
Making Multimodal Generation Easier: When Diffusion Models Meet LLMs
We present EasyGen, an efficient model designed to enhance multimodal understanding and generation by harnessing the capabilities of diffusion models and large language models (LLMs). Unlike existing multimodal models that predominately depend on encoders like CLIP or ImageBind and need ample amounts of training data to bridge the gap between modalities, EasyGen is built upon a bidirectional conditional diffusion model named BiDiffuser, which promotes more efficient interactions between modalities. EasyGen handles image-to-text generation by integrating BiDiffuser and an LLM via a simple projection layer. Unlike most existing multimodal models that are limited to generating text responses, EasyGen can also facilitate text-to-image generation by leveraging the LLM to create textual descriptions, which can be interpreted by BiDiffuser to generate appropriate visual responses. Extensive quantitative and qualitative experiments demonstrate the effectiveness of EasyGen, whose training can be easily achieved in a lab setting. The source code is available at https://github.com/zxy556677/EasyGen.
Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
OneEncoder: A Lightweight Framework for Progressive Alignment of Modalities
Cross-modal alignment Learning integrates information from different modalities like text, image, audio and video to create unified models. This approach develops shared representations and learns correlations between modalities, enabling applications such as visual question answering and audiovisual content analysis. Current techniques rely on large modality-specific encoders, necessitating fine-tuning or training from scratch on vast aligned datasets (e.g., text-image, text-audio, image-audio). This approach has limitations: (i) it is very expensive due to the need for training large encoders on extensive datasets, (ii) acquiring aligned large paired datasets is challenging, and (iii) adding new modalities requires retraining the entire framework to incorporate these modalities. To address these issues, we propose OneEncoder, a lightweight framework that progressively represents and aligns four modalities (image, text, audio, video). Initially, we train a lightweight Universal Projection module (UP) to align image and text modalities. Then, we freeze the pretrained UP and progressively align future modalities to those already aligned. OneEncoder operates efficiently and cost-effectively, even in scenarios where vast aligned datasets are unavailable, due to its lightweight design. Trained on small paired datasets, it shows strong performance in tasks like classification, querying, and visual question answering, surpassing methods that rely on large datasets and specialized encoders.
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
The OPNV Data Collection: A Dataset for Infrastructure-Supported Perception Research with Focus on Public Transportation
This paper we present our vision and ongoing work for a novel dataset designed to advance research into the interoperability of intelligent vehicles and infrastructure, specifically aimed at enhancing cooperative perception and interaction in the realm of public transportation. Unlike conventional datasets centered on ego-vehicle data, this approach encompasses both a stationary sensor tower and a moving vehicle, each equipped with cameras, LiDARs, and GNSS, while the vehicle additionally includes an inertial navigation system. Our setup features comprehensive calibration and time synchronization, ensuring seamless and accurate sensor data fusion crucial for studying complex, dynamic scenes. Emphasizing public transportation, the dataset targets to include scenes like bus station maneuvers and driving on dedicated bus lanes, reflecting the specifics of small public buses. We introduce the open-source ".4mse" file format for the new dataset, accompanied by a research kit. This kit provides tools such as ego-motion compensation or LiDAR-to-camera projection enabling advanced research on intelligent vehicle-infrastructure integration. Our approach does not include annotations; however, we plan to implement automatically generated labels sourced from state-of-the-art public repositories. Several aspects are still up for discussion, and timely feedback from the community would be greatly appreciated. A sneak preview on one data frame will be available at a Google Colab Notebook. Moreover, we will use the related GitHub Repository to collect remarks and suggestions.
