new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 3

A Survey on Post-training of Large Language Models

The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.

Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining

Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models for advanced mathematical reasoning and coding. Following the success of frontier reasoning models, recent work has demonstrated that RL fine-tuning consistently improves performance, even in smaller-scale models; however, the underlying mechanisms driving these improvements are not well-understood. Understanding the effects of RL fine-tuning requires disentangling its interaction with pretraining data composition, hyperparameters, and model scale, but such problems are exacerbated by the lack of transparency regarding the training data used in many existing models. In this work, we present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch on different mixtures of fully open datasets. We investigate the effects of various RL fine-tuning algorithms (PPO, GRPO, and Expert Iteration) across models of different scales. Our study reveals that RL algorithms consistently converge towards a dominant output distribution, amplifying patterns in the pretraining data. We also find that models of different scales trained on the same data mixture will converge to distinct output distributions, suggesting that there are scale-dependent biases in model generalization. Moreover, we find that RL post-training on simpler questions can lead to performance gains on harder ones, indicating that certain reasoning capabilities generalize across tasks. Our findings show that small-scale proxies in controlled settings can elicit interesting insights regarding the role of RL in shaping language model behavior.

AgentInstruct: Toward Generative Teaching with Agentic Flows

Synthetic data is becoming increasingly important for accelerating the development of language models, both large and small. Despite several successful use cases, researchers also raised concerns around model collapse and drawbacks of imitating other models. This discrepancy can be attributed to the fact that synthetic data varies in quality and diversity. Effective use of synthetic data usually requires significant human effort in curating the data. We focus on using synthetic data for post-training, specifically creating data by powerful models to teach a new skill or behavior to another model, we refer to this setting as Generative Teaching. We introduce AgentInstruct, an extensible agentic framework for automatically creating large amounts of diverse and high-quality synthetic data. AgentInstruct can create both the prompts and responses, using only raw data sources like text documents and code files as seeds. We demonstrate the utility of AgentInstruct by creating a post training dataset of 25M pairs to teach language models different skills, such as text editing, creative writing, tool usage, coding, reading comprehension, etc. The dataset can be used for instruction tuning of any base model. We post-train Mistral-7b with the data. When comparing the resulting model Orca-3 to Mistral-7b-Instruct (which uses the same base model), we observe significant improvements across many benchmarks. For example, 40% improvement on AGIEval, 19% improvement on MMLU, 54% improvement on GSM8K, 38% improvement on BBH and 45% improvement on AlpacaEval. Additionally, it consistently outperforms other models such as LLAMA-8B-instruct and GPT-3.5-turbo.

Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences

This paper studies post-training large language models (LLMs) using preference feedback from a powerful oracle to help a model iteratively improve over itself. The typical approach for post-training LLMs involves Reinforcement Learning from Human Feedback (RLHF), which traditionally separates reward learning and subsequent policy optimization. However, such a reward maximization approach is limited by the nature of "point-wise" rewards (such as Bradley-Terry model), which fails to express complex intransitive or cyclic preference relations. While advances on RLHF show reward learning and policy optimization can be merged into a single contrastive objective for stability, they yet still remain tethered to the reward maximization framework. Recently, a new wave of research sidesteps the reward maximization presumptions in favor of directly optimizing over "pair-wise" or general preferences. In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences. Because DNO is a batched on-policy algorithm using a regression-based objective, its implementation is straightforward and efficient. Moreover, DNO enjoys monotonic improvement across iterations that help it improve even over a strong teacher (such as GPT-4). In our experiments, a resulting 7B parameter Orca-2.5 model aligned by DNO achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaEval 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model. It outperforms models with far more parameters, including Mistral Large, Self-Rewarding LM (70B parameters), and older versions of GPT-4.

On Teacher Hacking in Language Model Distillation

Post-training of language models (LMs) increasingly relies on the following two stages: (i) knowledge distillation, where the LM is trained to imitate a larger teacher LM, and (ii) reinforcement learning from human feedback (RLHF), where the LM is aligned by optimizing a reward model. In the second RLHF stage, a well-known challenge is reward hacking, where the LM over-optimizes the reward model. Such phenomenon is in line with Goodhart's law and can lead to degraded performance on the true objective. In this paper, we investigate whether a similar phenomenon, that we call teacher hacking, can occur during knowledge distillation. This could arise because the teacher LM is itself an imperfect approximation of the true distribution. To study this, we propose a controlled experimental setup involving: (i) an oracle LM representing the ground-truth distribution, (ii) a teacher LM distilled from the oracle, and (iii) a student LM distilled from the teacher. Our experiments reveal the following insights. When using a fixed offline dataset for distillation, teacher hacking occurs; moreover, we can detect it by observing when the optimization process deviates from polynomial convergence laws. In contrast, employing online data generation techniques effectively mitigates teacher hacking. More precisely, we identify data diversity as the key factor in preventing hacking. Overall, our findings provide a deeper understanding of the benefits and limitations of distillation for building robust and efficient LMs.

ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement

Post-training Large Language Models (LLMs) with explicit reasoning trajectories can enhance their reasoning abilities. However, acquiring such high-quality trajectory data typically demands meticulous supervision from humans or superior models, which can be either expensive or license-constrained. In this paper, we explore how far an LLM can improve its reasoning by self-synthesizing reasoning paths as training data without any additional supervision. Existing self-synthesizing methods, such as STaR, suffer from poor generalization to out-of-domain (OOD) reasoning tasks. We hypothesize it is due to that their self-synthesized reasoning paths are too task-specific, lacking general task-agnostic reasoning guidance. To address this, we propose Reasoning Generalist via Self-Improvement (ReGenesis), a method to self-synthesize reasoning paths as post-training data by progressing from abstract to concrete. More specifically, ReGenesis self-synthesizes reasoning paths by converting general reasoning guidelines into task-specific ones, generating reasoning structures, and subsequently transforming these structures into reasoning paths, without the need for human-designed task-specific examples used in existing methods. We show that ReGenesis achieves superior performance on all in-domain and OOD settings tested compared to existing methods. For six OOD tasks specifically, while previous methods exhibited an average performance decrease of approximately 4.6% after post training, ReGenesis delivers around 6.1% performance improvement. We also conduct in-depth analysis of our framework and show ReGenesis is effective across various LLMs and design choices.

The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason

Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.

RewardBench 2: Advancing Reward Model Evaluation

Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.

MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.

JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse

Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.

L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-wise LSQ

Post-training quantization (PTQ) and quantization-aware training (QAT) methods are gaining popularity in mitigating the high memory and computational costs associated with Large Language Models (LLMs). In resource-constrained scenarios, PTQ, with its reduced training overhead, is often preferred over QAT, despite the latter's potential for higher accuracy. Meanwhile, parameter-efficient fine-tuning (PEFT) methods like low-rank adaptation (LoRA) have been introduced, and recent efforts have explored quantization-aware PEFT techniques. However, these approaches may lack generality due to their reliance on the pre-quantized model's configuration. Their effectiveness may be compromised by non-linearly quantized or mixed-precision weights, and the retraining of specific quantization parameters might impede optimal performance. To address these challenges, we propose L4Q, an algorithm for parameter-efficient quantization-aware training. L4Q leverages LoRA-wise learned quantization step size for LLMs, aiming to enhance generality. The simultaneous quantization-and-fine-tuning process of L4Q is applicable to high-precision models, yielding linearly quantized weights with superior accuracy. Our experiments, conducted on the LLaMA and LLaMA2 model families using an instructional dataset, showcase L4Q's capabilities in language comprehension and few-shot in-context learning, achieving sub-4-bit precision while maintaining comparable training times to applying PEFT on a quantized model.

How Instruction and Reasoning Data shape Post-Training: Data Quality through the Lens of Layer-wise Gradients

As the post-training of large language models (LLMs) advances from instruction-following to complex reasoning tasks, understanding how different data affect finetuning dynamics remains largely unexplored. In this paper, we present a spectral analysis of layer-wise gradients induced by low/high-quality instruction and reasoning data for LLM post-training. Our analysis reveals that widely-studied metrics for data evaluation, e.g., IFD, InsTag, Difficulty, and Reward, can be explained and unified by spectral properties computed from gradients' singular value decomposition (SVD). Specifically, higher-quality data are usually associated with lower nuclear norms and higher effective ranks. Notably, effective rank exhibits better robustness and resolution than nuclear norm in capturing subtle quality differences. For example, reasoning data achieves substantially higher effective ranks than instruction data, implying richer gradient structures on more complex tasks. Our experiments also highlight that models within the same family share similar gradient patterns regardless of their sizes, whereas different model families diverge significantly. Providing a unified view on the effects of data quality across instruction and reasoning data, this work illuminates the interplay between data quality and training stability, shedding novel insights into developing better data exploration strategies for post-training.

Jointly Reinforcing Diversity and Quality in Language Model Generations

Post-training of Large Language Models (LMs) often prioritizes accuracy and helpfulness at the expense of diversity. This creates a tension: while post-training improves response quality, it also sharpens output distributions and reduces the range of ideas, limiting the usefulness of LMs in creative and exploratory tasks such as brainstorming, storytelling, or problem solving. We address this challenge with Diversity-Aware Reinforcement Learning (DARLING), a framework that jointly optimizes for response quality and semantic diversity. At its core, DARLING introduces a learned partition function to measure diversity beyond surface-level lexical variations. This diversity signal is then combined with a quality reward during online reinforcement learning, encouraging models to generate outputs that are both high-quality and distinct. Experiments across multiple model families and sizes show that DARLING generalizes to two regimes: non-verifiable tasks (instruction following and creative writing) and verifiable tasks (competition math). On five benchmarks in the first setting, DARLING consistently outperforms quality-only RL baselines, producing outputs that are simultaneously of higher quality and novelty. In the second setting, DARLING achieves higher pass@1 (solution quality) and pass@k (solution variety). Most strikingly, explicitly optimizing for diversity catalyzes exploration in online RL, which manifests itself as higher-quality responses.

Balancing the Budget: Understanding Trade-offs Between Supervised and Preference-Based Finetuning

Post-training of Large Language Models often involves a pipeline of Supervised Finetuning (SFT) followed by Preference Finetuning (PFT) using methods like Direct Preference Optimization. Both stages require annotated data that are very different in structure and costs. We study how to optimally allocate a fixed training data budget between the two stages, through extensive experiments spanning four diverse tasks, multiple model sizes and various data annotation costs. Our findings reveal that just SFT on the base model dominates performance in low-data regimes (<1,000 annotated examples). With larger data-budgets, we observe that a combination of SFT and PFT, often with increasing portions allocated towards preference data yields optimal performance. However, completely eliminating SFT and running PFT directly on the base model yields suboptimal performance, described as the cold start problem on tasks like mathematics. We observe that this is due to the distribution shift arising from using DPO directly on the base model to elicit step-by-step reasoning. This limitation can be effectively addressed by allocating even a small portion (<10%) of the budget to SFT first, resulting in performance improvements of 15-20% on analytical benchmarks like GSM8k. These results provide actionable insights for researchers and practitioners optimizing model development under budget constraints, where high-quality data curation often represents a significant portion of the total costs of model development.

Inference-Time Scaling for Generalist Reward Modeling

Reinforcement learning (RL) has been widely adopted in post-training for large language models (LLMs) at scale. Recently, the incentivization of reasoning capabilities in LLMs from RL indicates that proper learning methods could enable effective inference-time scalability. A key challenge of RL is to obtain accurate reward signals for LLMs in various domains beyond verifiable questions or artificial rules. In this work, we investigate how to improve reward modeling (RM) with more inference compute for general queries, i.e. the inference-time scalability of generalist RM, and further, how to improve the effectiveness of performance-compute scaling with proper learning methods. For the RM approach, we adopt pointwise generative reward modeling (GRM) to enable flexibility for different input types and potential for inference-time scaling. For the learning method, we propose Self-Principled Critique Tuning (SPCT) to foster scalable reward generation behaviors in GRMs through online RL, to generate principles adaptively and critiques accurately, resulting in DeepSeek-GRM models. Furthermore, for effective inference-time scaling, we use parallel sampling to expand compute usage, and introduce a meta RM to guide voting process for better scaling performance. Empirically, we show that SPCT significantly improves the quality and scalability of GRMs, outperforming existing methods and models in various RM benchmarks without severe biases, and could achieve better performance compared to training-time scaling. DeepSeek-GRM still meets challenges in some tasks, which we believe can be addressed by future efforts in generalist reward systems. The models will be released and open-sourced.

Discrete Optimization of Min-Max Violation and its Applications Across Computational Sciences

We introduce the Discrete Min-Max Violation (DMMV) as a general optimization problem which seeks an assignment of discrete values to variables that minimizes the largest constraint violation. This context-free mathematical formulation is applicable to a wide range of use cases that have worst-case performance requirements. After defining the DMMV problem mathematically, we explore its properties to establish a foundational understanding. To tackle DMMV instance sizes of practical relevance, we develop a GPU-accelerated heuristic that takes advantage of the mathematical properties of DMMV for speeding up the solution process. We demonstrate the versatile applicability of our heuristic by solving three optimization problems as use cases: (1) post-training quantization of language models, (2) discrete tomography, and (3) Finite Impulse Response (FIR) filter design. In quantization without outlier separation, our heuristic achieves 14% improvement on average over existing methods. In discrete tomography, it reduces reconstruction error by 16% under uniform noise and accelerates computations by a factor of 6 on GPU. For FIR filter design, it nearly achieves 50% ripple reduction compared to using the commercial integer optimization solver, Gurobi. Our comparative results point to the benefits of studying DMMV as a context-free optimization problem and the advantages that our proposed heuristic offers on three distinct problems. Our GPU-accelerated heuristic will be made open-source to further stimulate research on DMMV and its other applications. The code is available at https://anonymous.4open.science/r/AMVM-5F3E/

Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs

Research on multi-modal contrastive learning strategies for audio and text has rapidly gained interest. Contrastively trained Audio-Language Models (ALMs), such as CLAP, which establish a unified representation across audio and language modalities, have enhanced the efficacy in various subsequent tasks by providing good text aligned audio encoders and vice versa. These improvements are evident in areas like zero-shot audio classification and audio retrieval, among others. However, the ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research. In this paper, we propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL. We implement a two-stage training scheme TeminAL A & B, where the model first learns to differentiate between multiple sounds in TeminAL A, followed by a phase that instills a sense of time, thereby enhancing its temporal understanding in TeminAL B. This approach results in an average performance gain of 5.28% in temporal understanding on the ESC-50 dataset, while the model remains competitive in zero-shot retrieval and classification tasks on the AudioCap/Clotho datasets. We also note the lack of proper evaluation techniques for contrastive ALMs and propose a strategy for evaluating ALMs in zero-shot settings. The general-purpose zero-shot model evaluation strategy ZSTE, is used to evaluate various prior models. ZSTE demonstrates a general strategy to evaluate all ZS contrastive models. The model trained with TeminAL successfully outperforms current models on most downstream tasks.

Understanding the Impact of Post-Training Quantization on Large Language Models

Large language models (LLMs) are rapidly increasing in size, with the number of parameters becoming a key factor in the success of many commercial models, such as ChatGPT, Claude, and Bard. Even the recently released publicly accessible models for commercial usage, such as Falcon and Llama2, come equipped with billions of parameters. This significant increase in the number of parameters makes deployment and operation very costly. The remarkable progress in the field of quantization for large neural networks in general and LLMs in particular, has made these models more accessible by enabling them to be deployed on consumer-grade GPUs. Quantized models generally demonstrate comparable performance levels to their unquantized base counterparts. Nonetheless, there exists a notable gap in our comprehensive understanding of how these quantized models respond to hyperparameters, such as temperature, max new tokens, and topk, particularly for next word prediction. The present analysis reveals that nf4 and fp4 are equally proficient 4-bit quantization techniques, characterized by similar attributes such as inference speed, memory consumption, and the quality of generated content. the study identifies nf4 as displaying greater resilience to temperature variations in the case of the llama2 series of models at lower temperature, while fp4 and fp4-dq proves to be a more suitable choice for falcon series of models. It is noteworthy that, in general, 4-bit quantized models of varying sizes exhibit higher sensitivity to temperature in the range of 0.5 to 0.8, unlike their unquantized counterparts. Additionally, int8 quantization is associated with significantly slower inference speeds, whereas unquantized bfloat16 models consistently yield the fastest inference speeds across models of all sizes.

