1 Onesweep: A Faster Least Significant Digit Radix Sort for GPUs We present Onesweep, a least-significant digit (LSD) radix sorting algorithm for large GPU sorting problems residing in global memory. Our parallel algorithm employs a method of single-pass prefix sum that only requires ~2n global read/write operations for each digit-binning iteration. This exhibits a significant reduction in last-level memory traffic versus contemporary GPU radix sorting implementations, where each iteration of digit binning requires two passes through the dataset totaling ~3n global memory operations. On the NVIDIA A100 GPU, our approach achieves 29.4 GKey/s when sorting 256M random 32-bit keys. Compared to CUB, the current state-of-the-art GPU LSD radix sort, our approach provides a speedup of ~1.5x. For 32-bit keys with varied distributions, our approach provides more consistent performance compared to HRS, the current state-of-the-art GPU MSD radix sort, and outperforms it in almost all cases. 2 authors · Jun 3, 2022
- FOLD-SE: An Efficient Rule-based Machine Learning Algorithm with Scalable Explainability We present FOLD-SE, an efficient, explainable machine learning algorithm for classification tasks given tabular data containing numerical and categorical values. FOLD-SE generates a set of default rules-essentially a stratified normal logic program-as an (explainable) trained model. Explainability provided by FOLD-SE is scalable, meaning that regardless of the size of the dataset, the number of learned rules and learned literals stay quite small while good accuracy in classification is maintained. A model with smaller number of rules and literals is easier to understand for human beings. FOLD-SE is competitive with state-of-the-art machine learning algorithms such as XGBoost and Multi-Layer Perceptrons (MLP) wrt accuracy of prediction. However, unlike XGBoost and MLP, the FOLD-SE algorithm is explainable. The FOLD-SE algorithm builds upon our earlier work on developing the explainable FOLD-R++ machine learning algorithm for binary classification and inherits all of its positive features. Thus, pre-processing of the dataset, using techniques such as one-hot encoding, is not needed. Like FOLD-R++, FOLD-SE uses prefix sum to speed up computations resulting in FOLD-SE being an order of magnitude faster than XGBoost and MLP in execution speed. The FOLD-SE algorithm outperforms FOLD-R++ as well as other rule-learning algorithms such as RIPPER in efficiency, performance and scalability, especially for large datasets. A major reason for scalable explainability of FOLD-SE is the use of a literal selection heuristics based on Gini Impurity, as opposed to Information Gain used in FOLD-R++. A multi-category classification version of FOLD-SE is also presented. 2 authors · Aug 16, 2022 1
6 Accelerating Direct Preference Optimization with Prefix Sharing Offline paired preference optimization algorithms have become a popular approach for fine-tuning on preference data, outperforming traditional supervised fine-tuning in various tasks. However, traditional implementations often involve redundant computations, especially for tasks with long shared prompts. We introduce prefix sharing for preference tuning, a novel technique that processes chosen and rejected responses as one sequence with a shared prefix. To prevent cross-response contamination, we use a custom block-sparse attention mask. Our method achieves 1.1-1.5times improvement in training throughput on popular DPO datasets, without any effect on convergence. When combined with sequence packing, we observe consistent 1.3-1.6times speedups, benefiting even datasets with smaller sequence lengths. While we focus on Direct Preference Optimization (DPO), our approach is applicable to other paired preference tuning methods. By enhancing computational efficiency, our work contributes to making preference-based fine-tuning more accessible for a wider range of applications and model sizes. We open-source our code at https://github.com/frankxwang/dpo-prefix-sharing. 2 authors · Oct 26, 2024 2
6 Prefix-Tuning: Optimizing Continuous Prompts for Generation Fine-tuning is the de facto way to leverage large pretrained language models to perform downstream tasks. However, it modifies all the language model parameters and therefore necessitates storing a full copy for each task. In this paper, we propose prefix-tuning, a lightweight alternative to fine-tuning for natural language generation tasks, which keeps language model parameters frozen, but optimizes a small continuous task-specific vector (called the prefix). Prefix-tuning draws inspiration from prompting, allowing subsequent tokens to attend to this prefix as if it were "virtual tokens". We apply prefix-tuning to GPT-2 for table-to-text generation and to BART for summarization. We find that by learning only 0.1\% of the parameters, prefix-tuning obtains comparable performance in the full data setting, outperforms fine-tuning in low-data settings, and extrapolates better to examples with topics unseen during training. 2 authors · Jan 1, 2021