SemiCD-VL: Visual-Language Model Guidance Makes Better Semi-supervised Change Detector
Change Detection (CD) aims to identify pixels with semantic changes between images. However, annotating massive numbers of pixel-level images is labor-intensive and costly, especially for multi-temporal images, which require pixel-wise comparisons by human experts. Considering the excellent performance of visual language models (VLMs) for zero-shot, open-vocabulary, etc. with prompt-based reasoning, it is promising to utilize VLMs to make better CD under limited labeled data. In this paper, we propose a VLM guidance-based semi-supervised CD method, namely SemiCD-VL. The insight of SemiCD-VL is to synthesize free change labels using VLMs to provide additional supervision signals for unlabeled data. However, almost all current VLMs are designed for single-temporal images and cannot be directly applied to bi- or multi-temporal images. Motivated by this, we first propose a VLM-based mixed change event generation (CEG) strategy to yield pseudo labels for unlabeled CD data. Since the additional supervised signals provided by these VLM-driven pseudo labels may conflict with the pseudo labels from the consistency regularization paradigm (e.g. FixMatch), we propose the dual projection head for de-entangling different signal sources. Further, we explicitly decouple the bi-temporal images semantic representation through two auxiliary segmentation decoders, which are also guided by VLM. Finally, to make the model more adequately capture change representations, we introduce metric-aware supervision by feature-level contrastive loss in auxiliary branches. Extensive experiments show the advantage of SemiCD-VL. For instance, SemiCD-VL improves the FixMatch baseline by +5.3 IoU on WHU-CD and by +2.4 IoU on LEVIR-CD with 5% labels. In addition, our CEG strategy, in an un-supervised manner, can achieve performance far superior to state-of-the-art un-supervised CD methods.
OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model
Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.
Rethinking Large Language Model Architectures for Sequential Recommendations
Recently, sequential recommendation has been adapted to the LLM paradigm to enjoy the power of LLMs. LLM-based methods usually formulate recommendation information into natural language and the model is trained to predict the next item in an auto-regressive manner. Despite their notable success, the substantial computational overhead of inference poses a significant obstacle to their real-world applicability. In this work, we endeavor to streamline existing LLM-based recommendation models and propose a simple yet highly effective model Lite-LLM4Rec. The primary goal of Lite-LLM4Rec is to achieve efficient inference for the sequential recommendation task. Lite-LLM4Rec circumvents the beam search decoding by using a straight item projection head for ranking scores generation. This design stems from our empirical observation that beam search decoding is ultimately unnecessary for sequential recommendations. Additionally, Lite-LLM4Rec introduces a hierarchical LLM structure tailored to efficiently handle the extensive contextual information associated with items, thereby reducing computational overhead while enjoying the capabilities of LLMs. Experiments on three publicly available datasets corroborate the effectiveness of Lite-LLM4Rec in both performance and inference efficiency (notably 46.8% performance improvement and 97.28% efficiency improvement on ML-1m) over existing LLM-based methods. Our implementations will be open sourced.
Adaptive Multi-head Contrastive Learning
In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.
Folding Attention: Memory and Power Optimization for On-Device Transformer-based Streaming Speech Recognition
Transformer-based models excel in speech recognition. Existing efforts to optimize Transformer inference, typically for long-context applications, center on simplifying attention score calculations. However, streaming speech recognition models usually process a limited number of tokens each time, making attention score calculation less of a bottleneck. Instead, the bottleneck lies in the linear projection layers of multi-head attention and feedforward networks, constituting a substantial portion of the model size and contributing significantly to computation, memory, and power usage. To address this bottleneck, we propose folding attention, a technique targeting these linear layers, significantly reducing model size and improving memory and power efficiency. Experiments on on-device Transformer-based streaming speech recognition models show that folding attention reduces model size (and corresponding memory consumption) by up to 24% and power consumption by up to 23%, all without compromising model accuracy or computation overhead.
Learning without Forgetting for Vision-Language Models
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world, which requires a learning system to adapt to new tasks without forgetting former ones. While traditional CIL methods focus on visual information to grasp core features, recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations with the aid of textual information. However, when continually trained with new classes, VLMs often suffer from catastrophic forgetting of former knowledge. Applying VLMs to CIL poses two major challenges: 1) how to adapt the model without forgetting; and 2) how to make full use of the multi-modal information. To this end, we propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting. To handle the first challenge, we propose training task-specific projections based on the frozen image/text encoders. When facing new tasks, new projections are expanded and former projections are fixed, alleviating the forgetting of old concepts. For the second challenge, we propose the fusion module to better utilize the cross-modality information. By jointly adjusting visual and textual features, the model can capture semantic information with stronger representation ability. Extensive experiments on nine benchmark datasets validate PROOF achieves state-of-the-art performance.
