Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCommunication-Efficient Federated Non-Linear Bandit Optimization
Federated optimization studies the problem of collaborative function optimization among multiple clients (e.g. mobile devices or organizations) under the coordination of a central server. Since the data is collected separately by each client and always remains decentralized, federated optimization preserves data privacy and allows for large-scale computing, which makes it a promising decentralized machine learning paradigm. Though it is often deployed for tasks that are online in nature, e.g., next-word prediction on keyboard apps, most works formulate it as an offline problem. The few exceptions that consider federated bandit optimization are limited to very simplistic function classes, e.g., linear, generalized linear, or non-parametric function class with bounded RKHS norm, which severely hinders its practical usage. In this paper, we propose a new algorithm, named Fed-GO-UCB, for federated bandit optimization with generic non-linear objective function. Under some mild conditions, we rigorously prove that Fed-GO-UCB is able to achieve sub-linear rate for both cumulative regret and communication cost. At the heart of our theoretical analysis are distributed regression oracle and individual confidence set construction, which can be of independent interests. Empirical evaluations also demonstrate the effectiveness of the proposed algorithm.
PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action
As language models (LMs) are widely utilized in personalized communication scenarios (e.g., sending emails, writing social media posts) and endowed with a certain level of agency, ensuring they act in accordance with the contextual privacy norms becomes increasingly critical. However, quantifying the privacy norm awareness of LMs and the emerging privacy risk in LM-mediated communication is challenging due to (1) the contextual and long-tailed nature of privacy-sensitive cases, and (2) the lack of evaluation approaches that capture realistic application scenarios. To address these challenges, we propose PrivacyLens, a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories, enabling multi-level evaluation of privacy leakage in LM agents' actions. We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds. Using this dataset, we reveal a discrepancy between LM performance in answering probing questions and their actual behavior when executing user instructions in an agent setup. State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions. We also demonstrate the dynamic nature of PrivacyLens by extending each seed into multiple trajectories to red-team LM privacy leakage risk. Dataset and code are available at https://github.com/SALT-NLP/PrivacyLens.
Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory
The interactive use of large language models (LLMs) in AI assistants (at work, home, etc.) introduces a new set of inference-time privacy risks: LLMs are fed different types of information from multiple sources in their inputs and are expected to reason about what to share in their outputs, for what purpose and with whom, within a given context. In this work, we draw attention to the highly critical yet overlooked notion of contextual privacy by proposing ConfAIde, a benchmark designed to identify critical weaknesses in the privacy reasoning capabilities of instruction-tuned LLMs. Our experiments show that even the most capable models such as GPT-4 and ChatGPT reveal private information in contexts that humans would not, 39% and 57% of the time, respectively. This leakage persists even when we employ privacy-inducing prompts or chain-of-thought reasoning. Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting
The field of privacy-preserving Natural Language Processing has risen in popularity, particularly at a time when concerns about privacy grow with the proliferation of Large Language Models. One solution consistently appearing in recent literature has been the integration of Differential Privacy (DP) into NLP techniques. In this paper, we take these approaches into critical view, discussing the restrictions that DP integration imposes, as well as bring to light the challenges that such restrictions entail. To accomplish this, we focus on DP-Prompt, a recent method for text privatization leveraging language models to rewrite texts. In particular, we explore this rewriting task in multiple scenarios, both with DP and without DP. To drive the discussion on the merits of DP in NLP, we conduct empirical utility and privacy experiments. Our results demonstrate the need for more discussion on the usability of DP in NLP and its benefits over non-DP approaches.
Privacy-Preserving Distributed Learning Framework for 6G Telecom Ecosystems
We present a privacy-preserving distributed learning framework for telecom ecosystems in the 6G-era that enables the vision of shared ownership and governance of ML models, while protecting the privacy of the data owners. We demonstrate its benefits by applying it to the use-case of Quality of Transmission (QoT) estimation in multi-domain multi-vendor optical networks, where no data of individual domains is shared with the network management system (NMS).
Hide and Seek (HaS): A Lightweight Framework for Prompt Privacy Protection
Numerous companies have started offering services based on large language models (LLM), such as ChatGPT, which inevitably raises privacy concerns as users' prompts are exposed to the model provider. Previous research on secure reasoning using multi-party computation (MPC) has proven to be impractical for LLM applications due to its time-consuming and communication-intensive nature. While lightweight anonymization techniques can protect private information in prompts through substitution or masking, they fail to recover sensitive data replaced in the LLM-generated results. In this paper, we expand the application scenarios of anonymization techniques by training a small local model to de-anonymize the LLM's returned results with minimal computational overhead. We introduce the HaS framework, where "H(ide)" and "S(eek)" represent its two core processes: hiding private entities for anonymization and seeking private entities for de-anonymization, respectively. To quantitatively assess HaS's privacy protection performance, we propose both black-box and white-box adversarial models. Furthermore, we conduct experiments to evaluate HaS's usability in translation and classification tasks. The experimental findings demonstrate that the HaS framework achieves an optimal balance between privacy protection and utility.
Privacy-Preserving Prompt Tuning for Large Language Model Services
Prompt tuning provides an efficient way for users to customize Large Language Models (LLMs) with their private data in the emerging LLM service scenario. However, the sensitive nature of private data brings the need for privacy preservation in LLM service customization. Based on prompt tuning, we propose Privacy-Preserving Prompt Tuning (RAPT), a framework that provides privacy guarantees for LLM services. rapt adopts a local privacy setting, allowing users to privatize their data locally with local differential privacy. As prompt tuning performs poorly when directly trained on privatized data, we introduce a novel privatized token reconstruction task that is trained jointly with the downstream task, allowing LLMs to learn better task-dependent representations. Despite the simplicity of our framework, experiments show that RAPT achieves competitive performance across tasks while providing privacy guarantees against adversaries.
Privacy in Large Language Models: Attacks, Defenses and Future Directions
The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary's assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration.
Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
Shuffle Private Stochastic Convex Optimization
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this model has largely focused on protocols that use a single round of communication to compute algorithmic primitives like means, histograms, and counts. We present interactive shuffle protocols for stochastic convex optimization. Our protocols rely on a new noninteractive protocol for summing vectors of bounded ell_2 norm. By combining this sum subroutine with mini-batch stochastic gradient descent, accelerated gradient descent, and Nesterov's smoothing method, we obtain loss guarantees for a variety of convex loss functions that significantly improve on those of the local model and sometimes match those of the central model.
User-Entity Differential Privacy in Learning Natural Language Models
In this paper, we introduce a novel concept of user-entity differential privacy (UeDP) to provide formal privacy protection simultaneously to both sensitive entities in textual data and data owners in learning natural language models (NLMs). To preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model utility with a tight sensitivity bound derived from seamlessly combining user and sensitive entity sampling processes. An extensive theoretical analysis and evaluation show that our UeDP-Alg outperforms baseline approaches in model utility under the same privacy budget consumption on several NLM tasks, using benchmark datasets.
ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale
Incremental learning is one paradigm to enable model building and updating at scale with streaming data. For end-to-end automatic speech recognition (ASR) tasks, the absence of human annotated labels along with the need for privacy preserving policies for model building makes it a daunting challenge. Motivated by these challenges, in this paper we use a cloud based framework for production systems to demonstrate insights from privacy preserving incremental learning for automatic speech recognition (ILASR). By privacy preserving, we mean, usage of ephemeral data which are not human annotated. This system is a step forward for production levelASR models for incremental/continual learning that offers near real-time test-bed for experimentation in the cloud for end-to-end ASR, while adhering to privacy-preserving policies. We show that the proposed system can improve the production models significantly(3%) over a new time period of six months even in the absence of human annotated labels with varying levels of weak supervision and large batch sizes in incremental learning. This improvement is 20% over test sets with new words and phrases in the new time period. We demonstrate the effectiveness of model building in a privacy-preserving incremental fashion for ASR while further exploring the utility of having an effective teacher model and use of large batch sizes.
Entropy-Guided Attention for Private LLMs
The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm{entropy-guided-llm}.
Privacy-Preserving Recommender Systems with Synthetic Query Generation using Differentially Private Large Language Models
We propose a novel approach for developing privacy-preserving large-scale recommender systems using differentially private (DP) large language models (LLMs) which overcomes certain challenges and limitations in DP training these complex systems. Our method is particularly well suited for the emerging area of LLM-based recommender systems, but can be readily employed for any recommender systems that process representations of natural language inputs. Our approach involves using DP training methods to fine-tune a publicly pre-trained LLM on a query generation task. The resulting model can generate private synthetic queries representative of the original queries which can be freely shared for any downstream non-private recommendation training procedures without incurring any additional privacy cost. We evaluate our method on its ability to securely train effective deep retrieval models, and we observe significant improvements in their retrieval quality without compromising query-level privacy guarantees compared to methods where the retrieval models are directly DP trained.
Beyond Memorization: Violating Privacy Via Inference with Large Language Models
Current privacy research on large language models (LLMs) primarily focuses on the issue of extracting memorized training data. At the same time, models' inference capabilities have increased drastically. This raises the key question of whether current LLMs could violate individuals' privacy by inferring personal attributes from text given at inference time. In this work, we present the first comprehensive study on the capabilities of pretrained LLMs to infer personal attributes from text. We construct a dataset consisting of real Reddit profiles, and show that current LLMs can infer a wide range of personal attributes (e.g., location, income, sex), achieving up to 85% top-1 and 95.8% top-3 accuracy at a fraction of the cost (100times) and time (240times) required by humans. As people increasingly interact with LLM-powered chatbots across all aspects of life, we also explore the emerging threat of privacy-invasive chatbots trying to extract personal information through seemingly benign questions. Finally, we show that common mitigations, i.e., text anonymization and model alignment, are currently ineffective at protecting user privacy against LLM inference. Our findings highlight that current LLMs can infer personal data at a previously unattainable scale. In the absence of working defenses, we advocate for a broader discussion around LLM privacy implications beyond memorization, striving for a wider privacy protection.
Reducing Privacy Risks in Online Self-Disclosures with Language Models
Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through identification and abstraction. We develop a taxonomy of 19 self-disclosure categories, and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for identification, achieving over 75% in Token F_1. We further conduct a HCI user study, with 82\% of participants viewing the model positively, highlighting its real world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction. We experiment with both one-span abstraction and three-span abstraction settings, and explore multiple fine-tuning strategies. Our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation.
Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains. However, their reliance on massive internet-sourced datasets for training brings notable privacy issues, which are exacerbated in critical domains (e.g., healthcare). Moreover, certain application-specific scenarios may require fine-tuning these models on private data. This survey critically examines the privacy threats associated with LLMs, emphasizing the potential for these models to memorize and inadvertently reveal sensitive information. We explore current threats by reviewing privacy attacks on LLMs and propose comprehensive solutions for integrating privacy mechanisms throughout the entire learning pipeline. These solutions range from anonymizing training datasets to implementing differential privacy during training or inference and machine unlearning after training. Our comprehensive review of existing literature highlights ongoing challenges, available tools, and future directions for preserving privacy in LLMs. This work aims to guide the development of more secure and trustworthy AI systems by providing a thorough understanding of privacy preservation methods and their effectiveness in mitigating risks.
Learning-Augmented Private Algorithms for Multiple Quantile Release
When applying differential privacy to sensitive data, we can often improve performance using external information such as other sensitive data, public data, or human priors. We propose to use the learning-augmented algorithms (or algorithms with predictions) framework -- previously applied largely to improve time complexity or competitive ratios -- as a powerful way of designing and analyzing privacy-preserving methods that can take advantage of such external information to improve utility. This idea is instantiated on the important task of multiple quantile release, for which we derive error guarantees that scale with a natural measure of prediction quality while (almost) recovering state-of-the-art prediction-independent guarantees. Our analysis enjoys several advantages, including minimal assumptions about the data, a natural way of adding robustness, and the provision of useful surrogate losses for two novel ``meta" algorithms that learn predictions from other (potentially sensitive) data. We conclude with experiments on challenging tasks demonstrating that learning predictions across one or more instances can lead to large error reductions while preserving privacy.
Privacy Amplification for Matrix Mechanisms
Privacy amplification exploits randomness in data selection to provide tighter differential privacy (DP) guarantees. This analysis is key to DP-SGD's success in machine learning, but, is not readily applicable to the newer state-of-the-art algorithms. This is because these algorithms, known as DP-FTRL, use the matrix mechanism to add correlated noise instead of independent noise as in DP-SGD. In this paper, we propose "MMCC", the first algorithm to analyze privacy amplification via sampling for any generic matrix mechanism. MMCC is nearly tight in that it approaches a lower bound as epsilonto0. To analyze correlated outputs in MMCC, we prove that they can be analyzed as if they were independent, by conditioning them on prior outputs. Our "conditional composition theorem" has broad utility: we use it to show that the noise added to binary-tree-DP-FTRL can asymptotically match the noise added to DP-SGD with amplification. Our amplification algorithm also has practical empirical utility: we show it leads to significant improvement in the privacy-utility trade-offs for DP-FTRL algorithms on standard benchmarks.
On Differentially Private Federated Linear Contextual Bandits
We consider cross-silo federated linear contextual bandit (LCB) problem under differential privacy, where multiple silos (agents) interact with the local users and communicate via a central server to realize collaboration while without sacrificing each user's privacy. We identify three issues in the state-of-the-art: (i) failure of claimed privacy protection and (ii) incorrect regret bound due to noise miscalculation and (iii) ungrounded communication cost. To resolve these issues, we take a two-step principled approach. First, we design an algorithmic framework consisting of a generic federated LCB algorithm and flexible privacy protocols. Then, leveraging the proposed framework, we study federated LCBs under two different privacy constraints. We first establish privacy and regret guarantees under silo-level local differential privacy, which fix the issues present in state-of-the-art algorithm. To further improve the regret performance, we next consider shuffle model of differential privacy, under which we show that our algorithm can achieve nearly ``optimal'' regret without a trusted server. We accomplish this via two different schemes -- one relies on a new result on privacy amplification via shuffling for DP mechanisms and another one leverages the integration of a shuffle protocol for vector sum into the tree-based mechanism, both of which might be of independent interest. Finally, we support our theoretical results with numerical evaluations over contextual bandit instances generated from both synthetic and real-life data.
DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer
Large Language Models (LLMs) have emerged as dominant tools for various tasks, particularly when tailored for a specific target by prompt tuning. Nevertheless, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information. A practical solution is to host a local LLM and optimize a soft prompt privately using data. Yet, hosting a local model becomes problematic when model ownership is protected. Alternative methods, like sending data to the model's provider for training, intensify these privacy issues facing an untrusted provider. In this paper, we present a novel solution called Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge. Our approach involves tuning a discrete prompt on the client side and then applying it to the desired cloud models. We demonstrate that prompts suggested by LLMs themselves can be transferred without compromising performance significantly. To ensure that the prompts do not leak private information, we introduce the first private prompt generation mechanism, by a differentially-private (DP) ensemble of in-context learning with private demonstrations. With DP-OPT, generating privacy-preserving prompts by Vicuna-7b can yield competitive performance compared to non-private in-context learning on GPT3.5 or local private prompt tuning. Codes are available at https://github.com/VITA-Group/DP-OPT .
Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning
The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.
Encrypted Large Model Inference: The Equivariant Encryption Paradigm
Large scale deep learning model, such as modern language models and diffusion architectures, have revolutionized applications ranging from natural language processing to computer vision. However, their deployment in distributed or decentralized environments raises significant privacy concerns, as sensitive data may be exposed during inference. Traditional techniques like secure multi-party computation, homomorphic encryption, and differential privacy offer partial remedies but often incur substantial computational overhead, latency penalties, or limited compatibility with non-linear network operations. In this work, we introduce Equivariant Encryption (EE), a novel paradigm designed to enable secure, "blind" inference on encrypted data with near zero performance overhead. Unlike fully homomorphic approaches that encrypt the entire computational graph, EE selectively obfuscates critical internal representations within neural network layers while preserving the exact functionality of both linear and a prescribed set of non-linear operations. This targeted encryption ensures that raw inputs, intermediate activations, and outputs remain confidential, even when processed on untrusted infrastructure. We detail the theoretical foundations of EE, compare its performance and integration complexity against conventional privacy preserving techniques, and demonstrate its applicability across a range of architectures, from convolutional networks to large language models. Furthermore, our work provides a comprehensive threat analysis, outlining potential attack vectors and baseline strategies, and benchmarks EE against standard inference pipelines in decentralized settings. The results confirm that EE maintains high fidelity and throughput, effectively bridging the gap between robust data confidentiality and the stringent efficiency requirements of modern, large scale model inference.
Life of PII -- A PII Obfuscation Transformer
Protecting sensitive information is crucial in today's world of Large Language Models (LLMs) and data-driven services. One common method used to preserve privacy is by using data perturbation techniques to reduce overreaching utility of (sensitive) Personal Identifiable Information (PII) data while maintaining its statistical and semantic properties. Data perturbation methods often result in significant information loss, making them impractical for use. In this paper, we propose 'Life of PII', a novel Obfuscation Transformer framework for transforming PII into faux-PII while preserving the original information, intent, and context as much as possible. Our approach includes an API to interface with the given document, a configuration-based obfuscator, and a model based on the Transformer architecture, which has shown high context preservation and performance in natural language processing tasks and LLMs. Our Transformer-based approach learns mapping between the original PII and its transformed faux-PII representation, which we call "obfuscated" data. Our experiments demonstrate that our method, called Life of PII, outperforms traditional data perturbation techniques in terms of both utility preservation and privacy protection. We show that our approach can effectively reduce utility loss while preserving the original information, offering greater flexibility in the trade-off between privacy protection and data utility. Our work provides a solution for protecting PII in various real-world applications.
Model-Based Differentially Private Knowledge Transfer for Large Language Models
As large language models (LLMs) become increasingly prevalent in web services, effectively leveraging domain-specific knowledge while ensuring privacy has become critical. Existing methods, such as retrieval-augmented generation (RAG) and differentially private data synthesis, often compromise either the utility of domain knowledge or the privacy of sensitive data, limiting their applicability in specialized domains. To address these challenges, we propose Llamdex, a novel framework that integrates privacy-preserving, domain-specific models into LLMs. Our approach significantly enhances the accuracy of domain-specific tasks, achieving up to a 26\% improvement compared to existing methods under the same differential privacy constraints. Experimental results show that Llamdex not only improves the accuracy of LLM responses but also maintains comparable inference efficiency to the original LLM, highlighting its potential for real-world applications.
Privately Aligning Language Models with Reinforcement Learning
Positioned between pre-training and user deployment, aligning large language models (LLMs) through reinforcement learning (RL) has emerged as a prevailing strategy for training instruction following-models such as ChatGPT. In this work, we initiate the study of privacy-preserving alignment of LLMs through Differential Privacy (DP) in conjunction with RL. Following the influential work of Ziegler et al. (2020), we study two dominant paradigms: (i) alignment via RL without human in the loop (e.g., positive review generation) and (ii) alignment via RL from human feedback (RLHF) (e.g., summarization in a human-preferred way). We give a new DP framework to achieve alignment via RL, and prove its correctness. Our experimental results validate the effectiveness of our approach, offering competitive utility while ensuring strong privacy protections.
Learning from End User Data with Shuffled Differential Privacy over Kernel Densities
We study a setting of collecting and learning from private data distributed across end users. In the shuffled model of differential privacy, the end users partially protect their data locally before sharing it, and their data is also anonymized during its collection to enhance privacy. This model has recently become a prominent alternative to central DP, which requires full trust in a central data curator, and local DP, where fully local data protection takes a steep toll on downstream accuracy. Our main technical result is a shuffled DP protocol for privately estimating the kernel density function of a distributed dataset, with accuracy essentially matching central DP. We use it to privately learn a classifier from the end user data, by learning a private density function per class. Moreover, we show that the density function itself can recover the semantic content of its class, despite having been learned in the absence of any unprotected data. Our experiments show the favorable downstream performance of our approach, and highlight key downstream considerations and trade-offs in a practical ML deployment of shuffled DP.
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
The privacy concerns of providing deep learning inference as a service have underscored the need for private inference (PI) protocols that protect users' data and the service provider's model using cryptographic methods. Recently proposed PI protocols have achieved significant reductions in PI latency by moving the computationally heavy homomorphic encryption (HE) parts to an offline/pre-compute phase. Paired with recent optimizations that tailor networks for PI, these protocols have achieved performance levels that are tantalizingly close to being practical. In this paper, we conduct a rigorous end-to-end characterization of PI protocols and optimization techniques and find that the current understanding of PI performance is overly optimistic. Specifically, we find that offline storage costs of garbled circuits (GC), a key cryptographic protocol used in PI, on user/client devices are prohibitively high and force much of the expensive offline HE computation to the online phase, resulting in a 10-1000times increase to PI latency. We propose a modified PI protocol that significantly reduces client-side storage costs for a small increase in online latency. Evaluated end-to-end, the modified protocol outperforms current protocols by reducing the mean PI latency by 4times for ResNet18 on TinyImageNet. We conclude with a discussion of several recently proposed PI optimizations in light of the findings and note many actually increase PI latency when evaluated from an end-to-end perspective.
SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy
Machine learning (ML) models frequently rely on training data that may include sensitive or personal information, raising substantial privacy concerns. Legislative frameworks such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) have necessitated the development of strategies that preserve privacy while maintaining the utility of data. In this paper, we investigate the capability of Large Language Models (LLMs) to generate synthetic datasets integrated with Differential Privacy (DP) mechanisms, thereby enabling data-driven research and model training without direct exposure of sensitive information. Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process. We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data. To substantiate privacy guarantees, we assess the resilience of the generated synthetic data to membership inference attacks and related threats. The experimental results demonstrate that integrating DP within LLM-driven synthetic data generation offers a viable balance between privacy protection and data utility. This study provides a foundational methodology and insight into the privacy-preserving capabilities of LLMs, paving the way for compliant and effective ML research and applications.
Differentially Private Attention Computation
Large language models (LLMs) have had a profound impact on numerous aspects of daily life including natural language processing, content generation, research methodologies and so on. However, one crucial issue concerning the inference results of large language models is security and privacy. In many scenarios, the results generated by LLMs could possibly leak many confidential or copyright information. A recent beautiful and breakthrough work [Vyas, Kakade and Barak 2023] focus on such privacy issue of the LLMs from theoretical perspective. It is well-known that computing the attention matrix is one of the major task during the LLMs computation. Thus, how to give a provable privately guarantees of computing the attention matrix is an important research direction. Previous work [Alman and Song 2023, Brand, Song and Zhou 2023] have proposed provable tight result for fast computation of attention without considering privacy concerns. One natural mathematical formulation to quantity the privacy in theoretical computer science graduate school textbook is differential privacy. Inspired by [Vyas, Kakade and Barak 2023], in this work, we provide a provable result for showing how to differentially private approximate the attention matrix. From technique perspective, our result replies on a pioneering work in the area of differential privacy by [Alabi, Kothari, Tankala, Venkat and Zhang 2022].
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
Privacy Preserving Prompt Engineering: A Survey
Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks. Researchers have observed a direct correlation between the performance of these models and their sizes. As a result, the sizes of these models have notably expanded in recent years, persuading researchers to adopt the term large language models (LLMs) to characterize the larger-sized PLMs. The size expansion comes with a distinct capability called in-context learning (ICL), which represents a special form of prompting and allows the models to be utilized through the presentation of demonstration examples without modifications to the model parameters. Although interesting, privacy concerns have become a major obstacle in its widespread usage. Multiple studies have examined the privacy risks linked to ICL and prompting in general, and have devised techniques to alleviate these risks. Thus, there is a necessity to organize these mitigation techniques for the benefit of the community. This survey provides a systematic overview of the privacy protection methods employed during ICL and prompting in general. We review, analyze, and compare different methods under this paradigm. Furthermore, we provide a summary of the resources accessible for the development of these frameworks. Finally, we discuss the limitations of these frameworks and offer a detailed examination of the promising areas that necessitate further exploration.
Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques
The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.
Communication-Efficient Learning of Deep Networks from Decentralized Data
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning. We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent.
Operationalizing Contextual Integrity in Privacy-Conscious Assistants
Advanced AI assistants combine frontier LLMs and tool access to autonomously perform complex tasks on behalf of users. While the helpfulness of such assistants can increase dramatically with access to user information including emails and documents, this raises privacy concerns about assistants sharing inappropriate information with third parties without user supervision. To steer information-sharing assistants to behave in accordance with privacy expectations, we propose to operationalize contextual integrity (CI), a framework that equates privacy with the appropriate flow of information in a given context. In particular, we design and evaluate a number of strategies to steer assistants' information-sharing actions to be CI compliant. Our evaluation is based on a novel form filling benchmark composed of synthetic data and human annotations, and it reveals that prompting frontier LLMs to perform CI-based reasoning yields strong results.
zPROBE: Zero Peek Robustness Checks for Federated Learning
Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thus the users' (private) training data is not leaked from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and not scalable in the secure domain, as it requires sorting all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage our statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy.
AERO: Softmax-Only LLMs for Efficient Private Inference
The pervasiveness of proprietary language models has raised privacy concerns for users' sensitive data, emphasizing the need for private inference (PI), where inference is performed directly on encrypted inputs. However, current PI methods face prohibitively higher communication and latency overheads, primarily due to nonlinear operations. In this paper, we present a comprehensive analysis to understand the role of nonlinearities in transformer-based decoder-only language models. We introduce AERO, a four-step architectural optimization framework that refines the existing LLM architecture for efficient PI by systematically removing nonlinearities such as LayerNorm and GELU and reducing FLOPs counts. For the first time, we propose a Softmax-only architecture with significantly fewer FLOPs tailored for efficient PI. Furthermore, we devise a novel entropy regularization technique to improve the performance of Softmax-only models. AERO achieves up to 4.23times communication and 1.94times latency reduction. We validate the effectiveness of AERO by benchmarking it against the state-of-the-art.
Closed-Form Bounds for DP-SGD against Record-level Inference
Machine learning models trained with differentially-private (DP) algorithms such as DP-SGD enjoy resilience against a wide range of privacy attacks. Although it is possible to derive bounds for some attacks based solely on an (varepsilon,delta)-DP guarantee, meaningful bounds require a small enough privacy budget (i.e., injecting a large amount of noise), which results in a large loss in utility. This paper presents a new approach to evaluate the privacy of machine learning models against specific record-level threats, such as membership and attribute inference, without the indirection through DP. We focus on the popular DP-SGD algorithm, and derive simple closed-form bounds. Our proofs model DP-SGD as an information theoretic channel whose inputs are the secrets that an attacker wants to infer (e.g., membership of a data record) and whose outputs are the intermediate model parameters produced by iterative optimization. We obtain bounds for membership inference that match state-of-the-art techniques, whilst being orders of magnitude faster to compute. Additionally, we present a novel data-dependent bound against attribute inference. Our results provide a direct, interpretable, and practical way to evaluate the privacy of trained models against specific inference threats without sacrificing utility.
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Because learning sometimes involves sensitive data, machine learning algorithms have been extended to offer privacy for training data. In practice, this has been mostly an afterthought, with privacy-preserving models obtained by re-running training with a different optimizer, but using the model architectures that already performed well in a non-privacy-preserving setting. This approach leads to less than ideal privacy/utility tradeoffs, as we show here. Instead, we propose that model architectures are chosen ab initio explicitly for privacy-preserving training. To provide guarantees under the gold standard of differential privacy, one must bound as strictly as possible how individual training points can possibly affect model updates. In this paper, we are the first to observe that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning. We demonstrate analytically and experimentally how a general family of bounded activation functions, the tempered sigmoids, consistently outperform unbounded activation functions like ReLU. Using this paradigm, we achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals or differential privacy analysis.
Long-term Conversation Analysis: Exploring Utility and Privacy
The analysis of conversations recorded in everyday life requires privacy protection. In this contribution, we explore a privacy-preserving feature extraction method based on input feature dimension reduction, spectral smoothing and the low-cost speaker anonymization technique based on McAdams coefficient. We assess the utility of the feature extraction methods with a voice activity detection and a speaker diarization system, while privacy protection is determined with a speech recognition and a speaker verification model. We show that the combination of McAdams coefficient and spectral smoothing maintains the utility while improving privacy.
Concurrent Shuffle Differential Privacy Under Continual Observation
We introduce the concurrent shuffle model of differential privacy. In this model we have multiple concurrent shufflers permuting messages from different, possibly overlapping, batches of users. Similarly to the standard (single) shuffle model, the privacy requirement is that the concatenation of all shuffled messages should be differentially private. We study the private continual summation problem (a.k.a. the counter problem) and show that the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffle model. Specifically, we give a summation algorithm with error O(n^{1/(2k+1)}) with k concurrent shufflers on a sequence of length n. Furthermore, we prove that this bound is tight for any k, even if the algorithm can choose the sizes of the batches adaptively. For k=log n shufflers, the resulting error is polylogarithmic, much better than Theta(n^{1/3}) which we show is the smallest possible with a single shuffler. We use our online summation algorithm to get algorithms with improved regret bounds for the contextual linear bandit problem. In particular we get optimal O(n) regret with k= Omega(log n) concurrent shufflers.
