Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeParametric Augmentation for Time Series Contrastive Learning
Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5\% reduction in MSE and 4.7\% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.
Customizing Language Model Responses with Contrastive In-Context Learning
Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting
Debiased Contrastive Learning of Unsupervised Sentence Representations
Recently, contrastive learning has been shown to be effective in improving pre-trained language models (PLM) to derive high-quality sentence representations. It aims to pull close positive examples to enhance the alignment while push apart irrelevant negatives for the uniformity of the whole representation space. However, previous works mostly adopt in-batch negatives or sample from training data at random. Such a way may cause the sampling bias that improper negatives (e.g. false negatives and anisotropy representations) are used to learn sentence representations, which will hurt the uniformity of the representation space. To address it, we present a new framework DCLR (Debiased Contrastive Learning of unsupervised sentence Representations) to alleviate the influence of these improper negatives. In DCLR, we design an instance weighting method to punish false negatives and generate noise-based negatives to guarantee the uniformity of the representation space. Experiments on seven semantic textual similarity tasks show that our approach is more effective than competitive baselines. Our code and data are publicly available at the link: blue{https://github.com/RUCAIBox/DCLR}.
Sparse Autoencoders Enable Scalable and Reliable Circuit Identification in Language Models
This paper introduces an efficient and robust method for discovering interpretable circuits in large language models using discrete sparse autoencoders. Our approach addresses key limitations of existing techniques, namely computational complexity and sensitivity to hyperparameters. We propose training sparse autoencoders on carefully designed positive and negative examples, where the model can only correctly predict the next token for the positive examples. We hypothesise that learned representations of attention head outputs will signal when a head is engaged in specific computations. By discretising the learned representations into integer codes and measuring the overlap between codes unique to positive examples for each head, we enable direct identification of attention heads involved in circuits without the need for expensive ablations or architectural modifications. On three well-studied tasks - indirect object identification, greater-than comparisons, and docstring completion - the proposed method achieves higher precision and recall in recovering ground-truth circuits compared to state-of-the-art baselines, while reducing runtime from hours to seconds. Notably, we require only 5-10 text examples for each task to learn robust representations. Our findings highlight the promise of discrete sparse autoencoders for scalable and efficient mechanistic interpretability, offering a new direction for analysing the inner workings of large language models.
Contrastive Learning with Adversarial Perturbations for Conditional Text Generation
Recently, sequence-to-sequence (seq2seq) models with the Transformer architecture have achieved remarkable performance on various conditional text generation tasks, such as machine translation. However, most of them are trained with teacher forcing with the ground truth label given at each time step, without being exposed to incorrectly generated tokens during training, which hurts its generalization to unseen inputs, that is known as the "exposure bias" problem. In this work, we propose to mitigate the conditional text generation problem by contrasting positive pairs with negative pairs, such that the model is exposed to various valid or incorrect perturbations of the inputs, for improved generalization. However, training the model with naive contrastive learning framework using random non-target sequences as negative examples is suboptimal, since they are easily distinguishable from the correct output, especially so with models pretrained with large text corpora. Also, generating positive examples requires domain-specific augmentation heuristics which may not generalize over diverse domains. To tackle this problem, we propose a principled method to generate positive and negative samples for contrastive learning of seq2seq models. Specifically, we generate negative examples by adding small perturbations to the input sequence to minimize its conditional likelihood, and positive examples by adding large perturbations while enforcing it to have a high conditional likelihood. Such "hard" positive and negative pairs generated using our method guides the model to better distinguish correct outputs from incorrect ones. We empirically show that our proposed method significantly improves the generalization of the seq2seq on three text generation tasks - machine translation, text summarization, and question generation.
Patience Is The Key to Large Language Model Reasoning
Recent advancements in the field of large language models, particularly through the Chain of Thought (CoT) approach, have demonstrated significant improvements in solving complex problems. However, existing models either tend to sacrifice detailed reasoning for brevity due to user preferences, or require extensive and expensive training data to learn complicated reasoning ability, limiting their potential in solving complex tasks. To bridge this gap, following the concept of scaling test-time, we propose a simple method by encouraging models to adopt a more patient reasoning style without the need of introducing new knowledge or skills. To employ a preference optimization approach, we generate detailed reasoning processes as positive examples and simple answers as negative examples, thereby training the model to favor thoroughness in its responses. Our results demonstrate a performance increase of up to 6.7% on GSM8k with training just on a lightweight dataset.
Clustering-Aware Negative Sampling for Unsupervised Sentence Representation
Contrastive learning has been widely studied in sentence representation learning. However, earlier works mainly focus on the construction of positive examples, while in-batch samples are often simply treated as negative examples. This approach overlooks the importance of selecting appropriate negative examples, potentially leading to a scarcity of hard negatives and the inclusion of false negatives. To address these issues, we propose ClusterNS (Clustering-aware Negative Sampling), a novel method that incorporates cluster information into contrastive learning for unsupervised sentence representation learning. We apply a modified K-means clustering algorithm to supply hard negatives and recognize in-batch false negatives during training, aiming to solve the two issues in one unified framework. Experiments on semantic textual similarity (STS) tasks demonstrate that our proposed ClusterNS compares favorably with baselines in unsupervised sentence representation learning. Our code has been made publicly available.
Find Central Dogma Again
In recent years, large language models (LLMs) have achieved state-of-the-art results in various biological sequence analysis tasks, such as sequence classification, structure prediction, and function prediction. Similar to advancements in AI for other scientific fields, deeper research into biological LLMs has begun to focus on using these models to rediscover important existing biological laws or uncover entirely new patterns in biological sequences.This study leverages GPT-like LLMs to utilize language transfer capabilities to rediscover the genetic code rules of the central dogma. In our experimental design, we transformed the central dogma into a binary classification problem of aligning DNA sequences with protein sequences, where positive examples are matching DNA and protein sequences, and negative examples are non-matching pairs.We first trained a GPT-2 model from scratch using a dataset comprising protein sequences, DNA sequences, and sequences from languages such as English and Chinese. Subsequently, we fine-tuned the model using the English similarity judgment dataset from PAWS-X. When tested on a dataset for DNA and protein sequence alignment judgment, the fine-tuned model achieved a classification accuracy of 76%. The study also analyzed factors contributing to this zero-shot capability, including model training stability and types of training data.This research demonstrates that LLMs can, through the transfer of natural language capabilities and solely relying on the analysis of sequences themselves, rediscover the central dogma without prior knowledge of it. This study opens a new door for AI-driven biological research.
ListConRanker: A Contrastive Text Reranker with Listwise Encoding
Reranker models aim to re-rank the passages based on the semantics similarity between the given query and passages, which have recently received more attention due to the wide application of the Retrieval-Augmented Generation. Most previous methods apply pointwise encoding, meaning that it can only encode the context of the query for each passage input into the model. However, for the reranker model, given a query, the comparison results between passages are even more important, which is called listwise encoding. Besides, previous models are trained using the cross-entropy loss function, which leads to issues of unsmooth gradient changes during training and low training efficiency. To address these issues, we propose a novel Listwise-encoded Contrastive text reRanker (ListConRanker). It can help the passage to be compared with other passages during the encoding process, and enhance the contrastive information between positive examples and between positive and negative examples. At the same time, we use the circle loss to train the model to increase the flexibility of gradients and solve the problem of training efficiency. Experimental results show that ListConRanker achieves state-of-the-art performance on the reranking benchmark of Chinese Massive Text Embedding Benchmark, including the cMedQA1.0, cMedQA2.0, MMarcoReranking, and T2Reranking datasets.
Efficient Two-Stage Detection of Human-Object Interactions with a Novel Unary-Pairwise Transformer
Recent developments in transformer models for visual data have led to significant improvements in recognition and detection tasks. In particular, using learnable queries in place of region proposals has given rise to a new class of one-stage detection models, spearheaded by the Detection Transformer (DETR). Variations on this one-stage approach have since dominated human-object interaction (HOI) detection. However, the success of such one-stage HOI detectors can largely be attributed to the representation power of transformers. We discovered that when equipped with the same transformer, their two-stage counterparts can be more performant and memory-efficient, while taking a fraction of the time to train. In this work, we propose the Unary-Pairwise Transformer, a two-stage detector that exploits unary and pairwise representations for HOIs. We observe that the unary and pairwise parts of our transformer network specialise, with the former preferentially increasing the scores of positive examples and the latter decreasing the scores of negative examples. We evaluate our method on the HICO-DET and V-COCO datasets, and significantly outperform state-of-the-art approaches. At inference time, our model with ResNet50 approaches real-time performance on a single GPU.
Social NCE: Contrastive Learning of Socially-aware Motion Representations
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks still struggle to generalize in closed-loop predictions (e.g., output colliding trajectories). This issue largely arises from the non-i.i.d. nature of sequential prediction in conjunction with ill-distributed training data. Intuitively, if the training data only comes from human behaviors in safe spaces, i.e., from "positive" examples, it is difficult for learning algorithms to capture the notion of "negative" examples like collisions. In this work, we aim to address this issue by explicitly modeling negative examples through self-supervision: (i) we introduce a social contrastive loss that regularizes the extracted motion representation by discerning the ground-truth positive events from synthetic negative ones; (ii) we construct informative negative samples based on our prior knowledge of rare but dangerous circumstances. Our method substantially reduces the collision rates of recent trajectory forecasting, behavioral cloning and reinforcement learning algorithms, outperforming state-of-the-art methods on several benchmarks. Our code is available at https://github.com/vita-epfl/social-nce.