Scalable Transformer for PDE Surrogate Modeling
Transformer has shown state-of-the-art performance on various applications and has recently emerged as a promising tool for surrogate modeling of partial differential equations (PDEs). Despite the introduction of linear-complexity variant, applying attention to a large number of grid points can result in instability and is still expensive to compute. In this work, we propose Factorized Transformer(FactFormer), which is based on an axial factorized kernel integral. Concretely, we introduce a learnable projection operator that decomposes the input function into multiple sub-functions with one-dimensional domain. These sub-functions are then evaluated and used to compute the instance-based kernel with an axial factorized scheme. We showcase that the proposed model is able to simulate 2D Kolmogorov flow on a 256 by 256 grid and 3D smoke buoyancy on a 64 by 64 by 64 grid with good accuracy and efficiency. In addition, we find out that with the factorization scheme, the attention matrices enjoy a more compact spectrum than full softmax-free attention matrices.
GMD: Controllable Human Motion Synthesis via Guided Diffusion Models
Denoising diffusion models have shown great promise in human motion synthesis conditioned on natural language descriptions. However, integrating spatial constraints, such as pre-defined motion trajectories and obstacles, remains a challenge despite being essential for bridging the gap between isolated human motion and its surrounding environment. To address this issue, we propose Guided Motion Diffusion (GMD), a method that incorporates spatial constraints into the motion generation process. Specifically, we propose an effective feature projection scheme that manipulates motion representation to enhance the coherency between spatial information and local poses. Together with a new imputation formulation, the generated motion can reliably conform to spatial constraints such as global motion trajectories. Furthermore, given sparse spatial constraints (e.g. sparse keyframes), we introduce a new dense guidance approach to turn a sparse signal, which is susceptible to being ignored during the reverse steps, into denser signals to guide the generated motion to the given constraints. Our extensive experiments justify the development of GMD, which achieves a significant improvement over state-of-the-art methods in text-based motion generation while allowing control of the synthesized motions with spatial constraints.
Vertical Federated Graph Neural Network for Recommender System
Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.
Cross-lingual Argument Mining in the Medical Domain
Nowadays the medical domain is receiving more and more attention in applications involving Artificial Intelligence. Clinicians have to deal with an enormous amount of unstructured textual data to make a conclusion about patients' health in their everyday life. Argument mining helps to provide a structure to such data by detecting argumentative components in the text and classifying the relations between them. However, as it is the case for many tasks in Natural Language Processing in general and in medical text processing in particular, the large majority of the work on computational argumentation has been done only for English. This is also the case with the only dataset available for argumentation in the medical domain, namely, the annotated medical data of abstracts of Randomized Controlled Trials (RCT) from the MEDLINE database. In order to mitigate the lack of annotated data for other languages, we empirically investigate several strategies to perform argument mining and classification in medical texts for a language for which no annotated data is available. This project shows that automatically translating and project annotations from English to a target language (Spanish) is an effective way to generate annotated data without manual intervention. Furthermore, our experiments demonstrate that the translation and projection approach outperforms zero-shot cross-lingual approaches using a large masked multilingual language model. Finally, we show how the automatically generated data in Spanish can also be used to improve results in the original English evaluation setting.
BEATs: Audio Pre-Training with Acoustic Tokenizers
The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
PhysDiff: Physics-Guided Human Motion Diffusion Model
Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously impacts the quality of generated motions and limits their real-world application. To address this issue, we present a novel physics-guided motion diffusion model (PhysDiff), which incorporates physical constraints into the diffusion process. Specifically, we propose a physics-based motion projection module that uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically-plausible motion. The projected motion is further used in the next diffusion step to guide the denoising diffusion process. Intuitively, the use of physics in our model iteratively pulls the motion toward a physically-plausible space, which cannot be achieved by simple post-processing. Experiments on large-scale human motion datasets show that our approach achieves state-of-the-art motion quality and improves physical plausibility drastically (>78% for all datasets).
BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation
Multi-sensor fusion is essential for an accurate and reliable autonomous driving system. Recent approaches are based on point-level fusion: augmenting the LiDAR point cloud with camera features. However, the camera-to-LiDAR projection throws away the semantic density of camera features, hindering the effectiveness of such methods, especially for semantic-oriented tasks (such as 3D scene segmentation). In this paper, we break this deeply-rooted convention with BEVFusion, an efficient and generic multi-task multi-sensor fusion framework. It unifies multi-modal features in the shared bird's-eye view (BEV) representation space, which nicely preserves both geometric and semantic information. To achieve this, we diagnose and lift key efficiency bottlenecks in the view transformation with optimized BEV pooling, reducing latency by more than 40x. BEVFusion is fundamentally task-agnostic and seamlessly supports different 3D perception tasks with almost no architectural changes. It establishes the new state of the art on nuScenes, achieving 1.3% higher mAP and NDS on 3D object detection and 13.6% higher mIoU on BEV map segmentation, with 1.9x lower computation cost. Code to reproduce our results is available at https://github.com/mit-han-lab/bevfusion.