- UMSE: Unified Multi-scenario Summarization Evaluation Summarization quality evaluation is a non-trivial task in text summarization. Contemporary methods can be mainly categorized into two scenarios: (1) reference-based: evaluating with human-labeled reference summary; (2) reference-free: evaluating the summary consistency of the document. Recent studies mainly focus on one of these scenarios and explore training neural models built on PLMs to align with human criteria. However, the models from different scenarios are optimized individually, which may result in sub-optimal performance since they neglect the shared knowledge across different scenarios. Besides, designing individual models for each scenario caused inconvenience to the user. Inspired by this, we propose Unified Multi-scenario Summarization Evaluation Model (UMSE). More specifically, we propose a perturbed prefix tuning method to share cross-scenario knowledge between scenarios and use a self-supervised training paradigm to optimize the model without extra human labeling. Our UMSE is the first unified summarization evaluation framework engaged with the ability to be used in three evaluation scenarios. Experimental results across three typical scenarios on the benchmark dataset SummEval indicate that our UMSE can achieve comparable performance with several existing strong methods which are specifically designed for each scenario. 7 authors · May 26, 2023
- UniSumm and SummZoo: Unified Model and Diverse Benchmark for Few-Shot Summarization The high annotation costs and diverse demands of various summarization tasks motivate the development of few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose UniSumm, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization task. Meanwhile, to better evaluate few-shot summarizers, under the principles of diversity and robustness, we assemble and release a new benchmark SummZoo. It consists of 8 summarization tasks with multiple sets of few-shot samples for each task, covering diverse domains. Experimental results and analysis show that UniSumm outperforms strong baselines by a large margin across all sub-tasks in SummZoo under both automatic and human evaluations and achieves comparable results in human evaluation compared with a GPT-3.5 model. 7 authors · Nov 17, 2022
- Teaching Language Models to Hallucinate Less with Synthetic Tasks Large language models (LLMs) frequently hallucinate on abstractive summarization tasks such as document-based question-answering, meeting summarization, and clinical report generation, even though all necessary information is included in context. However, optimizing LLMs to hallucinate less on these tasks is challenging, as hallucination is hard to efficiently evaluate at each optimization step. In this work, we show that reducing hallucination on a synthetic task can also reduce hallucination on real-world downstream tasks. Our method, SynTra, first designs a synthetic task where hallucinations are easy to elicit and measure. It next optimizes the LLM's system message via prefix-tuning on the synthetic task, and finally transfers the system message to realistic, hard-to-optimize tasks. Across three realistic abstractive summarization tasks, SynTra reduces hallucination for two 13B-parameter LLMs using only a synthetic retrieval task for supervision. We also find that optimizing the system message rather than the model weights can be critical; fine-tuning the entire model on the synthetic task can counterintuitively increase hallucination. Overall, SynTra demonstrates that the extra flexibility of working with synthetic data can help mitigate undesired behaviors in practice. 8 authors · Oct 10, 2023
1 A Suite of Generative Tasks for Multi-Level Multimodal Webpage Understanding Webpages have been a rich, scalable resource for vision-language and language only tasks. Yet only pieces of webpages are kept: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data left underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage suite (WikiWeb2M) of 2M pages. We verify its utility on three generative tasks: page description generation, section summarization, and contextual image captioning. We design a novel attention mechanism Prefix Global, which selects the most relevant image and text content as global tokens to attend to the rest of the webpage for context. By using page structure to separate such tokens, it performs better than full attention with lower computational complexity. Experiments show that the new annotations from WikiWeb2M improve task performance compared to data from prior work. We also include ablations on sequence length, input features, and model size. 8 authors · May 5, 2023 4