Improving Composed Image Retrieval via Contrastive Learning with Scaling Positives and Negatives
The Composed Image Retrieval (CIR) task aims to retrieve target images using a composed query consisting of a reference image and a modified text. Advanced methods often utilize contrastive learning as the optimization objective, which benefits from adequate positive and negative examples. However, the triplet for CIR incurs high manual annotation costs, resulting in limited positive examples. Furthermore, existing methods commonly use in-batch negative sampling, which reduces the negative number available for the model. To address the problem of lack of positives, we propose a data generation method by leveraging a multi-modal large language model to construct triplets for CIR. To introduce more negatives during fine-tuning, we design a two-stage fine-tuning framework for CIR, whose second stage introduces plenty of static representations of negatives to optimize the representation space rapidly. The above two improvements can be effectively stacked and designed to be plug-and-play, easily applied to existing CIR models without changing their original architectures. Extensive experiments and ablation analysis demonstrate that our method effectively scales positives and negatives and achieves state-of-the-art results on both FashionIQ and CIRR datasets. In addition, our method also performs well in zero-shot composed image retrieval, providing a new CIR solution for the low-resources scenario. Our code and data are released at https://github.com/BUAADreamer/SPN4CIR.
Detection Transformer with Stable Matching
This paper is concerned with the matching stability problem across different decoder layers in DEtection TRansformers (DETR). We point out that the unstable matching in DETR is caused by a multi-optimization path problem, which is highlighted by the one-to-one matching design in DETR. To address this problem, we show that the most important design is to use and only use positional metrics (like IOU) to supervise classification scores of positive examples. Under the principle, we propose two simple yet effective modifications by integrating positional metrics to DETR's classification loss and matching cost, named position-supervised loss and position-modulated cost. We verify our methods on several DETR variants. Our methods show consistent improvements over baselines. By integrating our methods with DINO, we achieve 50.4 and 51.5 AP on the COCO detection benchmark using ResNet-50 backbones under 12 epochs and 24 epochs training settings, achieving a new record under the same setting. We achieve 63.8 AP on COCO detection test-dev with a Swin-Large backbone. Our code will be made available at https://github.com/IDEA-Research/Stable-DINO.
Questions Are All You Need to Train a Dense Passage Retriever
We introduce ART, a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast, only requires access to unpaired inputs and outputs (e.g. questions and potential answer documents). It uses a new document-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence documents, and (2) the documents are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both document and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that ART obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses.
Arctic-SnowCoder: Demystifying High-Quality Data in Code Pretraining
Recent studies have been increasingly demonstrating that high-quality data is crucial for effective pretraining of language models. However, the precise definition of "high-quality" remains underexplored. Focusing on the code domain, we introduce Arctic-SnowCoder-1.3B, a data-efficient base code model pretrained on 555B tokens through three phases of progressively refined data: (1) general pretraining with 500B standard-quality code tokens, preprocessed through basic filtering, deduplication, and decontamination, (2) continued pretraining with 50B high-quality tokens, selected from phase one by a BERT-style quality annotator trained to distinguish good code from random data, using positive examples drawn from high-quality code files, along with instruction data from Magicoder and StarCoder2-Instruct, and (3) enhanced pretraining with 5B synthetic data created by Llama-3.1-70B using phase two data as seeds, adapting the Magicoder approach for pretraining. Despite being trained on a limited dataset, Arctic-SnowCoder achieves state-of-the-art performance on BigCodeBench, a coding benchmark focusing on practical and challenging programming tasks, compared to similarly sized models trained on no more than 1T tokens, outperforming Phi-1.5-1.3B by 36%. Across all evaluated benchmarks, Arctic-SnowCoder-1.3B beats StarCoderBase-3B pretrained on 1T tokens. Additionally, it matches the performance of leading small base code models trained on trillions of tokens. For example, Arctic-SnowCoder-1.3B surpasses StarCoder2-3B, pretrained on over 3.3T tokens, on HumanEval+, a benchmark that evaluates function-level code generation, and remains competitive on BigCodeBench. Our evaluation presents a comprehensive analysis justifying various design choices for Arctic-SnowCoder. Most importantly, we find that the key to high-quality data is its alignment with the distribution of downstream applications.
W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering
In knowledge-intensive tasks such as open-domain question answering (OpenQA), Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge. To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources, thereby positioning the retriever as a pivotal component. Although dense retrieval demonstrates state-of-the-art performance, its training poses challenges due to the scarcity of ground-truth evidence, largely attributed to the high costs of human annotation. In this paper, we propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers. Specifically, we rerank the top-K passages retrieved via BM25 by assessing the probability that LLMs will generate the correct answer based on the question and each passage. The highest-ranking passages are then used as positive training examples for dense retrieval. Our comprehensive experiments across four publicly available OpenQA datasets demonstrate that our approach enhances both retrieval and OpenQA performance compared to baseline models.
Positive Geometries and Canonical Forms
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
Image retrieval methods based on CNN descriptors rely on metric learning from a large number of diverse examples of positive and negative image pairs. Domains, such as night-time images, with limited availability and variability of training data suffer from poor retrieval performance even with methods performing well on standard benchmarks. We propose to train a GAN-based synthetic-image generator, translating available day-time image examples into night images. Such a generator is used in metric learning as a form of augmentation, supplying training data to the scarce domain. Various types of generators are evaluated and analyzed. We contribute with a novel light-weight GAN architecture that enforces the consistency between the original and translated image through edge consistency. The proposed architecture also allows a simultaneous training of an edge detector that operates on both night and day images. To further increase the variability in the training examples and to maximize the generalization of the trained model, we propose a novel method of diverse anchor mining. The proposed method improves over the state-of-the-art results on a standard Tokyo 24/7 day-night retrieval benchmark while preserving the performance on Oxford and Paris datasets. This is achieved without the need of training image pairs of matching day and night images. The source code is available at https://github.com/mohwald/gandtr .
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
Large Language Model-Aware In-Context Learning for Code Generation
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation. LLMs take a prompt consisting of requirement-code examples and a new requirement as input, and output new programs. Existing studies have found that ICL is highly dominated by the examples and thus arises research on example selection. However, existing approaches randomly select examples or only consider the textual similarity of requirements to retrieve, leading to sub-optimal performance. In this paper, we propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation. Given a candidate example, we exploit LLMs themselves to estimate it by considering the generation probabilities of ground-truth programs given a requirement and the example. We then label candidate examples as positive or negative through the probability feedback. Based on the labeled data, we import a contrastive learning objective to train an effective retriever that acquires the preference of LLMs in code generation. We apply LAIL to three LLMs and evaluate it on three representative datasets (e.g., MBJP, MBPP, and MBCPP). LATA outperforms the state-of-the-art baselines by 11.58%, 6.89%, and 5.07% on CodeGen, and 4.38%, 2.85%, and 2.74% on GPT-3.5 in terms of Pass@1, respectively.
Cascade R-CNN: Delving into High Quality Object Detection
In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.
Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying activations during their forward passes. CAA computes ``steering vectors'' by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using both multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, outperforms traditional methods like finetuning and few-shot prompting, and minimally reduces capabilities. Moreover, by employing various activation space interpretation methods, we gain deeper insights into CAA's mechanisms. CAA both accurately steers model outputs and also sheds light on how high-level concepts are represented in Large Language Models (LLMs).
DICES Dataset: Diversity in Conversational AI Evaluation for Safety
Machine learning approaches often require training and evaluation datasets with a clear separation between positive and negative examples. This risks simplifying and even obscuring the inherent subjectivity present in many tasks. Preserving such variance in content and diversity in datasets is often expensive and laborious. This is especially troubling when building safety datasets for conversational AI systems, as safety is both socially and culturally situated. To demonstrate this crucial aspect of conversational AI safety, and to facilitate in-depth model performance analyses, we introduce the DICES (Diversity In Conversational AI Evaluation for Safety) dataset that contains fine-grained demographic information about raters, high replication of ratings per item to ensure statistical power for analyses, and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different aggregation strategies. In short, the DICES dataset enables the observation and measurement of variance, ambiguity, and diversity in the context of conversational AI safety. We also illustrate how the dataset offers a basis for establishing metrics to show how raters' ratings can intersects with demographic categories such as racial/ethnic groups, age groups, and genders. The goal of DICES is to be used as a shared resource and benchmark that respects diverse perspectives during safety evaluation of conversational AI systems.
Contrastive Chain-of-Thought Prompting
Despite the success of chain of thought in enhancing language model reasoning, the underlying process remains less well understood. Although logically sound reasoning appears inherently crucial for chain of thought, prior studies surprisingly reveal minimal impact when using invalid demonstrations instead. Furthermore, the conventional chain of thought does not inform language models on what mistakes to avoid, which potentially leads to more errors. Hence, inspired by how humans can learn from both positive and negative examples, we propose contrastive chain of thought to enhance language model reasoning. Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations, to guide the model to reason step-by-step while reducing reasoning mistakes. To improve generalization, we introduce an automatic method to construct contrastive demonstrations. Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.
Improve Mathematical Reasoning in Language Models by Automated Process Supervision
Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4\% success rate on the MATH benchmark, a 36\% relative improvement from the 51\% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods.