Towards Metrical Reconstruction of Human Faces
Face reconstruction and tracking is a building block of numerous applications in AR/VR, human-machine interaction, as well as medical applications. Most of these applications rely on a metrically correct prediction of the shape, especially, when the reconstructed subject is put into a metrical context (i.e., when there is a reference object of known size). A metrical reconstruction is also needed for any application that measures distances and dimensions of the subject (e.g., to virtually fit a glasses frame). State-of-the-art methods for face reconstruction from a single image are trained on large 2D image datasets in a self-supervised fashion. However, due to the nature of a perspective projection they are not able to reconstruct the actual face dimensions, and even predicting the average human face outperforms some of these methods in a metrical sense. To learn the actual shape of a face, we argue for a supervised training scheme. Since there exists no large-scale 3D dataset for this task, we annotated and unified small- and medium-scale databases. The resulting unified dataset is still a medium-scale dataset with more than 2k identities and training purely on it would lead to overfitting. To this end, we take advantage of a face recognition network pretrained on a large-scale 2D image dataset, which provides distinct features for different faces and is robust to expression, illumination, and camera changes. Using these features, we train our face shape estimator in a supervised fashion, inheriting the robustness and generalization of the face recognition network. Our method, which we call MICA (MetrIC fAce), outperforms the state-of-the-art reconstruction methods by a large margin, both on current non-metric benchmarks as well as on our metric benchmarks (15% and 24% lower average error on NoW, respectively).
Indoor Scene Generation from a Collection of Semantic-Segmented Depth Images
We present a method for creating 3D indoor scenes with a generative model learned from a collection of semantic-segmented depth images captured from different unknown scenes. Given a room with a specified size, our method automatically generates 3D objects in a room from a randomly sampled latent code. Different from existing methods that represent an indoor scene with the type, location, and other properties of objects in the room and learn the scene layout from a collection of complete 3D indoor scenes, our method models each indoor scene as a 3D semantic scene volume and learns a volumetric generative adversarial network (GAN) from a collection of 2.5D partial observations of 3D scenes. To this end, we apply a differentiable projection layer to project the generated 3D semantic scene volumes into semantic-segmented depth images and design a new multiple-view discriminator for learning the complete 3D scene volume from 2.5D semantic-segmented depth images. Compared to existing methods, our method not only efficiently reduces the workload of modeling and acquiring 3D scenes for training, but also produces better object shapes and their detailed layouts in the scene. We evaluate our method with different indoor scene datasets and demonstrate the advantages of our method. We also extend our method for generating 3D indoor scenes from semantic-segmented depth images inferred from RGB images of real scenes.
Learning Anchored Unsigned Distance Functions with Gradient Direction Alignment for Single-view Garment Reconstruction
While single-view 3D reconstruction has made significant progress benefiting from deep shape representations in recent years, garment reconstruction is still not solved well due to open surfaces, diverse topologies and complex geometric details. In this paper, we propose a novel learnable Anchored Unsigned Distance Function (AnchorUDF) representation for 3D garment reconstruction from a single image. AnchorUDF represents 3D shapes by predicting unsigned distance fields (UDFs) to enable open garment surface modeling at arbitrary resolution. To capture diverse garment topologies, AnchorUDF not only computes pixel-aligned local image features of query points, but also leverages a set of anchor points located around the surface to enrich 3D position features for query points, which provides stronger 3D space context for the distance function. Furthermore, in order to obtain more accurate point projection direction at inference, we explicitly align the spatial gradient direction of AnchorUDF with the ground-truth direction to the surface during training. Extensive experiments on two public 3D garment datasets, i.e., MGN and Deep Fashion3D, demonstrate that AnchorUDF achieves the state-of-the-art performance on single-view garment reconstruction.