Can Language Models be Instructed to Protect Personal Information?
Large multimodal language models have proven transformative in numerous applications. However, these models have been shown to memorize and leak pre-training data, raising serious user privacy and information security concerns. While data leaks should be prevented, it is also crucial to examine the trade-off between the privacy protection and model utility of proposed approaches. In this paper, we introduce PrivQA -- a multimodal benchmark to assess this privacy/utility trade-off when a model is instructed to protect specific categories of personal information in a simulated scenario. We also propose a technique to iteratively self-moderate responses, which significantly improves privacy. However, through a series of red-teaming experiments, we find that adversaries can also easily circumvent these protections with simple jailbreaking methods through textual and/or image inputs. We believe PrivQA has the potential to support the development of new models with improved privacy protections, as well as the adversarial robustness of these protections. We release the entire PrivQA dataset at https://llm-access-control.github.io/.
Privacy-Aware Visual Language Models
This paper aims to advance our understanding of how Visual Language Models (VLMs) handle privacy-sensitive information, a crucial concern as these technologies become integral to everyday life. To this end, we introduce a new benchmark PrivBench, which contains images from 8 sensitive categories such as passports, or fingerprints. We evaluate 10 state-of-the-art VLMs on this benchmark and observe a generally limited understanding of privacy, highlighting a significant area for model improvement. Based on this we introduce PrivTune, a new instruction-tuning dataset aimed at equipping VLMs with knowledge about visual privacy. By tuning two pretrained VLMs, TinyLLaVa and MiniGPT-v2, on this small dataset, we achieve strong gains in their ability to recognize sensitive content, outperforming even GPT4-V. At the same time, we show that privacy-tuning only minimally affects the VLMs performance on standard benchmarks such as VQA. Overall, this paper lays out a crucial challenge for making VLMs effective in handling real-world data safely and provides a simple recipe that takes the first step towards building privacy-aware VLMs.
A Synthetic Dataset for Personal Attribute Inference
Recently, powerful Large Language Models (LLMs) have become easily accessible to hundreds of millions of users worldwide. However, their strong capabilities and vast world knowledge do not come without associated privacy risks. In this work, we focus on the emerging privacy threat LLMs pose - the ability to accurately infer personal information from online texts. Despite the growing importance of LLM-based author profiling, research in this area has been hampered by a lack of suitable public datasets, largely due to ethical and privacy concerns associated with real personal data. In this work, we take two steps to address this problem: (i) we construct a simulation framework for the popular social media platform Reddit using LLM agents seeded with synthetic personal profiles; (ii) using this framework, we generate SynthPAI, a diverse synthetic dataset of over 7800 comments manually labeled for personal attributes. We validate our dataset with a human study showing that humans barely outperform random guessing on the task of distinguishing our synthetic comments from real ones. Further, we verify that our dataset enables meaningful personal attribute inference research by showing across 18 state-of-the-art LLMs that our synthetic comments allow us to draw the same conclusions as real-world data. Together, this indicates that our dataset and pipeline provide a strong and privacy-preserving basis for future research toward understanding and mitigating the inference-based privacy threats LLMs pose.
TAN Without a Burn: Scaling Laws of DP-SGD
Differentially Private methods for training Deep Neural Networks (DNNs) have progressed recently, in particular with the use of massive batches and aggregated data augmentations for a large number of training steps. These techniques require much more computing resources than their non-private counterparts, shifting the traditional privacy-accuracy trade-off to a privacy-accuracy-compute trade-off and making hyper-parameter search virtually impossible for realistic scenarios. In this work, we decouple privacy analysis and experimental behavior of noisy training to explore the trade-off with minimal computational requirements. We first use the tools of R\'enyi Differential Privacy (RDP) to highlight that the privacy budget, when not overcharged, only depends on the total amount of noise (TAN) injected throughout training. We then derive scaling laws for training models with DP-SGD to optimize hyper-parameters with more than a 100times reduction in computational budget. We apply the proposed method on CIFAR-10 and ImageNet and, in particular, strongly improve the state-of-the-art on ImageNet with a +9 points gain in top-1 accuracy for a privacy budget epsilon=8.
Node-Level Differentially Private Graph Neural Networks
Graph Neural Networks (GNNs) are a popular technique for modelling graph-structured data and computing node-level representations via aggregation of information from the neighborhood of each node. However, this aggregation implies an increased risk of revealing sensitive information, as a node can participate in the inference for multiple nodes. This implies that standard privacy-preserving machine learning techniques, such as differentially private stochastic gradient descent (DP-SGD) - which are designed for situations where each data point participates in the inference for one point only - either do not apply, or lead to inaccurate models. In this work, we formally define the problem of learning GNN parameters with node-level privacy, and provide an algorithmic solution with a strong differential privacy guarantee. We employ a careful sensitivity analysis and provide a non-trivial extension of the privacy-by-amplification technique to the GNN setting. An empirical evaluation on standard benchmark datasets demonstrates that our method is indeed able to learn accurate privacy-preserving GNNs which outperform both private and non-private methods that completely ignore graph information.
Randomized Quantization is All You Need for Differential Privacy in Federated Learning
Federated learning (FL) is a common and practical framework for learning a machine model in a decentralized fashion. A primary motivation behind this decentralized approach is data privacy, ensuring that the learner never sees the data of each local source itself. Federated learning then comes with two majors challenges: one is handling potentially complex model updates between a server and a large number of data sources; the other is that de-centralization may, in fact, be insufficient for privacy, as the local updates themselves can reveal information about the sources' data. To address these issues, we consider an approach to federated learning that combines quantization and differential privacy. Absent privacy, Federated Learning often relies on quantization to reduce communication complexity. We build upon this approach and develop a new algorithm called the Randomized Quantization Mechanism (RQM), which obtains privacy through a two-levels of randomization. More precisely, we randomly sub-sample feasible quantization levels, then employ a randomized rounding procedure using these sub-sampled discrete levels. We are able to establish that our results preserve ``Renyi differential privacy'' (Renyi DP). We empirically study the performance of our algorithm and demonstrate that compared to previous work it yields improved privacy-accuracy trade-offs for DP federated learning. To the best of our knowledge, this is the first study that solely relies on randomized quantization without incorporating explicit discrete noise to achieve Renyi DP guarantees in Federated Learning systems.
Privately Fine-Tuning Large Language Models with Differential Privacy
Pre-trained Large Language Models (LLMs) are an integral part of modern AI that have led to breakthrough performances in complex AI tasks. Major AI companies with expensive infrastructures are able to develop and train these large models with billions and millions of parameters from scratch. Third parties, researchers, and practitioners are increasingly adopting these pre-trained models and fine-tuning them on their private data to accomplish their downstream AI tasks. However, it has been shown that an adversary can extract/reconstruct the exact training samples from these LLMs, which can lead to revealing personally identifiable information. The issue has raised deep concerns about the privacy of LLMs. Differential privacy (DP) provides a rigorous framework that allows adding noise in the process of training or fine-tuning LLMs such that extracting the training data becomes infeasible (i.e., with a cryptographically small success probability). While the theoretical privacy guarantees offered in most extant studies assume learning models from scratch through many training iterations in an asymptotic setting, this assumption does not hold in fine-tuning scenarios in which the number of training iterations is significantly smaller. To address the gap, we present \ewtune, a DP framework for fine-tuning LLMs based on Edgeworth accountant with finite-sample privacy guarantees. Our results across four well-established natural language understanding (NLU) tasks show that while \ewtune~adds privacy guarantees to LLM fine-tuning process, it directly contributes to decreasing the induced noise to up to 5.6\% and improves the state-of-the-art LLMs performance by up to 1.1\% across all NLU tasks. We have open-sourced our implementations for wide adoption and public testing purposes.
Confidential Prompting: Protecting User Prompts from Cloud LLM Providers
Our work tackles the challenge of securing user inputs in cloud-hosted large language model (LLM) serving while ensuring output invariance, model confidentiality, and compute efficiency. We introduce secure multi-party decoding (SMD), which leverages confidential computing to confine user prompts to a trusted execution environment (TEE), namely a confidential virtual machine (CVM), while allowing service providers to generate tokens efficiently. We also introduce a novel cryptographic method, prompt obfuscation (PO), to ensure robustness against reconstruction attacks on SMD. We demonstrate that our approach preserves both prompt confidentiality and LLM serving efficiency. Our solution can enable privacy-preserving cloud LLM serving that handles sensitive prompts, such as clinical records, financial data, and personal information.
Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting
Large language models (LLMs) demonstrate remarkable medical expertise, but data privacy concerns impede their direct use in healthcare environments. Although offering improved data privacy protection, domain-specific small language models (SLMs) often underperform LLMs, emphasizing the need for methods that reduce this performance gap while alleviating privacy concerns. In this paper, we present a simple yet effective method that harnesses LLMs' medical proficiency to boost SLM performance in medical tasks under privacy-restricted scenarios. Specifically, we mitigate patient privacy issues by extracting keywords from medical data and prompting the LLM to generate a medical knowledge-intensive context by simulating clinicians' thought processes. This context serves as additional input for SLMs, augmenting their decision-making capabilities. Our method significantly enhances performance in both few-shot and full training settings across three medical knowledge-intensive tasks, achieving up to a 22.57% increase in absolute accuracy compared to SLM fine-tuning without context, and sets new state-of-the-art results in two medical tasks within privacy-restricted scenarios. Further out-of-domain testing and experiments in two general domain datasets showcase its generalizability and broad applicability.
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
In private federated learning (FL), a server aggregates differentially private updates from a large number of clients in order to train a machine learning model. The main challenge in this setting is balancing privacy with both classification accuracy of the learnt model as well as the number of bits communicated between the clients and server. Prior work has achieved a good trade-off by designing a privacy-aware compression mechanism, called the minimum variance unbiased (MVU) mechanism, that numerically solves an optimization problem to determine the parameters of the mechanism. This paper builds upon it by introducing a new interpolation procedure in the numerical design process that allows for a far more efficient privacy analysis. The result is the new Interpolated MVU mechanism that is more scalable, has a better privacy-utility trade-off, and provides SOTA results on communication-efficient private FL on a variety of datasets.
PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models
Privacy policies serve as the primary conduit through which online service providers inform users about their data collection and usage procedures. However, in a bid to be comprehensive and mitigate legal risks, these policy documents are often quite verbose. In practical use, users tend to click the Agree button directly rather than reading them carefully. This practice exposes users to risks of privacy leakage and legal issues. Recently, the advent of Large Language Models (LLM) such as ChatGPT and GPT-4 has opened new possibilities for text analysis, especially for lengthy documents like privacy policies. In this study, we investigate a privacy policy text analysis framework PolicyGPT based on the LLM. This framework was tested using two datasets. The first dataset comprises of privacy policies from 115 websites, which were meticulously annotated by legal experts, categorizing each segment into one of 10 classes. The second dataset consists of privacy policies from 304 popular mobile applications, with each sentence manually annotated and classified into one of another 10 categories. Under zero-shot learning conditions, PolicyGPT demonstrated robust performance. For the first dataset, it achieved an accuracy rate of 97%, while for the second dataset, it attained an 87% accuracy rate, surpassing that of the baseline machine learning and neural network models.
Data Privacy Preservation on the Internet of Things
Recent developments in hardware and information technology have enabled the emergence of billions of connected, intelligent devices around the world exchanging information with minimal human involvement. This paradigm, known as the Internet of Things (IoT) is progressing quickly with an estimated 27 billion devices by 2025. This growth in the number of IoT devices and successful IoT services has generated a tremendous amount of data. However, this humongous volume of data poses growing concerns for user privacy. This introductory chapter has presented a brief survey of some of the existing data privacy-preservation schemes proposed by researchers in the field of the Internet of Things.
Question Answering for Privacy Policies: Combining Computational and Legal Perspectives
Privacy policies are long and complex documents that are difficult for users to read and understand, and yet, they have legal effects on how user data is collected, managed and used. Ideally, we would like to empower users to inform themselves about issues that matter to them, and enable them to selectively explore those issues. We present PrivacyQA, a corpus consisting of 1750 questions about the privacy policies of mobile applications, and over 3500 expert annotations of relevant answers. We observe that a strong neural baseline underperforms human performance by almost 0.3 F1 on PrivacyQA, suggesting considerable room for improvement for future systems. Further, we use this dataset to shed light on challenges to question answerability, with domain-general implications for any question answering system. The PrivacyQA corpus offers a challenging corpus for question answering, with genuine real-world utility.
WildChat: 1M ChatGPT Interaction Logs in the Wild
Chatbots such as GPT-4 and ChatGPT are now serving millions of users. Despite their widespread use, there remains a lack of public datasets showcasing how these tools are used by a population of users in practice. To bridge this gap, we offered free access to ChatGPT for online users in exchange for their affirmative, consensual opt-in to anonymously collect their chat transcripts and request headers. From this, we compiled WildChat, a corpus of 1 million user-ChatGPT conversations, which consists of over 2.5 million interaction turns. We compare WildChat with other popular user-chatbot interaction datasets, and find that our dataset offers the most diverse user prompts, contains the largest number of languages, and presents the richest variety of potentially toxic use-cases for researchers to study. In addition to timestamped chat transcripts, we enrich the dataset with demographic data, including state, country, and hashed IP addresses, alongside request headers. This augmentation allows for more detailed analysis of user behaviors across different geographical regions and temporal dimensions. Finally, because it captures a broad range of use cases, we demonstrate the dataset's potential utility in fine-tuning instruction-following models. WildChat is released at https://wildchat.allen.ai under AI2 ImpACT Licenses.
Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective
Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.
ProPILE: Probing Privacy Leakage in Large Language Models
The rapid advancement and widespread use of large language models (LLMs) have raised significant concerns regarding the potential leakage of personally identifiable information (PII). These models are often trained on vast quantities of web-collected data, which may inadvertently include sensitive personal data. This paper presents ProPILE, a novel probing tool designed to empower data subjects, or the owners of the PII, with awareness of potential PII leakage in LLM-based services. ProPILE lets data subjects formulate prompts based on their own PII to evaluate the level of privacy intrusion in LLMs. We demonstrate its application on the OPT-1.3B model trained on the publicly available Pile dataset. We show how hypothetical data subjects may assess the likelihood of their PII being included in the Pile dataset being revealed. ProPILE can also be leveraged by LLM service providers to effectively evaluate their own levels of PII leakage with more powerful prompts specifically tuned for their in-house models. This tool represents a pioneering step towards empowering the data subjects for their awareness and control over their own data on the web.