Just Say What You Want: Only-prompting Self-rewarding Online Preference Optimization
We address the challenge of online Reinforcement Learning from Human Feedback (RLHF) with a focus on self-rewarding alignment methods. In online RLHF, obtaining feedback requires interaction with the environment, which can be costly when using additional reward models or the GPT-4 API. Current self-rewarding approaches rely heavily on the discriminator's judgment capabilities, which are effective for large-scale models but challenging to transfer to smaller ones. To address these limitations, we propose a novel, only-prompting self-rewarding online algorithm that generates preference datasets without relying on judgment capabilities. Additionally, we employ fine-grained arithmetic control over the optimality gap between positive and negative examples, generating more hard negatives in the later stages of training to help the model better capture subtle human preferences. Finally, we conduct extensive experiments on two base models, Mistral-7B and Mistral-Instruct-7B, which significantly bootstrap the performance of the reference model, achieving 34.5% in the Length-controlled Win Rates of AlpacaEval 2.0.
ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition
A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment settings, resulting in an absolute increase of upto 7.9% in F_1 score compared to the best performing baselines. We also show that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled data in the best case.
LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning
In recent years, there has been significant progress in developing pre-trained language models for NLP. However, these models often struggle when fine-tuned on small datasets. To address this issue, researchers have proposed various adaptation approaches. Prompt-based tuning is arguably the most common way, especially for larger models. Previous research shows that adding contrastive learning to prompt-based fine-tuning is effective as it helps the model generate embeddings that are more distinguishable between classes, and it can also be more sample-efficient as the model learns from positive and negative examples simultaneously. One of the most important components of contrastive learning is data augmentation, but unlike computer vision, effective data augmentation for NLP is still challenging. This paper proposes LM-CPPF, Contrastive Paraphrasing-guided Prompt-based Fine-tuning of Language Models, which leverages prompt-based few-shot paraphrasing using generative language models, especially large language models such as GPT-3 and OPT-175B, for data augmentation. Our experiments on multiple text classification benchmarks show that this augmentation method outperforms other methods, such as easy data augmentation, back translation, and multiple templates.
AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and reduce hallucinations. However, developing prompting techniques that enable LLM agents to effectively use these tools and knowledge remains a heuristic and labor-intensive task. Here, we introduce AvaTaR, a novel and automated framework that optimizes an LLM agent to effectively leverage provided tools, improving performance on a given task. During optimization, we design a comparator module to iteratively deliver insightful and comprehensive prompts to the LLM agent by contrastively reasoning between positive and negative examples sampled from training data. We demonstrate AvaTaR on four complex multimodal retrieval datasets featuring textual, visual, and relational information, and three general question-answering (QA) datasets. We find AvaTaR consistently outperforms state-of-the-art approaches across all seven tasks, exhibiting strong generalization ability when applied to novel cases and achieving an average relative improvement of 14% on the Hit@1 metric for the retrieval datasets and 13% for the QA datasets. Code and dataset are available at https://github.com/zou-group/avatar.
CWCL: Cross-Modal Transfer with Continuously Weighted Contrastive Loss
This paper considers contrastive training for cross-modal 0-shot transfer wherein a pre-trained model in one modality is used for representation learning in another domain using pairwise data. The learnt models in the latter domain can then be used for a diverse set of tasks in a zero-shot way, similar to ``Contrastive Language-Image Pre-training (CLIP)'' and ``Locked-image Tuning (LiT)'' that have recently gained considerable attention. Most existing works for cross-modal representation alignment (including CLIP and LiT) use the standard contrastive training objective, which employs sets of positive and negative examples to align similar and repel dissimilar training data samples. However, similarity amongst training examples has a more continuous nature, thus calling for a more `non-binary' treatment. To address this, we propose a novel loss function called Continuously Weighted Contrastive Loss (CWCL) that employs a continuous measure of similarity. With CWCL, we seek to align the embedding space of one modality with another. Owing to the continuous nature of similarity in the proposed loss function, these models outperform existing methods for 0-shot transfer across multiple models, datasets and modalities. Particularly, we consider the modality pairs of image-text and speech-text and our models achieve 5-8% (absolute) improvement over previous state-of-the-art methods in 0-shot image classification and 20-30% (absolute) improvement in 0-shot speech-to-intent classification and keyword classification.
Learning To Retrieve Prompts for In-Context Learning
In-context learning is a recent paradigm in natural language understanding, where a large pre-trained language model (LM) observes a test instance and a few training examples as its input, and directly decodes the output without any update to its parameters. However, performance has been shown to strongly depend on the selected training examples (termed prompt). In this work, we propose an efficient method for retrieving prompts for in-context learning using annotated data and a LM. Given an input-output pair, we estimate the probability of the output given the input and a candidate training example as the prompt, and label training examples as positive or negative based on this probability. We then train an efficient dense retriever from this data, which is used to retrieve training examples as prompts at test time. We evaluate our approach on three sequence-to-sequence tasks where language utterances are mapped to meaning representations, and find that it substantially outperforms prior work and multiple baselines across the board.
Hyperspherical embedding for novel class classification
Deep learning models have become increasingly useful in many different industries. On the domain of image classification, convolutional neural networks proved the ability to learn robust features for the closed set problem, as shown in many different datasets, such as MNIST FASHIONMNIST, CIFAR10, CIFAR100, and IMAGENET. These approaches use deep neural networks with dense layers with softmax activation functions in order to learn features that can separate classes in a latent space. However, this traditional approach is not useful for identifying classes unseen on the training set, known as the open set problem. A similar problem occurs in scenarios involving learning on small data. To tackle both problems, few-shot learning has been proposed. In particular, metric learning learns features that obey constraints of a metric distance in the latent space in order to perform classification. However, while this approach proves to be useful for the open set problem, current implementation requires pair-wise training, where both positive and negative examples of similar images are presented during the training phase, which limits the applicability of these approaches in large data or large class scenarios given the combinatorial nature of the possible inputs.In this paper, we present a constraint-based approach applied to the representations in the latent space under the normalized softmax loss, proposed by[18]. We experimentally validate the proposed approach for the classification of unseen classes on different datasets using both metric learning and the normalized softmax loss, on disjoint and joint scenarios. Our results show that not only our proposed strategy can be efficiently trained on larger set of classes, as it does not require pairwise learning, but also present better classification results than the metric learning strategies surpassing its accuracy by a significant margin.
Multiscale Positive-Unlabeled Detection of AI-Generated Texts
Recent releases of Large Language Models (LLMs), e.g. ChatGPT, are astonishing at generating human-like texts, but they may impact the authenticity of texts. Previous works proposed methods to detect these AI-generated texts, including simple ML classifiers, pretrained-model-based zero-shot methods, and finetuned language classification models. However, mainstream detectors always fail on short texts, like SMSes, Tweets, and reviews. In this paper, a Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the difficulty of short-text detection without sacrificing long-texts. Firstly, we acknowledge the human-resemblance property of short machine texts, and rephrase AI text detection as a partial Positive-Unlabeled (PU) problem by regarding these short machine texts as partially "unlabeled". Then in this PU context, we propose the length-sensitive Multiscale PU Loss, where a recurrent model in abstraction is used to estimate positive priors of scale-variant corpora. Additionally, we introduce a Text Multiscaling module to enrich training corpora. Experiments show that our MPU method augments detection performance on long AI-generated texts, and significantly improves short-text detection of language model detectors. Language Models trained with MPU could outcompete existing detectors on various short-text and long-text detection benchmarks. The codes are available at https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt and https://github.com/YuchuanTian/AIGC_text_detector.
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
Learning to Write with Coherence From Negative Examples
Coherence is one of the critical factors that determine the quality of writing. We propose writing relevance (WR) training method for neural encoder-decoder natural language generation (NLG) models which improves coherence of the continuation by leveraging negative examples. WR loss regresses the vector representation of the context and generated sentence toward positive continuation by contrasting it with the negatives. We compare our approach with Unlikelihood (UL) training in a text continuation task on commonsense natural language inference (NLI) corpora to show which method better models the coherence by avoiding unlikely continuations. The preference of our approach in human evaluation shows the efficacy of our method in improving coherence.
Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Direct Preference Optimisation (DPO) is effective at significantly improving the performance of large language models (LLMs) on downstream tasks such as reasoning, summarisation, and alignment. Using pairs of preferred and dispreferred data, DPO models the relative probability of picking one response over another. In this work, first we show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. We then show empirically that this phenomenon occurs when fine-tuning LLMs on common datasets, especially datasets in which the edit distance between pairs of completions is low. Using these insights, we design DPO-Positive (DPOP), a new loss function and training procedure which avoids this failure mode. Surprisingly, we also find that DPOP significantly outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions. By fine-tuning with DPOP, we create and release Smaug-34B and Smaug-72B, which achieve state-of-the-art open-source performance. Notably, Smaug-72B is nearly 2\% better than any other open-source model on the HuggingFace Open LLM Leaderboard and becomes the first open-source LLM to surpass an average accuracy of 80\%.
Towards Generalist Biomedical AI
Medicine is inherently multimodal, with rich data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence (AI) systems that flexibly encode, integrate, and interpret this data at scale can potentially enable impactful applications ranging from scientific discovery to care delivery. To enable the development of these models, we first curate MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system. Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. Med-PaLM M reaches performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. We also report examples of zero-shot generalization to novel medical concepts and tasks, positive transfer learning across tasks, and emergent zero-shot medical reasoning. To further probe the capabilities and limitations of Med-PaLM M, we conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales. In a side-by-side ranking on 246 retrospective chest X-rays, clinicians express a pairwise preference for Med-PaLM M reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility. While considerable work is needed to validate these models in real-world use cases, our results represent a milestone towards the development of generalist biomedical AI systems.
InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis
In this paper, we present InstructABSA, Aspect-Based Sentiment Analysis (ABSA) using instruction learning paradigm for all ABSA subtasks: Aspect Term Extraction (ATE), Aspect Term Sentiment Classification (ATSC), and Joint Task modeling. Our method introduces positive, negative, and neutral examples to each training sample, and instruction tunes the model (Tk-Instruct Base) for each ABSA subtask, yielding significant performance improvements. Experimental results on the Sem Eval 2014 dataset demonstrate that InstructABSA outperforms the previous state-of-the-art (SOTA) approaches on all three ABSA subtasks (ATE, ATSC, and Joint Task) by a significant margin, outperforming 7x larger models. In particular, InstructABSA surpasses the SOTA on the restaurant ATE subtask by 7.31% points and on the Laptop Joint Task by 8.63% points. Our results also suggest a strong generalization ability to unseen tasks across all three subtasks.
A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection
Large Language Models are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety.
Sigmoid Loss for Language Image Pre-Training
We propose a simple pairwise sigmoid loss for image-text pre-training. Unlike standard contrastive learning with softmax normalization, the sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. The sigmoid loss simultaneously allows further scaling up the batch size, while also performing better at smaller batch sizes. With only four TPUv4 chips, we can train a Base CLIP model at 4k batch size and a Large LiT model at 20k batch size, the latter achieves 84.5% ImageNet zero-shot accuracy in two days. This disentanglement of the batch size from the loss further allows us to study the impact of examples vs pairs and negative to positive ratio. Finally, we push the batch size to the extreme, up to one million, and find that the benefits of growing batch size quickly diminish, with a more reasonable batch size of 32k being sufficient. We hope our research motivates further explorations in improving the quality and efficiency of language-image pre-training.
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.
Training Models to Generate, Recognize, and Reframe Unhelpful Thoughts
Many cognitive approaches to well-being, such as recognizing and reframing unhelpful thoughts, have received considerable empirical support over the past decades, yet still lack truly widespread adoption in self-help format. A barrier to that adoption is a lack of adequately specific and diverse dedicated practice material. This work examines whether current language models can be leveraged to both produce a virtually unlimited quantity of practice material illustrating standard unhelpful thought patterns matching specific given contexts, and generate suitable positive reframing proposals. We propose PATTERNREFRAME, a novel dataset of about 10k examples of thoughts containing unhelpful thought patterns conditioned on a given persona, accompanied by about 27k positive reframes. By using this dataset to train and/or evaluate current models, we show that existing models can already be powerful tools to help generate an abundance of tailored practice material and hypotheses, with no or minimal additional model training required.
Preference Optimization as Probabilistic Inference
Existing preference optimization methods are mainly designed for directly learning from human feedback with the assumption that paired examples (preferred vs. dis-preferred) are available. In contrast, we propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback (positive or negative) is available. This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models based on human feedback as well as training policies for sequential decision-making problems, where learned (value) functions are available. Our approach builds upon the probabilistic framework introduced in (Dayan and Hinton, 1997), which proposes to use expectation-maximization (EM) to directly optimize the probability of preferred outcomes (as opposed to classic expected reward maximization). To obtain a practical algorithm, we identify and address a key limitation in current EM-based methods: when applied to preference optimization, they solely maximize the likelihood of preferred examples, while neglecting dis-preferred samples. We show how one can extend EM algorithms to explicitly incorporate dis-preferred outcomes, leading to a novel, theoretically grounded, preference optimization algorithm that offers an intuitive and versatile way to learn from both positive and negative feedback.
Can We Rely on LLM Agents to Draft Long-Horizon Plans? Let's Take TravelPlanner as an Example
Large language models (LLMs) have brought autonomous agents closer to artificial general intelligence (AGI) due to their promising generalization and emergent capabilities. There is, however, a lack of studies on how LLM-based agents behave, why they could potentially fail, and how to improve them, particularly in demanding real-world planning tasks. In this paper, as an effort to fill the gap, we present our study using a realistic benchmark, TravelPlanner, where an agent must meet multiple constraints to generate accurate plans. We leverage this benchmark to address four key research questions: (1) are LLM agents robust enough to lengthy and noisy contexts when it comes to reasoning and planning? (2) can few-shot prompting adversely impact the performance of LLM agents in scenarios with long context? (3) can we rely on refinement to improve plans, and (4) can fine-tuning LLMs with both positive and negative feedback lead to further improvement? Our comprehensive experiments indicate that, firstly, LLMs often fail to attend to crucial parts of a long context, despite their ability to handle extensive reference information and few-shot examples; secondly, they still struggle with analyzing the long plans and cannot provide accurate feedback for refinement; thirdly, we propose Feedback-Aware Fine-Tuning (FAFT), which leverages both positive and negative feedback, resulting in substantial gains over Supervised Fine-Tuning (SFT). Our findings offer in-depth insights to the community on various aspects related to real-world planning applications.
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Self-Supervised Learning (SSL) has emerged as the solution of choice to learn transferable representations from unlabeled data. However, SSL requires to build samples that are known to be semantically akin, i.e. positive views. Requiring such knowledge is the main limitation of SSL and is often tackled by ad-hoc strategies e.g. applying known data-augmentations to the same input. In this work, we generalize and formalize this principle through Positive Active Learning (PAL) where an oracle queries semantic relationships between samples. PAL achieves three main objectives. First, it unveils a theoretically grounded learning framework beyond SSL, that can be extended to tackle supervised and semi-supervised learning depending on the employed oracle. Second, it provides a consistent algorithm to embed a priori knowledge, e.g. some observed labels, into any SSL losses without any change in the training pipeline. Third, it provides a proper active learning framework yielding low-cost solutions to annotate datasets, arguably bringing the gap between theory and practice of active learning that is based on simple-to-answer-by-non-experts queries of semantic relationships between inputs.
The Unreasonable Effectiveness of Eccentric Automatic Prompts
Large Language Models (LLMs) have demonstrated remarkable problem-solving and basic mathematics abilities. However, their efficacy is highly contingent on the formulation of the prompt. This study endeavors to quantify the influence of incorporating "positive thinking" into the system message of the prompt, then compare that to systematic prompt optimization. We assess the performance of 60 combinations of system message snippets, tested with and without Chain of Thought prompting, across three models with parameters ranging from 7 to 70 billion on the GSM8K dataset. Our findings reveal that results do not universally generalize across models. In most instances, the inclusion of "positive thinking" prompts positively affected model performance. Notably, however, Llama2-70B exhibited an exception when not utilizing Chain of Thought, as the optimal system message was found to be none at all. Given the combinatorial complexity, and thus computation time, of experimenting with hand-tuning prompts for large black-box models, we then compared the performance of the best "positive thinking" prompt against the output of systematic prompt optimization. We show that employing an automated prompt optimizer emerges as the most effective method for enhancing performance, even when working with smaller open-source models. Additionally, our findings reveal that the highest-scoring, automatically-optimized prompt exhibits a degree of peculiarity far beyond expectations.
Cross-cultural Inspiration Detection and Analysis in Real and LLM-generated Social Media Data
Inspiration is linked to various positive outcomes, such as increased creativity, productivity, and happiness. Although inspiration has great potential, there has been limited effort toward identifying content that is inspiring, as opposed to just engaging or positive. Additionally, most research has concentrated on Western data, with little attention paid to other cultures. This work is the first to study cross-cultural inspiration through machine learning methods. We aim to identify and analyze real and AI-generated cross-cultural inspiring posts. To this end, we compile and make publicly available the InspAIred dataset, which consists of 2,000 real inspiring posts, 2,000 real non-inspiring posts, and 2,000 generated inspiring posts evenly distributed across India and the UK. The real posts are sourced from Reddit, while the generated posts are created using the GPT-4 model. Using this dataset, we conduct extensive computational linguistic analyses to (1) compare inspiring content across cultures, (2) compare AI-generated inspiring posts to real inspiring posts, and (3) determine if detection models can accurately distinguish between inspiring content across cultures and data sources.
Model Editing with Canonical Examples
We introduce model editing with canonical examples, a setting in which (1) a single learning example is provided per desired behavior, (2) evaluation is performed exclusively out-of-distribution, and (3) deviation from an initial model is strictly limited. A canonical example is a simple instance of good behavior, e.g., The capital of Mauritius is Port Louis) or bad behavior, e.g., An aspect of researchers is coldhearted). The evaluation set contains more complex examples of each behavior (like a paragraph in which the capital of Mauritius is called for.) We create three datasets and modify three more for model editing with canonical examples, covering knowledge-intensive improvements, social bias mitigation, and syntactic edge cases. In our experiments on Pythia language models, we find that LoRA outperforms full finetuning and MEMIT. We then turn to the Backpack language model architecture because it is intended to enable targeted improvement. The Backpack defines a large bank of sense vectors--a decomposition of the different uses of each word--which are weighted and summed to form the output logits of the model. We propose sense finetuning, which selects and finetunes a few (approx 10) sense vectors for each canonical example, and find that it outperforms other finetuning methods, e.g., 4.8% improvement vs 0.3%. Finally, we improve GPT-J-6B by an inference-time ensemble with just the changes from sense finetuning of a 35x smaller Backpack, in one setting outperforming editing GPT-J itself (4.1% vs 1.0%).
A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and Other Sources about the 2024 Outbreak of Measles
The work of this paper presents a dataset that contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. The dataset is available at https://dx.doi.org/10.21227/40s8-xf63. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. Finally, this paper also presents a list of open research questions that may be investigated using this dataset.