Augmented Sliced Wasserstein Distances
While theoretically appealing, the application of the Wasserstein distance to large-scale machine learning problems has been hampered by its prohibitive computational cost. The sliced Wasserstein distance and its variants improve the computational efficiency through the random projection, yet they suffer from low accuracy if the number of projections is not sufficiently large, because the majority of projections result in trivially small values. In this work, we propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs), constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks. It is derived from a key observation that (random) linear projections of samples residing on these hypersurfaces would translate to much more flexible nonlinear projections in the original sample space, so they can capture complex structures of the data distribution. We show that the hypersurfaces can be optimized by gradient ascent efficiently. We provide the condition under which the ASWD is a valid metric and show that this can be obtained by an injective neural network architecture. Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume
Recently, end-to-end trainable deep neural networks have significantly improved stereo depth estimation for perspective images. However, 360{\deg} images captured under equirectangular projection cannot benefit from directly adopting existing methods due to distortion introduced (i.e., lines in 3D are not projected onto lines in 2D). To tackle this issue, we present a novel architecture specifically designed for spherical disparity using the setting of top-bottom 360{\deg} camera pairs. Moreover, we propose to mitigate the distortion issue by (1) an additional input branch capturing the position and relation of each pixel in the spherical coordinate, and (2) a cost volume built upon a learnable shifting filter. Due to the lack of 360{\deg} stereo data, we collect two 360{\deg} stereo datasets from Matterport3D and Stanford3D for training and evaluation. Extensive experiments and ablation study are provided to validate our method against existing algorithms. Finally, we show promising results on real-world environments capturing images with two consumer-level cameras.
eP-ALM: Efficient Perceptual Augmentation of Language Models
Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: https://github.com/mshukor/eP-ALM.
Valley: Video Assistant with Large Language model Enhanced abilitY
Recently, several multi-modal models have been developed for joint image and language understanding, which have demonstrated impressive chat abilities by utilizing advanced large language models (LLMs). The process of developing such models is straightforward yet effective. It involves pre-training an adaptation module to align the semantics of the vision encoder and language model, followed by fine-tuning on the instruction-following data. However, despite the success of this pipeline in image and language understanding, its effectiveness in joint video and language understanding has not been widely explored. In this paper, we aim to develop a novel multi-modal foundation model capable of perceiving video, image, and language within a general framework. To achieve this goal, we introduce Valley: Video Assistant with Large Language model Enhanced ability. Specifically, our proposed Valley model is designed with a simple projection module that bridges video, image, and language modalities, and is further unified with a multi-lingual LLM. We also collect multi-source vision-text pairs and adopt a spatio-temporal pooling strategy to obtain a unified vision encoding of video and image input for pre-training. Furthermore, we generate multi-task instruction-following video data, including multi-shot captions, long video descriptions, action recognition, causal relationship inference, etc. To obtain the instruction-following data, we design diverse rounds of task-oriented conversations between humans and videos, facilitated by ChatGPT. Qualitative examples demonstrate that our proposed model has the potential to function as a highly effective multilingual video assistant that can make complex video understanding scenarios easy. Code, data, and models will be available at https://github.com/RupertLuo/Valley.
Two Complementary Perspectives to Continual Learning: Ask Not Only What to Optimize, But Also How
Recent years have seen considerable progress in the continual training of deep neural networks, predominantly thanks to approaches that add replay or regularization terms to the loss function to approximate the joint loss over all tasks so far. However, we show that even with a perfect approximation to the joint loss, these approaches still suffer from temporary but substantial forgetting when starting to train on a new task. Motivated by this 'stability gap', we propose that continual learning strategies should focus not only on the optimization objective, but also on the way this objective is optimized. While there is some continual learning work that alters the optimization trajectory (e.g., using gradient projection techniques), this line of research is positioned as alternative to improving the optimization objective, while we argue it should be complementary. To evaluate the merits of our proposition, we plan to combine replay-approximated joint objectives with gradient projection-based optimization routines to test whether the addition of the latter provides benefits in terms of (1) alleviating the stability gap, (2) increasing the learning efficiency and (3) improving the final learning outcome.