When the signal is in the noise: Exploiting Diffix's Sticky Noise
Anonymized data is highly valuable to both businesses and researchers. A large body of research has however shown the strong limits of the de-identification release-and-forget model, where data is anonymized and shared. This has led to the development of privacy-preserving query-based systems. Based on the idea of "sticky noise", Diffix has been recently proposed as a novel query-based mechanism satisfying alone the EU Article~29 Working Party's definition of anonymization. According to its authors, Diffix adds less noise to answers than solutions based on differential privacy while allowing for an unlimited number of queries. This paper presents a new class of noise-exploitation attacks, exploiting the noise added by the system to infer private information about individuals in the dataset. Our first differential attack uses samples extracted from Diffix in a likelihood ratio test to discriminate between two probability distributions. We show that using this attack against a synthetic best-case dataset allows us to infer private information with 89.4% accuracy using only 5 attributes. Our second cloning attack uses dummy conditions that conditionally strongly affect the output of the query depending on the value of the private attribute. Using this attack on four real-world datasets, we show that we can infer private attributes of at least 93% of the users in the dataset with accuracy between 93.3% and 97.1%, issuing a median of 304 queries per user. We show how to optimize this attack, targeting 55.4% of the users and achieving 91.7% accuracy, using a maximum of only 32 queries per user. Our attacks demonstrate that adding data-dependent noise, as done by Diffix, is not sufficient to prevent inference of private attributes. We furthermore argue that Diffix alone fails to satisfy Art. 29 WP's definition of anonymization. [...]
Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces
This paper presents the machine learning architecture of the Snips Voice Platform, a software solution to perform Spoken Language Understanding on microprocessors typical of IoT devices. The embedded inference is fast and accurate while enforcing privacy by design, as no personal user data is ever collected. Focusing on Automatic Speech Recognition and Natural Language Understanding, we detail our approach to training high-performance Machine Learning models that are small enough to run in real-time on small devices. Additionally, we describe a data generation procedure that provides sufficient, high-quality training data without compromising user privacy.
On Convergence of Federated Averaging Langevin Dynamics
We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero.
Revisiting Locally Differentially Private Protocols: Towards Better Trade-offs in Privacy, Utility, and Attack Resistance
Local Differential Privacy (LDP) offers strong privacy protection, especially in settings in which the server collecting the data is untrusted. However, designing LDP mechanisms that achieve an optimal trade-off between privacy, utility, and robustness to adversarial inference attacks remains challenging. In this work, we introduce a general multi-objective optimization framework for refining LDP protocols, enabling the joint optimization of privacy and utility under various adversarial settings. While our framework is flexible enough to accommodate multiple privacy and security attacks as well as utility metrics, in this paper we specifically optimize for Attacker Success Rate (ASR) under distinguishability attack as a measure of privacy and Mean Squared Error (MSE) as a measure of utility. We systematically revisit these trade-offs by analyzing eight state-of-the-art LDP protocols and proposing refined counterparts that leverage tailored optimization techniques. Experimental results demonstrate that our proposed adaptive mechanisms consistently outperform their non-adaptive counterparts, reducing ASR by up to five orders of magnitude while maintaining competitive utility. Analytical derivations also confirm the effectiveness of our mechanisms, moving them closer to the ASR-MSE Pareto frontier.
Privacy-Preserving In-Context Learning with Differentially Private Few-Shot Generation
We study the problem of in-context learning (ICL) with large language models (LLMs) on private datasets. This scenario poses privacy risks, as LLMs may leak or regurgitate the private examples demonstrated in the prompt. We propose a novel algorithm that generates synthetic few-shot demonstrations from the private dataset with formal differential privacy (DP) guarantees, and show empirically that it can achieve effective ICL. We conduct extensive experiments on standard benchmarks and compare our algorithm with non-private ICL and zero-shot solutions. Our results demonstrate that our algorithm can achieve competitive performance with strong privacy levels. These results open up new possibilities for ICL with privacy protection for a broad range of applications.
Differentially Private Synthetic Data via Foundation Model APIs 2: Text
Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications. Our code and data are available at https://github.com/AI-secure/aug-pe.
Lessons from the AdKDD'21 Privacy-Preserving ML Challenge
Designing data sharing mechanisms providing performance and strong privacy guarantees is a hot topic for the Online Advertising industry. Namely, a prominent proposal discussed under the Improving Web Advertising Business Group at W3C only allows sharing advertising signals through aggregated, differentially private reports of past displays. To study this proposal extensively, an open Privacy-Preserving Machine Learning Challenge took place at AdKDD'21, a premier workshop on Advertising Science with data provided by advertising company Criteo. In this paper, we describe the challenge tasks, the structure of the available datasets, report the challenge results, and enable its full reproducibility. A key finding is that learning models on large, aggregated data in the presence of a small set of unaggregated data points can be surprisingly efficient and cheap. We also run additional experiments to observe the sensitivity of winning methods to different parameters such as privacy budget or quantity of available privileged side information. We conclude that the industry needs either alternate designs for private data sharing or a breakthrough in learning with aggregated data only to keep ad relevance at a reasonable level.
Secure Transformer Inference Protocol
Security of model parameters and user data is critical for Transformer-based services, such as ChatGPT. While recent strides in secure two-party protocols have successfully addressed security concerns in serving Transformer models, their adoption is practically infeasible due to the prohibitive cryptographic overheads involved. Drawing insights from our hands-on experience in developing two real-world Transformer-based services, we identify the inherent efficiency bottleneck in the two-party assumption. To overcome this limitation, we propose a novel three-party threat model. Within this framework, we design a semi-symmetric permutation-based protection scheme and present STIP, the first secure Transformer inference protocol without any inference accuracy loss. Experiments on representative Transformer models in real systems show that STIP has practical security and outperforms state-of-the-art secure two-party protocols in efficiency by millions of times.
One-shot Empirical Privacy Estimation for Federated Learning
Privacy estimation techniques for differentially private (DP) algorithms are useful for comparing against analytical bounds, or to empirically measure privacy loss in settings where known analytical bounds are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowledge of intermediate model iterates or the training data distribution), are tailored to specific tasks, model architectures, or DP algorithm, and/or require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federated settings where model training can take days or weeks. In this work, we present a novel ``one-shot'' approach that can systematically address these challenges, allowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters, and without requiring any a priori knowledge about the model architecture, task, or DP training algorithm. We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism, and we demonstrate its performance on well-established FL benchmark datasets under several adversarial threat models.
PrivPAS: A real time Privacy-Preserving AI System and applied ethics
With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data, achieves an F1-score of 73.1%.
Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings
Machine learning models in health care are often deployed in settings where it is important to protect patient privacy. In such settings, methods for differentially private (DP) learning provide a general-purpose approach to learn models with privacy guarantees. Modern methods for DP learning ensure privacy through mechanisms that censor information judged as too unique. The resulting privacy-preserving models, therefore, neglect information from the tails of a data distribution, resulting in a loss of accuracy that can disproportionately affect small groups. In this paper, we study the effects of DP learning in health care. We use state-of-the-art methods for DP learning to train privacy-preserving models in clinical prediction tasks, including x-ray classification of images and mortality prediction in time series data. We use these models to perform a comprehensive empirical investigation of the tradeoffs between privacy, utility, robustness to dataset shift, and fairness. Our results highlight lesser-known limitations of methods for DP learning in health care, models that exhibit steep tradeoffs between privacy and utility, and models whose predictions are disproportionately influenced by large demographic groups in the training data. We discuss the costs and benefits of differentially private learning in health care.
Towards Building the Federated GPT: Federated Instruction Tuning
While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.
Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized Language Model Finetuning Using Shared Randomness
Language model training in distributed settings is limited by the communication cost of gradient exchanges. In this short note, we extend recent work from Malladi et al. (2023), using shared randomness to perform distributed fine-tuning with low bandwidth. The method is a natural decentralized extension of memory-efficient Simultaneous Perturbation Stochastic Approximation (SPSA). Each iteration, each machine seeds a Random Number Generator (RNG) to perform local reproducible perturbations on model weights and calculate and exchange scalar projected gradients, which are then used to update each model. By using a (machine, sample) identifier as the random seed, each model can regenerate one another's perturbations. As machines only exchange single-byte projected gradients, this is highly communication efficient. There are also potential privacy benefits, as projected gradients may be calculated on different training data, and models never access the other's data. Our approach not only drastically reduces communication bandwidth requirements but also accommodates dynamic addition or removal of machines during the training process and retains the memory-efficient and inference-only advantages of recent work. We perform proof-of-concept experiments to demonstrate the potential usefulness of this method, building off of rich literature on distributed optimization and memory-efficient training.
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
We introduce new differentially private (DP) mechanisms for gradient-based machine learning (ML) with multiple passes (epochs) over a dataset, substantially improving the achievable privacy-utility-computation tradeoffs. We formalize the problem of DP mechanisms for adaptive streams with multiple participations and introduce a non-trivial extension of online matrix factorization DP mechanisms to our setting. This includes establishing the necessary theory for sensitivity calculations and efficient computation of optimal matrices. For some applications like >!! 10,000 SGD steps, applying these optimal techniques becomes computationally expensive. We thus design an efficient Fourier-transform-based mechanism with only a minor utility loss. Extensive empirical evaluation on both example-level DP for image classification and user-level DP for language modeling demonstrate substantial improvements over all previous methods, including the widely-used DP-SGD . Though our primary application is to ML, our main DP results are applicable to arbitrary linear queries and hence may have much broader applicability.
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
Differential privacy (DP) is by far the most widely accepted framework for mitigating privacy risks in machine learning. However, exactly how small the privacy parameter epsilon needs to be to protect against certain privacy risks in practice is still not well-understood. In this work, we study data reconstruction attacks for discrete data and analyze it under the framework of multiple hypothesis testing. We utilize different variants of the celebrated Fano's inequality to derive upper bounds on the inferential power of a data reconstruction adversary when the model is trained differentially privately. Importantly, we show that if the underlying private data takes values from a set of size M, then the target privacy parameter epsilon can be O(log M) before the adversary gains significant inferential power. Our analysis offers theoretical evidence for the empirical effectiveness of DP against data reconstruction attacks even at relatively large values of epsilon.
Post-processing Private Synthetic Data for Improving Utility on Selected Measures
Existing private synthetic data generation algorithms are agnostic to downstream tasks. However, end users may have specific requirements that the synthetic data must satisfy. Failure to meet these requirements could significantly reduce the utility of the data for downstream use. We introduce a post-processing technique that improves the utility of the synthetic data with respect to measures selected by the end user, while preserving strong privacy guarantees and dataset quality. Our technique involves resampling from the synthetic data to filter out samples that do not meet the selected utility measures, using an efficient stochastic first-order algorithm to find optimal resampling weights. Through comprehensive numerical experiments, we demonstrate that our approach consistently improves the utility of synthetic data across multiple benchmark datasets and state-of-the-art synthetic data generation algorithms.
Analyzing Leakage of Personally Identifiable Information in Language Models
Language Models (LMs) have been shown to leak information about training data through sentence-level membership inference and reconstruction attacks. Understanding the risk of LMs leaking Personally Identifiable Information (PII) has received less attention, which can be attributed to the false assumption that dataset curation techniques such as scrubbing are sufficient to prevent PII leakage. Scrubbing techniques reduce but do not prevent the risk of PII leakage: in practice scrubbing is imperfect and must balance the trade-off between minimizing disclosure and preserving the utility of the dataset. On the other hand, it is unclear to which extent algorithmic defenses such as differential privacy, designed to guarantee sentence- or user-level privacy, prevent PII disclosure. In this work, we introduce rigorous game-based definitions for three types of PII leakage via black-box extraction, inference, and reconstruction attacks with only API access to an LM. We empirically evaluate the attacks against GPT-2 models fine-tuned with and without defenses in three domains: case law, health care, and e-mails. Our main contributions are (i) novel attacks that can extract up to 10times more PII sequences than existing attacks, (ii) showing that sentence-level differential privacy reduces the risk of PII disclosure but still leaks about 3% of PII sequences, and (iii) a subtle connection between record-level membership inference and PII reconstruction. Code to reproduce all experiments in the paper is available at https://github.com/microsoft/analysing_pii_leakage.
Subject Membership Inference Attacks in Federated Learning
Privacy attacks on Machine Learning (ML) models often focus on inferring the existence of particular data points in the training data. However, what the adversary really wants to know is if a particular individual's (subject's) data was included during training. In such scenarios, the adversary is more likely to have access to the distribution of a particular subject than actual records. Furthermore, in settings like cross-silo Federated Learning (FL), a subject's data can be embodied by multiple data records that are spread across multiple organizations. Nearly all of the existing private FL literature is dedicated to studying privacy at two granularities -- item-level (individual data records), and user-level (participating user in the federation), neither of which apply to data subjects in cross-silo FL. This insight motivates us to shift our attention from the privacy of data records to the privacy of data subjects, also known as subject-level privacy. We propose two novel black-box attacks for subject membership inference, of which one assumes access to a model after each training round. Using these attacks, we estimate subject membership inference risk on real-world data for single-party models as well as FL scenarios. We find our attacks to be extremely potent, even without access to exact training records, and using the knowledge of membership for a handful of subjects. To better understand the various factors that may influence subject privacy risk in cross-silo FL settings, we systematically generate several hundred synthetic federation configurations, varying properties of the data, model design and training, and the federation itself. Finally, we investigate the effectiveness of Differential Privacy in mitigating this threat.
A New Federated Learning Framework Against Gradient Inversion Attacks
Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data. However, recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA) and, consequently, a variety of privacy-preserving methods have been integrated into FL to thwart such attacks, such as Secure Multi-party Computing (SMC), Homomorphic Encryption (HE), and Differential Privacy (DP). Despite their ability to protect data privacy, these approaches inherently involve substantial privacy-utility trade-offs. By revisiting the key to privacy exposure in FL under GIA, which lies in the frequent sharing of model gradients that contain private data, we take a new perspective by designing a novel privacy preserve FL framework that effectively ``breaks the direct connection'' between the shared parameters and the local private data to defend against GIA. Specifically, we propose a Hypernetwork Federated Learning (HyperFL) framework that utilizes hypernetworks to generate the parameters of the local model and only the hypernetwork parameters are uploaded to the server for aggregation. Theoretical analyses demonstrate the convergence rate of the proposed HyperFL, while extensive experimental results show the privacy-preserving capability and comparable performance of HyperFL. Code is available at https://github.com/Pengxin-Guo/HyperFL.