A Large Scale Survey of Motivation in Software Development and Analysis of its Validity
Context: Motivation is known to improve performance. In software development in particular, there has been considerable interest in the motivation of contributors to open source. Objective: We identify 11 motivators from the literature (enjoying programming, ownership of code, learning, self use, etc.), and evaluate their relative effect on motivation. Since motivation is an internal subjective feeling, we also analyze the validity of the answers. Method: We conducted a survey with 66 questions on motivation which was completed by 521 developers. Most of the questions used an 11 point scale. We evaluated the validity of the answers validity by comparing related questions, comparing to actual behavior on GitHub, and comparison with the same developer in a follow up survey. Results: Validity problems include moderate correlations between answers to related questions, as well as self promotion and mistakes in the answers. Despite these problems, predictive analysis, investigating how diverse motivators influence the probability of high motivation, provided valuable insights. The correlations between the different motivators are low, implying their independence. High values in all 11 motivators predict increased probability of high motivation. In addition, improvement analysis shows that an increase in most motivators predicts an increase in general motivation.
Hard Negatives or False Negatives: Correcting Pooling Bias in Training Neural Ranking Models
Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to positives) could lead to better performance. Surprisingly, we find opposite results from our empirical studies in IR. When sampling top-ranked results (excluding the labeled positives) as negatives from a stronger retriever, the performance of the learned NRM becomes even worse. Based on our investigation, the superficial reason is that there are more false negatives (i.e., unlabeled positives) in the top-ranked results with a stronger retriever, which may hurt the training process; The root is the existence of pooling bias in the dataset constructing process, where annotators only judge and label very few samples selected by some basic retrievers. Therefore, in principle, we can formulate the false negative issue in training NRMs as learning from labeled datasets with pooling bias. To solve this problem, we propose a novel Coupled Estimation Technique (CET) that learns both a relevance model and a selection model simultaneously to correct the pooling bias for training NRMs. Empirical results on three retrieval benchmarks show that NRMs trained with our technique can achieve significant gains on ranking effectiveness against other baseline strategies.
Reproducibility in Multiple Instance Learning: A Case For Algorithmic Unit Tests
Multiple Instance Learning (MIL) is a sub-domain of classification problems with positive and negative labels and a "bag" of inputs, where the label is positive if and only if a positive element is contained within the bag, and otherwise is negative. Training in this context requires associating the bag-wide label to instance-level information, and implicitly contains a causal assumption and asymmetry to the task (i.e., you can't swap the labels without changing the semantics). MIL problems occur in healthcare (one malignant cell indicates cancer), cyber security (one malicious executable makes an infected computer), and many other tasks. In this work, we examine five of the most prominent deep-MIL models and find that none of them respects the standard MIL assumption. They are able to learn anti-correlated instances, i.e., defaulting to "positive" labels until seeing a negative counter-example, which should not be possible for a correct MIL model. We suspect that enhancements and other works derived from these models will share the same issue. In any context in which these models are being used, this creates the potential for learning incorrect models, which creates risk of operational failure. We identify and demonstrate this problem via a proposed "algorithmic unit test", where we create synthetic datasets that can be solved by a MIL respecting model, and which clearly reveal learning that violates MIL assumptions. The five evaluated methods each fail one or more of these tests. This provides a model-agnostic way to identify violations of modeling assumptions, which we hope will be useful for future development and evaluation of MIL models.
Can LLMs Learn by Teaching? A Preliminary Study
Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching not only improves students but also improves teachers. We ask: Can LLMs also learn by teaching (LbT)? If yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this ambitious agenda. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and provide noticeable improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT in humans: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training and improving models' inherent capability with fine-tuning. The findings are encouraging. For example, similar to LbT in human, we see that: (1) LbT can induce weak-to-strong generalization: strong models can improve themselves by teaching other weak models; (2) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that this early promise can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code is available at https://github.com/imagination-research/lbt.
SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval
Sampling proper negatives from a large document pool is vital to effectively train a dense retrieval model. However, existing negative sampling strategies suffer from the uninformative or false negative problem. In this work, we empirically show that according to the measured relevance scores, the negatives ranked around the positives are generally more informative and less likely to be false negatives. Intuitively, these negatives are not too hard (may be false negatives) or too easy (uninformative). They are the ambiguous negatives and need more attention during training. Thus, we propose a simple ambiguous negatives sampling method, SimANS, which incorporates a new sampling probability distribution to sample more ambiguous negatives. Extensive experiments on four public and one industry datasets show the effectiveness of our approach. We made the code and models publicly available in https://github.com/microsoft/SimXNS.
KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model
Artificial intelligence is gradually demonstrating its immense potential, and increasing attention is being given to how AI can be harnessed to advance scientific research. In this vision paper, we present our perspectives on how AI can better assist scientific inquiry and explore corresponding technical approach. We have proposed and open-sourced a large model of our KALE-LM model series, Llama3-KALE-LM-Chem-8B, which has achieved outstanding performance in tasks related to the field of chemistry. We hope that our work serves as a strong starting point, helping to realize more intelligent AI and promoting the advancement of human science and technology, as well as societal development.
Multi-Label Topic Model for Financial Textual Data
This paper presents a multi-label topic model for financial texts like ad-hoc announcements, 8-K filings, finance related news or annual reports. I train the model on a new financial multi-label database consisting of 3,044 German ad-hoc announcements that are labeled manually using 20 predefined, economically motivated topics. The best model achieves a macro F1 score of more than 85%. Translating the data results in an English version of the model with similar performance. As application of the model, I investigate differences in stock market reactions across topics. I find evidence for strong positive or negative market reactions for some topics, like announcements of new Large Scale Projects or Bankruptcy Filings, while I do not observe significant price effects for some other topics. Furthermore, in contrast to previous studies, the multi-label structure of the model allows to analyze the effects of co-occurring topics on stock market reactions. For many cases, the reaction to a specific topic depends heavily on the co-occurrence with other topics. For example, if allocated capital from a Seasoned Equity Offering (SEO) is used for restructuring a company in the course of a Bankruptcy Proceeding, the market reacts positively on average. However, if that capital is used for covering unexpected, additional costs from the development of new drugs, the SEO implies negative reactions on average.
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two improved methods with significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
EleutherAI: Going Beyond "Open Science" to "Science in the Open"
Over the past two years, EleutherAI has established itself as a radically novel initiative aimed at both promoting open-source research and conducting research in a transparent, openly accessible and collaborative manner. EleutherAI's approach to research goes beyond transparency: by doing research entirely in public, anyone in the world can observe and contribute at every stage. Our work has been received positively and has resulted in several high-impact projects in Natural Language Processing and other fields. In this paper, we describe our experience doing public-facing machine learning research, the benefits we believe this approach brings, and the pitfalls we have encountered.
Fine-grained Activities of People Worldwide
Every day, humans perform many closely related activities that involve subtle discriminative motions, such as putting on a shirt vs. putting on a jacket, or shaking hands vs. giving a high five. Activity recognition by ethical visual AI could provide insights into our patterns of daily life, however existing activity recognition datasets do not capture the massive diversity of these human activities around the world. To address this limitation, we introduce Collector, a free mobile app to record video while simultaneously annotating objects and activities of consented subjects. This new data collection platform was used to curate the Consented Activities of People (CAP) dataset, the first large-scale, fine-grained activity dataset of people worldwide. The CAP dataset contains 1.45M video clips of 512 fine grained activity labels of daily life, collected by 780 subjects in 33 countries. We provide activity classification and activity detection benchmarks for this dataset, and analyze baseline results to gain insight into how people around with world perform common activities. The dataset, benchmarks, evaluation tools, public leaderboards and mobile apps are available for use at visym.github.io/cap.
Promoting AI Literacy in Higher Education: Evaluating the IEC-V1 Chatbot for Personalized Learning and Educational Equity
The unequal distribution of educational opportunities carries the risk of having a long-term negative impact on general social peace, a country's economy and basic democratic structures. In contrast to this observable development is the rapid technological progress in the field of artificial intelligence (AI). Progress makes it possible to solve various problems in the field of education as well. In order to effectively exploit the advantages that arise from the use of AI, prospective teacher training students need appropriate AI skills, which must already be taught during their studies. In a first step, the added value of this technology will be demonstrated using a concrete example. This article is therefore about conducting an exploratory pilot study to test the Individual Educational Chatbot (IEC-V1) prototype, in which the levels can be individually determined in order to generate appropriate answers depending on the requirements. The results show that this is an important function for prospective teachers, and that there is great interest in taking a closer look at this technology in order to be able to better support learners in the future. The data shows that experience has already been gained with chatbots, but that there is still room for improvement. It also shows that IEC-V1 is already working well. The knowledge gained will be used for the further development of the prototype to further improve the usability of the chatbot. Overall, it is shown that useful AI applications can be effectively integrated into learning situations even without proprietary systems and that important data protection requirements can be complied with.
Apuntes de Redes Neuronales Artificiales
These handouts are designed for people who is just starting involved with the topic artificial neural networks. We show how it works a single artificial neuron (McCulloch & Pitt model), mathematically and graphically. We do explain the delta rule, a learning algorithm to find the neuron weights. We also present some examples in MATLAB/Octave. There are examples for classification task for lineal and non-lineal problems. At the end, we present an artificial neural network, a feed-forward neural network along its learning algorithm backpropagation. ----- Estos apuntes est\'an dise\~nados para personas que por primera vez se introducen en el tema de las redes neuronales artificiales. Se muestra el funcionamiento b\'asico de una neurona, matem\'aticamente y gr\'aficamente. Se explica la Regla Delta, algoritmo deaprendizaje para encontrar los pesos de una neurona. Tambi\'en se muestran ejemplos en MATLAB/Octave. Hay ejemplos para problemas de clasificaci\'on, para problemas lineales y no-lineales. En la parte final se muestra la arquitectura de red neuronal artificial conocida como backpropagation.