Neural Video Depth Stabilizer
Video depth estimation aims to infer temporally consistent depth. Some methods achieve temporal consistency by finetuning a single-image depth model during test time using geometry and re-projection constraints, which is inefficient and not robust. An alternative approach is to learn how to enforce temporal consistency from data, but this requires well-designed models and sufficient video depth data. To address these challenges, we propose a plug-and-play framework called Neural Video Depth Stabilizer (NVDS) that stabilizes inconsistent depth estimations and can be applied to different single-image depth models without extra effort. We also introduce a large-scale dataset, Video Depth in the Wild (VDW), which consists of 14,203 videos with over two million frames, making it the largest natural-scene video depth dataset to our knowledge. We evaluate our method on the VDW dataset as well as two public benchmarks and demonstrate significant improvements in consistency, accuracy, and efficiency compared to previous approaches. Our work serves as a solid baseline and provides a data foundation for learning-based video depth models. We will release our dataset and code for future research.
Backpack Language Models
We present Backpacks: a new neural architecture that marries strong modeling performance with an interface for interpretability and control. Backpacks learn multiple non-contextual sense vectors for each word in a vocabulary, and represent a word in a sequence as a context-dependent, non-negative linear combination of sense vectors in this sequence. We find that, after training, sense vectors specialize, each encoding a different aspect of a word. We can interpret a sense vector by inspecting its (non-contextual, linear) projection onto the output space, and intervene on these interpretable hooks to change the model's behavior in predictable ways. We train a 170M-parameter Backpack language model on OpenWebText, matching the loss of a GPT-2 small (124Mparameter) Transformer. On lexical similarity evaluations, we find that Backpack sense vectors outperform even a 6B-parameter Transformer LM's word embeddings. Finally, we present simple algorithms that intervene on sense vectors to perform controllable text generation and debiasing. For example, we can edit the sense vocabulary to tend more towards a topic, or localize a source of gender bias to a sense vector and globally suppress that sense.
End-to-end Music Remastering System Using Self-supervised and Adversarial Training
Mastering is an essential step in music production, but it is also a challenging task that has to go through the hands of experienced audio engineers, where they adjust tone, space, and volume of a song. Remastering follows the same technical process, in which the context lies in mastering a song for the times. As these tasks have high entry barriers, we aim to lower the barriers by proposing an end-to-end music remastering system that transforms the mastering style of input audio to that of the target. The system is trained in a self-supervised manner, in which released pop songs were used for training. We also anticipated the model to generate realistic audio reflecting the reference's mastering style by applying a pre-trained encoder and a projection discriminator. We validate our results with quantitative metrics and a subjective listening test and show that the model generated samples of mastering style similar to the target.
DeFormer: Integrating Transformers with Deformable Models for 3D Shape Abstraction from a Single Image
Accurate 3D shape abstraction from a single 2D image is a long-standing problem in computer vision and graphics. By leveraging a set of primitives to represent the target shape, recent methods have achieved promising results. However, these methods either use a relatively large number of primitives or lack geometric flexibility due to the limited expressibility of the primitives. In this paper, we propose a novel bi-channel Transformer architecture, integrated with parameterized deformable models, termed DeFormer, to simultaneously estimate the global and local deformations of primitives. In this way, DeFormer can abstract complex object shapes while using a small number of primitives which offer a broader geometry coverage and finer details. Then, we introduce a force-driven dynamic fitting and a cycle-consistent re-projection loss to optimize the primitive parameters. Extensive experiments on ShapeNet across various settings show that DeFormer achieves better reconstruction accuracy over the state-of-the-art, and visualizes with consistent semantic correspondences for improved interpretability.
Interpreting and Improving Diffusion Models Using the Euclidean Distance Function
Denoising is intuitively related to projection. Indeed, under the manifold hypothesis, adding random noise is approximately equivalent to orthogonal perturbation. Hence, learning to denoise is approximately learning to project. In this paper, we use this observation to reinterpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function. We then provide straight-forward convergence analysis of the DDIM sampler under simple assumptions on the projection-error of the denoiser. Finally, we propose a new sampler based on two simple modifications to DDIM using insights from our theoretical results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art FID scores on pretrained CIFAR-10 and CelebA models and can generate high quality samples on latent diffusion models.