CPTQuant - A Novel Mixed Precision Post-Training Quantization Techniques for Large Language Models

Large language models have transformed the comprehension and generation of natural language tasks, but they come with substantial memory and computational requirements. Quantization techniques have emerged as a promising avenue for addressing these challenges while preserving accuracy and making energy efficient. We propose CPTQuant, a comprehensive strategy that introduces correlation-based (CMPQ), pruning-based (PMPQ), and Taylor decomposition-based (TDMPQ) mixed precision techniques. CMPQ adapts the precision level based on canonical correlation analysis of different layers. PMPQ optimizes precision layer-wise based on their sensitivity to sparsity. TDMPQ modifies precision using Taylor decomposition to assess each layer's sensitivity to input perturbation. These strategies allocate higher precision to more sensitive layers while diminishing precision to robust layers. CPTQuant assesses the performance across BERT, OPT-125M, OPT-350M, OPT-1.3B, and OPT-2.7B. We demonstrate up to 4x compression and a 2x-fold increase in efficiency with minimal accuracy drop compared to Hugging Face FP16. PMPQ stands out for achieving a considerably higher model compression. Sensitivity analyses across various LLMs show that the initial and final 30% of layers exhibit higher sensitivities than the remaining layers. PMPQ demonstrates an 11% higher compression ratio than other methods for classification tasks, while TDMPQ achieves a 30% greater compression ratio for language modeling tasks.

Q-VLM: Post-training Quantization for Large Vision-Language Models

In this paper, we propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference. Conventional quantization methods sequentially search the layer-wise rounding functions by minimizing activation discretization errors, which fails to acquire optimal quantization strategy without considering cross-layer dependency. On the contrary, we mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy searching with low search cost. Specifically, we observe the strong correlation between the activation entropy and the cross-layer dependency concerning output discretization errors. Therefore, we employ the entropy as the proxy to partition blocks optimally, which aims to achieve satisfying trade-offs between discretization errors and the search cost. Moreover, we optimize the visual encoder to disentangle the cross-layer dependency for fine-grained decomposition of search space, so that the search cost is further reduced without harming the quantization accuracy. Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multi-modal reasoning tasks. Code is available at https://github.com/ChangyuanWang17/QVLM.

VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models

Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit. Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce Vector Post-Training Quantization (VPTQ) for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization. We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ. In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model. Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8times increase in inference throughput compared to SOTA.

PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models

Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization. Several existing sub 2-bit post-training quantization (PTQ) methods utilize a mix-precision scheme by leveraging an unstructured fine-grained mask to explicitly distinguish salient weights, while which introduces an extra 1-bit or more per weight. To explore the real limit of PTQ, we propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time. Specifically, we first introduce a one-dimensional structured mask with negligibly additional 0.0002-bit per weight based on input activations from the perspective of reducing the upper bound of quantization error to allocate corresponding salient weight channels to 4-bit. For non-salient channels binarization, an efficient block-wise scaling factors optimization framework is then presented to take implicit row-wise correlations and angular biases into account. Different from prior works that concentrate on adjusting quantization methodologies, we further propose a novel paradigm called quantization preprocessing, where we argue that transforming the weight distribution of the pretrained model before quantization can alleviate the difficulty in per-channel extremely low-bit PTQ. Extensive experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization. Codes are available at https://github.com/zjq0455/PTQ1.61.

CrossQuant: A Post-Training Quantization Method with Smaller Quantization Kernel for Precise Large Language Model Compression

Post-Training Quantization (PTQ) is an effective technique for compressing Large Language Models (LLMs). While many studies focus on quantizing both weights and activations, it is still a challenge to maintain the accuracy of LLM after activating quantization. To investigate the primary cause, we extend the concept of kernel from linear algebra to quantization functions to define a new term, "quantization kernel", which refers to the set of elements in activations that are quantized to zero. Through quantitative analysis of the quantization kernel, we find that these elements are crucial for maintaining the accuracy of quantized LLMs. With the decrease of quantization kernel, the precision of quantized LLMs increases. If the quantization kernel proportion is kept below 19% for OPT models and below 1% for LLaMA models, the precision loss from quantizing activations to INT8 becomes negligible. Motivated by the goal of developing a quantization method with small quantization kernel, we propose CrossQuant: a simple yet effective method for quantizing activations. CrossQuant cross-quantizes elements using row and column-wise absolute maximum vectors, achieving a quantization kernel of approximately 16% for OPT models and less than 0.1% for LLaMA models. Experimental results on LLMs (LLaMA, OPT) ranging from 6.7B to 70B parameters demonstrate that CrossQuant improves or maintains perplexity and accuracy in language modeling, zero-shot, and few-shot tasks.

PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery

Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the Post-training dAta Selection method for Efficient pruned large language model Recovery (PASER). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.

Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities

In the era of Large Language Models (LLMs), alignment has emerged as a fundamental yet challenging problem in the pursuit of more reliable, controllable, and capable machine intelligence. The recent success of reasoning models and conversational AI systems has underscored the critical role of reinforcement learning (RL) in enhancing these systems, driving increased research interest at the intersection of RL and LLM alignment. This paper provides a comprehensive review of recent advances in LLM alignment through the lens of inverse reinforcement learning (IRL), emphasizing the distinctions between RL techniques employed in LLM alignment and those in conventional RL tasks. In particular, we highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift. We begin by introducing fundamental concepts in RL to provide a foundation for readers unfamiliar with the field. We then examine recent advances in this research agenda, discussing key challenges and opportunities in conducting IRL for LLM alignment. Beyond methodological considerations, we explore practical aspects, including datasets, benchmarks, evaluation metrics, infrastructure, and computationally efficient training and inference techniques. Finally, we draw insights from the literature on sparse-reward RL to identify open questions and potential research directions. By synthesizing findings from diverse studies, we aim to provide a structured and critical overview of the field, highlight unresolved challenges, and outline promising future directions for improving LLM alignment through RL and IRL techniques.

Quamba: A Post-Training Quantization Recipe for Selective State Space Models

State Space Models (SSMs) have emerged as an appealing alternative to Transformers for large language models, achieving state-of-the-art accuracy with constant memory complexity which allows for holding longer context lengths than attention-based networks. The superior computational efficiency of SSMs in long sequence modeling positions them favorably over Transformers in many scenarios. However, improving the efficiency of SSMs on request-intensive cloud-serving and resource-limited edge applications is still a formidable task. SSM quantization is a possible solution to this problem, making SSMs more suitable for wide deployment, while still maintaining their accuracy. Quantization is a common technique to reduce the model size and to utilize the low bit-width acceleration features on modern computing units, yet existing quantization techniques are poorly suited for SSMs. Most notably, SSMs have highly sensitive feature maps within the selective scan mechanism (i.e., linear recurrence) and massive outliers in the output activations which are not present in the output of token-mixing in the self-attention modules. To address this issue, we propose a static 8-bit per-tensor SSM quantization method which suppresses the maximum values of the input activations to the selective SSM for finer quantization precision and quantizes the output activations in an outlier-free space with Hadamard transform. Our 8-bit weight-activation quantized Mamba 2.8B SSM benefits from hardware acceleration and achieves a 1.72x lower generation latency on an Nvidia Orin Nano 8G, with only a 0.9% drop in average accuracy on zero-shot tasks. The experiments demonstrate the effectiveness and practical applicability of our approach for deploying SSM-based models of all sizes on both cloud and edge platforms.

TÜLU 3: Pushing Frontiers in Open Language Model Post-Training

Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.

Advancing Math Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages

Advancements in LLMs have significantly expanded their capabilities across various domains. However, mathematical reasoning remains a challenging area, prompting the development of math-specific LLMs. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for SFT. Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for hard multi-step problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called JiuZhang-8B.

Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling

Post-training quantization~(PTQ) of transformer language models faces significant challenges due to the existence of detrimental outliers in activations. We observe that these outliers are concentrated in specific channels and are asymmetric across channels. To address this issue, we propose the Outlier Suppression+~(OS+) framework, which contains the channel-wise shifting for asymmetry and channel-wise scaling for concentration. We show that these operations can be seamlessly migrated into subsequent modules while maintaining equivalence. Second, we propose a fast and stable scheme to calculate effective shifting and scaling values. The channel-wise shifting aligns the center of each channel for removal of outlier asymmetry. The channel-wise scaling quantitatively evaluates changes brought by migration and quantization for better quantization burden balance. We validate our OS+ under both standard and fine-grained quantization settings with models including BERT, OPT, BLOOM, BLOOMZ, and LLaMA. Comprehensive results across various tasks demonstrate the superiority of our approach. Especially, with standard quantization, OS+ can achieve near-floating-point performance on both small models and large language models on 8-bit and 6-bit. Besides, we establish a new state-of-the-art for 4-bit BERT with 15.5\% improvement. Our code is available at https://github.com/ModelTC/Outlier_Suppression_Plus.

Post-Training Sparse Attention with Double Sparsity

The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve 1{16} token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1times acceleration in attention operations and a 1.9times improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3times compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at https://github.com/andy-yang-1/DoubleSparse.

CBQ: Cross-Block Quantization for Large Language Models

Post-training quantization (PTQ) has driven attention to producing efficient large language models (LLMs) with ultra-low costs. Since hand-craft quantization parameters lead to low performance in low-bit quantization, recent methods optimize the quantization parameters through block-wise reconstruction between the floating-point and quantized models. However, these methods suffer from two challenges: accumulated errors from independent one-by-one block quantization and reconstruction difficulties from extreme weight and activation outliers. To address these two challenges, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. To reduce error accumulation, we introduce a cross-block dependency with the aid of a homologous reconstruction scheme to build the long-range dependency between adjacent multi-blocks with overlapping. To reduce reconstruction difficulty, we design a coarse-to-fine pre-processing (CFP) to truncate weight outliers and dynamically scale activation outliers before optimization, and an adaptive rounding scheme, called LoRA-Rounding, with two low-rank learnable matrixes to further rectify weight quantization errors. Extensive experiments demonstrate that: (1) CBQ pushes both activation and weight quantization to low-bit settings W4A4, W4A8, and W2A16. (2) CBQ achieves better performance than the existing state-of-the-art methods on various LLMs and benchmark datasets.

Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO

Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %rightarrow72.9 % on MathVista, 62.9 %rightarrow68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.

Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks

Empirical scaling laws have driven the evolution of large language models (LLMs), yet their coefficients shift whenever the model architecture or data pipeline changes. Mixture-of-Experts (MoE) models, now standard in state-of-the-art systems, introduce a new sparsity dimension that current dense-model frontiers overlook. We investigate how MoE sparsity influences two distinct capability regimes: memorization and reasoning. We train families of MoE Transformers that systematically vary total parameters, active parameters, and top-k routing while holding the compute budget fixed. For every model we record pre-training loss, downstream task loss, and task accuracy, allowing us to separate the train-test generalization gap from the loss-accuracy gap. Memorization benchmarks improve monotonically with total parameters, mirroring training loss. By contrast, reasoning performance saturates and can even regress despite continued gains in both total parameters and training loss. Altering top-k alone has little effect when active parameters are constant, and classic hyperparameters such as learning rate and initialization modulate the generalization gap in the same direction as sparsity. Neither post-training reinforcement learning (GRPO) nor extra test-time compute rescues the reasoning deficit of overly sparse models. Our model checkpoints, code and logs are open-source at https://github.com/rioyokotalab/optimal-sparsity.

How Post-Training Reshapes LLMs: A Mechanistic View on Knowledge, Truthfulness, Refusal, and Confidence

Post-training is essential for the success of large language models (LLMs), transforming pre-trained base models into more useful and aligned post-trained models. While plenty of works have studied post-training algorithms and evaluated post-training models by their outputs, it remains understudied how post-training reshapes LLMs internally. In this paper, we compare base and post-trained LLMs mechanistically from four perspectives to better understand post-training effects. Our findings across model families and datasets reveal that: (1) Post-training does not change the factual knowledge storage locations, and it adapts knowledge representations from the base model while developing new knowledge representations; (2) Both truthfulness and refusal can be represented by linear vectors in the hidden representation space. The truthfulness direction is highly similar between the base and post-trained model, and it is effectively transferable for interventions; (3) The refusal direction is different between the base and post-trained models, and it shows limited forward transferability; (4) Differences in confidence between the base and post-trained models cannot be attributed to entropy neurons. Our study provides insights into the fundamental mechanisms preserved and altered during post-training, facilitates downstream tasks like model steering, and could potentially benefit future research in interpretability and LLM post-training.

SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models

Large language models (LLMs) achieve remarkable performance in natural language understanding but require substantial computation and memory resources. Post-training quantization (PTQ) is a powerful compression technique extensively investigated in LLMs. However, existing PTQ methods are still not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths. Standard PTQ methods using group-wise quantization suffer difficulties in quantizing LLMs accurately to such low-bit, but advanced methods remaining high-precision weights element-wisely are hard to realize their theoretical hardware efficiency. This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM. The scheme exploits the salience distribution of weights to determine optimal bit-width and quantizers for accurate LLM quantization, while aligning bit-width partition to groups for compact memory usage and fast integer inference. Specifically, the proposed SliM-LLM mainly relies on two novel techniques: (1) Salience-Determined Bit Allocation utilizes the clustering characteristics of salience distribution to allocate the bit-widths of each group, increasing the accuracy of quantized LLMs and maintaining the inference efficiency; (2) Salience-Weighted Quantizer Calibration optimizes the parameters of the quantizer by considering the element-wise salience within the group, balancing the maintenance of salient information and minimization of errors. Comprehensive experiments show that SliM-LLM significantly improves the accuracy of LLMs at ultra-low bits, e.g., 2-bit LLaMA-7B achieves a 5.5-times memory-saving than original model on NVIDIA A800 GPUs, and 48% decrease of perplexity compared to the state-of-the-art gradient-free PTQ method. Moreover, SliM-LLM+, which is integrated from the extension of SliM-LLM with gradient-based quantizers, further reduces perplexity by 35.1%.

ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning

Large Language Models (LLMs) have demonstrated remarkable generative capabilities. However, their susceptibility to misuse has raised significant safety concerns. While post-training safety alignment methods have been widely adopted, LLMs remain vulnerable to malicious instructions that can bypass safety constraints. Recent efforts have introduced inference-time safety reasoning (system-2 alignment), where LLMs conduct a reasoning process to perform safety verification before final response. We show, however, that these checks are driven by ad-hoc reasoning that diverges from the structured human process, where they first discern a user's true intent, then evaluate the associated risk based on the true intent. Consequently, these defenses remain vulnerable to sophisticated jailbreak prompts that cloak harmful goals in seemingly benign language. To build secure and safe LLMs, we propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one. At inference, ARMOR (1) detects likely jailbreak strategies, (2) extracts the user's core intent while discarding deceptive instructions, and (3) applies a policy-grounded safety analysis to the purified request. ARMOR is evaluated on adaptive jailbreak attacks and multiple safety benchmarks, and a test-time scaling is conducted to further improve its performance. Results demonstrate that ARMOR significantly enhances the robustness against state-of-the-art adaptive jailbreak attacks and outperforms recent reasoning-based aligned models across various safety benchmarks.