Xmodel-1.5: An 1B-scale Multilingual LLM
We introduce Xmodel-1.5, a novel 1-billion-parameter multilingual large model pretrained on approximately 2 trillion tokens. The model demonstrates strong performance across several languages, with particularly notable results in Thai, Arabic, and French, alongside its effectiveness in Chinese and English. In addition, we contribute to the research community by releasing a Thai evaluation dataset, which includes hundreds of questions annotated by students from Chulalongkorn University's School of Integrated Innovation. While the results are promising, we acknowledge that there is still room for improvement. We hope this work advances ongoing efforts in multilingual AI research and promotes better cross-linguistic understanding in various natural language processing tasks. Our models and code are publicly available on GitHub at https://github.com/XiaoduoAILab/XmodelLM.
Let's Verify Step by Step
In recent years, large language models have greatly improved in their ability to perform complex multi-step reasoning. However, even state-of-the-art models still regularly produce logical mistakes. To train more reliable models, we can turn either to outcome supervision, which provides feedback for a final result, or process supervision, which provides feedback for each intermediate reasoning step. Given the importance of training reliable models, and given the high cost of human feedback, it is important to carefully compare the both methods. Recent work has already begun this comparison, but many questions still remain. We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset. Our process-supervised model solves 78% of problems from a representative subset of the MATH test set. Additionally, we show that active learning significantly improves the efficacy of process supervision. To support related research, we also release PRM800K, the complete dataset of 800,000 step-level human feedback labels used to train our best reward model.
Fruit recognition from images using deep learning
In this paper we introduce a new, high-quality, dataset of images containing fruits. We also present the results of some numerical experiment for training a neural network to detect fruits. We discuss the reason why we chose to use fruits in this project by proposing a few applications that could use this kind of neural network.
RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold
Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data doubles the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of synthetic data by 8 times. We show that training on per-step negatives can help to unlearn spurious correlations in the positive data, and is equivalent to advantage-weighted reinforcement learning (RL), implying that it inherits robustness benefits of RL over imitating positive data alone.
Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 pm 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
Learning from Negative Samples in Generative Biomedical Entity Linking
Generative models have become widely used in biomedical entity linking (BioEL) due to their excellent performance and efficient memory usage. However, these models are usually trained only with positive samples--entities that match the input mention's identifier--and do not explicitly learn from hard negative samples, which are entities that look similar but have different meanings. To address this limitation, we introduce ANGEL (Learning from Negative Samples in Generative Biomedical Entity Linking), the first framework that trains generative BioEL models using negative samples. Specifically, a generative model is initially trained to generate positive samples from the knowledge base for given input entities. Subsequently, both correct and incorrect outputs are gathered from the model's top-k predictions. The model is then updated to prioritize the correct predictions through direct preference optimization. Our models fine-tuned with ANGEL outperform the previous best baseline models by up to an average top-1 accuracy of 1.4% on five benchmarks. When incorporating our framework into pre-training, the performance improvement further increases to 1.7%, demonstrating its effectiveness in both the pre-training and fine-tuning stages. Our code is available at https://github.com/dmis-lab/ANGEL.
Creative Problem Solving in Large Language and Vision Models -- What Would it Take?
We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs
Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity
Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone machine learning applications, we follow the line of works [Diakonikolas et al., 2021, Lee and Kim, 2021, Pethick et al., 2022, B\"ohm, 2022] aiming at going beyond monotonicity by considering the weaker negative comonotonicity assumption. In particular, we provide tight complexity analyses for the Proximal Point, Extragradient, and Optimistic Gradient methods in this setup, closing some questions on their working guarantees beyond monotonicity.
I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help
Schrödinger-Poisson systems with a general critical nonlinearity
We consider a Schr\"odinger-Poisson system involving a general nonlinearity at critical growth and we prove the existence of positive solutions. The Ambrosetti-Rabinowitz condition is not required. We also study the asymptotics of solutions with respect to a parameter.
Backward Compatibility During Data Updates by Weight Interpolation
Backward compatibility of model predictions is a desired property when updating a machine learning driven application. It allows to seamlessly improve the underlying model without introducing regression bugs. In classification tasks these bugs occur in the form of negative flips. This means an instance that was correctly classified by the old model is now classified incorrectly by the updated model. This has direct negative impact on the user experience of such systems e.g. a frequently used voice assistant query is suddenly misclassified. A common reason to update the model is when new training data becomes available and needs to be incorporated. Simply retraining the model with the updated data introduces the unwanted negative flips. We study the problem of regression during data updates and propose Backward Compatible Weight Interpolation (BCWI). This method interpolates between the weights of the old and new model and we show in extensive experiments that it reduces negative flips without sacrificing the improved accuracy of the new model. BCWI is straight forward to implement and does not increase inference cost. We also explore the use of importance weighting during interpolation and averaging the weights of multiple new models in order to further reduce negative flips.
Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes
I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.
For Women, Life, Freedom: A Participatory AI-Based Social Web Analysis of a Watershed Moment in Iran's Gender Struggles
In this paper, we present a computational analysis of the Persian language Twitter discourse with the aim to estimate the shift in stance toward gender equality following the death of Mahsa Amini in police custody. We present an ensemble active learning pipeline to train a stance classifier. Our novelty lies in the involvement of Iranian women in an active role as annotators in building this AI system. Our annotators not only provide labels, but they also suggest valuable keywords for more meaningful corpus creation as well as provide short example documents for a guided sampling step. Our analyses indicate that Mahsa Amini's death triggered polarized Persian language discourse where both fractions of negative and positive tweets toward gender equality increased. The increase in positive tweets was slightly greater than the increase in negative tweets. We also observe that with respect to account creation time, between the state-aligned Twitter accounts and pro-protest Twitter accounts, pro-protest accounts are more similar to baseline Persian Twitter activity.
Is ChatGPT a Biomedical Expert? -- Exploring the Zero-Shot Performance of Current GPT Models in Biomedical Tasks
We assessed the performance of commercial Large Language Models (LLMs) GPT-3.5-Turbo and GPT-4 on tasks from the 2023 BioASQ challenge. In Task 11b Phase B, which is focused on answer generation, both models demonstrated competitive abilities with leading systems. Remarkably, they achieved this with simple zero-shot learning, grounded with relevant snippets. Even without relevant snippets, their performance was decent, though not on par with the best systems. Interestingly, the older and cheaper GPT-3.5-Turbo system was able to compete with GPT-4 in the grounded Q&A setting on factoid and list answers. In Task 11b Phase A, focusing on retrieval, query expansion through zero-shot learning improved performance, but the models fell short compared to other systems. The code needed to rerun these experiments is available through GitHub.
Penalizing Unfairness in Binary Classification
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
On Bringing Robots Home
Throughout history, we have successfully integrated various machines into our homes. Dishwashers, laundry machines, stand mixers, and robot vacuums are a few recent examples. However, these machines excel at performing only a single task effectively. The concept of a "generalist machine" in homes - a domestic assistant that can adapt and learn from our needs, all while remaining cost-effective - has long been a goal in robotics that has been steadily pursued for decades. In this work, we initiate a large-scale effort towards this goal by introducing Dobb-E, an affordable yet versatile general-purpose system for learning robotic manipulation within household settings. Dobb-E can learn a new task with only five minutes of a user showing it how to do it, thanks to a demonstration collection tool ("The Stick") we built out of cheap parts and iPhones. We use the Stick to collect 13 hours of data in 22 homes of New York City, and train Home Pretrained Representations (HPR). Then, in a novel home environment, with five minutes of demonstrations and fifteen minutes of adapting the HPR model, we show that Dobb-E can reliably solve the task on the Stretch, a mobile robot readily available on the market. Across roughly 30 days of experimentation in homes of New York City and surrounding areas, we test our system in 10 homes, with a total of 109 tasks in different environments, and finally achieve a success rate of 81%. Beyond success percentages, our experiments reveal a plethora of unique challenges absent or ignored in lab robotics. These range from effects of strong shadows, to variable demonstration quality by non-expert users. With the hope of accelerating research on home robots, and eventually seeing robot butlers in every home, we open-source Dobb-E software stack and models, our data, and our hardware designs at https://dobb-e.com
Meta Pseudo Labels
We present Meta Pseudo Labels, a semi-supervised learning method that achieves a new state-of-the-art top-1 accuracy of 90.2% on ImageNet, which is 1.6% better than the existing state-of-the-art. Like Pseudo Labels, Meta Pseudo Labels has a teacher network to generate pseudo labels on unlabeled data to teach a student network. However, unlike Pseudo Labels where the teacher is fixed, the teacher in Meta Pseudo Labels is constantly adapted by the feedback of the student's performance on the labeled dataset. As a result, the teacher generates better pseudo labels to teach the student. Our code will be available at https://github.com/google-research/google-research/tree/master/meta_pseudo_labels.
Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks
The Philippines is a common ground to natural calamities like typhoons, floods, volcanic eruptions and earthquakes. With Twitter as one of the most used social media platform in the Philippines, a total of 39,867 preprocessed tweets were obtained given a time frame starting from November 1, 2013 to January 31, 2014. Sentiment analysis determines the underlying emotion given a series of words. The main purpose of this study is to identify the sentiments expressed in the tweets sent by the Filipino people before, during, and after Typhoon Yolanda using two variations of Recurrent Neural Networks; standard and bidirectional. The best generated models after training with various hyperparameters achieved a high accuracy of 81.79% for fine-grained classification using standard RNN and 87.69% for binary classification using bidirectional RNN. Findings revealed that 51.1% of the tweets sent were positive expressing support, love, and words of courage to the victims; 19.8% were negative stating sadness and despair for the loss of lives and hate for corrupt officials; while the other 29% were neutral tweets from local news stations, announcements of relief operations, donation drives, and observations by citizens.
