new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

From Elements to Design: A Layered Approach for Automatic Graphic Design Composition

In this work, we investigate automatic design composition from multimodal graphic elements. Although recent studies have developed various generative models for graphic design, they usually face the following limitations: they only focus on certain subtasks and are far from achieving the design composition task; they do not consider the hierarchical information of graphic designs during the generation process. To tackle these issues, we introduce the layered design principle into Large Multimodal Models (LMMs) and propose a novel approach, called LaDeCo, to accomplish this challenging task. Specifically, LaDeCo first performs layer planning for a given element set, dividing the input elements into different semantic layers according to their contents. Based on the planning results, it subsequently predicts element attributes that control the design composition in a layer-wise manner, and includes the rendered image of previously generated layers into the context. With this insightful design, LaDeCo decomposes the difficult task into smaller manageable steps, making the generation process smoother and clearer. The experimental results demonstrate the effectiveness of LaDeCo in design composition. Furthermore, we show that LaDeCo enables some interesting applications in graphic design, such as resolution adjustment, element filling, design variation, etc. In addition, it even outperforms the specialized models in some design subtasks without any task-specific training.

From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design

Engineering Design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision language models, such as GPT-4V, enabling AI to impact many more types of tasks. In light of these advancements, this paper presents a comprehensive evaluation of GPT-4V, a vision language model, across a wide spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Our study assesses GPT-4V's capabilities in design tasks such as sketch similarity analysis, concept selection using Pugh Charts, material selection, engineering drawing analysis, CAD generation, topology optimization, design for additive and subtractive manufacturing, spatial reasoning challenges, and textbook problems. Through this structured evaluation, we not only explore GPT-4V's proficiency in handling complex design and manufacturing challenges but also identify its limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models, emphasizing their immense potential for innovating and enhancing the engineering design and manufacturing landscape. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.