BAQ: Efficient Bit Allocation Quantization for Large Language Models

Post-training model quantization is a widely adopted technique for reducing the memory and computational costs of large language models (LLMs). However, most existing methods rely on uniform or heuristic bitwidth assignments, failing to account for the nonuniform sensitivity of weights to quantization noise. In this paper, we propose a novel framework for allocating quantization bitwidths based on sensitivity metrics derived from a Hessian proxy. We make key assumptions, which allow the layer/component-wise loss function to be expressed as an explicit function of the bitwidths. This enables a neat formulation of the bit allocation problem as a convex optimization task, whose closed-form solution adapts precision across weights to minimize the layer-wise quantization loss. Inspecting the solution provides several insights (such as the equal-loss structure), which are then exploited to design the proposed BAQ (Bit Allocation Quantization) algorithm. The proposed algorithm achieves a good trade-off between loss minimization and complexity and allows BAQ to be integrated into standard quantization pipelines with minimal overhead. Experimental results show that BAQ consistently outperforms GPTQ, achieving up to 56times lower perplexity at the same bitwidth on large language models ranging from 125M to 30B parameters. Leveraging our analytical results derived from solving the optimal bit allocation problem, we also provide a theoretical explanation for the observed gains. All codes of this paper are available at https://github.com/CSU-ModelCompression/BAQ.

MoEQuant: Enhancing Quantization for Mixture-of-Experts Large Language Models via Expert-Balanced Sampling and Affinity Guidance

Mixture-of-Experts (MoE) large language models (LLMs), which leverage dynamic routing and sparse activation to enhance efficiency and scalability, have achieved higher performance while reducing computational costs. However, these models face significant memory overheads, limiting their practical deployment and broader adoption. Post-training quantization (PTQ), a widely used method for compressing LLMs, encounters severe accuracy degradation and diminished generalization performance when applied to MoE models. This paper investigates the impact of MoE's sparse and dynamic characteristics on quantization and identifies two primary challenges: (1) Inter-expert imbalance, referring to the uneven distribution of samples across experts, which leads to insufficient and biased calibration for less frequently utilized experts; (2) Intra-expert imbalance, arising from MoE's unique aggregation mechanism, which leads to varying degrees of correlation between different samples and their assigned experts. To address these challenges, we propose MoEQuant, a novel quantization framework tailored for MoE LLMs. MoE-Quant includes two novel techniques: 1) Expert-Balanced Self-Sampling (EBSS) is an efficient sampling method that efficiently constructs a calibration set with balanced expert distributions by leveraging the cumulative probabilities of tokens and expert balance metrics as guiding factors. 2) Affinity-Guided Quantization (AGQ), which incorporates affinities between experts and samples into the quantization process, thereby accurately assessing the impact of individual samples on different experts within the MoE layer. Experiments demonstrate that MoEQuant achieves substantial performance gains (more than 10 points accuracy gain in the HumanEval for DeepSeekMoE-16B under 4-bit quantization) and boosts efficiency.

Enhancing Ultra-Low-Bit Quantization of Large Language Models Through Saliency-Aware Partial Retraining

Large language models offer remarkable capabilities, but their size and computational demands pose practical challenges. Quantization methods compress their size through replacing their high-precision parameters by quantized values of lower precision. Post-training quantization reduces model size efficiently at the cost of decreased accuracy, while quantization-aware training better preserves accuracy but is resource-intensive. Among existing post-training quantization algorithms, the ApiQ method achieves superior accuracy preservation at minimal memory and time overhead. We investigate two ideas to extend performance in ultra-low-bit quantization beyond ApiQ's level. First, we look into combining existing quantization-aware training techniques with ApiQ's partial training. We show that this does not outperform the baseline ApiQ method with limited training data and frozen weights. This leads to two key insights: (1) The substantial representational capacity that is gained through full retraining may not be feasible through partial training. (2) This gain seems to depend on using a large and diverse dataset in quantization-aware training. Second, through a novel approach informed by the two insights, we propose an ultra-low-bit quantization method that builds upon ApiQ and extends its performance without the need for full retraining. It relies on a saliency-aware regularization term that prioritizes preserving the most impactful parameters during quantization. Our experiments on benchmark language models from the LLaMA family show that our proposed approach boosts accuracy and tightens the gap between the quantized model and the full-precision model, with minimal overhead. Our method will be made publicly available to facilitate future developments in ultra-low-bit quantization of large language models.

MBQ: Modality-Balanced Quantization for Large Vision-Language Models

Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.

ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models

Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their practical application is constrained by substantial memory and computational demands. Post-training quantization (PTQ) is considered an effective method to accelerate LLM inference. Despite its growing popularity in LLM model compression, PTQ deployment faces two major challenges. First, low-bit quantization leads to performance degradation. Second, restricted by the limited integer computing unit type on GPUs, quantized matrix operations with different precisions cannot be effectively accelerated. To address these issues, we introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM. It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU. ABQ-LLM introduces several key innovations: (1) a distribution correction method for transformer blocks to mitigate distribution differences caused by full quantization of weights and activations, improving performance at low bit-widths. (2) the bit balance strategy to counteract performance degradation from asymmetric distribution issues at very low bit-widths (e.g., 2-bit). (3) an innovative quantization acceleration framework that reconstructs the quantization matrix multiplication of arbitrary precision combinations based on BTC (Binary TensorCore) equivalents, gets rid of the limitations of INT4/INT8 computing units. ABQ-LLM can convert each component bit width gain into actual acceleration gain, maximizing performance under mixed precision(e.g., W6A6, W2A8). Based on W2*A8 quantization configuration on LLaMA-7B model, it achieved a WikiText2 perplexity of 7.59 (2.17downarrow vs 9.76 in AffineQuant). Compared to SmoothQuant, we realized 1.6times acceleration improvement and 2.7times memory compression gain.

OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models

Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at https://github.com/OpenGVLab/OmniQuant.

ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization

Large language models (LLMs) have shown impressive performance on language tasks but face challenges when deployed on resource-constrained devices due to their extensive parameters and reliance on dense multiplications, resulting in high memory demands and latency bottlenecks. Shift-and-add reparameterization offers a promising solution by replacing costly multiplications with hardware-friendly primitives in both the attention and multi-layer perceptron (MLP) layers of an LLM. However, current reparameterization techniques require training from scratch or full parameter fine-tuning to restore accuracy, which is resource-intensive for LLMs. To address this, we propose accelerating pretrained LLMs through post-training shift-and-add reparameterization, creating efficient multiplication-free models, dubbed ShiftAddLLM. Specifically, we quantize each weight matrix into binary matrices paired with group-wise scaling factors. The associated multiplications are reparameterized into (1) shifts between activations and scaling factors and (2) queries and adds according to the binary matrices. To reduce accuracy loss, we present a multi-objective optimization method to minimize both weight and output activation reparameterization errors. Additionally, based on varying sensitivity across layers to reparameterization, we develop an automated bit allocation strategy to further reduce memory usage and latency. Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM, achieving average perplexity improvements of 5.6 and 22.7 points at comparable or lower latency compared to the most competitive quantized LLMs at 3 and 2 bits, respectively, and more than 80% memory and energy reductions over the original LLMs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddLLM.

MTabVQA: Evaluating Multi-Tabular Reasoning of Language Models in Visual Space

Vision-Language Models (VLMs) have demonstrated remarkable capabilities in interpreting visual layouts and text. However, a significant challenge remains in their ability to interpret robustly and reason over multi-tabular data presented as images, a common occurrence in real-world scenarios like web pages and digital documents. Existing benchmarks typically address single tables or non-visual data (text/structured). This leaves a critical gap: they don't assess the ability to parse diverse table images, correlate information across them, and perform multi-hop reasoning on the combined visual data. We introduce MTabVQA, a novel benchmark specifically designed for multi-tabular visual question answering to bridge that gap. MTabVQA comprises 3,745 complex question-answer pairs that necessitate multi-hop reasoning across several visually rendered table images. We provide extensive benchmark results for state-of-the-art VLMs on MTabVQA, revealing significant performance limitations. We further investigate post-training techniques to enhance these reasoning abilities and release MTabVQA-Instruct, a large-scale instruction-tuning dataset. Our experiments show that fine-tuning VLMs with MTabVQA-Instruct substantially improves their performance on visual multi-tabular reasoning. Code and dataset (https://huggingface.co/datasets/mtabvqa/MTabVQA-Eval) are available online (https://anonymous.4open.science/r/MTabVQA-EMNLP-B16E).

Hunyuan-TurboS: Advancing Large Language Models through Mamba-Transformer Synergy and Adaptive Chain-of-Thought

As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.

SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM

Large language models (LLMs) have shown remarkable capabilities in various tasks. However their huge model size and the consequent demand for computational and memory resources also pose challenges to model deployment. Currently, 4-bit post-training quantization (PTQ) has achieved some success in LLMs, reducing the memory footprint by approximately 75% compared to FP16 models, albeit with some accuracy loss. In this paper, we propose SmoothQuant+, an accurate and efficient 4-bit weight-only PTQ that requires no additional training, which enables lossless in accuracy for LLMs for the first time. Based on the fact that the loss of weight quantization is amplified by the activation outliers, SmoothQuant+ smoothes the activation outliers by channel before quantization, while adjusting the corresponding weights for mathematical equivalence, and then performs group-wise 4-bit weight quantization for linear layers. We have integrated SmoothQuant+ into the vLLM framework, an advanced high-throughput inference engine specially developed for LLMs, and equipped it with an efficient W4A16 CUDA kernels, so that vLLM can seamlessly support SmoothQuant+ 4-bit weight quantization. Our results show that, with SmoothQuant+, the Code Llama-34B model can be quantized and deployed on a A100 40GB GPU, achieving lossless accuracy and a throughput increase of 1.9 to 4.0 times compared to the FP16 model deployed on two A100 40GB GPUs. Moreover, the latency per token is only 68% of the FP16 model deployed on two A100 40GB GPUs. This is the state-of-the-art 4-bit weight quantization for LLMs as we know.

Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis

Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.

SliceGPT: Compress Large Language Models by Deleting Rows and Columns

Large language models have become the cornerstone of natural language processing, but their use comes with substantial costs in terms of compute and memory resources. Sparsification provides a solution to alleviate these resource constraints, and recent works have shown that trained models can be sparsified post-hoc. Existing sparsification techniques face challenges as they need additional data structures and offer constrained speedup with current hardware. In this paper we present SliceGPT, a new post-training sparsification scheme which replaces each weight matrix with a smaller (dense) matrix, reducing the embedding dimension of the network. Through extensive experimentation, we show that SliceGPT can remove up to 25% of the model parameters (including embeddings) for LLAMA2-70B, OPT 66B and Phi-2 models while maintaining 99%, 99% and 90% zero-shot task performance of the dense model respectively. Our sliced models run on fewer GPUs and run faster without any additional code optimization: on 24GB consumer GPUs we reduce the total compute for inference on LLAMA2-70B to 64% of that of the dense model; on 40GB A100 GPUs we reduce it to 66%. We offer a new insight, computational invariance in transformer networks, which enables SliceGPT and we hope it will inspire and enable future avenues to reduce memory and computation demands for pre-trained models. Code is available at: https://github.com/microsoft/TransformerCompression

Quantization Meets dLLMs: A Systematic Study of Post-training Quantization for Diffusion LLMs

Recent advances in diffusion large language models (dLLMs) have introduced a promising alternative to autoregressive (AR) LLMs for natural language generation tasks, leveraging full attention and denoising-based decoding strategies. However, the deployment of these models on edge devices remains challenging due to their massive parameter scale and high resource demands. While post-training quantization (PTQ) has emerged as a widely adopted technique for compressing AR LLMs, its applicability to dLLMs remains largely unexplored. In this work, we present the first systematic study on quantizing diffusion-based language models. We begin by identifying the presence of activation outliers, characterized by abnormally large activation values that dominate the dynamic range. These outliers pose a key challenge to low-bit quantization, as they make it difficult to preserve precision for the majority of values. More importantly, we implement state-of-the-art PTQ methods and conduct a comprehensive evaluation across multiple task types and model variants. Our analysis is structured along four key dimensions: bit-width, quantization method, task category, and model type. Through this multi-perspective evaluation, we offer practical insights into the quantization behavior of dLLMs under different configurations. We hope our findings provide a foundation for future research in efficient dLLM deployment. All codes and experimental setups will be released to support the community.

QuantEase: Optimization-based Quantization for Language Models

With the rising popularity of Large Language Models (LLMs), there has been an increasing interest in compression techniques that enable their efficient deployment. This study focuses on the Post-Training Quantization (PTQ) of LLMs. Drawing from recent advances, our work introduces QuantEase, a layer-wise quantization framework where individual layers undergo separate quantization. The problem is framed as a discrete-structured non-convex optimization, prompting the development of algorithms rooted in Coordinate Descent (CD) techniques. These CD-based methods provide high-quality solutions to the complex non-convex layer-wise quantization problems. Notably, our CD-based approach features straightforward updates, relying solely on matrix and vector operations, circumventing the need for matrix inversion or decomposition. We also explore an outlier-aware variant of our approach, allowing for retaining significant weights (outliers) with complete precision. Our proposal attains state-of-the-art performance in terms of perplexity and zero-shot accuracy in empirical evaluations across various LLMs and datasets, with relative improvements up to 15% over methods such as GPTQ. Leveraging careful linear algebra optimizations, QuantEase can quantize models like Falcon-180B on a single NVIDIA A100 GPU in sim3 hours. Particularly noteworthy is our outlier-aware algorithm's capability to achieve near or sub-3-bit quantization of LLMs with an acceptable drop in accuracy, obviating the need for non-uniform quantization or grouping techniques, improving upon methods such as SpQR by up to two times in terms of perplexity.

Asymmetric Conflict and Synergy in Post-training for LLM-based Multilingual Machine Translation

The emergence of Large Language Models (LLMs) has advanced the multilingual machine translation (MMT), yet the Curse of Multilinguality (CoM) remains a major challenge. Existing work in LLM-based MMT typically mitigates this issue via scaling up training and computation budget, which raises a critical question: Is scaling up the training and computation budget truly necessary for high-quality MMT, or can a deeper understanding of CoM provide a more efficient solution? To explore this problem, we analyze the linguistic conflicts and synergy, the underlying mechanism of CoM during post-training phase. We identify an asymmetric phenomenon in linguistic conflicts and synergy: the dominance of conflicts and synergy varies in different translation directions, leading to sub-optimal adaptation in existing post-training methods. We further find that a significant bottleneck in MMT appears to lie in post-training rather than multilingual pre-training, suggesting the need for more effective adaptation strategies. Building on these new insights, we propose a direction-aware training approach, combined with group-wise model merging, to address asymmetry in linguistic conflicts and synergy explicitly. Leveraging this strategy, our method fine-tunes X-ALMA-13B-Pretrain-trained only with multilingual pre-training-achieving comparable performance to XALMA-13B (only SFT) while using only 20B pretraining tokens and 17B parameters-5.5x fewer pretraining-tokens and 1.7x fewer model size-with just 0.85 COMET drop on Flores-200 testsets of 50 languages.

Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play

Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.

Locality Alignment Improves Vision-Language Models

Vision language models (VLMs) have seen growing adoption in recent years, but many still struggle with basic spatial reasoning errors. We hypothesize that this is due to VLMs adopting pre-trained vision backbones, specifically vision transformers (ViTs) trained with image-level supervision and minimal inductive biases. Such models may fail to encode the class contents at each position in the image, and our goal is to resolve this by ensuring that the vision backbone effectively captures both local and global image semantics. Our main insight is that we do not require new supervision to learn this capability -- pre-trained models contain significant knowledge of local semantics that we can extract and use for scalable self-supervision. We propose a new efficient post-training stage for ViTs called locality alignment and a novel fine-tuning procedure called MaskEmbed that uses a masked reconstruction loss to learn semantic contributions for each image patch. We first evaluate locality alignment with a vision-only benchmark, finding that it improves a model's performance at a patch-level semantic segmentation task, especially for strong backbones trained with image-caption pairs (e.g., CLIP and SigLIP). We then train a series of VLMs with and without locality alignment, and show that locality-aligned backbones improve performance across a range of benchmarks, particularly ones that involve spatial understanding (e.g., RefCOCO, OCID-Ref, TallyQA, VSR, AI2D). Overall, we demonstrate that we can efficiently learn local semantic extraction via a locality alignment stage, and that this procedure complements existing VLM training recipes that use off-the-shelf vision backbones.