Continual Learning in Linear Classification on Separable Data
We analyze continual learning on a sequence of separable linear classification tasks with binary labels. We show theoretically that learning with weak regularization reduces to solving a sequential max-margin problem, corresponding to a special case of the Projection Onto Convex Sets (POCS) framework. We then develop upper bounds on the forgetting and other quantities of interest under various settings with recurring tasks, including cyclic and random orderings of tasks. We discuss several practical implications to popular training practices like regularization scheduling and weighting. We point out several theoretical differences between our continual classification setting and a recently studied continual regression setting.
NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input. Existing approaches condition neural radiance fields (NeRF) on local image features, projecting points to the input image plane, and aggregating 2D features to perform volume rendering. However, under severe occlusion, this projection fails to resolve uncertainty, resulting in blurry renderings that lack details. In this work, we propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time. We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views. Our approach significantly outperforms existing NeRF-based and geometry-free approaches on challenging datasets, including ShapeNet, ABO, and Clevr3D.
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction
Deep neural networks (DNN) have shown great capacity of modeling a dynamical system; nevertheless, they usually do not obey physics constraints such as conservation laws. This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling to endow the invariant properties. ConCerNet consists of two steps: (i) a contrastive learning method to automatically capture the system invariants (i.e. conservation properties) along the trajectory observations; (ii) a neural projection layer to guarantee that the learned dynamics models preserve the learned invariants. We theoretically prove the functional relationship between the learned latent representation and the unknown system invariant function. Experiments show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics by a large margin. With neural network based parameterization and no dependence on prior knowledge, our method can be extended to complex and large-scale dynamics by leveraging an autoencoder.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
ClimaX: A foundation model for weather and climate
Most state-of-the-art approaches for weather and climate modeling are based on physics-informed numerical models of the atmosphere. These approaches aim to model the non-linear dynamics and complex interactions between multiple variables, which are challenging to approximate. Additionally, many such numerical models are computationally intensive, especially when modeling the atmospheric phenomenon at a fine-grained spatial and temporal resolution. Recent data-driven approaches based on machine learning instead aim to directly solve a downstream forecasting or projection task by learning a data-driven functional mapping using deep neural networks. However, these networks are trained using curated and homogeneous climate datasets for specific spatiotemporal tasks, and thus lack the generality of numerical models. We develop and demonstrate ClimaX, a flexible and generalizable deep learning model for weather and climate science that can be trained using heterogeneous datasets spanning different variables, spatio-temporal coverage, and physical groundings. ClimaX extends the Transformer architecture with novel encoding and aggregation blocks that allow effective use of available compute while maintaining general utility. ClimaX is pre-trained with a self-supervised learning objective on climate datasets derived from CMIP6. The pre-trained ClimaX can then be fine-tuned to address a breadth of climate and weather tasks, including those that involve atmospheric variables and spatio-temporal scales unseen during pretraining. Compared to existing data-driven baselines, we show that this generality in ClimaX results in superior performance on benchmarks for weather forecasting and climate projections, even when pretrained at lower resolutions and compute budgets.
DAMO-YOLO : A Report on Real-Time Object Detection Design
In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet-like / CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of "large neck, small head". We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results. In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios, i.e., DAMO-YOLO-Tiny/Small/Medium. They can achieve 43.0/46.8/50.0 mAPs on COCO with the latency of 2.78/3.83/5.62 ms on T4 GPUs respectively. The code is available at https://github.com/tinyvision/damo-yolo.
PointCLIP V2: Prompting CLIP and GPT for Powerful 3D Open-world Learning
Large-scale pre-trained models have shown promising open-world performance for both vision and language tasks. However, their transferred capacity on 3D point clouds is still limited and only constrained to the classification task. In this paper, we first collaborate CLIP and GPT to be a unified 3D open-world learner, named as PointCLIP V2, which fully unleashes their potential for zero-shot 3D classification, segmentation, and detection. To better align 3D data with the pre-trained language knowledge, PointCLIP V2 contains two key designs. For the visual end, we prompt CLIP via a shape projection module to generate more realistic depth maps, narrowing the domain gap between projected point clouds with natural images. For the textual end, we prompt the GPT model to generate 3D-specific text as the input of CLIP's textual encoder. Without any training in 3D domains, our approach significantly surpasses PointCLIP by +42.90%, +40.44%, and +28.75% accuracy on three datasets for zero-shot 3D classification. On top of that, V2 can be extended to few-shot 3D classification, zero-shot 3D part segmentation, and 3D object detection in a simple manner, demonstrating our generalization ability for unified 3D open-world learning.