What Makes Digital Support Effective? How Therapeutic Skills Affect Clinical Well-Being
Online mental health support communities have grown in recent years for providing accessible mental and emotional health support through volunteer counselors. Despite millions of people participating in chat support on these platforms, the clinical effectiveness of these communities on mental health symptoms remains unknown. Furthermore, although volunteers receive some training based on established therapeutic skills studied in face-to-face environments such as active listening and motivational interviewing, it remains understudied how the usage of these skills in this online context affects people's mental health status. In our work, we collaborate with one of the largest online peer support platforms and use both natural language processing and machine learning techniques to measure how one-on-one support chats affect depression and anxiety symptoms. We measure how the techniques and characteristics of support providers, such as using affirmation, empathy, and past experience on the platform, affect support-seekers' mental health changes. We find that online peer support chats improve both depression and anxiety symptoms with a statistically significant but relatively small effect size. Additionally, support providers' techniques such as emphasizing the autonomy of the client lead to better mental health outcomes. However, we also found that some behaviors (e.g. persuading) are actually harmful to depression and anxiety outcomes. Our work provides key understanding for mental health care in the online setting and designing training systems for online support providers.
Vital Videos: A dataset of face videos with PPG and blood pressure ground truths
We collected a large dataset consisting of nearly 900 unique participants. For every participant we recorded two 30 second uncompressed videos, synchronized PPG waveforms and a single blood pressure measurement. Gender, age and skin color were also registered for every participant. The dataset includes roughly equal numbers of males and females, as well as participants of all ages. While the skin color distribution could have been more balanced, the dataset contains individuals from every skin color. The data was collected in a diverse set of locations to ensure a wide variety of backgrounds and lighting conditions. In an effort to assist in the research and development of remote vital sign measurement we are now opening up access to this dataset.
Measuring Vision-Language STEM Skills of Neural Models
We introduce a new challenge to test the STEM skills of neural models. The problems in the real world often require solutions, combining knowledge from STEM (science, technology, engineering, and math). Unlike existing datasets, our dataset requires the understanding of multimodal vision-language information of STEM. Our dataset features one of the largest and most comprehensive datasets for the challenge. It includes 448 skills and 1,073,146 questions spanning all STEM subjects. Compared to existing datasets that often focus on examining expert-level ability, our dataset includes fundamental skills and questions designed based on the K-12 curriculum. We also add state-of-the-art foundation models such as CLIP and GPT-3.5-Turbo to our benchmark. Results show that the recent model advances only help master a very limited number of lower grade-level skills (2.5% in the third grade) in our dataset. In fact, these models are still well below (averaging 54.7%) the performance of elementary students, not to mention near expert-level performance. To understand and increase the performance on our dataset, we teach the models on a training split of our dataset. Even though we observe improved performance, the model performance remains relatively low compared to average elementary students. To solve STEM problems, we will need novel algorithmic innovations from the community.
A Survey of Deep Learning for Mathematical Reasoning
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
Transformers are Deep Optimizers: Provable In-Context Learning for Deep Model Training
We investigate the transformer's capability for in-context learning (ICL) to simulate the training process of deep models. Our key contribution is providing a positive example of using a transformer to train a deep neural network by gradient descent in an implicit fashion via ICL. Specifically, we provide an explicit construction of a (2N+4)L-layer transformer capable of simulating L gradient descent steps of an N-layer ReLU network through ICL. We also give the theoretical guarantees for the approximation within any given error and the convergence of the ICL gradient descent. Additionally, we extend our analysis to the more practical setting using Softmax-based transformers. We validate our findings on synthetic datasets for 3-layer, 4-layer, and 6-layer neural networks. The results show that ICL performance matches that of direct training.
Fair Densities via Boosting the Sufficient Statistics of Exponential Families
We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data.
Iterative Service-Learning: A Computing-Based Case-study Applied to Small Rural Organizations
This paper describes the iterative use of service learning to develop, review, and improve computing-based artifacts. It is well-known that computing students benefit from service-learning experiences as do the community partners. It is also well-known that computing artifacts rarely function well long-term without versioning and updates. Service-learning projects are often one-time engagements, completed by single teams of students over the course of a semester course. This limits the benefit for community partners that do not have the expertise or resources to review and update a project on their own. Over several years, teams of undergraduate students in a capstone course created tailored social media plans for numerous small rural organizations. The projects were required to meet client specific needs, with identified audiences, measurable goals, and strategies and tactics to reach the identified goals. This paper builds on previously results for 60 projects conducted over several years. Nine clients were selected to participate in the iterative follow-up process, where new student teams conducted client interviews, reviewed the initial plans, and analyzed metrics from the current strategies and tactics to provide updated, improved artifacts. Using ABET learning objectives as a basis, clients reviewed the student teams and artifacts. This longitudinal study discusses the impact of this intervention to increase implementation and sustained use rates of computing artifacts developed through service learning. Both students and clients reported high satisfaction levels, and clients were particularly satisfied with the iterative improvement process. This research demonstrates an innovative practice for creating and maintaining computing artifacts through iterative service learning, while addressing the resource constraints of small organizations.
Towards Solving Fuzzy Tasks with Human Feedback: A Retrospective of the MineRL BASALT 2022 Competition
To facilitate research in the direction of fine-tuning foundation models from human feedback, we held the MineRL BASALT Competition on Fine-Tuning from Human Feedback at NeurIPS 2022. The BASALT challenge asks teams to compete to develop algorithms to solve tasks with hard-to-specify reward functions in Minecraft. Through this competition, we aimed to promote the development of algorithms that use human feedback as channels to learn the desired behavior. We describe the competition and provide an overview of the top solutions. We conclude by discussing the impact of the competition and future directions for improvement.
Mathematical Capabilities of ChatGPT
We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!
Universal Online Learning with Unbounded Losses: Memory Is All You Need
We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule.
Improve Machine Learning carbon footprint using Nvidia GPU and Mixed Precision training for classification models -- Part I
This is the 1st part of the dissertation for my master degree and compares the power consumption using the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a classification ML model. A custom PC with specific hardware was built to perform the experiments, and different ML hyper-parameters, such as batch size, neurons, and epochs, were chosen to build Deep Neural Networks (DNN). Additionally, various software was used during the experiments to collect the power consumption data in Watts from the Graphics Processing Unit (GPU), Central Processing Unit (CPU), Random Access Memory (RAM) and manually from a wattmeter connected to the wall. A benchmarking test with default hyper parameter values for the DNN was used as a reference, while the experiments used a combination of different settings. The results were recorded in Excel, and descriptive statistics were chosen to calculate the mean between the groups and compare them using graphs and tables. The outcome was positive when using mixed precision combined with specific hyper-parameters. Compared to the benchmarking, the optimisation for the classification reduced the power consumption between 7 and 11 Watts. Similarly, the carbon footprint is reduced because the calculation uses the same power consumption data. Still, a consideration is required when configuring hyper-parameters because it can negatively affect hardware performance. However, this research required inferential statistics, specifically ANOVA and T-test, to compare the relationship between the means. Furthermore, tests indicated no statistical significance of the relationship between the benchmarking and experiments. However, a more extensive implementation with a cluster of GPUs can increase the sample size significantly, as it is an essential factor and can change the outcome of the statistical analysis.
Primary and Secondary Factor Consistency as Domain Knowledge to Guide Happiness Computing in Online Assessment
Happiness computing based on large-scale online web data and machine learning methods is an emerging research topic that underpins a range of issues, from personal growth to social stability. Many advanced Machine Learning (ML) models with explanations are used to compute the happiness online assessment while maintaining high accuracy of results. However, domain knowledge constraints, such as the primary and secondary relations of happiness factors, are absent from these models, which limits the association between computing results and the right reasons for why they occurred. This article attempts to provide new insights into the explanation consistency from an empirical study perspective. Then we study how to represent and introduce domain knowledge constraints to make ML models more trustworthy. We achieve this through: (1) proving that multiple prediction models with additive factor attributions will have the desirable property of primary and secondary relations consistency, and (2) showing that factor relations with quantity can be represented as an importance distribution for encoding domain knowledge. Factor explanation difference is penalized by the Kullback-Leibler divergence-based loss among computing models. Experimental results using two online web datasets show that domain knowledge of stable factor relations exists. Using this knowledge not only improves happiness computing accuracy but also reveals more significative happiness factors for assisting decisions well.
PhoGPT: Generative Pre-training for Vietnamese
We open-source a state-of-the-art 7.5B-parameter generative model series named PhoGPT for Vietnamese, which includes the base pre-trained monolingual model PhoGPT-7B5 and its instruction-following variant, PhoGPT-7B5-Instruct. In addition, we also demonstrate its superior performance compared to previous open-source models through a human evaluation experiment. GitHub: https://github.com/VinAIResearch/PhoGPT
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
On a Seldom Oversight in Fermi's Calculations: Seventy Years Later
We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made.
yosm: A new yoruba sentiment corpus for movie reviews
A movie that is thoroughly enjoyed and recommended by an individual might be hated by another. One characteristic of humans is the ability to have feelings which could be positive or negative. To automatically classify and study human feelings, an aspect of natural language processing, sentiment analysis and opinion mining were designed to understand human feelings regarding several issues which could affect a product, a social media platforms, government, or societal discussions or even movies. Several works on sentiment analysis have been done on high resource languages while low resources languages like Yoruba have been sidelined. Due to the scarcity of datasets and linguistic architectures that will suit low resource languages, African languages "low resource languages" have been ignored and not fully explored. For this reason, our attention is placed on Yoruba to explore sentiment analysis on reviews of Nigerian movies. The data comprised 1500 movie reviews that were sourced from IMDB, Rotten Tomatoes, Letterboxd, Cinemapointer and Nollyrated. We develop sentiment classification models using the state-of-the-art pre-trained language models like mBERT and AfriBERTa to classify the movie reviews.