Arena Learning: Build Data Flywheel for LLMs Post-training via Simulated Chatbot Arena

Assessing the effectiveness of large language models (LLMs) presents substantial challenges. The method of conducting human-annotated battles in an online Chatbot Arena is a highly effective evaluative technique. However, this approach is limited by the costs and time required for human annotation. In this paper, we introduce Arena Learning, an innovative offline strategy designed to simulate these arena battles using AI-driven annotations to evaluate battle outcomes, thus facilitating the continuous improvement of the target model through both supervised fine-tuning and reinforcement learning. Arena Learning comprises two key elements. First, it ensures precise evaluations and maintains consistency between offline simulations and online competitions via WizardArena, a pipeline developed to accurately predict the Elo rankings of various models using a meticulously designed offline test set. Our results demonstrate that WizardArena's predictions closely align with those from the online Arena. Second, it involves the continuous improvement of training data based on the battle results and the refined model. We establish a data flywheel to iteratively update the training data by highlighting the weaknesses of the target model based on its battle results, enabling it to learn from the strengths of multiple different models. We apply Arena Learning to train our target model, WizardLM-beta, and demonstrate significant performance enhancements across various metrics. This fully automated training and evaluation pipeline sets the stage for continuous advancements in various LLMs via post-training. Notably, Arena Learning plays a pivotal role in the success of WizardLM-2, and this paper serves both as an exploration of its efficacy and a foundational study for future discussions related to WizardLM-2 and its derivatives.

ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats

In the complex domain of large language models (LLMs), striking a balance between computational efficiency and maintaining model quality is a formidable challenge. Navigating the inherent limitations of uniform quantization, particularly when dealing with outliers, and motivated by the launch of NVIDIA's H100 hardware, this study delves into the viability of floating-point (FP) quantization, particularly focusing on FP8 and FP4, as a potential solution. Our comprehensive investigation reveals that for LLMs, FP8 activation consistently outshines its integer (INT8) equivalent, with the performance edge becoming more noticeable in models possessing parameters beyond one billion. For weight quantization, our findings indicate that FP4 exhibits comparable, if not superior, performance to INT4, simplifying deployment on FP-supported hardware like H100. To mitigate the overhead from precision alignment caused by the disparity between weights and activations, we propose two scaling constraints for weight quantization that negligibly impact the performance compared to the standard W4A8 model. We additionally enhance our quantization methods by integrating the Low Rank Compensation (LoRC) strategy, yielding improvements especially in smaller models. The results of our investigation emphasize the immense potential of FP quantization for LLMs, paving the way for high-efficiency deployment in resource-limited settings.

ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools

We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through https://github.com/THUDM and https://huggingface.co/THUDM.

NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search

Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.

Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training

Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model's general knowledge on standard benchmarks (e.g., MMMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis shows that explicit mechanisms, such as KL penalty and chain-of-thought reasoning, are not the primary factors. Instead, we find that the implicit regularization inherent to RFT is a key factor in mitigating forgetting. Finally, we propose a rollout-based instance filtering algorithm to improve the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.

OutlierTune: Efficient Channel-Wise Quantization for Large Language Models

Quantizing the activations of large language models (LLMs) has been a significant challenge due to the presence of structured outliers. Most existing methods focus on the per-token or per-tensor quantization of activations, making it difficult to achieve both accuracy and hardware efficiency. To address this problem, we propose OutlierTune, an efficient per-channel post-training quantization (PTQ) method for the activations of LLMs. OutlierTune consists of two components: pre-execution of dequantization and symmetrization. The pre-execution of dequantization updates the model weights by the activation scaling factors, avoiding the internal scaling and costly additional computational overheads brought by the per-channel activation quantization. The symmetrization further reduces the quantization differences arising from the weight updates by ensuring the balanced numerical ranges across different activation channels. OutlierTune is easy to implement and hardware-efficient, introducing almost no additional computational overheads during the inference. Extensive experiments show that the proposed framework outperforms existing methods across multiple different tasks. Demonstrating better generalization, this framework improves the Int6 quantization of the instruction-tuning LLMs, such as OPT-IML, to the same level as half-precision (FP16). Moreover, we have shown that the proposed framework is 1.48x faster than the FP16 implementation while reducing approximately 2x memory usage.

AffineQuant: Affine Transformation Quantization for Large Language Models

The significant resource requirements associated with Large-scale Language Models (LLMs) have generated considerable interest in the development of techniques aimed at compressing and accelerating neural networks. Among these techniques, Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its noteworthy compression efficiency and cost-effectiveness in the context of training. Existing PTQ methods for LLMs limit the optimization scope to scaling transformations between pre- and post-quantization weights. In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant). This approach extends the optimization scope and thus significantly minimizing quantization errors. Additionally, by employing the corresponding inverse matrix, we can ensure equivalence between the pre- and post-quantization outputs of PTQ, thereby maintaining its efficiency and generalization capabilities. To ensure the invertibility of the transformation during optimization, we further introduce a gradual mask optimization method. This method initially focuses on optimizing the diagonal elements and gradually extends to the other elements. Such an approach aligns with the Levy-Desplanques theorem, theoretically ensuring invertibility of the transformation. As a result, significant performance improvements are evident across different LLMs on diverse datasets. To illustrate, we attain a C4 perplexity of 15.76 (2.26 lower vs 18.02 in OmniQuant) on the LLaMA2-7B model of W4A4 quantization without overhead. On zero-shot tasks, AffineQuant achieves an average of 58.61 accuracy (1.98 lower vs 56.63 in OmniQuant) when using 4/4-bit quantization for LLaMA-30B, which setting a new state-of-the-art benchmark for PTQ in LLMs.

ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation

Post-training quantization (PTQ) has emerged as a promising technique for mitigating memory consumption and computational costs in large language models (LLMs). However, a systematic examination of various quantization schemes, model families, and quantization bit precision has been absent from the literature. In this paper, we conduct a comprehensive analysis of these factors by investigating the effects of PTQ on weight-only, activation-only, and weight-and-activation quantization using diverse methods such as round-to-nearest (RTN), GPTQ, ZeroQuant, and their variants. We apply these methods to two distinct model families with parameters ranging from 125M to 176B. Our contributions include: (1) a sensitivity analysis revealing that activation quantization is generally more susceptible to weight quantization, with smaller models often outperforming larger models in terms of activation quantization; (2) an evaluation and comparison of existing PTQ methods to optimize model size reduction while minimizing the impact on accuracy, revealing that none of the current methods can achieve the original model quality for quantization with either INT4-weight or INT4-weight-and-INT8-activation; (3) based on these insights, we propose an optimized method called Low-Rank Compensation (LoRC), which employs low-rank matrices to enhance model quality recovery with a minimal increase in model size.

Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models

Post-training quantization is the leading method for addressing memory-related bottlenecks in LLM inference, but unfortunately, it suffers from significant performance degradation below 4-bit precision. An alternative approach involves training compressed models directly at a low bitwidth (e.g., binary or ternary models). However, the performance, training dynamics, and scaling trends of such models are not yet well understood. To address this issue, we train and openly release the Spectra LLM suite consisting of 54 language models ranging from 99M to 3.9B parameters, trained on 300B tokens. Spectra includes FloatLMs, post-training quantized QuantLMs (3, 4, 6, and 8 bits), and ternary LLMs (TriLMs) - our improved architecture for ternary language modeling, which significantly outperforms previously proposed ternary models of a given size (in bits), matching half-precision models at scale. For example, TriLM 3.9B is (bit-wise) smaller than the half-precision FloatLM 830M, but matches half-precision FloatLM 3.9B in commonsense reasoning and knowledge benchmarks. However, TriLM 3.9B is also as toxic and stereotyping as FloatLM 3.9B, a model six times larger in size. Additionally, TriLM 3.9B lags behind FloatLM in perplexity on validation splits and web-based corpora but performs better on less noisy datasets like Lambada and PennTreeBank. To enhance understanding of low-bitwidth models, we are releasing 500+ intermediate checkpoints of the Spectra suite at https://github.com/NolanoOrg/SpectraSuite{https://github.com/NolanoOrg/SpectraSuite}.

Language Models can Self-Lengthen to Generate Long Texts

Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to process long contexts, yet a notable gap remains in generating long, aligned outputs. This limitation stems from a training gap where pre-training lacks effective instructions for long-text generation, and post-training data primarily consists of short query-response pairs. Current approaches, such as instruction backtranslation and behavior imitation, face challenges including data quality, copyright issues, and constraints on proprietary model usage. In this paper, we introduce an innovative iterative training framework called Self-Lengthen that leverages only the intrinsic knowledge and skills of LLMs without the need for auxiliary data or proprietary models. The framework consists of two roles: the Generator and the Extender. The Generator produces the initial response, which is then split and expanded by the Extender. This process results in a new, longer response, which is used to train both the Generator and the Extender iteratively. Through this process, the models are progressively trained to handle increasingly longer responses. Experiments on benchmarks and human evaluations show that Self-Lengthen outperforms existing methods in long-text generation, when applied to top open-source LLMs such as Qwen2 and LLaMA3. Our code is publicly available at https://github.com/QwenLM/Self-Lengthen.

MMaDA: Multimodal Large Diffusion Language Models

We introduce MMaDA, a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation. The approach is distinguished by three key innovations: (i) MMaDA adopts a unified diffusion architecture with a shared probabilistic formulation and a modality-agnostic design, eliminating the need for modality-specific components. This architecture ensures seamless integration and processing across different data types. (ii) We implement a mixed long chain-of-thought (CoT) fine-tuning strategy that curates a unified CoT format across modalities. By aligning reasoning processes between textual and visual domains, this strategy facilitates cold-start training for the final reinforcement learning (RL) stage, thereby enhancing the model's ability to handle complex tasks from the outset. (iii) We propose UniGRPO, a unified policy-gradient-based RL algorithm specifically tailored for diffusion foundation models. Utilizing diversified reward modeling, UniGRPO unifies post-training across both reasoning and generation tasks, ensuring consistent performance improvements. Experimental results demonstrate that MMaDA-8B exhibits strong generalization capabilities as a unified multimodal foundation model. It surpasses powerful models like LLaMA-3-7B and Qwen2-7B in textual reasoning, outperforms Show-o and SEED-X in multimodal understanding, and excels over SDXL and Janus in text-to-image generation. These achievements highlight MMaDA's effectiveness in bridging the gap between pretraining and post-training within unified diffusion architectures, providing a comprehensive framework for future research and development. We open-source our code and trained models at: https://github.com/Gen-Verse/MMaDA

A Comprehensive Study of Knowledge Editing for Large Language Models

Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication. However, a primary limitation lies in the significant computational demands during training, arising from their extensive parameterization. This challenge is further intensified by the dynamic nature of the world, necessitating frequent updates to LLMs to correct outdated information or integrate new knowledge, thereby ensuring their continued relevance. Note that many applications demand continual model adjustments post-training to address deficiencies or undesirable behaviors. There is an increasing interest in efficient, lightweight methods for on-the-fly model modifications. To this end, recent years have seen a burgeoning in the techniques of knowledge editing for LLMs, which aim to efficiently modify LLMs' behaviors within specific domains while preserving overall performance across various inputs. In this paper, we first define the knowledge editing problem and then provide a comprehensive review of cutting-edge approaches. Drawing inspiration from educational and cognitive research theories, we propose a unified categorization criterion that classifies knowledge editing methods into three groups: resorting to external knowledge, merging knowledge into the model, and editing intrinsic knowledge. Furthermore, we introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches. Additionally, we provide an in-depth analysis of knowledge location, which can provide a deeper understanding of the knowledge structures inherent within LLMs. Finally, we discuss several potential applications of knowledge editing, outlining its broad and impactful implications.

MobileQuant: Mobile-friendly Quantization for On-device Language Models

Large language models (LLMs) have revolutionized language processing, delivering outstanding results across multiple applications. However, deploying LLMs on edge devices poses several challenges with respect to memory, energy, and compute costs, limiting their widespread use in devices such as mobile phones. A promising solution is to reduce the number of bits used to represent weights and activations. While existing works have found partial success at quantizing LLMs to lower bitwidths, e.g. 4-bit weights, quantizing activations beyond 16 bits often leads to large computational overheads due to poor on-device quantization support, or a considerable accuracy drop. Yet, 8-bit activations are very attractive for on-device deployment as they would enable LLMs to fully exploit mobile-friendly hardware, e.g. Neural Processing Units (NPUs). In this work, we make a first attempt to facilitate the on-device deployment of LLMs using integer-only quantization. We first investigate the limitations of existing quantization methods for on-device deployment, with a special focus on activation quantization. We then address these limitations by introducing a simple post-training quantization method, named MobileQuant, that extends previous weight equivalent transformation works by jointly optimizing the weight transformation and activation range parameters in an end-to-end manner. MobileQuant demonstrates superior capabilities over existing methods by 1) achieving near-lossless quantization on a wide range of LLM benchmarks, 2) reducing latency and energy consumption by 20\%-50\% compared to current on-device quantization strategies, 3) requiring limited compute budget, 4) being compatible with mobile-friendly compute units, e.g. NPU.

RedOne: Revealing Domain-specific LLM Post-Training in Social Networking Services

As a primary medium for modern information dissemination, social networking services (SNS) have experienced rapid growth, which has proposed significant challenges for platform content management and interaction quality improvement. Recently, the development of large language models (LLMs) has offered potential solutions but existing studies focus on isolated tasks, which not only encounter diminishing benefit from the data scaling within individual scenarios but also fail to flexibly adapt to diverse real-world context. To address these challenges, we introduce RedOne, a domain-specific LLM designed to break the performance bottleneck of single-task baselines and establish a comprehensive foundation for the SNS. RedOne was developed through a three-stage training strategy consisting of continue pretraining, supervised fine-tuning, and preference optimization, using a large-scale real-world dataset. Through extensive experiments, RedOne maintains strong general capabilities, and achieves an average improvement up to 14.02% across 8 major SNS tasks and 7.56% in SNS bilingual evaluation benchmark, compared with base models. Furthermore, through online testing, RedOne reduced the exposure rate in harmful content detection by 11.23% and improved the click page rate in post-view search by 14.95% compared with single-tasks finetuned baseline models. These results establish RedOne as a robust domain-specific LLM for SNS, demonstrating excellent generalization across various tasks and promising applicability in real-world scenarios.

Improving large language models with concept-aware fine-tuning

Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm

Calibrated Language Models Must Hallucinate

Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.

QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models

Large Language Models (LLMs) excel in NLP, but their demands hinder their widespread deployment. While Quantization-Aware Training (QAT) offers a solution, its extensive training costs make Post-Training Quantization (PTQ) a more practical approach for LLMs. In existing studies, activation outliers in particular channels are identified as the bottleneck to PTQ accuracy. They propose to transform the magnitudes from activations to weights, which however offers limited alleviation or suffers from unstable gradients, resulting in a severe performance drop at low-bitwidth. In this paper, we propose QLLM, an accurate and efficient low-bitwidth PTQ method designed for LLMs. QLLM introduces an adaptive channel reassembly technique that reallocates the magnitude of outliers to other channels, thereby mitigating their impact on the quantization range. This is achieved by channel disassembly and channel assembly, which first breaks down the outlier channels into several sub-channels to ensure a more balanced distribution of activation magnitudes. Then similar channels are merged to maintain the original channel number for efficiency. Additionally, an adaptive strategy is designed to autonomously determine the optimal number of sub-channels for channel disassembly. To further compensate for the performance loss caused by quantization, we propose an efficient tuning method that only learns a small number of low-rank weights while freezing the pre-trained quantized model. After training, these low-rank parameters can be fused into the frozen weights without affecting inference. Extensive experiments on LLaMA-1 and LLaMA-2 show that QLLM can obtain accurate quantized models efficiently. For example, QLLM quantizes the 4-bit LLaMA-2-70B within 10 hours on a single A100-80G GPU, outperforming the previous state-of-the-art method by 7.89% on the average accuracy across five zero-shot tasks.