Speaker Anonymization with Phonetic Intermediate Representations
In this work, we propose a speaker anonymization pipeline that leverages high quality automatic speech recognition and synthesis systems to generate speech conditioned on phonetic transcriptions and anonymized speaker embeddings. Using phones as the intermediate representation ensures near complete elimination of speaker identity information from the input while preserving the original phonetic content as much as possible. Our experimental results on LibriSpeech and VCTK corpora reveal two key findings: 1) although automatic speech recognition produces imperfect transcriptions, our neural speech synthesis system can handle such errors, making our system feasible and robust, and 2) combining speaker embeddings from different resources is beneficial and their appropriate normalization is crucial. Overall, our final best system outperforms significantly the baselines provided in the Voice Privacy Challenge 2020 in terms of privacy robustness against a lazy-informed attacker while maintaining high intelligibility and naturalness of the anonymized speech.
Learning to Refuse: Towards Mitigating Privacy Risks in LLMs
Large language models (LLMs) exhibit remarkable capabilities in understanding and generating natural language. However, these models can inadvertently memorize private information, posing significant privacy risks. This study addresses the challenge of enabling LLMs to protect specific individuals' private data without the need for complete retraining. We propose \return, a Real-world pErsonal daTa UnleaRNing dataset, comprising 2,492 individuals from Wikipedia with associated QA pairs, to evaluate machine unlearning (MU) methods for protecting personal data in a realistic scenario. Additionally, we introduce the Name-Aware Unlearning Framework (NAUF) for Privacy Protection, which enables the model to learn which individuals' information should be protected without affecting its ability to answer questions related to other unrelated individuals. Our extensive experiments demonstrate that NAUF achieves a state-of-the-art average unlearning score, surpassing the best baseline method by 5.65 points, effectively protecting target individuals' personal data while maintaining the model's general capabilities.
Anonymizing Speech with Generative Adversarial Networks to Preserve Speaker Privacy
In order to protect the privacy of speech data, speaker anonymization aims for hiding the identity of a speaker by changing the voice in speech recordings. This typically comes with a privacy-utility trade-off between protection of individuals and usability of the data for downstream applications. One of the challenges in this context is to create non-existent voices that sound as natural as possible. In this work, we propose to tackle this issue by generating speaker embeddings using a generative adversarial network with Wasserstein distance as cost function. By incorporating these artificial embeddings into a speech-to-text-to-speech pipeline, we outperform previous approaches in terms of privacy and utility. According to standard objective metrics and human evaluation, our approach generates intelligible and content-preserving yet privacy-protecting versions of the original recordings.
Ingest-And-Ground: Dispelling Hallucinations from Continually-Pretrained LLMs with RAG
This paper presents new methods that have the potential to improve privacy process efficiency with LLM and RAG. To reduce hallucination, we continually pre-train the base LLM model with a privacy-specific knowledge base and then augment it with a semantic RAG layer. Our evaluations demonstrate that this approach enhances the model performance (as much as doubled metrics compared to out-of-box LLM) in handling privacy-related queries, by grounding responses with factual information which reduces inaccuracies.
On User-Level Private Convex Optimization
We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. (2021); Narayanan et al. (2022), but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with an output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.
Hyperparameter Tuning with Renyi Differential Privacy
For many differentially private algorithms, such as the prominent noisy stochastic gradient descent (DP-SGD), the analysis needed to bound the privacy leakage of a single training run is well understood. However, few studies have reasoned about the privacy leakage resulting from the multiple training runs needed to fine tune the value of the training algorithm's hyperparameters. In this work, we first illustrate how simply setting hyperparameters based on non-private training runs can leak private information. Motivated by this observation, we then provide privacy guarantees for hyperparameter search procedures within the framework of Renyi Differential Privacy. Our results improve and extend the work of Liu and Talwar (STOC 2019). Our analysis supports our previous observation that tuning hyperparameters does indeed leak private information, but we prove that, under certain assumptions, this leakage is modest, as long as each candidate training run needed to select hyperparameters is itself differentially private.
Federated Heavy Hitter Analytics with Local Differential Privacy
Federated heavy hitter analytics enables service providers to better understand the preferences of cross-party users by analyzing the most frequent items. As with federated learning, it faces challenges of privacy concerns, statistical heterogeneity, and expensive communication. Local differential privacy (LDP), as the de facto standard for privacy-preserving data collection, solves the privacy challenge by letting each user perturb her data locally and report the sanitized version. However, in federated settings, applying LDP complicates the other two challenges, due to the deteriorated utility by the injected LDP noise or increasing communication/computation costs by perturbation mechanism. To tackle these problems, we propose a novel target-aligning prefix tree mechanism satisfying epsilon-LDP, for federated heavy hitter analytics. In particular, we propose an adaptive extension strategy to address the inconsistencies between covering necessary prefixes and estimating heavy hitters within a party to enhance the utility. We also present a consensus-based pruning strategy that utilizes noisy prior knowledge from other parties to further align the inconsistency between finding heavy hitters in each party and providing reasonable frequency information to identify the global ones. To the best of our knowledge, our study is the first solution to the federated heavy hitter analytics in a cross-party setting while satisfying the stringent epsilon-LDP. Comprehensive experiments on both real-world and synthetic datasets confirm the effectiveness of our proposed mechanism.
SPA: Towards A Computational Friendly Cloud-Base and On-Devices Collaboration Seq2seq Personalized Generation
Large language models(LLMs) have shown its outperforming ability on various tasks and question answering. However, LLMs require high computation cost and large memory cost. At the same time, LLMs may cause privacy leakage when training or prediction procedure contains sensitive information. In this paper, we propose SPA(Side Plugin Adaption), a lightweight architecture for fast on-devices inference and privacy retaining on the constraints of strict on-devices computation and memory constraints. Compared with other on-devices seq2seq generation, SPA could make a fast and stable inference on low-resource constraints, allowing it to obtain cost effiency. Our method establish an interaction between a pretrained LLMs on-cloud and additive parameters on-devices, which could provide the knowledge on both pretrained LLMs and private personal feature.Further more, SPA provides a framework to keep feature-base parameters on private guaranteed but low computational devices while leave the parameters containing general information on the high computational devices.
Privacy- and Utility-Preserving NLP with Anonymized Data: A case study of Pseudonymization
This work investigates the effectiveness of different pseudonymization techniques, ranging from rule-based substitutions to using pre-trained Large Language Models (LLMs), on a variety of datasets and models used for two widely used NLP tasks: text classification and summarization. Our work provides crucial insights into the gaps between original and anonymized data (focusing on the pseudonymization technique) and model quality and fosters future research into higher-quality anonymization techniques to better balance the trade-offs between data protection and utility preservation. We make our code, pseudonymized datasets, and downstream models publicly available
A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data
Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.
A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
The rapid advancements in generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced, especially when personal information is utilized in the training datasets. In addition, there is an absence of a comprehensive evaluation framework capable of quantitatively measuring the quality of the generated synthetic data and their utility for downstream tasks. In response to this gap, we introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our experimental findings illuminate the trade-offs between various evaluation metrics in the context of synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and practitioners engaged with synthetic tabular data,, empowering them to judiciously determine the suitability of the generated data for their specific applications, with an emphasis on upholding user privacy.
Security and Privacy Issues in Wireless Mesh Networks: A Survey
This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Differentially private learning algorithms inject noise into the learning process. While the most common private learning algorithm, DP-SGD, adds independent Gaussian noise in each iteration, recent work on matrix factorization mechanisms has shown empirically that introducing correlations in the noise can greatly improve their utility. We characterize the asymptotic learning utility for any choice of the correlation function, giving precise analytical bounds for linear regression and as the solution to a convex program for general convex functions. We show, using these bounds, how correlated noise provably improves upon vanilla DP-SGD as a function of problem parameters such as the effective dimension and condition number. Moreover, our analytical expression for the near-optimal correlation function circumvents the cubic complexity of the semi-definite program used to optimize the noise correlation matrix in previous work. We validate our theory with experiments on private deep learning. Our work matches or outperforms prior work while being efficient both in terms of compute and memory.
Adapting General Disentanglement-Based Speaker Anonymization for Enhanced Emotion Preservation
A general disentanglement-based speaker anonymization system typically separates speech into content, speaker, and prosody features using individual encoders. This paper explores how to adapt such a system when a new speech attribute, for example, emotion, needs to be preserved to a greater extent. While existing systems are good at anonymizing speaker embeddings, they are not designed to preserve emotion. Two strategies for this are examined. First, we show that integrating emotion embeddings from a pre-trained emotion encoder can help preserve emotional cues, even though this approach slightly compromises privacy protection. Alternatively, we propose an emotion compensation strategy as a post-processing step applied to anonymized speaker embeddings. This conceals the original speaker's identity and reintroduces the emotional traits lost during speaker embedding anonymization. Specifically, we model the emotion attribute using support vector machines to learn separate boundaries for each emotion. During inference, the original speaker embedding is processed in two ways: one, by an emotion indicator to predict emotion and select the emotion-matched SVM accurately; and two, by a speaker anonymizer to conceal speaker characteristics. The anonymized speaker embedding is then modified along the corresponding SVM boundary towards an enhanced emotional direction to save the emotional cues. The proposed strategies are also expected to be useful for adapting a general disentanglement-based speaker anonymization system to preserve other target paralinguistic attributes, with potential for a range of downstream tasks.
Photonic Differential Privacy with Direct Feedback Alignment
Optical Processing Units (OPUs) -- low-power photonic chips dedicated to large scale random projections -- have been used in previous work to train deep neural networks using Direct Feedback Alignment (DFA), an effective alternative to backpropagation. Here, we demonstrate how to leverage the intrinsic noise of optical random projections to build a differentially private DFA mechanism, making OPUs a solution of choice to provide a private-by-design training. We provide a theoretical analysis of our adaptive privacy mechanism, carefully measuring how the noise of optical random projections propagates in the process and gives rise to provable Differential Privacy. Finally, we conduct experiments demonstrating the ability of our learning procedure to achieve solid end-task performance.
Disparate Impact on Group Accuracy of Linearization for Private Inference
Ensuring privacy-preserving inference on cryptographically secure data is a well-known computational challenge. To alleviate the bottleneck of costly cryptographic computations in non-linear activations, recent methods have suggested linearizing a targeted portion of these activations in neural networks. This technique results in significantly reduced runtimes with often negligible impacts on accuracy. In this paper, we demonstrate that such computational benefits may lead to increased fairness costs. Specifically, we find that reducing the number of ReLU activations disproportionately decreases the accuracy for minority groups compared to majority groups. To explain these observations, we provide a mathematical interpretation under restricted assumptions about the nature of the decision boundary, while also showing the prevalence of this problem across widely used datasets and architectures. Finally, we show how a simple procedure altering the fine-tuning step for linearized models can serve as an effective mitigation strategy.
Comparing Feature-based and Context-aware Approaches to PII Generalization Level Prediction
Protecting Personal Identifiable Information (PII) in text data is crucial for privacy, but current PII generalization methods face challenges such as uneven data distributions and limited context awareness. To address these issues, we propose two approaches: a feature-based method using machine learning to improve performance on structured inputs, and a novel context-aware framework that considers the broader context and semantic relationships between the original text and generalized candidates. The context-aware approach employs Multilingual-BERT for text representation, functional transformations, and mean squared error scoring to evaluate candidates. Experiments on the WikiReplace dataset demonstrate the effectiveness of both methods, with the context-aware approach outperforming the feature-based one across different scales. This work contributes to advancing PII generalization techniques by highlighting the importance of feature selection, ensemble learning, and incorporating contextual information for better privacy protection in text anonymization.
New Trends in Machine Translation using Large Language Models: Case Examples with ChatGPT
Machine Translation (MT) has made significant progress in recent years using deep learning, especially after the emergence of large language models (LLMs) such as GPT-3 and ChatGPT. This brings new challenges and opportunities for MT using LLMs. In this paper, we brainstorm some interesting directions for MT using LLMs, including stylized MT, interactive MT, and Translation Memory-based MT, as well as a new evaluation paradigm using LLMs. We also discuss the privacy concerns in MT using LLMs and a basic privacy-preserving method to mitigate such risks. To illustrate the potential of our proposed directions, we present several examples for the new directions mentioned above, demonstrating the feasibility of the proposed directions and highlight the opportunities and challenges for future research in MT using LLMs.
Neural Linguistic Steganography
Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text via synonym substitution or word order rearrangements. Advances in neural language models enable previously impractical generation-based techniques. We propose a steganography technique based on arithmetic coding with large-scale neural language models. We find that our approach can generate realistic looking cover sentences as evaluated by humans, while at the same time preserving security by matching the cover message distribution with the language model distribution.
DP-Fast MH: Private, Fast, and Accurate Metropolis-Hastings for Large-Scale Bayesian Inference
Bayesian inference provides a principled framework for learning from complex data and reasoning under uncertainty. It has been widely applied in machine learning tasks such as medical diagnosis, drug design, and policymaking. In these common applications, data can be highly sensitive. Differential privacy (DP) offers data analysis tools with powerful worst-case privacy guarantees and has been developed as the leading approach in privacy-preserving data analysis. In this paper, we study Metropolis-Hastings (MH), one of the most fundamental MCMC methods, for large-scale Bayesian inference under differential privacy. While most existing private MCMC algorithms sacrifice accuracy and efficiency to obtain privacy, we provide the first exact and fast DP MH algorithm, using only a minibatch of data in most iterations. We further reveal, for the first time, a three-way trade-off among privacy, scalability (i.e. the batch size), and efficiency (i.e. the convergence rate), theoretically characterizing how privacy affects the utility and computational cost in Bayesian inference. We empirically demonstrate the effectiveness and efficiency of our algorithm in various experiments.
Unified Locational Differential Privacy Framework
Aggregating statistics over geographical regions is important for many applications, such as analyzing income, election results, and disease spread. However, the sensitive nature of this data necessitates strong privacy protections to safeguard individuals. In this work, we present a unified locational differential privacy (DP) framework to enable private aggregation of various data types, including one-hot encoded, boolean, float, and integer arrays, over geographical regions. Our framework employs local DP mechanisms such as randomized response, the exponential mechanism, and the Gaussian mechanism. We evaluate our approach on four datasets representing significant location data aggregation scenarios. Results demonstrate the utility of our framework in providing formal DP guarantees while enabling geographical data analysis.