CLARA: A Constrained Reinforcement Learning Based Resource Allocation Framework for Network Slicing
As mobile networks proliferate, we are experiencing a strong diversification of services, which requires greater flexibility from the existing network. Network slicing is proposed as a promising solution for resource utilization in 5G and future networks to address this dire need. In network slicing, dynamic resource orchestration and network slice management are crucial for maximizing resource utilization. Unfortunately, this process is too complex for traditional approaches to be effective due to a lack of accurate models and dynamic hidden structures. We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures. Additionally, we propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm. In particular, we analyze cumulative and instantaneous constraints using adaptive interior-point policy optimization and projection layer, respectively. Evaluations show that CLARA clearly outperforms baselines in resource allocation with service demand guarantees.
Augmented Shortcuts for Vision Transformers
Transformer models have achieved great progress on computer vision tasks recently. The rapid development of vision transformers is mainly contributed by their high representation ability for extracting informative features from input images. However, the mainstream transformer models are designed with deep architectures, and the feature diversity will be continuously reduced as the depth increases, i.e., feature collapse. In this paper, we theoretically analyze the feature collapse phenomenon and study the relationship between shortcuts and feature diversity in these transformer models. Then, we present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts. To save the computational costs, we further explore an efficient approach that uses the block-circulant projection to implement augmented shortcuts. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method, which brings about 1% accuracy increase of the state-of-the-art visual transformers without obviously increasing their parameters and FLOPs.
Light-in-the-loop: using a photonics co-processor for scalable training of neural networks
As neural networks grow larger and more complex and data-hungry, training costs are skyrocketing. Especially when lifelong learning is necessary, such as in recommender systems or self-driving cars, this might soon become unsustainable. In this study, we present the first optical co-processor able to accelerate the training phase of digitally-implemented neural networks. We rely on direct feedback alignment as an alternative to backpropagation, and perform the error projection step optically. Leveraging the optical random projections delivered by our co-processor, we demonstrate its use to train a neural network for handwritten digits recognition.
Improved Baselines with Momentum Contrastive Learning
Contrastive unsupervised learning has recently shown encouraging progress, e.g., in Momentum Contrast (MoCo) and SimCLR. In this note, we verify the effectiveness of two of SimCLR's design improvements by implementing them in the MoCo framework. With simple modifications to MoCo---namely, using an MLP projection head and more data augmentation---we establish stronger baselines that outperform SimCLR and do not require large training batches. We hope this will make state-of-the-art unsupervised learning research more accessible. Code will be made public.
Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework
We develop a novel theoretical framework for understating OT schemes respecting a class structure. For this purpose, we propose a convex OT program with a sum-of-norms regularization term, which provably recovers the underlying class structure under geometric assumptions. Furthermore, we derive an accelerated proximal algorithm with a closed-form projection and proximal operator scheme, thereby affording a more scalable algorithm for computing optimal transport plans. We provide a novel argument for the uniqueness of the optimum even in the absence of strong convexity. Our experiments show that the new regularizer not only results in a better preservation of the class structure in the data but also yields additional robustness to the data geometry, compared to previous regularizers.
Design of Efficient Convolutional Layers using Single Intra-channel Convolution, Topological Subdivisioning and Spatial "Bottleneck" Structure
Deep convolutional neural networks achieve remarkable visual recognition performance, at the cost of high computational complexity. In this paper, we have a new design of efficient convolutional layers based on three schemes. The 3D convolution operation in a convolutional layer can be considered as performing spatial convolution in each channel and linear projection across channels simultaneously. By unravelling them and arranging the spatial convolution sequentially, the proposed layer is composed of a single intra-channel convolution, of which the computation is negligible, and a linear channel projection. A topological subdivisioning is adopted to reduce the connection between the input channels and output channels. Additionally, we also introduce a spatial "bottleneck" structure that utilizes a convolution-projection-deconvolution pipeline to take advantage of the correlation between adjacent pixels in the input. Our experiments demonstrate that the proposed layers remarkably outperform the standard convolutional layers with regard to accuracy/complexity ratio. Our models achieve similar accuracy to VGG, ResNet-50, ResNet-101 while requiring 42, 4.5, 6.5 times less computation respectively.