FEVO: Financial Knowledge Expansion and Reasoning Evolution for Large Language Models

Advancements in reasoning for large language models (LLMs) have lead to significant performance improvements for LLMs in various fields such as mathematics and programming. However, research applying these advances to the financial domain, where considerable domain-specific knowledge is necessary to complete tasks, remains limited. To address this gap, we introduce FEVO (Financial Evolution), a multi-stage enhancement framework developed to enhance LLM performance in the financial domain. FEVO systemically enhances LLM performance by using continued pre-training (CPT) to expand financial domain knowledge, supervised fine-tuning (SFT) to instill structured, elaborate reasoning patterns, and reinforcement learning (RL) to further integrate the expanded financial domain knowledge with the learned structured reasoning. To ensure effective and efficient training, we leverage frontier reasoning models and rule-based filtering to curate FEVO-Train, high-quality datasets specifically designed for the different post-training phases. Using our framework, we train the FEVO series of models - C32B, S32B, R32B - from Qwen2.5-32B and evaluate them on seven benchmarks to assess financial and general capabilities, with results showing that FEVO-R32B achieves state-of-the-art performance on five financial benchmarks against much larger models as well as specialist models. More significantly, FEVO-R32B demonstrates markedly better performance than FEVO-R32B-0 (trained from Qwen2.5-32B-Instruct using only RL), thus validating the effectiveness of financial domain knowledge expansion and structured, logical reasoning distillation

Parallel Scaling Law for Language Models

It is commonly believed that scaling language models should commit a significant space or time cost, by increasing the parameters (parameter scaling) or output tokens (inference-time scaling). We introduce the third and more inference-efficient scaling paradigm: increasing the model's parallel computation during both training and inference time. We apply P diverse and learnable transformations to the input, execute forward passes of the model in parallel, and dynamically aggregate the P outputs. This method, namely parallel scaling (ParScale), scales parallel computation by reusing existing parameters and can be applied to any model structure, optimization procedure, data, or task. We theoretically propose a new scaling law and validate it through large-scale pre-training, which shows that a model with P parallel streams is similar to scaling the parameters by O(log P) while showing superior inference efficiency. For example, ParScale can use up to 22times less memory increase and 6times less latency increase compared to parameter scaling that achieves the same performance improvement. It can also recycle an off-the-shelf pre-trained model into a parallelly scaled one by post-training on a small amount of tokens, further reducing the training budget. The new scaling law we discovered potentially facilitates the deployment of more powerful models in low-resource scenarios, and provides an alternative perspective for the role of computation in machine learning.

ZipLM: Hardware-Aware Structured Pruning of Language Models

The breakthrough performance of large language models (LLMs) comes with large computational footprints and high deployment costs. In this paper, we progress towards resolving this problem by proposing a new structured compression approach for LLMs, called ZipLM, which provides state-of-the-art compression-vs-accuracy results, while guaranteeing to match a set of (achievable) target speedups on any given target hardware. Specifically, given a task, a model, an inference environment, as well as a set of speedup targets, ZipLM identifies and removes redundancies in the model through iterative structured shrinking of the model's weight matrices. Importantly, ZipLM works in both, the post-training/one-shot and the gradual compression setting, where it produces a set of accurate models in a single run, making it highly-efficient in practice. Our approach is based on new structured pruning and knowledge distillation techniques, and consistently outperforms prior structured compression methods in terms of accuracy-versus-speedup in experiments on BERT- and GPT-family models. In particular, when compressing GPT2 model, it outperforms DistilGPT2 while being 60% smaller and 30% faster. Further, ZipLM matches performance of heavily optimized MobileBERT model, obtained via extensive architecture search, by simply pruning the baseline BERT-large architecture, and outperforms all prior BERT-base compression techniques like CoFi, MiniLM and TinyBERT.

Mixed-R1: Unified Reward Perspective For Reasoning Capability in Multimodal Large Language Models

Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.

Towards Reasoning Ability of Small Language Models

Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale (sim100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.

Self-Improvement in Language Models: The Sharpening Mechanism

Recent work in language modeling has raised the possibility of self-improvement, where a language models evaluates and refines its own generations to achieve higher performance without external feedback. It is impossible for this self-improvement to create information that is not already in the model, so why should we expect that this will lead to improved capabilities? We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening. Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to ``sharpen'' the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences. We begin by introducing a new statistical framework for sharpening in which the learner aims to sharpen a pre-trained base policy via sample access, and establish fundamental limits. Then we analyze two natural families of self-improvement algorithms based on SFT and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever the initial model has sufficient coverage, but (ii) the RLHF-based approach can improve over SFT-based self-improvement by leveraging online exploration, bypassing the need for coverage. Finally, we empirically validate the sharpening mechanism via inference-time and amortization experiments. We view these findings as a starting point toward a foundational understanding that can guide the design and evaluation of self-improvement algorithms.

LLM-Pruner: On the Structural Pruning of Large Language Models

Large language models (LLMs) have shown remarkable capabilities in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges in both the deployment, inference, and training stages. With LLM being a general-purpose task solver, we explore its compression in a task-agnostic manner, which aims to preserve the multi-task solving and language generation ability of the original LLM. One challenge to achieving this is the enormous size of the training corpus of LLM, which makes both data transfer and model post-training over-burdensome. Thus, we tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset. Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures based on gradient information, maximally preserving the majority of the LLM's functionality. To this end, the performance of pruned models can be efficiently recovered through tuning techniques, LoRA, in merely 3 hours, requiring only 50K data. We validate the LLM-Pruner on three LLMs, including LLaMA, Vicuna, and ChatGLM, and demonstrate that the compressed models still exhibit satisfactory capabilities in zero-shot classification and generation. The code is available at: https://github.com/horseee/LLM-Pruner

A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers

Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.

A Survey on Diffusion Language Models

Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.

DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training

Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.

PB-LLM: Partially Binarized Large Language Models

This paper explores network binarization, a radical form of quantization, compressing model weights to a single bit, specifically for Large Language Models (LLMs) compression. Due to previous binarization methods collapsing LLMs, we propose a novel approach, Partially-Binarized LLM (PB-LLM), which can achieve extreme low-bit quantization while maintaining the linguistic reasoning capacity of quantized LLMs. Specifically, our exploration first uncovers the ineffectiveness of naive applications of existing binarization algorithms and highlights the imperative role of salient weights in achieving low-bit quantization. Thus, PB-LLM filters a small ratio of salient weights during binarization, allocating them to higher-bit storage, i.e., partially-binarization. PB-LLM is extended to recover the capacities of quantized LMMs, by analyzing from the perspective of post-training quantization (PTQ) and quantization-aware training (QAT). Under PTQ, combining the concepts from GPTQ, we reconstruct the binarized weight matrix guided by the Hessian matrix and successfully recover the reasoning capacity of PB-LLM in low-bit. Under QAT, we freeze the salient weights during training, explore the derivation of optimal scaling factors crucial for minimizing the quantization error, and propose a scaling mechanism based on this derived scaling strategy for residual binarized weights. Those explorations and the developed methodologies significantly contribute to rejuvenating the performance of low-bit quantized LLMs and present substantial advancements in the field of network binarization for LLMs.The code is available at https://github.com/hahnyuan/BinaryLLM.

Unveiling Super Experts in Mixture-of-Experts Large Language Models

Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering

Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.

Gradient-Based Post-Training Quantization: Challenging the Status Quo

Quantization has become a crucial step for the efficient deployment of deep neural networks, where floating point operations are converted to simpler fixed point operations. In its most naive form, it simply consists in a combination of scaling and rounding transformations, leading to either a limited compression rate or a significant accuracy drop. Recently, Gradient-based post-training quantization (GPTQ) methods appears to be constitute a suitable trade-off between such simple methods and more powerful, yet expensive Quantization-Aware Training (QAT) approaches, particularly when attempting to quantize LLMs, where scalability of the quantization process is of paramount importance. GPTQ essentially consists in learning the rounding operation using a small calibration set. In this work, we challenge common choices in GPTQ methods. In particular, we show that the process is, to a certain extent, robust to a number of variables (weight selection, feature augmentation, choice of calibration set). More importantly, we derive a number of best practices for designing more efficient and scalable GPTQ methods, regarding the problem formulation (loss, degrees of freedom, use of non-uniform quantization schemes) or optimization process (choice of variable and optimizer). Lastly, we propose a novel importance-based mixed-precision technique. Those guidelines lead to significant performance improvements on all the tested state-of-the-art GPTQ methods and networks (e.g. +6.819 points on ViT for 4-bit quantization), paving the way for the design of scalable, yet effective quantization methods.

AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training

Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.

Vision-R1: Evolving Human-Free Alignment in Large Vision-Language Models via Vision-Guided Reinforcement Learning

Large Vision-Language Models (LVLMs) typically follow a two-stage training paradigm-pretraining and supervised fine-tuning. Recently, preference optimization, derived from the language domain, has emerged as an effective post-training reinforcement strategy to enhance capabilities of LVLMs. However, constructing high-quality human-annotated preference data and developing robust reward models to mimic these preferences are both costly and challenging. Motivated by this observation, we propose Vision-R1, a novel vision-guided R1-like reinforcement learning algorithm for LVLMs that rewards models with definitive vision feedback. It only leverages curated instruction data, eliminating the need for specialized reward models and handcrafted preference datasets. We incorporate a criterion-driven reward function that further integrates multi-dimensional feedback to evaluate model completions comprehensively based on the vision task logic. Furthermore, we introduce a progressive rule refinement strategy that dynamically adjusts the reward criteria during training, enabling continuous model improvement and mitigating reward hacking. Extensive experiments on both in-distribution and out-of-distribution benchmarks demonstrate that fine-tuning the 7B LVLMs with Vision-R1 achieves consistent performance gains, with even up to 50% improvement and surpassing the state-of-the-art 10x size model.

Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models

Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.

General Preference Modeling with Preference Representations for Aligning Language Models

Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. Although supervised pair preference models (PairPM) can express general preferences, their implementation is highly ad-hoc and cannot guarantee a consistent preference probability of compared pairs. Additionally, they impose high computational costs due to their quadratic query complexity when comparing multiple responses. In this paper, we introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback. Experimental results show that our General Preference representation model (GPM) outperforms the BT reward model on the RewardBench benchmark with a margin of up to 5.6% and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0 and MT-Bench, following the language model post-training with GPO and our general preference model, reveal substantial performance improvements with margins up to 9.3%. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.

EfficientLLM: Scalable Pruning-Aware Pretraining for Architecture-Agnostic Edge Language Models

Modern large language models (LLMs) driven by scaling laws, achieve intelligence emergency in large model sizes. Recently, the increasing concerns about cloud costs, latency, and privacy make it an urgent requirement to develop compact edge language models. Distinguished from direct pretraining that bounded by the scaling law, this work proposes the pruning-aware pretraining, focusing on retaining performance of much larger optimized models. It features following characteristics: 1) Data-scalable: we introduce minimal parameter groups in LLM and continuously optimize structural pruning, extending post-training pruning methods like LLM-Pruner and SparseGPT into the pretraining phase. 2) Architecture-agnostic: the LLM architecture is auto-designed using saliency-driven pruning, which is the first time to exceed SoTA human-designed LLMs in modern pretraining. We reveal that it achieves top-quality edge language models, termed EfficientLLM, by scaling up LLM compression and extending its boundary. EfficientLLM significantly outperforms SoTA baselines with 100M sim 1B parameters, such as MobileLLM, SmolLM, Qwen2.5-0.5B, OLMo-1B, Llama3.2-1B in common sense benchmarks. As the first attempt, EfficientLLM bridges the performance gap between traditional LLM compression and direct pretraining methods, and we will fully open source at https://github.com/Xingrun-Xing2/EfficientLLM.

VGRP-Bench: Visual Grid Reasoning Puzzle Benchmark for Large Vision-Language Models

Large Vision-Language Models (LVLMs) struggle with puzzles, which require precise perception, rule comprehension, and logical reasoning. Assessing and enhancing their performance in this domain is crucial, as it reflects their ability to engage in structured reasoning - an essential skill for real-world problem-solving. However, existing benchmarks primarily evaluate pre-trained models without additional training or fine-tuning, often lack a dedicated focus on reasoning, and fail to establish a systematic evaluation framework. To address these limitations, we introduce VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark featuring 20 diverse puzzles. VGRP-Bench spans multiple difficulty levels, and includes extensive experiments not only on existing chat LVLMs (e.g., GPT-4o), but also on reasoning LVLMs (e.g., Gemini-Thinking). Our results reveal that even the state-of-the-art LVLMs struggle with these puzzles, highlighting fundamental limitations in their puzzle-solving capabilities. Most importantly, through systematic experiments, we identify and analyze key factors influencing LVLMs' puzzle-solving performance, including the number of clues, grid size, and rule complexity. Furthermore, we explore two Supervised Fine-Tuning (SFT) strategies that can be used in post-training: SFT on solutions (S-SFT) and SFT on synthetic reasoning processes (R-SFT). While both methods significantly improve performance on trained puzzles, they exhibit limited generalization to unseen ones. We will release VGRP-Bench to facilitate further research on LVLMs for complex, real-world problem-solving. Project page: https://yufan-ren.com/subpage/VGRP-Bench/.

Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning

While state-of-the-art vision-language models (VLMs) have demonstrated remarkable capabilities in complex visual-text tasks, their success heavily relies on massive model scaling, limiting their practical deployment. Small-scale VLMs offer a more practical alternative but face significant challenges when trained with traditional supervised fine-tuning (SFT), particularly in two aspects: out-of-domain (OOD) generalization and reasoning abilities, which significantly lags behind the contemporary Large language models (LLMs). To address these challenges, we propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale VLMs. Inspired by the success of reinforcement learning in LLMs, Curr-ReFT comprises two sequential stages: (1) Curriculum Reinforcement Learning, which ensures steady progression of model capabilities through difficulty-aware reward design, transitioning from basic visual perception to complex reasoning tasks; and (2) Rejected Sampling-based Self-improvement, which maintains the fundamental capabilities of VLMs through selective learning from high-quality multimodal and language examples. Extensive experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks in both in-domain and out-of-domain settings. Moreover, our Curr-ReFT enhanced 3B model matches the performance of 32B-parameter models, demonstrating that efficient training paradigms can effectively bridge the gap between small and large models.

Alignment is not sufficient to prevent large language models from generating harmful information: A psychoanalytic perspective

Large Language Models (LLMs) are central to a multitude of applications but struggle with significant risks, notably in generating harmful content and biases. Drawing an analogy to the human psyche's conflict between evolutionary survival instincts and societal norm adherence elucidated in Freud's psychoanalysis theory, we argue that LLMs suffer a similar fundamental conflict, arising between their inherent desire for syntactic and semantic continuity, established during the pre-training phase, and the post-training alignment with human values. This conflict renders LLMs vulnerable to adversarial attacks, wherein intensifying the models' desire for continuity can circumvent alignment efforts, resulting in the generation of harmful information. Through a series of experiments, we first validated the existence of the desire for continuity in LLMs, and further devised a straightforward yet powerful technique, such as incomplete sentences, negative priming, and cognitive dissonance scenarios, to demonstrate that even advanced LLMs struggle to prevent the generation of harmful information. In summary, our study uncovers the root of LLMs' vulnerabilities to adversarial attacks, hereby questioning the efficacy of solely relying on sophisticated alignment methods, and further advocates for a new training idea that integrates modal concepts alongside traditional amodal concepts, aiming to endow LLMs with a more nuanced understanding of real-world contexts and ethical considerations.

AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models

The acquisition of agentic capabilities has transformed LLMs from "knowledge providers" to "action executors", a trend that while expanding LLMs' capability boundaries, significantly increases their susceptibility to malicious use. Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked, indicating a deficiency in agentic use safety alignment during the post-training phase. To address this gap, we propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis. By instantiating these behavior chains in simulated environments with diverse tool instances, our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics. The framework further ensures model utility by proportionally synthesizing benign instructions through non-malicious interpretations of behavior chains, precisely calibrating the boundary between helpfulness and harmlessness. Evaluation results on AgentHarm demonstrate that fine-tuning three families of open-source models using our method substantially improves their safety (35.8% to 79.5% improvement) while minimally impacting or even positively enhancing their helpfulness, outperforming various prompting methods. The dataset and code have both been open-sourced.

FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

Post-training quantization (PTQ) has been gaining popularity for the deployment of deep neural networks on resource-limited devices since unlike quantization-aware training, neither a full training dataset nor end-to-end training is required at all. As PTQ schemes based on reconstructing each layer or block output turn out to be effective to enhance quantized model performance, recent works have developed algorithms to devise and learn a new weight-rounding scheme so as to better reconstruct each layer or block output. In this work, we propose a simple yet effective new weight-rounding mechanism for PTQ, coined FlexRound, based on element-wise division instead of typical element-wise addition such that FlexRound enables jointly learning a common quantization grid size as well as a different scale for each pre-trained weight. Thanks to the reciprocal rule of derivatives induced by element-wise division, FlexRound is inherently able to exploit pre-trained weights when updating their corresponding scales, and thus, flexibly quantize pre-trained weights depending on their magnitudes. We empirically validate the efficacy of FlexRound on a wide range of models and tasks. To the best of our knowledge, our work is the first to carry out comprehensive experiments on not only image classification and natural language understanding but also natural language generation, assuming a per-tensor uniform PTQ setting. Moreover, we demonstrate, for the first time, that large language models can be efficiently quantized, with only a negligible impact on performance compared to half-precision baselines, achieved by reconstructing the output in a block-by-block manner.

OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting

Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. https://github.com/BrotherHappy/OSTQuant{https://github.com/BrotherHappy/OSTQuant}.

CogVLA: Cognition-Aligned Vision-Language-Action Model via Instruction-Driven Routing & Sparsification

Recent Vision-Language-Action (VLA) models built on pre-trained Vision-Language Models (VLMs) require extensive post-training, resulting in high computational overhead that limits scalability and deployment.We propose CogVLA, a Cognition-Aligned Vision-Language-Action framework that leverages instruction-driven routing and sparsification to improve both efficiency and performance. CogVLA draws inspiration from human multimodal coordination and introduces a 3-stage progressive architecture. 1) Encoder-FiLM based Aggregation Routing (EFA-Routing) injects instruction information into the vision encoder to selectively aggregate and compress dual-stream visual tokens, forming a instruction-aware latent representation. 2) Building upon this compact visual encoding, LLM-FiLM based Pruning Routing (LFP-Routing) introduces action intent into the language model by pruning instruction-irrelevant visually grounded tokens, thereby achieving token-level sparsity. 3) To ensure that compressed perception inputs can still support accurate and coherent action generation, we introduce V-L-A Coupled Attention (CAtten), which combines causal vision-language attention with bidirectional action parallel decoding. Extensive experiments on the LIBERO benchmark and real-world robotic tasks demonstrate that CogVLA achieves state-of-the-art performance with success rates of 97.4% and 70.0%, respectively, while reducing training costs by 2.5-fold and decreasing inference latency by 2.8-fold compared to OpenVLA. CogVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/CogVLA.

Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models

Reinforcement learning from human feedback (RLHF) has become a powerful post-training paradigm for aligning large language models with human preferences. A core challenge in RLHF is constructing accurate reward signals, where the conventional Bradley-Terry reward models (BT RMs) often suffer from sensitivity to data size and coverage, as well as vulnerability to reward hacking. Generative reward models (GenRMs) offer a more robust alternative by generating chain-of-thought (CoT) rationales followed by a final reward. However, existing GenRMs rely on shallow, vertically scaled reasoning, limiting their capacity to handle nuanced or complex (e.g., reasoning-intensive) tasks. Moreover, their pairwise preference outputs are incompatible with standard RLHF algorithms that require pointwise reward signals. In this work, we introduce Think-RM, a training framework that enables long-horizon reasoning in GenRMs by modeling an internal thinking process. Rather than producing structured, externally provided rationales, Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities such as self-reflection, hypothetical reasoning, and divergent reasoning. To elicit these reasoning abilities, we first warm-up the models by supervised fine-tuning (SFT) over long CoT data. We then further improve the model's long-horizon abilities by rule-based reinforcement learning (RL). In addition, we propose a novel pairwise RLHF pipeline that directly optimizes policies using pairwise preference rewards, eliminating the need for pointwise reward conversion and enabling more effective use of Think-RM outputs. Experiments show that Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%. When combined with our pairwise RLHF pipeline, it demonstrates superior end-policy performance compared to traditional approaches.

LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training

Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs). In practice, because of the high demands on latency and memory, it is particularly challenging to develop an efficient RL framework that reliably manages policy models with hundreds to thousands of billions of parameters. In this paper, we present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs with various model sizes (8B, 70B, and 405B parameters) on GPU clusters ranging from a handful to thousands of devices. LlamaRL introduces a streamlined, single-controller architecture built entirely on native PyTorch, enabling modularity, ease of use, and seamless scalability to thousands of GPUs. We also provide a theoretical analysis of LlamaRL's efficiency, including a formal proof that its asynchronous design leads to strict RL speed-up. Empirically during the Llama 3 post-training, by leveraging best practices such as colocated model offloading, asynchronous off-policy training, and distributed direct memory access for weight synchronization, LlamaRL achieves significant efficiency gains -- up to 10.7x speed-up compared to DeepSpeed-Chat-like systems on a 405B-parameter policy model. Furthermore, the efficiency advantage continues to grow with increasing model scale, demonstrating the framework's suitability for future large-scale RL training.

SVDQunat: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models

Diffusion models have been proven highly effective at generating high-quality images. However, as these models grow larger, they require significantly more memory and suffer from higher latency, posing substantial challenges for deployment. In this work, we aim to accelerate diffusion models by quantizing their weights and activations to 4 bits. At such an aggressive level, both weights and activations are highly sensitive, where conventional post-training quantization methods for large language models like smoothing become insufficient. To overcome this limitation, we propose SVDQuant, a new 4-bit quantization paradigm. Different from smoothing which redistributes outliers between weights and activations, our approach absorbs these outliers using a low-rank branch. We first consolidate the outliers by shifting them from activations to weights, then employ a high-precision low-rank branch to take in the weight outliers with Singular Value Decomposition (SVD). This process eases the quantization on both sides. However, na\"{\i}vely running the low-rank branch independently incurs significant overhead due to extra data movement of activations, negating the quantization speedup. To address this, we co-design an inference engine Nunchaku that fuses the kernels of the low-rank branch into those of the low-bit branch to cut off redundant memory access. It can also seamlessly support off-the-shelf low-rank adapters (LoRAs) without the need for re-quantization. Extensive experiments on SDXL, PixArt-Sigma, and FLUX.1 validate the effectiveness of SVDQuant in preserving image quality. We reduce the memory usage for the 12B FLUX.1 models by 3.5times, achieving 3.0times speedup over the 4-bit weight-only quantized baseline on the 16GB laptop 4090 GPU, paving the way for more interactive applications on PCs. Our quantization library and inference engine are open-sourced.

Revisiting the Superficial Alignment Hypothesis

The Superficial Alignment Hypothesis posits that almost all of a language model's abilities and knowledge are learned during pre-training, while post-training is about giving a model the right style and format. We re-examine these claims by empirically studying the scaling behavior of post-training with increasing finetuning examples and evaluating them using objective task-specific standardized benchmarks. Through experiments with the Llama-3, Mistral, and Llama-2 model families of multiple sizes, we observe that, similar to the pre-training scaling laws, post-training task performance scales as a power law against the number of finetuning examples. This power law relationship holds across a broad array of capabilities, including mathematical reasoning, coding, instruction following, and multihop-reasoning. In addition, for tasks like math and multihop reasoning, we observe that a handful of examples merely align the model stylistically but do not saturate performance on the benchmarks. Model performance is instead correlated with its reasoning ability and it improves significantly with more examples, illustrating the need for holistic evaluation programs leveraging objective benchmarks in addition to measurement of alignment to human preferences. We also observe that language models are not necessarily limited to using knowledge learned during pre-training. With appropriate post-training, a model's ability to integrate new knowledge greatly improves on downstream tasks like multihop question-answering. Taken together, these results shed new light on the Superficial Alignment Hypothesis, suggesting that it is, at best, an over-simplification.

Outliers and Calibration Sets have Diminishing Effect on Quantization of Modern LLMs

Post-Training Quantization (PTQ) enhances the efficiency of Large Language Models (LLMs) by enabling faster operation and compatibility with more accessible hardware through reduced memory usage, at the cost of small performance drops. We explore the role of calibration sets in PTQ, specifically their effect on hidden activations in various notable open-source LLMs. Calibration sets are crucial for evaluating activation magnitudes and identifying outliers, which can distort the quantization range and negatively impact performance. Our analysis reveals a marked contrast in quantization effectiveness across models. The older OPT model, upon which much of the quantization literature is based, shows significant performance deterioration and high susceptibility to outliers with varying calibration sets. In contrast, newer models like Llama-2 7B, Llama-3 8B, Command-R 35B, and Mistral 7B demonstrate strong robustness, with Mistral 7B showing near-immunity to outliers and stable activations. These findings suggest a shift in PTQ strategies might be needed. As advancements in pre-training methods reduce the relevance of outliers, there is an emerging need to reassess the fundamentals of current quantization literature. The emphasis should pivot towards optimizing inference speed, rather than primarily focusing on outlier preservation, to align with the evolving characteristics of state-of-the-art LLMs.

Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling

Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.

MLLM-CBench:A Comprehensive Benchmark for Continual Instruction Tuning of Multimodal LLMs with Chain-of-Thought Reasoning Analysis

Multimodal large language models (MLLMs) require continual instruction tuning during their post-training phase to adapt to the dynamic real-world demands. However, the absence of rigorous and systematic benchmarks has hindered progress in this area. To bridge this gap, we introduce MLLM-CTBench, a dataset curating seven challenging tasks from six diverse domains with three contributions. First,to enable fine-grained analysis of continual learning ability, we introduce multidimensional evaluation metrics, which combines final answer accuracy with Chain-of-Thought (CoT) reasoning quality assessment through a carefully trained MLLM evaluator. Then, we conduct a comprehensive evaluation of continual learning algorithms, systematically assessing eight algorithms from four major categories to provide actionable insights for algorithm design and adoption. Finally ,we evaluate the efficacy of Reinforcement Fine-tuning (RFT) versus Supervised Fine-tuning (SFT) in maintaining model performance across sequential tasks during continual instruction tuning. Our experiments demonstrate that reasoning processes in MLLMs exhibit greater resilience than final outputs to forgetting during continual learning, aligning with cognitive theories of hierarchical forgetting. We further show that both model capability and task sequence significantly influence continual learning outcomes, with stronger baseline models exhibiting greater resistance to forgetting. Notably, properly regularized RFT emerges as a more robust approach than SFT for maintaining performance across tasks.One of the key contributing factors is KL-divergence regularization, without which RFT leads to even worse forgetting than SFT on old tasks though may perform better on new tasks.

Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections

Post-training processes are essential phases in grounding pre-trained language models to real-world tasks, with learning from demonstrations or preference signals playing a crucial role in this adaptation. We present a unified theoretical framework bridging Supervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training. Through rigorous mathematical derivation, we demonstrate that both SFT and preference learning methods like Direct Preference Optimization (DPO) operate within the same optimal policy-reward subspace, with SFT representing a special case of implicit reward learning. Our analysis reveals a critical limitation in conventional SFT: the KL divergence term in distribution matching becomes constant with respect to the policy during optimization, failing to constrain model updates. To address this, we propose a simple yet effective learning rate reduction approach that yields significant performance improvements (up to 25\% relative gain and 6\% absolute win rate increase in instruction following tasks. Additionally, we derive alternative SFT objectives from various f-divergence functions that preserve the KL term during optimization, further enhancing post-DPO model performance. Finally, we extend the theoretical relationship between LLM logits and Q-functions from preference learning to the SFT context, providing mathematical derivations and experimental validation.

Misaligned Roles, Misplaced Images: Structural Input Perturbations Expose Multimodal Alignment Blind Spots

Multimodal Language Models (MMLMs) typically undergo post-training alignment to prevent harmful content generation. However, these alignment stages focus primarily on the assistant role, leaving the user role unaligned, and stick to a fixed input prompt structure of special tokens, leaving the model vulnerable when inputs deviate from these expectations. We introduce Role-Modality Attacks (RMA), a novel class of adversarial attacks that exploit role confusion between the user and assistant and alter the position of the image token to elicit harmful outputs. Unlike existing attacks that modify query content, RMAs manipulate the input structure without altering the query itself. We systematically evaluate these attacks across multiple Vision Language Models (VLMs) on eight distinct settings, showing that they can be composed to create stronger adversarial prompts, as also evidenced by their increased projection in the negative refusal direction in the residual stream, a property observed in prior successful attacks. Finally, for mitigation, we propose an adversarial training approach that makes the model robust against input prompt perturbations. By training the model on a range of harmful and benign prompts all perturbed with different RMA settings, it loses its sensitivity to Role Confusion and Modality Manipulation attacks and is trained to only pay attention to the content of the query in the input prompt structure, effectively reducing Attack Success Rate (ASR) while preserving the model's general utility.

On the Loss of Context-awareness in General Instruction Fine-tuning

Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.

CPL: Critical Plan Step Learning Boosts LLM Generalization in Reasoning Tasks

Post-training, particularly reinforcement learning (RL) using self-play-generated data, has become a new learning paradigm for large language models (LLMs). However, scaling RL to develop a general reasoner remains a research challenge, as existing methods focus on task-specific reasoning without adequately addressing generalization across a broader range of tasks. Moreover, unlike traditional RL with limited action space, LLMs operate in an infinite space, making it crucial to search for valuable and diverse strategies to solve problems effectively. To address this, we propose searching within the action space on high-level abstract plans to enhance model generalization and introduce Critical Plan Step Learning (CPL), comprising: 1) searching on plan, using Monte Carlo Tree Search (MCTS) to explore diverse plan steps in multi-step reasoning tasks, and 2) learning critical plan steps through Step-level Advantage Preference Optimization (Step-APO), which integrates advantage estimates for step preference obtained via MCTS into Direct Preference Optimization (DPO). This combination helps the model effectively learn critical plan steps, enhancing both reasoning capabilities and generalization. Experimental results demonstrate that our method, trained exclusively on GSM8K and MATH, not only significantly improves performance on GSM8K (+10.5%) and MATH (+6.5%), but also enhances out-of-domain reasoning benchmarks, such as HumanEval (+12.2%), GPQA (+8.6%), ARC-C (+4.0%), MMLU-STEM (+2.2%), and BBH (+1.8%).

CoIn: Counting the Invisible Reasoning Tokens in Commercial Opaque LLM APIs

As post-training techniques evolve, large language models (LLMs) are increasingly augmented with structured multi-step reasoning abilities, often optimized through reinforcement learning. These reasoning-enhanced models outperform standard LLMs on complex tasks and now underpin many commercial LLM APIs. However, to protect proprietary behavior and reduce verbosity, providers typically conceal the reasoning traces while returning only the final answer. This opacity introduces a critical transparency gap: users are billed for invisible reasoning tokens, which often account for the majority of the cost, yet have no means to verify their authenticity. This opens the door to token count inflation, where providers may overreport token usage or inject synthetic, low-effort tokens to inflate charges. To address this issue, we propose CoIn, a verification framework that audits both the quantity and semantic validity of hidden tokens. CoIn constructs a verifiable hash tree from token embedding fingerprints to check token counts, and uses embedding-based relevance matching to detect fabricated reasoning content. Experiments demonstrate that CoIn, when deployed as a trusted third-party auditor, can effectively detect token count inflation with a success rate reaching up to 94.7%, showing the strong ability to restore billing transparency in opaque LLM services. The dataset and code are available at https://github.com/CASE-Lab-UMD/LLM-Auditing-CoIn.

ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning

Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose Self-Explanation Policy Optimization (ExPO)-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.