A 106K Multi-Topic Multilingual Conversational User Dataset with Emoticons
Instant messaging has become a predominant form of communication, with texts and emoticons enabling users to express emotions and ideas efficiently. Emoticons, in particular, have gained significant traction as a medium for conveying sentiments and information, leading to the growing importance of emoticon retrieval and recommendation systems. However, one of the key challenges in this area has been the absence of datasets that capture both the temporal dynamics and user-specific interactions with emoticons, limiting the progress of personalized user modeling and recommendation approaches. To address this, we introduce the emoticon dataset, a comprehensive resource that includes time-based data along with anonymous user identifiers across different conversations. As the largest publicly accessible emoticon dataset to date, it comprises 22K unique users, 370K emoticons, and 8.3M messages. The data was collected from a widely-used messaging platform across 67 conversations and 720 hours of crawling. Strict privacy and safety checks were applied to ensure the integrity of both text and image data. Spanning across 10 distinct domains, the emoticon dataset provides rich insights into temporal, multilingual, and cross-domain behaviors, which were previously unavailable in other emoticon-based datasets. Our in-depth experiments, both quantitative and qualitative, demonstrate the dataset's potential in modeling user behavior and personalized recommendation systems, opening up new possibilities for research in personalized retrieval and conversational AI. The dataset is freely accessible.
PrivShape: Extracting Shapes in Time Series under User-Level Local Differential Privacy
Time series have numerous applications in finance, healthcare, IoT, and smart city. In many of these applications, time series typically contain personal data, so privacy infringement may occur if they are released directly to the public. Recently, local differential privacy (LDP) has emerged as the state-of-the-art approach to protecting data privacy. However, existing works on LDP-based collections cannot preserve the shape of time series. A recent work, PatternLDP, attempts to address this problem, but it can only protect a finite group of elements in a time series due to {\omega}-event level privacy guarantee. In this paper, we propose PrivShape, a trie-based mechanism under user-level LDP to protect all elements. PrivShape first transforms a time series to reduce its length, and then adopts trie-expansion and two-level refinement to improve utility. By extensive experiments on real-world datasets, we demonstrate that PrivShape outperforms PatternLDP when adapted for offline use, and can effectively extract frequent shapes.
Multi-Task Differential Privacy Under Distribution Skew
We study the problem of multi-task learning under user-level differential privacy, in which n users contribute data to m tasks, each involving a subset of users. One important aspect of the problem, that can significantly impact quality, is the distribution skew among tasks. Certain tasks may have much fewer data samples than others, making them more susceptible to the noise added for privacy. It is natural to ask whether algorithms can adapt to this skew to improve the overall utility. We give a systematic analysis of the problem, by studying how to optimally allocate a user's privacy budget among tasks. We propose a generic algorithm, based on an adaptive reweighting of the empirical loss, and show that when there is task distribution skew, this gives a quantifiable improvement of excess empirical risk. Experimental studies on recommendation problems that exhibit a long tail of small tasks, demonstrate that our methods significantly improve utility, achieving the state of the art on two standard benchmarks.
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
Automated PII Extraction from Social Media for Raising Privacy Awareness: A Deep Transfer Learning Approach
Internet users have been exposing an increasing amount of Personally Identifiable Information (PII) on social media. Such exposed PII can cause severe losses to the users, and informing users of their PII exposure is crucial to raise their privacy awareness and encourage them to take protective measures. To this end, advanced automatic techniques are needed. While Information Extraction (IE) techniques can be used to extract the PII automatically, Deep Learning (DL)-based IE models alleviate the need for feature engineering and further improve the efficiency. However, DL-based IE models often require large-scale labeled data for training, but PII-labeled social media posts are difficult to obtain due to privacy concerns. Also, these models rely heavily on pre-trained word embeddings, while PII in social media often varies in forms and thus has no fixed representations in pre-trained word embeddings. In this study, we propose the Deep Transfer Learning for PII Extraction (DTL-PIIE) framework to address these two limitations. DTL-PIIE transfers knowledge learned from publicly available PII data to social media to address the problem of rare PII-labeled data. Moreover, our framework leverages Graph Convolutional Networks (GCNs) to incorporate syntactic patterns to guide PIIE without relying on pre-trained word embeddings. Evaluation against benchmark IE models indicates that our approach outperforms state-of-the-art DL-based IE models. Our framework can facilitate various applications, such as PII misuse prediction and privacy risk assessment, protecting the privacy of internet users.
Vertical Federated Graph Neural Network for Recommender System
Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.
Why Is Public Pretraining Necessary for Private Model Training?
In the privacy-utility tradeoff of a model trained on benchmark language and vision tasks, remarkable improvements have been widely reported with the use of pretraining on publicly available data. This is in part due to the benefits of transfer learning, which is the standard motivation for pretraining in non-private settings. However, the stark contrast in the improvement achieved through pretraining under privacy compared to non-private settings suggests that there may be a deeper, distinct cause driving these gains. To explain this phenomenon, we hypothesize that the non-convex loss landscape of a model training necessitates an optimization algorithm to go through two phases. In the first, the algorithm needs to select a good "basin" in the loss landscape. In the second, the algorithm solves an easy optimization within that basin. The former is a harder problem to solve with private data, while the latter is harder to solve with public data due to a distribution shift or data scarcity. Guided by this intuition, we provide theoretical constructions that provably demonstrate the separation between private training with and without public pretraining. Further, systematic experiments on CIFAR10 and LibriSpeech provide supporting evidence for our hypothesis.
Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models
Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data).
Data Poisoning Attacks to Locally Differentially Private Range Query Protocols
Trajectory data, which tracks movements through geographic locations, is crucial for improving real-world applications. However, collecting such sensitive data raises considerable privacy concerns. Local differential privacy (LDP) offers a solution by allowing individuals to locally perturb their trajectory data before sharing it. Despite its privacy benefits, LDP protocols are vulnerable to data poisoning attacks, where attackers inject fake data to manipulate aggregated results. In this work, we make the first attempt to analyze vulnerabilities in several representative LDP trajectory protocols. We propose TraP, a heuristic algorithm for data Poisoning attacks using a prefix-suffix method to optimize fake Trajectory selection, significantly reducing computational complexity. Our experimental results demonstrate that our attack can substantially increase target pattern occurrences in the perturbed trajectory dataset with few fake users. This study underscores the urgent need for robust defenses and better protocol designs to safeguard LDP trajectory data against malicious manipulation.
Federated Learning Approach for Lifetime Prediction of Semiconductor Lasers
A new privacy-preserving federated learning framework allowing laser manufacturers to collaboratively build a robust ML-based laser lifetime prediction model, is proposed. It achieves a mean absolute error of 0.1 years and a significant performance improvement
SFPrompt: Communication-Efficient Split Federated Fine-Tuning for Large Pre-Trained Models over Resource-Limited Devices
Large pre-trained models have exhibited remarkable achievements across various domains. The substantial training costs associated with these models have led to wide studies of fine-tuning for effectively harnessing their capabilities in solving downstream tasks. Yet, conventional fine-tuning approaches become infeasible when the model lacks access to downstream data due to privacy concerns. Naively integrating fine-tuning approaches with the emerging federated learning frameworks incurs substantial communication overhead and exerts high demand on local computing resources, making it impractical for common resource-limited devices. In this paper, we introduce SFPrompt, an innovative privacy-preserving fine-tuning method tailored for the federated setting where direct uploading of raw data is prohibited and local devices are resource-constrained to run a complete pre-trained model. In essence, SFPrompt judiciously combines split learning with federated learning to handle these challenges. Specifically, the pre-trained model is first partitioned into client and server components, thereby streamlining the client-side model and substantially alleviating computational demands on local resources. SFPrompt then introduces soft prompts into the federated model to enhance the fine-tuning performance. To further reduce communication costs, a novel dataset pruning algorithm and a local-loss update strategy are devised during the fine-tuning process. Extensive experiments demonstrate that SFPrompt delivers competitive performance as the federated full fine-tuning approach while consuming a mere 0.46% of local computing resources and incurring 53% less communication cost.
Federated Linear Contextual Bandits with User-level Differential Privacy
This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as ROBIN and show that it is near-optimal in terms of the number of clients M and the privacy budget varepsilon by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level (varepsilon,delta)-LDP must suffer a regret blow-up factor at least min{1/varepsilon,M} or min{1/varepsilon,M} under different conditions.
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Federated Learning (FL) systems are gaining popularity as a solution to training Machine Learning (ML) models from large-scale user data collected on personal devices (e.g., smartphones) without their raw data leaving the device. At the core of FL is a network of anonymous user devices sharing training information (model parameter updates) computed locally on personal data. However, the type and degree to which user-specific information is encoded in the model updates is poorly understood. In this paper, we identify model updates encode subtle variations in which users capture and generate data. The variations provide a strong statistical signal, allowing an adversary to effectively deanonymize participating devices using a limited set of auxiliary data. We analyze resulting deanonymization attacks on diverse tasks on real-world (anonymized) user-generated data across a range of closed- and open-world scenarios. We study various strategies to mitigate the risks of deanonymization. As random perturbation methods do not offer convincing operating points, we propose data-augmentation strategies which introduces adversarial biases in device data and thereby, offer substantial protection against deanonymization threats with little effect on utility.
On Differentially Private String Distances
Given a database of bit strings A_1,ldots,A_min {0,1}^n, a fundamental data structure task is to estimate the distances between a given query Bin {0,1}^n with all the strings in the database. In addition, one might further want to ensure the integrity of the database by releasing these distance statistics in a secure manner. In this work, we propose differentially private (DP) data structures for this type of tasks, with a focus on Hamming and edit distance. On top of the strong privacy guarantees, our data structures are also time- and space-efficient. In particular, our data structure is epsilon-DP against any sequence of queries of arbitrary length, and for any query B such that the maximum distance to any string in the database is at most k, we output m distance estimates. Moreover, - For Hamming distance, our data structure answers any query in widetilde O(mk+n) time and each estimate deviates from the true distance by at most widetilde O(k/e^{epsilon/log k}); - For edit distance, our data structure answers any query in widetilde O(mk^2+n) time and each estimate deviates from the true distance by at most widetilde O(k/e^{epsilon/(log k log n)}). For moderate k, both data structures support sublinear query operations. We obtain these results via a novel adaptation of the randomized response technique as a bit flipping procedure, applied to the sketched strings.
Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms
We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm. We discover that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise, which is different from traditional differential privacy mechanisms. In our analysis, a novel perturbation method tailored for SVD (singular value decomposition) and low-rank matrix approximation problems is introduced. Using the perturbation method and random matrix theory, we are able to derive that both the quantum and quantum-inspired-classical algorithms are big(mathcal{O}big(frac 1nbig),,, mathcal{O}big(1{min{m,n}}big)big)-DP under some reasonable restrictions, where m and n are numbers of users and products in the input preference database respectively. Nevertheless, a comparison shows that the quantum algorithm has better privacy preserving potential than the classical one.
SentinelLMs: Encrypted Input Adaptation and Fine-tuning of Language Models for Private and Secure Inference
This paper addresses the privacy and security concerns associated with deep neural language models, which serve as crucial components in various modern AI-based applications. These models are often used after being pre-trained and fine-tuned for specific tasks, with deployment on servers accessed through the internet. However, this introduces two fundamental risks: (a) the transmission of user inputs to the server via the network gives rise to interception vulnerabilities, and (b) privacy concerns emerge as organizations that deploy such models store user data with restricted context. To address this, we propose a novel method to adapt and fine-tune transformer-based language models on passkey-encrypted user-specific text. The original pre-trained language model first undergoes a quick adaptation (without any further pre-training) with a series of irreversible transformations applied to the tokenizer and token embeddings. This enables the model to perform inference on encrypted inputs while preventing reverse engineering of text from model parameters and intermediate outputs. After adaptation, models are fine-tuned on encrypted versions of existing training datasets. Experimental evaluation employing adapted versions of renowned models (e.g., BERT, RoBERTa) across established benchmark English and multilingual datasets for text classification and sequence labeling shows that encrypted models achieve performance parity with their original counterparts. This serves to safeguard performance, privacy, and security cohesively.
Adversarial Disentanglement of Speaker Representation for Attribute-Driven Privacy Preservation
In speech technologies, speaker's voice representation is used in many applications such as speech recognition, voice conversion, speech synthesis and, obviously, user authentication. Modern vocal representations of the speaker are based on neural embeddings. In addition to the targeted information, these representations usually contain sensitive information about the speaker, like the age, sex, physical state, education level or ethnicity. In order to allow the user to choose which information to protect, we introduce in this paper the concept of attribute-driven privacy preservation in speaker voice representation. It allows a person to hide one or more personal aspects to a potential malicious interceptor and to the application provider. As a first solution to this concept, we propose to use an adversarial autoencoding method that disentangles in the voice representation a given speaker attribute thus allowing its concealment. We focus here on the sex attribute for an Automatic Speaker Verification (ASV) task. Experiments carried out using the VoxCeleb datasets have shown that the proposed method enables the concealment of this attribute while preserving ASV ability.
An Anonymous Authentication and Communication Protocol for Wireless Mesh Networks
Wireless mesh networks (WMNs) have emerged as a key technology for next generation wireless broadband networks showing rapid progress and inspiring numerous compelling applications. A WMN comprises of a set of mesh routers (MRs) and mesh clients (MCs), where MRs are connected to the Internet backbone through the Internet gateways (IGWs). The MCs are wireless devices and communicate among themselves over possibly multi-hop paths with or without the involvement of MRs. User privacy and security have been primary concerns in WMNs due to their peer-to-peer network topology, shared wireless medium, stringent resource constraints, and highly dynamic environment. Moreover, to support real-time applications, WMNs must also be equipped with robust, reliable and efficient communication protocols so as to minimize the end-to-end latency and packet drops. Design of a secure and efficient communication protocol for WMNs, therefore, is of paramount importance. In this paper, we propose a security and privacy protocol that provides security and user anonymity while maintaining communication efficiency in a WMN. The security protocol ensures secure authentication and encryption in access and the backbone networks. The user anonymity, authentication and data privacy is achieved by application of a protocol that is based on Rivest's ring signature scheme. Simulation results demonstrate that while the protocols have minimal storage and communication overhead, they are robust and provide high level of security and privacy to the users of the network services.