FireQ: Fast INT4-FP8 Kernel and RoPE-aware Quantization for LLM Inference Acceleration

As large language models become increasingly prevalent, memory bandwidth constraints significantly limit inference throughput, motivating post-training quantization (PTQ). In this paper, we propose FireQ, a co-designed PTQ framework and an INT4-FP8 matrix multiplication kernel that accelerates LLM inference across all linear layers. Specifically, FireQ quantizes linear layer weights and key-values to INT4, and activations and queries to FP8, significantly enhancing throughput. Additionally, we introduce a three-stage pipelining for the prefill phase, which modifies the FlashAttention-3 kernel, effectively reducing time-to-first-token in the prefill phase. To minimize accuracy loss from quantization, we develop novel outlier smoothing techniques tailored separately for linear and attention layers. In linear layers, we explicitly use per-tensor scaling to prevent underflow caused by the FP8 quantization scaling factor of INT4 quantization, and channel-wise scaling to compensate for coarse granularity of INT4. In attention layers, we address quantization challenges posed by rotary positional embeddings (RoPE) by combining pre-RoPE and post-RoPE scaling strategies. FireQ significantly outperforms state-of-the-art methods, achieving 1.68x faster inference in feed-forward network layers on Llama2-7B and 1.26x faster prefill phase performance on Llama3-8B compared to QServe, with negligible accuracy loss.

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Large language models (LLMs) have demonstrated remarkable reasoning capabilities in math and coding, often bolstered by post-training on the chain-of-thoughts (CoTs) generated by stronger models. However, existing strategies for curating such training data predominantly rely on heuristics, limiting generalizability and failing to capture subtleties underlying in data. To address these limitations, we leverage influence functions to systematically attribute LLMs' reasoning ability on math and coding to individual training examples, sequences, and tokens, enabling deeper insights into effective data characteristics. Our Influence-based Reasoning Attribution (Infra) uncovers nontrivial cross-domain effects across math and coding tasks: high-difficulty math examples improve both math and code reasoning, while low-difficulty code tasks most effectively benefit code reasoning. Based on these findings, we introduce a simple yet effective dataset reweighting strategy by flipping task difficulty, which doubles AIME24 accuracy from 10\% to 20\% and boosts LiveCodeBench accuracy from 33.8\% to 35.3\% for Qwen2.5-7B-Instruct. Moreover, our fine-grained attribution reveals that the sequence-level exploratory behaviors enhance reasoning performance in both math and code, and the token-level influence patterns are distinct for math and code reasoning: the former prefers natural language logic connectors and the latter emphasizes structural syntax.

SIFT: Grounding LLM Reasoning in Contexts via Stickers

This paper identifies the misinterpretation of the context can be a significant issue during the reasoning process of large language models, spanning from smaller models like Llama3.2-3B-Instruct to cutting-edge ones like DeepSeek-R1. For example, in the phrase "10 dollars per kilo," LLMs might not recognize that "per" means "for each," leading to calculation errors. We introduce a novel, post-training approach called **Stick to the Facts (SIFT)** to tackle this. SIFT leverages increasing inference-time compute to ground LLM reasoning in contexts. At the core of SIFT lies the *Sticker*, which is generated by the model itself to explicitly emphasize the key information within the context. Given the curated Sticker, SIFT generates two predictions -- one from the original query and one from the query augmented with the Sticker. If they differ, the Sticker is sequentially refined via *forward* optimization (to better align the extracted facts with the query) and *inverse* generation (to conform with the model's inherent tendencies) for more faithful reasoning outcomes. Studies across diverse models (from 3B to 100B+) and benchmarks (e.g., GSM8K, MATH-500) reveal consistent performance improvements. Notably, SIFT improves the pass@1 accuracy of DeepSeek-R1 on AIME2024 from 78.33% to **85.67**%, establishing a new state-of-the-art in the open-source community. The code is available at https://github.com/zhijie-group/SIFT.

Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration

With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, ExtAgents, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $boldsymbol{inftyBench+}, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls within or exceeds the context window$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.

DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO

Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.

LLM-FP4: 4-Bit Floating-Point Quantized Transformers

We propose LLM-FP4 for quantizing both weights and activations in large language models (LLMs) down to 4-bit floating-point values, in a post-training manner. Existing post-training quantization (PTQ) solutions are primarily integer-based and struggle with bit widths below 8 bits. Compared to integer quantization, floating-point (FP) quantization is more flexible and can better handle long-tail or bell-shaped distributions, and it has emerged as a default choice in many hardware platforms. One characteristic of FP quantization is that its performance largely depends on the choice of exponent bits and clipping range. In this regard, we construct a strong FP-PTQ baseline by searching for the optimal quantization parameters. Furthermore, we observe a high inter-channel variance and low intra-channel variance pattern in activation distributions, which adds activation quantization difficulty. We recognize this pattern to be consistent across a spectrum of transformer models designed for diverse tasks, such as LLMs, BERT, and Vision Transformer models. To tackle this, we propose per-channel activation quantization and show that these additional scaling factors can be reparameterized as exponential biases of weights, incurring a negligible cost. Our method, for the first time, can quantize both weights and activations in the LLaMA-13B to only 4-bit and achieves an average score of 63.1 on the common sense zero-shot reasoning tasks, which is only 5.8 lower than the full-precision model, significantly outperforming the previous state-of-the-art by 12.7 points. Code is available at: https://github.com/nbasyl/LLM-FP4.

SqueezeLLM: Dense-and-Sparse Quantization

Generative Large Language Models (LLMs) have demonstrated remarkable results for a wide range of tasks. However, deploying these models for inference has been a significant challenge due to their unprecedented resource requirements. This has forced existing deployment frameworks to use multi-GPU inference pipelines, which are often complex and costly, or to use smaller and less performant models. In this work, we demonstrate that the main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, specifically for single batch inference. While quantization has emerged as a promising solution by representing model weights with reduced precision, previous efforts have often resulted in notable performance degradation. To address this, we introduce SqueezeLLM, a post-training quantization framework that not only enables lossless compression to ultra-low precisions of up to 3-bit, but also achieves higher quantization performance under the same memory constraint. Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format. When applied to the LLaMA models, our 3-bit quantization significantly reduces the perplexity gap from the FP16 baseline by up to 2.1x as compared to the state-of-the-art methods with the same memory requirement. Furthermore, when deployed on an A6000 GPU, our quantized models achieve up to 2.3x speedup compared to the baseline. Our code is open-sourced and available online.

Qwen2.5 Technical Report

In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.

On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting

Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.

Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning

As test-time scaling becomes a pivotal research frontier in Large Language Models (LLMs) development, contemporary and advanced post-training methodologies increasingly focus on extending the generation length of long Chain-of-Thought (CoT) responses to enhance reasoning capabilities toward DeepSeek R1-like performance. However, recent studies reveal a persistent overthinking phenomenon in state-of-the-art reasoning models, manifesting as excessive redundancy or repetitive thinking patterns in long CoT responses. To address this issue, in this paper, we propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in LLMs, named ConciseR. Specifically, the first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization with clip-higher and dynamic sampling components (GRPO++), and the second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization (L-GRPO). Significantly, ConciseR only optimizes response length once all rollouts of a sample are correct, following the "walk before you run" principle. Extensive experimental results demonstrate that our ConciseR model, which generates more concise CoT reasoning responses, outperforms recent state-of-the-art reasoning models with zero RL paradigm across AIME 2024, MATH-500, AMC 2023, Minerva, and Olympiad benchmarks.

Hawkeye:Efficient Reasoning with Model Collaboration

Chain-of-Thought (CoT) reasoning has demonstrated remarkable effectiveness in enhancing the reasoning abilities of large language models (LLMs). However, its efficiency remains a challenge due to the generation of excessive intermediate reasoning tokens, which introduce semantic redundancy and overly detailed reasoning steps. Moreover, computational expense and latency are significant concerns, as the cost scales with the number of output tokens, including those intermediate steps. In this work, we observe that most CoT tokens are unnecessary, and retaining only a small portion of them is sufficient for producing high-quality responses. Inspired by this, we propose HAWKEYE, a novel post-training and inference framework where a large model produces concise CoT instructions to guide a smaller model in response generation. HAWKEYE quantifies redundancy in CoT reasoning and distills high-density information via reinforcement learning. By leveraging these concise CoTs, HAWKEYE is able to expand responses while reducing token usage and computational cost significantly. Our evaluation shows that HAWKEYE can achieve comparable response quality using only 35% of the full CoTs, while improving clarity, coherence, and conciseness by approximately 10%. Furthermore, HAWKEYE can accelerate end-to-end reasoning by up to 3.4x on complex math tasks while reducing inference cost by up to 60%. HAWKEYE will be open-sourced and the models will be available soon.

InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities

Large language models (LLMs) have exhibited impressive reasoning abilities on a wide range of complex tasks. However, enhancing these capabilities through post-training remains resource intensive, particularly in terms of data and computational cost. Although recent efforts have sought to improve sample efficiency through selective data curation, existing methods often rely on heuristic or task-specific strategies that hinder scalability. In this work, we introduce InfiAlign, a scalable and sample-efficient post-training framework that integrates supervised fine-tuning (SFT) with Direct Preference Optimization (DPO) to align LLMs for enhanced reasoning. At the core of InfiAlign is a robust data selection pipeline that automatically curates high-quality alignment data from open-source reasoning datasets using multidimensional quality metrics. This pipeline enables significant performance gains while drastically reducing data requirements and remains extensible to new data sources. When applied to the Qwen2.5-Math-7B-Base model, our SFT model achieves performance on par with DeepSeek-R1-Distill-Qwen-7B, while using only approximately 12% of the training data, and demonstrates strong generalization across diverse reasoning tasks. Additional improvements are obtained through the application of DPO, with particularly notable gains in mathematical reasoning tasks. The model achieves an average improvement of 3.89% on AIME 24/25 benchmarks. Our results highlight the effectiveness of combining principled data selection with full-stage post-training, offering a practical solution for aligning large reasoning models in a scalable and data-efficient manner. The model checkpoints are available at https://huggingface.co/InfiX-ai/InfiAlign-Qwen-7B-SFT.

Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1

Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.

Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering

Recently, reinforcement learning (RL) has been shown to greatly enhance the reasoning capabilities of large language models (LLMs), and RL-based approaches have been progressively applied to visual multimodal tasks. However, the audio modality has largely been overlooked in these developments. Thus, we conduct a series of RL explorations in audio understanding and reasoning, specifically focusing on the audio question answering (AQA) task. We leverage the group relative policy optimization (GRPO) algorithm to Qwen2-Audio-7B-Instruct, and our experiments demonstrated state-of-the-art performance on the MMAU Test-mini benchmark, achieving an accuracy rate of 64.5%. The main findings in this technical report are as follows: 1) The GRPO algorithm can be effectively applied to large audio language models (LALMs), even when the model has only 8.2B parameters; 2) With only 38k post-training samples, RL significantly outperforms supervised fine-tuning (SFT), indicating that RL-based approaches can be effective without large datasets; 3) The explicit reasoning process has not shown significant benefits for AQA tasks, and how to efficiently utilize deep thinking remains an open question for further research; 4) LALMs still lag far behind humans auditory-language reasoning, suggesting that the RL-based approaches warrant further exploration. Our project is available at https://github.com/xiaomi/r1-aqa and https://huggingface.co/mispeech/r1-aqa.

PokerBench: Training Large Language Models to become Professional Poker Players

We introduce PokerBench - a benchmark for evaluating the poker-playing abilities of large language models (LLMs). As LLMs excel in traditional NLP tasks, their application to complex, strategic games like poker poses a new challenge. Poker, an incomplete information game, demands a multitude of skills such as mathematics, reasoning, planning, strategy, and a deep understanding of game theory and human psychology. This makes Poker the ideal next frontier for large language models. PokerBench consists of a comprehensive compilation of 11,000 most important scenarios, split between pre-flop and post-flop play, developed in collaboration with trained poker players. We evaluate prominent models including GPT-4, ChatGPT 3.5, and various Llama and Gemma series models, finding that all state-of-the-art LLMs underperform in playing optimal poker. However, after fine-tuning, these models show marked improvements. We validate PokerBench by having models with different scores compete with each other, demonstrating that higher scores on PokerBench lead to higher win rates in actual poker games. Through gameplay between our fine-tuned model and GPT-4, we also identify limitations of simple supervised fine-tuning for learning optimal playing strategy, suggesting the need for more advanced methodologies for effectively training language models to excel in games. PokerBench thus presents a unique benchmark for a quick and reliable evaluation of the poker-playing ability of LLMs as well as a comprehensive benchmark to study the progress of LLMs in complex game-playing scenarios. The dataset and code will be made available at: https://github.com/pokerllm/pokerbench.

Breaking Focus: Contextual Distraction Curse in Large Language Models

Recent advances in Large Language Models (LLMs) have revolutionized generative systems, achieving excellent performance across diverse domains. Although these models perform well in controlled environments, their real-world applications frequently encounter inputs containing both essential and irrelevant details. Our investigation has revealed a critical vulnerability in LLMs, which we term Contextual Distraction Vulnerability (CDV). This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context. To systematically investigate this vulnerability, we propose an efficient tree-based search methodology to automatically generate CDV examples. Our approach successfully generates CDV examples across four datasets, causing an average performance degradation of approximately 45% in state-of-the-art LLMs. To address this critical issue, we explore various mitigation strategies and find that post-targeted training approaches can effectively enhance model robustness against contextual distractions. Our findings highlight the fundamental nature of CDV as an ability-level challenge rather than a knowledge-level issue since models demonstrate the necessary knowledge by answering correctly in the absence of distractions. This calls the community's attention to address CDV during model development to ensure reliability. The code is available at https://github.com/wyf23187/LLM_CDV.

Intuitive Fine-Tuning: Towards Unifying SFT and RLHF into a Single Process

Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) are two fundamental processes for enhancing the capabilities of Language Models (LMs) post pre-training, aligning them better with human preferences. Although SFT advances in training efficiency, RLHF delivers better alignment, thus they are often combined. However, common practices simply apply them sequentially without unifying their optimization targets, resulting in a trade-off between fitting different objectives, and ignoring the opportunities to bridge the paradigm gap and take the strength from both. To obtain a unified understanding, we interpret SFT and RLHF using two sub-processes -- Preference Estimation and Transition Optimization -- defined at token level within the Markov Decision Process (MDP) framework. This modeling shows that SFT is only a specialized case of RLHF with inferior estimation and optimization. RLHF evaluates the quality of model's entire generated answer, whereas SFT only scores predicted tokens based on preceding tokens from target answers. Therefore, SFT overestimates the ability of model, leading to inferior optimization. Building on this view, we introduce Intuitive Fine-tuning (IFT) to integrate SFT and RLHF into a single process. IFT captures LMs' intuitive sense of the entire answers through a temporal residual connection, while using a single policy and the same volume of non-preference-labeled data as SFT. Our experiments show that IFT performs comparably or even superiorly to sequential recipes of SFT and some typical alignment methods across several tasks, particularly those requires generation, reasoning, and fact-following abilities. An explainable Frozen Lake game further validates the effectiveness of IFT.

Post-pre-training for Modality Alignment in Vision-Language Foundation Models

Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance.

Data-Juicer: A One-Stop Data Processing System for Large Language Models

The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, diverse, and high-quality data. Despite this, existing open-source tools for LLM data processing remain limited and mostly tailored to specific datasets, with an emphasis on the reproducibility of released data over adaptability and usability, inhibiting potential applications. In response, we propose a one-stop, powerful yet flexible and user-friendly LLM data processing system named Data-Juicer. Our system offers over 50 built-in versatile operators and pluggable tools, which synergize modularity, composability, and extensibility dedicated to diverse LLM data processing needs. By incorporating visualized and automatic evaluation capabilities, Data-Juicer enables a timely feedback loop to accelerate data processing and gain data insights. To enhance usability, Data-Juicer provides out-of-the-box components for users with various backgrounds, and fruitful data recipes for LLM pre-training and post-tuning usages. Further, we employ multi-facet system optimization and seamlessly integrate Data-Juicer with both LLM and distributed computing ecosystems, to enable efficient and scalable data processing. Empirical validation of the generated data recipes reveals considerable improvements in LLaMA performance for various pre-training and post-tuning cases, demonstrating up to 7.45% relative improvement of averaged score across 16 LLM benchmarks and 16.25% higher win rate using pair-wise GPT-4 evaluation. The system's efficiency and scalability are also validated, supported by up to 88.7% reduction in single-machine processing time, 77.1% and 73.1% less memory and CPU usage respectively, and 7.91x processing acceleration when utilizing distributed computing ecosystems. Our system, data recipes, and multiple tutorial demos are released, calling for broader research centered on LLM data.