Improving LoRA in Privacy-preserving Federated Learning
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models for its good performance and computational efficiency. LoRA injects a product of two trainable rank decomposition matrices over the top of each frozen pre-trained model module. However, when applied in the setting of privacy-preserving federated learning (FL), LoRA may become unstable due to the following facts: 1) the effects of data heterogeneity and multi-step local updates are non-negligible, 2) additive noise enforced on updating gradients to guarantee differential privacy (DP) can be amplified and 3) the final performance is susceptible to hyper-parameters. A key factor leading to these phenomena is the discordance between jointly optimizing the two low-rank matrices by local clients and separately aggregating them by the central server. Thus, this paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges and further halve the communication cost of federated fine-tuning LLMs. The core idea of FFA-LoRA is to fix the randomly initialized non-zero matrices and only fine-tune the zero-initialized matrices. Compared to LoRA, FFA-LoRA is motivated by practical and theoretical benefits in privacy-preserved FL. Our experiments demonstrate that FFA-LoRA provides more consistent performance with better computational efficiency over vanilla LoRA in various FL tasks.
One-Shot Federated Conformal Prediction
In this paper, we introduce a conformal prediction method to construct prediction sets in a oneshot federated learning setting. More specifically, we define a quantile-of-quantiles estimator and prove that for any distribution, it is possible to output prediction sets with desired coverage in only one round of communication. To mitigate privacy issues, we also describe a locally differentially private version of our estimator. Finally, over a wide range of experiments, we show that our method returns prediction sets with coverage and length very similar to those obtained in a centralized setting. Overall, these results demonstrate that our method is particularly well-suited to perform conformal predictions in a one-shot federated learning setting.
The Price of Differential Privacy under Continual Observation
We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is tilde Omega(T^{1/3}) times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in T) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation -- specifically, those that require selecting the largest of a set of sums -- are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest.
Circa: Stochastic ReLUs for Private Deep Learning
The simultaneous rise of machine learning as a service and concerns over user privacy have increasingly motivated the need for private inference (PI). While recent work demonstrates PI is possible using cryptographic primitives, the computational overheads render it impractical. The community is largely unprepared to address these overheads, as the source of slowdown in PI stems from the ReLU operator whereas optimizations for plaintext inference focus on optimizing FLOPs. In this paper we re-think the ReLU computation and propose optimizations for PI tailored to properties of neural networks. Specifically, we reformulate ReLU as an approximate sign test and introduce a novel truncation method for the sign test that significantly reduces the cost per ReLU. These optimizations result in a specific type of stochastic ReLU. The key observation is that the stochastic fault behavior is well suited for the fault-tolerant properties of neural network inference. Thus, we provide significant savings without impacting accuracy. We collectively call the optimizations Circa and demonstrate improvements of up to 4.7x storage and 3x runtime over baseline implementations; we further show that Circa can be used on top of recent PI optimizations to obtain 1.8x additional speedup.
Towards Near-imperceptible Steganographic Text
We show that the imperceptibility of several existing linguistic steganographic systems (Fang et al., 2017; Yang et al., 2018) relies on implicit assumptions on statistical behaviors of fluent text. We formally analyze them and empirically evaluate these assumptions. Furthermore, based on these observations, we propose an encoding algorithm called patient-Huffman with improved near-imperceptible guarantees.
GPT-4 Is Too Smart To Be Safe: Stealthy Chat with LLMs via Cipher
Safety lies at the core of the development of Large Language Models (LLMs). There is ample work on aligning LLMs with human ethics and preferences, including data filtering in pretraining, supervised fine-tuning, reinforcement learning from human feedback, and red teaming, etc. In this study, we discover that chat in cipher can bypass the safety alignment techniques of LLMs, which are mainly conducted in natural languages. We propose a novel framework CipherChat to systematically examine the generalizability of safety alignment to non-natural languages -- ciphers. CipherChat enables humans to chat with LLMs through cipher prompts topped with system role descriptions and few-shot enciphered demonstrations. We use CipherChat to assess state-of-the-art LLMs, including ChatGPT and GPT-4 for different representative human ciphers across 11 safety domains in both English and Chinese. Experimental results show that certain ciphers succeed almost 100% of the time to bypass the safety alignment of GPT-4 in several safety domains, demonstrating the necessity of developing safety alignment for non-natural languages. Notably, we identify that LLMs seem to have a ''secret cipher'', and propose a novel SelfCipher that uses only role play and several demonstrations in natural language to evoke this capability. SelfCipher surprisingly outperforms existing human ciphers in almost all cases. Our code and data will be released at https://github.com/RobustNLP/CipherChat.
TAROT: Task-Oriented Authorship Obfuscation Using Policy Optimization Methods
Authorship obfuscation aims to disguise the identity of an author within a text by altering the writing style, vocabulary, syntax, and other linguistic features associated with the text author. This alteration needs to balance privacy and utility. While strong obfuscation techniques can effectively hide the author's identity, they often degrade the quality and usefulness of the text for its intended purpose. Conversely, maintaining high utility tends to provide insufficient privacy, making it easier for an adversary to de-anonymize the author. Thus, achieving an optimal trade-off between these two conflicting objectives is crucial. In this paper, we propose TAROT: Task-Oriented Authorship Obfuscation Using Policy Optimization, a new unsupervised authorship obfuscation method whose goal is to optimize the privacy-utility trade-off by regenerating the entire text considering its downstream utility. Our approach leverages policy optimization as a fine-tuning paradigm over small language models in order to rewrite texts by preserving author identity and downstream task utility. We show that our approach largely reduce the accuracy of attackers while preserving utility. We make our code and models publicly available.
Differentially Private Distributed Bayesian Linear Regression with MCMC
We propose a novel Bayesian inference framework for distributed differentially private linear regression. We consider a distributed setting where multiple parties hold parts of the data and share certain summary statistics of their portions in privacy-preserving noise. We develop a novel generative statistical model for privately shared statistics, which exploits a useful distributional relation between the summary statistics of linear regression. Bayesian estimation of the regression coefficients is conducted mainly using Markov chain Monte Carlo algorithms, while we also provide a fast version to perform Bayesian estimation in one iteration. The proposed methods have computational advantages over their competitors. We provide numerical results on both real and simulated data, which demonstrate that the proposed algorithms provide well-rounded estimation and prediction.
LazyDP: Co-Designing Algorithm-Software for Scalable Training of Differentially Private Recommendation Models
Differential privacy (DP) is widely being employed in the industry as a practical standard for privacy protection. While private training of computer vision or natural language processing applications has been studied extensively, the computational challenges of training of recommender systems (RecSys) with DP have not been explored. In this work, we first present our detailed characterization of private RecSys training using DP-SGD, root-causing its several performance bottlenecks. Specifically, we identify DP-SGD's noise sampling and noisy gradient update stage to suffer from a severe compute and memory bandwidth limitation, respectively, causing significant performance overhead in training private RecSys. Based on these findings, we propose LazyDP, an algorithm-software co-design that addresses the compute and memory challenges of training RecSys with DP-SGD. Compared to a state-of-the-art DP-SGD training system, we demonstrate that LazyDP provides an average 119x training throughput improvement while also ensuring mathematically equivalent, differentially private RecSys models to be trained.
Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning
Large Language Models (LLMs) are known to memorize significant portions of their training data. Parts of this memorized content have been shown to be extractable by simply querying the model, which poses a privacy risk. We present a novel approach which uses prompt-tuning to control the extraction rates of memorized content in LLMs. We present two prompt training strategies to increase and decrease extraction rates, which correspond to an attack and a defense, respectively. We demonstrate the effectiveness of our techniques by using models from the GPT-Neo family on a public benchmark. For the 1.3B parameter GPT-Neo model, our attack yields a 9.3 percentage point increase in extraction rate compared to our baseline. Our defense can be tuned to achieve different privacy-utility trade-offs by a user-specified hyperparameter. We achieve an extraction rate reduction of up to 97.7% relative to our baseline, with a perplexity increase of 16.9%.
Privacy-Preserving In-Context Learning for Large Language Models
In-context learning (ICL) is an important capability of Large Language Models (LLMs), enabling these models to dynamically adapt based on specific, in-context exemplars, thereby improving accuracy and relevance. However, LLM's responses may leak the sensitive private information contained in in-context exemplars. To address this challenge, we propose Differentially Private In-context Learning (DP-ICL), a general paradigm for privatizing ICL tasks. The key idea for DP-ICL paradigm is generating differentially private responses through a noisy consensus among an ensemble of LLM's responses based on disjoint exemplar sets. Based on the general paradigm of DP-ICL, we instantiate several techniques showing how to privatize ICL for text classification and language generation. We evaluate DP-ICL on four text classification benchmarks and two language generation tasks, and our empirical results show that DP-ICL achieves a strong utility-privacy tradeoff.
Efficiently Computing Similarities to Private Datasets
Many methods in differentially private model training rely on computing the similarity between a query point (such as public or synthetic data) and private data. We abstract out this common subroutine and study the following fundamental algorithmic problem: Given a similarity function f and a large high-dimensional private dataset X subset R^d, output a differentially private (DP) data structure which approximates sum_{x in X} f(x,y) for any query y. We consider the cases where f is a kernel function, such as f(x,y) = e^{-|x-y|_2^2/sigma^2} (also known as DP kernel density estimation), or a distance function such as f(x,y) = |x-y|_2, among others. Our theoretical results improve upon prior work and give better privacy-utility trade-offs as well as faster query times for a wide range of kernels and distance functions. The unifying approach behind our results is leveraging `low-dimensional structures' present in the specific functions f that we study, using tools such as provable dimensionality reduction, approximation theory, and one-dimensional decomposition of the functions. Our algorithms empirically exhibit improved query times and accuracy over prior state of the art. We also present an application to DP classification. Our experiments demonstrate that the simple methodology of classifying based on average similarity is orders of magnitude faster than prior DP-SGD based approaches for comparable accuracy.
Harnessing large-language models to generate private synthetic text
Differentially private (DP) training methods like DP-SGD can protect sensitive training data by ensuring that ML models will not reveal private information. An alternative approach, which this paper studies, is to use a sensitive dataset to generate a new synthetic dataset which is differentially private with respect to the original data. Doing so has several advantages: synthetic data can be reused for other tasks (including for hyper parameter tuning), retained indefinitely, or shared with third parties without sacrificing privacy. However, obtaining DP data is much harder than introducing DP during training. To make it feasible for text, recent work has utilized public data by starting with a pre-trained generative language model and privately finetuning it on sensitive data. This model can be used to sample a DP synthetic dataset. While this strategy seems straightforward, executing it has proven problematic. Previous approaches either show significant performance loss, or have, as we show, critical design flaws. In this paper we demonstrate that a proper training objective along with tuning fewer parameters results in excellent DP synthetic data quality. Our approach is competitive with direct DP-training of downstream classifiers in terms of performance on downstream tasks. We also demonstrate that our DP synthetic data is not only useful for downstream classifier training, but also to tune those same models.
FairProof : Confidential and Certifiable Fairness for Neural Networks
Machine learning models are increasingly used in societal applications, yet legal and privacy concerns demand that they very often be kept confidential. Consequently, there is a growing distrust about the fairness properties of these models in the minds of consumers, who are often at the receiving end of model predictions. To this end, we propose \name -- a system that uses Zero-Knowledge Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while maintaining confidentiality. We also propose a fairness certification algorithm for fully-connected neural networks which is befitting to ZKPs and is used in this system. We implement \name in Gnark and demonstrate empirically that our system is practically feasible. Code is available at https://github.com/infinite-pursuits/FairProof.
Personalized Dialogue Generation with Diversified Traits
Endowing a dialogue system with particular personality traits is essential to deliver more human-like conversations. However, due to the challenge of embodying personality via language expression and the lack of large-scale persona-labeled dialogue data, this research problem is still far from well-studied. In this paper, we investigate the problem of incorporating explicit personality traits in dialogue generation to deliver personalized dialogues. To this end, firstly, we construct PersonalDialog, a large-scale multi-turn dialogue dataset containing various traits from a large number of speakers. The dataset consists of 20.83M sessions and 56.25M utterances from 8.47M speakers. Each utterance is associated with a speaker who is marked with traits like Age, Gender, Location, Interest Tags, etc. Several anonymization schemes are designed to protect the privacy of each speaker. This large-scale dataset will facilitate not only the study of personalized dialogue generation, but also other researches on sociolinguistics or social science. Secondly, to study how personality traits can be captured and addressed in dialogue generation, we propose persona-aware dialogue generation models within the sequence to sequence learning framework. Explicit personality traits (structured by key-value pairs) are embedded using a trait fusion module. During the decoding process, two techniques, namely persona-aware attention and persona-aware bias, are devised to capture and address trait-related information. Experiments demonstrate that our model is able to address proper traits in different contexts. Case studies also show interesting results for this challenging research problem.
Decision Making with Differential Privacy under a Fairness Lens
Agencies, such as the U.S. Census Bureau, release data sets and statistics about groups of individuals that are used as input to a number of critical decision processes. To conform to privacy and confidentiality requirements, these agencies are often required to release privacy-preserving versions of the data. This paper studies the release of differentially private data sets and analyzes their impact on some critical resource allocation tasks under a fairness perspective. {The paper shows that, when the decisions take as input differentially private data}, the noise added to achieve privacy disproportionately impacts some groups over others. The paper analyzes the reasons for these disproportionate impacts and proposes guidelines to mitigate these effects. The proposed approaches are evaluated on critical decision problems that use differentially private census data.
Data Minimization at Inference Time
In domains with high stakes such as law, recruitment, and healthcare, learning models frequently rely on sensitive user data for inference, necessitating the complete set of features. This not only poses significant privacy risks for individuals but also demands substantial human effort from organizations to verify information accuracy. This paper asks whether it is necessary to use all input features for accurate predictions at inference time. The paper demonstrates that, in a personalized setting, individuals may only need to disclose a small subset of their features without compromising decision-making accuracy. The paper also provides an efficient sequential algorithm to determine the appropriate attributes for each individual to provide. Evaluations across various learning tasks show that individuals can potentially report as little as 10\% of their information while maintaining the same accuracy level as a model that employs the full set of user information.
Synthetic Data Privacy Metrics
Recent advancements in generative AI have made it possible to create synthetic datasets that can be as accurate as real-world data for training AI models, powering statistical insights, and fostering collaboration with sensitive datasets while offering strong privacy guarantees. Effectively measuring the empirical privacy of synthetic data is an important step in the process. However, while there is a multitude of new privacy metrics being published every day, there currently is no standardization. In this paper, we review the pros and cons of popular metrics that include simulations of adversarial attacks. We also review current best practices for amending generative models to enhance the privacy of the data they create (e.g. differential privacy).
Dr. Jekyll and Mr. Hyde: Two Faces of LLMs
Recently, we have witnessed a rise in the use of Large Language Models (LLMs), especially in applications like chatbot assistants. Safety mechanisms and specialized training procedures are implemented to prevent improper responses from these assistants. In this work, we bypass these measures for ChatGPT and Gemini (and, to some extent, Bing chat) by making them impersonate complex personas with personality characteristics that are not aligned with a truthful assistant. We start by creating elaborate biographies of these personas, which we then use in a new session with the same chatbots. Our conversations then follow a role-play style to elicit prohibited responses. Using personas, we show that prohibited responses are actually provided, making it possible to obtain unauthorized, illegal, or harmful information. This work shows that by using adversarial personas, one can overcome safety mechanisms set out by ChatGPT and Gemini. We also introduce several ways of activating such adversarial personas, which show that both chatbots are vulnerable to this kind of attack. With the same principle, we introduce two defenses that push the model to interpret trustworthy personalities and make it more robust against such attacks.
Granular Privacy Control for Geolocation with Vision Language Models
Vision Language Models (VLMs) are rapidly advancing in their capability to answer information-seeking questions. As these models are widely deployed in consumer applications, they could lead to new privacy risks due to emergent abilities to identify people in photos, geolocate images, etc. As we demonstrate, somewhat surprisingly, current open-source and proprietary VLMs are very capable image geolocators, making widespread geolocation with VLMs an immediate privacy risk, rather than merely a theoretical future concern. As a first step to address this challenge, we develop a new benchmark, GPTGeoChat, to test the ability of VLMs to moderate geolocation dialogues with users. We collect a set of 1,000 image geolocation conversations between in-house annotators and GPT-4v, which are annotated with the granularity of location information revealed at each turn. Using this new dataset, we evaluate the ability of various VLMs to moderate GPT-4v geolocation conversations by determining when too much location information has been revealed. We find that custom fine-tuned models perform on par with prompted API-based models when identifying leaked location information at the country or city level; however, fine-tuning on supervised data appears to be needed to accurately moderate finer granularities, such as the name of a restaurant or building.
CELLM: An Efficient Communication in Large Language Models Training for Federated Learning
Federated Learning (FL) is a recent model training paradigm in which client devices collaboratively train a model without ever aggregating their data. Crucially, this scheme offers users potential privacy and security benefits by only ever communicating updates to the model weights to a central server as opposed to traditional machine learning (ML) training which directly communicates and aggregates data. However, FL training suffers from statistical heterogeneity as clients may have differing local data distributions. Large language models (LLMs) offer a potential solution to this issue of heterogeneity given that they have consistently been shown to be able to learn on vast amounts of noisy data. While LLMs are a promising development for resolving the consistent issue of non-I.I.D. Clients in federated settings exacerbate two other bottlenecks in FL: limited local computing and expensive communication. This thesis aims to develop efficient training methods for LLMs in FL. To this end, we employ two critical techniques in enabling efficient training. First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training. Second, we communicate sparse updates throughout training to significantly cut down on communication costs. Taken together, our method reduces communication costs by up to 10x over vanilla LoRA and up to 5x over more complex sparse LoRA baselines while achieving greater utility. We emphasize the importance of carefully applying sparsity and picking effective rank and sparsity configurations for federated LLM training.
Are Large Pre-Trained Language Models Leaking Your Personal Information?
Are Large Pre-Trained Language Models Leaking Your Personal Information? In this paper, we analyze whether Pre-Trained Language Models (PLMs) are prone to leaking personal information. Specifically, we query PLMs for email addresses with contexts of the email address or prompts containing the owner's name. We find that PLMs do leak personal information due to memorization. However, since the models are weak at association, the risk of specific personal information being extracted by attackers is low. We hope this work could help the community to better understand the privacy risk of PLMs and bring new insights to make PLMs safe.
DeepReDuce: ReLU Reduction for Fast Private Inference
The recent rise of privacy concerns has led researchers to devise methods for private neural inference -- where inferences are made directly on encrypted data, never seeing inputs. The primary challenge facing private inference is that computing on encrypted data levies an impractically-high latency penalty, stemming mostly from non-linear operators like ReLU. Enabling practical and private inference requires new optimization methods that minimize network ReLU counts while preserving accuracy. This paper proposes DeepReDuce: a set of optimizations for the judicious removal of ReLUs to reduce private inference latency. The key insight is that not all ReLUs contribute equally to accuracy. We leverage this insight to drop, or remove, ReLUs from classic networks to significantly reduce inference latency and maintain high accuracy. Given a target network, DeepReDuce outputs a Pareto frontier of networks that tradeoff the number of ReLUs and accuracy. Compared to the state-of-the-art for private inference DeepReDuce improves accuracy and reduces ReLU count by up to 3.5% (iso-ReLU count) and 3.5times (iso-accuracy), respectively.
RedactBuster: Entity Type Recognition from Redacted Documents
The widespread exchange of digital documents in various domains has resulted in abundant private information being shared. This proliferation necessitates redaction techniques to protect sensitive content and user privacy. While numerous redaction methods exist, their effectiveness varies, with some proving more robust than others. As such, the literature proposes several deanonymization techniques, raising awareness of potential privacy threats. However, while none of these methods are successful against the most effective redaction techniques, these attacks only focus on the anonymized tokens and ignore the sentence context. In this paper, we propose RedactBuster, the first deanonymization model using sentence context to perform Named Entity Recognition on reacted text. Our methodology leverages fine-tuned state-of-the-art Transformers and Deep Learning models to determine the anonymized entity types in a document. We test RedactBuster against the most effective redaction technique and evaluate it using the publicly available Text Anonymization Benchmark (TAB). Our results show accuracy values up to 0.985 regardless of the document nature or entity type. In raising awareness of this privacy issue, we propose a countermeasure we call character evasion that helps strengthen the secrecy of sensitive information. Furthermore, we make our model and testbed open-source to aid researchers and practitioners in evaluating the resilience of novel redaction techniques and enhancing document privacy.
DP-SGD Without Clipping: The Lipschitz Neural Network Way
State-of-the-art approaches for training Differentially Private (DP) Deep Neural Networks (DNN) face difficulties to estimate tight bounds on the sensitivity of the network's layers, and instead rely on a process of per-sample gradient clipping. This clipping process not only biases the direction of gradients but also proves costly both in memory consumption and in computation. To provide sensitivity bounds and bypass the drawbacks of the clipping process, we propose to rely on Lipschitz constrained networks. Our theoretical analysis reveals an unexplored link between the Lipschitz constant with respect to their input and the one with respect to their parameters. By bounding the Lipschitz constant of each layer with respect to its parameters, we prove that we can train these networks with privacy guarantees. Our analysis not only allows the computation of the aforementioned sensitivities at scale, but also provides guidance on how to maximize the gradient-to-noise ratio for fixed privacy guarantees. The code has been released as a Python package available at https://github.com/Algue-Rythme/lip-dp
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
We propose Falcon, an end-to-end 3-party protocol for efficient private training and inference of large machine learning models. Falcon presents four main advantages - (i) It is highly expressive with support for high capacity networks such as VGG16 (ii) it supports batch normalization which is important for training complex networks such as AlexNet (iii) Falcon guarantees security with abort against malicious adversaries, assuming an honest majority (iv) Lastly, Falcon presents new theoretical insights for protocol design that make it highly efficient and allow it to outperform existing secure deep learning solutions. Compared to prior art for private inference, we are about 8x faster than SecureNN (PETS'19) on average and comparable to ABY3 (CCS'18). We are about 16-200x more communication efficient than either of these. For private training, we are about 6x faster than SecureNN, 4.4x faster than ABY3 and about 2-60x more communication efficient. Our experiments in the WAN setting show that over large networks and datasets, compute operations dominate the overall latency of MPC, as opposed to the communication.
CoGenesis: A Framework Collaborating Large and Small Language Models for Secure Context-Aware Instruction Following
With the advancement of language models (LMs), their exposure to private data is increasingly inevitable, and their deployment (especially for smaller ones) on personal devices, such as PCs and smartphones, has become a prevailing trend. In contexts laden with user information, enabling models to both safeguard user privacy and execute commands efficiently emerges as an essential research imperative. In this paper, we propose CoGenesis, a collaborative generation framework integrating large (hosted on cloud infrastructure) and small models (deployed on local devices) to address privacy concerns logically. Initially, we design a pipeline to create personalized writing instruction datasets enriched with extensive context details as the testbed of this research issue. Subsequently, we introduce two variants of CoGenesis based on sketch and logits respectively. Our experimental findings, based on our synthesized dataset and two additional open-source datasets, indicate that: 1) Large-scale models perform well when provided with user context but struggle in the absence of such context. 2) While specialized smaller models fine-tuned on the synthetic dataset show promise, they still lag behind their larger counterparts. 3) Our CoGenesis framework, utilizing mixed-scale models, showcases competitive performance, providing a feasible solution to privacy issues.
Privacy Preservation in Artificial Intelligence and Extended Reality (AI-XR) Metaverses: A Survey
The metaverse is a nascent concept that envisions a virtual universe, a collaborative space where individuals can interact, create, and participate in a wide range of activities. Privacy in the metaverse is a critical concern as the concept evolves and immersive virtual experiences become more prevalent. The metaverse privacy problem refers to the challenges and concerns surrounding the privacy of personal information and data within Virtual Reality (VR) environments as the concept of a shared VR space becomes more accessible. Metaverse will harness advancements from various technologies such as Artificial Intelligence (AI), Extended Reality (XR), Mixed Reality (MR), and 5G/6G-based communication to provide personalized and immersive services to its users. Moreover, to enable more personalized experiences, the metaverse relies on the collection of fine-grained user data that leads to various privacy issues. Therefore, before the potential of the metaverse can be fully realized, privacy concerns related to personal information and data within VR environments must be addressed. This includes safeguarding users' control over their data, ensuring the security of their personal information, and protecting in-world actions and interactions from unauthorized sharing. In this paper, we explore various privacy challenges that future metaverses are expected to face, given their reliance on AI for tracking users, creating XR and MR experiences, and facilitating interactions. Moreover, we thoroughly analyze technical solutions such as differential privacy, Homomorphic Encryption (HE), and Federated Learning (FL) and discuss related sociotechnical issues regarding privacy.
Behind the Mask: Demographic bias in name detection for PII masking
Many datasets contain personally identifiable information, or PII, which poses privacy risks to individuals. PII masking is commonly used to redact personal information such as names, addresses, and phone numbers from text data. Most modern PII masking pipelines involve machine learning algorithms. However, these systems may vary in performance, such that individuals from particular demographic groups bear a higher risk for having their personal information exposed. In this paper, we evaluate the performance of three off-the-shelf PII masking systems on name detection and redaction. We generate data using names and templates from the customer service domain. We find that an open-source RoBERTa-based system shows fewer disparities than the commercial models we test. However, all systems demonstrate significant differences in error rate based on demographics. In particular, the highest error rates occurred for names associated with Black and Asian/Pacific Islander individuals.
Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models
The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.
Differentially Private Sequential Learning
In a differentially private sequential learning setting, agents introduce endogenous noise into their actions to maintain privacy. Applying this to a standard sequential learning model leads to different outcomes for continuous vs. binary signals. For continuous signals with a nonzero privacy budget, we introduce a novel smoothed randomized response mechanism that adapts noise based on distance to a threshold, unlike traditional randomized response, which applies uniform noise. This enables agents' actions to better reflect both private signals and observed history, accelerating asymptotic learning speed to Theta_{epsilon}(log(n)), compared to Theta(log(n)) in the non-private regime where privacy budget is infinite. Moreover, in the non-private setting, the expected stopping time for the first correct decision and the number of incorrect actions diverge, meaning early agents may make mistakes for an unreasonably long period. In contrast, under a finite privacy budget epsilon in (0,1), both remain finite, highlighting a stark contrast between private and non-private learning. Learning with continuous signals in the private regime is more efficient, as smooth randomized response enhances the log-likelihood ratio over time, improving information aggregation. Conversely, for binary signals, differential privacy noise hinders learning, as agents tend to use a constant randomized response strategy before an information cascade forms, reducing action informativeness and hampering the overall process.
Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks
Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.
Let Models Speak Ciphers: Multiagent Debate through Embeddings
Discussion and debate among Large Language Models (LLMs) have gained considerable attention due to their potential to enhance the reasoning ability of LLMs. Although natural language is an obvious choice for communication due to LLM's language understanding capability, the token sampling step needed when generating natural language poses a potential risk of information loss, as it uses only one token to represent the model's belief across the entire vocabulary. In this paper, we introduce a communication regime named CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue. Specifically, we remove the token sampling step from LLMs and let them communicate their beliefs across the vocabulary through the expectation of the raw transformer output embeddings. Remarkably, by deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights, outperforming the state-of-the-art LLM debate methods using natural language by 0.5-5.0% across five reasoning tasks and multiple open-source LLMs of varying sizes. This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs. We anticipate that CIPHER will inspire further exploration for the design of interactions within LLM agent systems, offering a new direction that could significantly influence future developments in the field.
Extracting Training Data from Large Language Models
It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model. We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model's training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data. We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. Worryingly, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models.
A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses
Large Language Models (LLMs) are vulnerable to jailbreaksx2013methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning
Privacy concerns in client-server machine learning have given rise to private inference (PI), where neural inference occurs directly on encrypted inputs. PI protects clients' personal data and the server's intellectual property. A common practice in PI is to use garbled circuits to compute nonlinear functions privately, namely ReLUs. However, garbled circuits suffer from high storage, bandwidth, and latency costs. To mitigate these issues, PI-friendly polynomial activation functions have been employed to replace ReLU. In this work, we ask: Is it feasible to substitute all ReLUs with low-degree polynomial activation functions for building deep, privacy-friendly neural networks? We explore this question by analyzing the challenges of substituting ReLUs with polynomials, starting with simple drop-and-replace solutions to novel, more involved replace-and-retrain strategies. We examine the limitations of each method and provide commentary on the use of polynomial activation functions for PI. We find all evaluated solutions suffer from the escaping activation problem: forward activation values inevitably begin to expand at an exponential rate away from stable regions of the polynomials, which leads to exploding values (NaNs) or poor approximations.