Inherent Challenges of Post-Hoc Membership Inference for Large Language Models

Large Language Models (LLMs) are often trained on vast amounts of undisclosed data, motivating the development of post-hoc Membership Inference Attacks (MIAs) to gain insight into their training data composition. However, in this paper, we identify inherent challenges in post-hoc MIA evaluation due to potential distribution shifts between collected member and non-member datasets. Using a simple bag-of-words classifier, we demonstrate that datasets used in recent post-hoc MIAs suffer from significant distribution shifts, in some cases achieving near-perfect distinction between members and non-members. This implies that previously reported high MIA performance may be largely attributable to these shifts rather than model memorization. We confirm that randomized, controlled setups eliminate such shifts and thus enable the development and fair evaluation of new MIAs. However, we note that such randomized setups are rarely available for the latest LLMs, making post-hoc data collection still required to infer membership for real-world LLMs. As a potential solution, we propose a Regression Discontinuity Design (RDD) approach for post-hoc data collection, which substantially mitigates distribution shifts. Evaluating various MIA methods on this RDD setup yields performance barely above random guessing, in stark contrast to previously reported results. Overall, our findings highlight the challenges in accurately measuring LLM memorization and the need for careful experimental design in (post-hoc) membership inference tasks.

Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback

Reinforcement learning from human feedback (RLHF) has proven effective in enhancing the instruction-following capabilities of large language models; however, it remains underexplored in the cross-modality domain. As the number of modalities increases, aligning all-modality models with human intentions -- such as instruction following -- becomes a pressing challenge. In this work, we make the first attempt to fine-tune all-modality models (i.e. input and output with any modality, also named any-to-any models) using human preference data across all modalities (including text, image, audio, and video), ensuring its behavior aligns with human intentions. This endeavor presents several challenges. First, there is no large-scale all-modality human preference data in existing open-source resources, as most datasets are limited to specific modalities, predominantly text and image. Secondly, the effectiveness of binary preferences in RLHF for post-training alignment in complex all-modality scenarios remains an unexplored area. Finally, there is a lack of a systematic framework to evaluate the capabilities of all-modality models, particularly regarding modality selection and synergy. To address these challenges, we propose the align-anything framework, which includes meticulously annotated 200k all-modality human preference data. Then, we introduce an alignment method that learns from unified language feedback, effectively capturing complex modality-specific human preferences and enhancing the model's instruction-following capabilities. Furthermore, to assess performance improvements in all-modality models after post-training alignment, we construct a challenging all-modality capability evaluation framework -- eval-anything. All data, models, and code frameworks have been open-sourced for the community. For more details, please refer to https://github.com/PKU-Alignment/align-anything.

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/

Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data

For humans to trust the fluent generations of large language models (LLMs), they must be able to verify their correctness against trusted, external sources. Recent efforts aim to increase verifiability through citations of retrieved documents or post-hoc provenance. However, such citations are prone to mistakes that further complicate their verifiability. To address these limitations, we tackle the verifiability goal with a different philosophy: we trivialize the verification process by developing models that quote verbatim statements from trusted sources in pre-training data. We propose Quote-Tuning, which demonstrates the feasibility of aligning LLMs to leverage memorized information and quote from pre-training data. Quote-Tuning quantifies quoting against large corpora with efficient membership inference tools, and uses the amount of quotes as an implicit reward signal to construct a synthetic preference dataset for quoting, without any human annotation. Next, the target model is aligned to quote using preference optimization algorithms. Experimental results show that Quote-Tuning significantly increases the percentage of LLM generation quoted verbatim from high-quality pre-training documents by 55% to 130% relative to untuned models while maintaining response quality. Further experiments demonstrate that Quote-Tuning generalizes quoting to out-of-domain data, is applicable in different tasks, and provides additional benefits to truthfulness. Quote-Tuning not only serves as a hassle-free method to increase quoting but also opens up avenues for improving LLM trustworthiness through better verifiability.

RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization

Large transformer models have demonstrated remarkable success. Post-training quantization (PTQ), which requires only a small dataset for calibration and avoids end-to-end retraining, is a promising solution for compressing these large models. Regrettably, existing PTQ methods typically exhibit non-trivial performance loss. We find that the performance bottleneck stems from over-consideration of hardware compatibility in the quantization process, compelling them to reluctantly employ simple quantizers, albeit at the expense of accuracy. With the above insights, we propose RepQuant, a novel PTQ framework with quantization-inference decoupling paradigm to address the above issues. RepQuant employs complex quantizers in the quantization process and simplified quantizers in the inference process, and performs mathematically equivalent transformations between the two through quantization scale reparameterization, thus ensuring both accurate quantization and efficient inference. More specifically, we focus on two components with extreme distributions: LayerNorm activations and Softmax activations. Initially, we apply channel-wise quantization and log2 quantization, respectively, which are tailored to their distributions. In particular, for the former, we introduce a learnable per-channel dual clipping scheme, which is designed to efficiently identify outliers in the unbalanced activations with fine granularity. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference. Moreover, quantized weight reconstruction is seamlessly integrated into the above procedure to further push the performance limits. Extensive experiments are performed on different large-scale transformer variants on multiple tasks, including vision, language, and multi-modal transformers, and RepQuant encouragingly demonstrates significant performance advantages.

Reinforcement Learning for Reasoning in Large Language Models with One Training Example

We show that reinforcement learning with verifiable reward using one training example (1-shot RLVR) is effective in incentivizing the math reasoning capabilities of large language models (LLMs). Applying RLVR to the base model Qwen2.5-Math-1.5B, we identify a single example that elevates model performance on MATH500 from 36.0% to 73.6%, and improves the average performance across six common mathematical reasoning benchmarks from 17.6% to 35.7%. This result matches the performance obtained using the 1.2k DeepScaleR subset (MATH500: 73.6%, average: 35.9%), which includes the aforementioned example. Similar substantial improvements are observed across various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B), RL algorithms (GRPO and PPO), and different math examples (many of which yield approximately 30% or greater improvement on MATH500 when employed as a single training example). In addition, we identify some interesting phenomena during 1-shot RLVR, including cross-domain generalization, increased frequency of self-reflection, and sustained test performance improvement even after the training accuracy has saturated, a phenomenon we term post-saturation generalization. Moreover, we verify that the effectiveness of 1-shot RLVR primarily arises from the policy gradient loss, distinguishing it from the "grokking" phenomenon. We also show the critical role of promoting exploration (e.g., by adding entropy loss with an appropriate coefficient) in 1-shot RLVR training. As a bonus, we observe that applying entropy loss alone, without any outcome reward, significantly enhances Qwen2.5-Math-1.5B's performance on MATH500 by 27.4%. These findings can inspire future work on RLVR data efficiency and encourage a re-examination of both recent progress and the underlying mechanisms in RLVR. Our code, model, and data are open source at https://github.com/ypwang61/One-Shot-RLVR

Outlier-Safe Pre-Training for Robust 4-Bit Quantization of Large Language Models

Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers

Generative Pre-trained Transformer models, known as GPT or OPT, set themselves apart through breakthrough performance across complex language modelling tasks, but also by their extremely high computational and storage costs. Specifically, due to their massive size, even inference for large, highly-accurate GPT models may require multiple performant GPUs, which limits the usability of such models. While there is emerging work on relieving this pressure via model compression, the applicability and performance of existing compression techniques is limited by the scale and complexity of GPT models. In this paper, we address this challenge, and propose GPTQ, a new one-shot weight quantization method based on approximate second-order information, that is both highly-accurate and highly-efficient. Specifically, GPTQ can quantize GPT models with 175 billion parameters in approximately four GPU hours, reducing the bitwidth down to 3 or 4 bits per weight, with negligible accuracy degradation relative to the uncompressed baseline. Our method more than doubles the compression gains relative to previously-proposed one-shot quantization methods, preserving accuracy, allowing us for the first time to execute an 175 billion-parameter model inside a single GPU for generative inference. Moreover, we also show that our method can still provide reasonable accuracy in the extreme quantization regime, in which weights are quantized to 2-bit or even ternary quantization levels. We show experimentally that these improvements can be leveraged for end-to-end inference speedups over FP16, of around 3.25x when using high-end GPUs (NVIDIA A100) and 4.5x when using more cost-effective ones (NVIDIA A6000). The implementation is available at https://github.com/IST-DASLab/gptq.

GRATH: Gradual Self-Truthifying for Large Language Models

Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful answers and content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate corresponding answers and adaptively optimizes the model via direct preference optimization (DPO). Note that during this process, GRATH learns truthfulness in a self-supervised manner without requiring annotated answers. In particular, GRATH first generates pairwise truthfulness training data by prompting the LLM itself, with each pair containing a question and its correct and incorrect answers. The model is then fine-tuned using DPO to learn from the difference between answer pairs. Subsequently, GRATH iteratively refines the truthfulness data and optimizes the model, leading to a gradual improvement in model truthfulness. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy as 54.71% and MC2 accuracy as 69.10%, which even surpass those on larger-scale models, such as Llama2-Chat-70B, by 23.62% and 24.18%, respectively.

Bias and Fairness in Large Language Models: A Survey

Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.

Efficient In-Context Learning in Vision-Language Models for Egocentric Videos

Recent advancements in text-only large language models (LLMs) have highlighted the benefit of in-context learning for adapting to new tasks with a few demonstrations. However, extending in-context learning to large vision-language models (VLMs) using a huge amount of naturalistic vision-language data has shown limited success, particularly for egocentric videos, due to high data collection costs. We propose a novel training method Efficient In-context Learning on Egocentric Videos (EILEV), which elicits in-context learning in VLMs for egocentric videos without requiring massive, naturalistic egocentric video datasets. EILEV involves architectural and training data adaptations to allow the model to process contexts interleaved with video clips and narrations, sampling of in-context examples with clusters of similar verbs and nouns, use of data with skewed marginal distributions with a long tail of infrequent verbs and nouns, as well as homonyms and synonyms. Our evaluations show that EILEV-trained models outperform larger VLMs trained on a huge amount of naturalistic data in in-context learning. Furthermore, they can generalize to not only out-of-distribution, but also novel, rare egocentric videos and texts via in-context learning, demonstrating potential for applications requiring cost-effective training, and rapid post-deployment adaptability. Our code and demo are available at https://github.com/yukw777/EILEV.

Domain Terminology Integration into Machine Translation: Leveraging Large Language Models

This paper discusses the methods that we used for our submissions to the WMT 2023 Terminology Shared Task for German-to-English (DE-EN), English-to-Czech (EN-CS), and Chinese-to-English (ZH-EN) language pairs. The task aims to advance machine translation (MT) by challenging participants to develop systems that accurately translate technical terms, ultimately enhancing communication and understanding in specialised domains. To this end, we conduct experiments that utilise large language models (LLMs) for two purposes: generating synthetic bilingual terminology-based data, and post-editing translations generated by an MT model through incorporating pre-approved terms. Our system employs a four-step process: (i) using an LLM to generate bilingual synthetic data based on the provided terminology, (ii) fine-tuning a generic encoder-decoder MT model, with a mix of the terminology-based synthetic data generated in the first step and a randomly sampled portion of the original generic training data, (iii) generating translations with the fine-tuned MT model, and (iv) finally, leveraging an LLM for terminology-constrained automatic post-editing of the translations that do not include the required terms. The results demonstrate the effectiveness of our proposed approach in improving the integration of pre-approved terms into translations. The number of terms incorporated into the translations of the blind dataset increases from an average of 36.67% with the generic model to an average of 72.88% by the end of the process. In other words, successful utilisation of terms nearly doubles across the three language pairs.

Efficient Switchable Safety Control in LLMs via Magic-Token-Guided Co-Training

Current methods for content safety in Large Language Models (LLMs), such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), often rely on multi-stage training pipelines and lack fine-grained, post-deployment controllability. To address these limitations, we propose a unified co-training framework that efficiently integrates multiple safety behaviors: positive (lawful/prosocial), negative (unfiltered/risk-prone) and rejective (refusal-oriented/conservative) within a single SFT stage. Notably, each behavior is dynamically activated via a simple system-level instruction, or magic token, enabling stealthy and efficient behavioral switching at inference time. This flexibility supports diverse deployment scenarios, such as positive for safe user interaction, negative for internal red-teaming, and rejective for context-aware refusals triggered by upstream moderation signals. This co-training strategy induces a distinct Safety Alignment Margin in the output space, characterized by well-separated response distributions corresponding to each safety mode. The existence of this margin provides empirical evidence for the model's safety robustness and enables unprecedented fine-grained control. Experiments show that our method matches the safety alignment quality of SFT+DPO, with our 8B model notably surpassing DeepSeek-R1 (671B) in safety performance, while significantly reducing both training complexity and deployment costs. This work presents a scalable, efficient, and highly controllable solution for LLM content safety.

Data Generation for Post-OCR correction of Cyrillic handwriting

This paper introduces a novel approach to post-Optical Character Recognition Correction (POC) for handwritten Cyrillic text, addressing a significant gap in current research methodologies. This gap is due to the lack of large text corporas that provide OCR errors for further training of language-based POC models, which are demanding in terms of corpora size. Our study primarily focuses on the development and application of a synthetic handwriting generation engine based on B\'ezier curves. Such an engine generates highly realistic handwritten text in any amounts, which we utilize to create a substantial dataset by transforming Russian text corpora sourced from the internet. We apply a Handwritten Text Recognition (HTR) model to this dataset to identify OCR errors, forming the basis for our POC model training. The correction model is trained on a 90-symbol input context, utilizing a pre-trained T5 architecture with a seq2seq correction task. We evaluate our approach on HWR200 and School_notebooks_RU datasets as they provide significant challenges in the HTR domain. Furthermore, POC can be used to highlight errors for teachers, evaluating student performance. This can be done simply by comparing sentences before and after correction, displaying differences in text. Our primary contribution lies in the innovative use of B\'ezier curves for Cyrillic text generation and subsequent error correction using a specialized POC model. We validate our approach by presenting Word Accuracy Rate (WAR) and Character Accuracy Rate (CAR) results, both with and without post-OCR correction, using real open corporas of handwritten Cyrillic text. These results, coupled with our methodology, are designed to be reproducible, paving the way for further advancements in the field of OCR and handwritten text analysis. Paper contributions can be found in https://github.com/dbrainio/CyrillicHandwritingPOC

S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models

As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking issue arises from the inherent limitations of conventional outcome-reward reinforcement learning, which systematically overlooks the regulation of intermediate reasoning processes. This paper introduces Serial-Group Decaying-Reward Policy Optimization (S-GRPO), a novel reinforcement learning paradigm that enables models to implicitly evaluate the sufficiency of intermediate reasoning steps, thereby facilitating early exit in CoT generation. Unlike GRPO, which samples multiple possible reasoning paths in parallel (parallel group), S-GRPO only samples one reasoning path and serially selects multiple temporal positions from the path to exit thinking and directly generate answers (serial group). For correct answers within a serial group, rewards gradually decrease based on the exit positions along the reasoning path from front to back. This design encourages the model to produce more accurate and concise thoughts, while also incentivizing early thinking termination when appropriate. Empirical evaluations demonstrate that S-GRPO is compatible with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill. Across diverse benchmarks such as GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond, S-GRPO achieves a substantial reduction in sequence length (35.4% - 61.1%) while simultaneously improving accuracy (absolute 0.72% - 6.08%).