One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
Cybloids - Creation and Control of Cybernetic Colloids
Colloids play an important role in fundamental science as well as in nature and technology. They have had a strong impact on the fundamental understanding of statistical physics. For example, colloids have helped to obtain a better understanding of collective phenomena, ranging from phase transitions and glass formation to the swarming of active Brownian particles. Yet the success of colloidal systems hinges crucially on the specific physical and chemical properties of the colloidal particles, i.e. particles with the appropriate characteristics must be available. Here we present an idea to create particles with freely selectable properties. The properties might depend, for example, on the presence of other particles (hence mimicking specific pair or many-body interactions), previous configurations (hence introducing some memory or feedback), or a directional bias (hence changing the dynamics). Without directly interfering with the sample, each particle is fully controlled and can receive external commands through a predefined algorithm that can take into account any input parameters. This is realized with computer-controlled colloids, which we term cybloids - short for cybernetic colloids. The potential of cybloids is illustrated by programming a time-delayed external potential acting on a single colloid and interaction potentials for many colloids. Both an attractive harmonic potential and an annular potential are implemented. For a single particle, this programming can cause subdiffusive behavior or lend activity. For many colloids, the programmed interaction potential allows to select a crystal structure at wish. Beyond these examples, we discuss further opportunities which cybloids offer.
Early warning signals: The charted and uncharted territories
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.
Jelly Bean World: A Testbed for Never-Ending Learning
Machine learning has shown growing success in recent years. However, current machine learning systems are highly specialized, trained for particular problems or domains, and typically on a single narrow dataset. Human learning, on the other hand, is highly general and adaptable. Never-ending learning is a machine learning paradigm that aims to bridge this gap, with the goal of encouraging researchers to design machine learning systems that can learn to perform a wider variety of inter-related tasks in more complex environments. To date, there is no environment or testbed to facilitate the development and evaluation of never-ending learning systems. To this end, we propose the Jelly Bean World testbed. The Jelly Bean World allows experimentation over two-dimensional grid worlds which are filled with items and in which agents can navigate. This testbed provides environments that are sufficiently complex and where more generally intelligent algorithms ought to perform better than current state-of-the-art reinforcement learning approaches. It does so by producing non-stationary environments and facilitating experimentation with multi-task, multi-agent, multi-modal, and curriculum learning settings. We hope that this new freely-available software will prompt new research and interest in the development and evaluation of never-ending learning systems and more broadly, general intelligence systems.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for Neural Networks
Neural networks have proven to be a highly effective tool for solving complex problems in many areas of life. Recently, their importance and practical usability have further been reinforced with the advent of deep learning. One of the important conditions for the success of neural networks is the choice of an appropriate activation function introducing non-linearity into the model. Many types of these functions have been proposed in the literature in the past, but there is no single comprehensive source containing their exhaustive overview. The absence of this overview, even in our experience, leads to redundancy and the unintentional rediscovery of already existing activation functions. To bridge this gap, our paper presents an extensive survey involving 400 activation functions, which is several times larger in scale than previous surveys. Our comprehensive compilation also references these surveys; however, its main goal is to provide the most comprehensive overview and systematization of previously published activation functions with links to their original sources. The secondary aim is to update the current understanding of this family of functions.
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.
Attribution-Scores in Data Management and Explainable Machine Learning
We describe recent research on the use of actual causality in the definition of responsibility scores as explanations for query answers in databases, and for outcomes from classification models in machine learning. In the case of databases, useful connections with database repairs are illustrated and exploited. Repairs are also used to give a quantitative measure of the consistency of a database. For classification models, the responsibility score is properly extended and illustrated. The efficient computation of Shap-score is also analyzed and discussed. The emphasis is placed on work done by the author and collaborators.
L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset
Sentiment analysis is one of the most fundamental tasks in Natural Language Processing. Popular languages like English, Arabic, Russian, Mandarin, and also Indian languages such as Hindi, Bengali, Tamil have seen a significant amount of work in this area. However, the Marathi language which is the third most popular language in India still lags behind due to the absence of proper datasets. In this paper, we present the first major publicly available Marathi Sentiment Analysis Dataset - L3CubeMahaSent. It is curated using tweets extracted from various Maharashtrian personalities' Twitter accounts. Our dataset consists of ~16,000 distinct tweets classified in three broad classes viz. positive, negative, and neutral. We also present the guidelines using which we annotated the tweets. Finally, we present the statistics of our dataset and baseline classification results using CNN, LSTM, ULMFiT, and BERT-based deep learning models.
LearnLM: Improving Gemini for Learning
Today's generative AI systems are tuned to present information by default rather than engage users in service of learning as a human tutor would. To address the wide range of potential education use cases for these systems, we reframe the challenge of injecting pedagogical behavior as one of pedagogical instruction following, where training and evaluation examples include system-level instructions describing the specific pedagogy attributes present or desired in subsequent model turns. This framing avoids committing our models to any particular definition of pedagogy, and instead allows teachers or developers to specify desired model behavior. It also clears a path to improving Gemini models for learning -- by enabling the addition of our pedagogical data to post-training mixtures -- alongside their rapidly expanding set of capabilities. Both represent important changes from our initial tech report. We show how training with pedagogical instruction following produces a LearnLM model (available on Google AI Studio) that is preferred substantially by expert raters across a diverse set of learning scenarios, with average preference strengths of 31\% over GPT-4o, 11\% over Claude 3.5, and 13\% over the Gemini 1.5 Pro model LearnLM was based on.
Sampler Design for Implicit Feedback Data by Noisy-label Robust Learning
Implicit feedback data is extensively explored in recommendation as it is easy to collect and generally applicable. However, predicting users' preference on implicit feedback data is a challenging task since we can only observe positive (voted) samples and unvoted samples. It is difficult to distinguish between the negative samples and unlabeled positive samples from the unvoted ones. Existing works, such as Bayesian Personalized Ranking (BPR), sample unvoted items as negative samples uniformly, therefore suffer from a critical noisy-label issue. To address this gap, we design an adaptive sampler based on noisy-label robust learning for implicit feedback data. To formulate the issue, we first introduce Bayesian Point-wise Optimization (BPO) to learn a model, e.g., Matrix Factorization (MF), by maximum likelihood estimation. We predict users' preferences with the model and learn it by maximizing likelihood of observed data labels, i.e., a user prefers her positive samples and has no interests in her unvoted samples. However, in reality, a user may have interests in some of her unvoted samples, which are indeed positive samples mislabeled as negative ones. We then consider the risk of these noisy labels, and propose a Noisy-label Robust BPO (NBPO). NBPO also maximizes the observation likelihood while connects users' preference and observed labels by the likelihood of label flipping based on the Bayes' theorem. In NBPO, a user prefers her true positive samples and shows no interests in her true negative samples, hence the optimization quality is dramatically improved. Extensive experiments on two public real-world datasets show the significant improvement of our proposed optimization methods.
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning
The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP) presents both opportunities and challenges to our community. Far beyond applications of standard ML tools to HEP problems, genuinely new and potentially revolutionary approaches are being developed by a generation of talent literate in both fields. There is an urgent need to support the needs of the interdisciplinary community driving these developments, including funding dedicated research at the intersection of the two fields, investing in high-performance computing at universities and tailoring allocation policies to support this work, developing of community tools and standards, and providing education and career paths for young researchers attracted by the intellectual vitality of machine learning for high energy physics.
Cyber Security and Online Safety Education for Schools in the UK: Looking through the Lens of Twitter Data
In recent years, digital technologies have grown in many ways. As a result, many school-aged children have been exposed to the digital world a lot. Children are using more digital technologies, so schools need to teach kids more about cyber security and online safety. Because of this, there are now more school programmes and projects that teach students about cyber security and online safety and help them learn and improve their skills. Still, despite many programmes and projects, there is not much proof of how many schools have taken part and helped spread the word about them. This work shows how we can learn about the size and scope of cyber security and online safety education in schools in the UK, a country with a very active and advanced cyber security education profile, using nearly 200k public tweets from over 15k schools. By using simple techniques like descriptive statistics and visualisation as well as advanced natural language processing (NLP) techniques like sentiment analysis and topic modelling, we show some new findings and insights about how UK schools as a sector have been doing on Twitter with their cyber security and online safety education activities. Our work has led to a range of large-scale and real-world evidence that can help inform people and organisations interested in cyber security and teaching online safety in schools.
Conformal Risk Control
We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.
ChatGPT is not all you need. A State of the Art Review of large Generative AI models
During the last two years there has been a plethora of large generative models such as ChatGPT or Stable Diffusion that have been published. Concretely, these models are able to perform tasks such as being a general question and answering system or automatically creating artistic images that are revolutionizing several sectors. Consequently, the implications that these generative models have in the industry and society are enormous, as several job positions may be transformed. For example, Generative AI is capable of transforming effectively and creatively texts to images, like the DALLE-2 model; text to 3D images, like the Dreamfusion model; images to text, like the Flamingo model; texts to video, like the Phenaki model; texts to audio, like the AudioLM model; texts to other texts, like ChatGPT; texts to code, like the Codex model; texts to scientific texts, like the Galactica model or even create algorithms like AlphaTensor. This work consists on an attempt to describe in a concise way the main models are sectors that are affected by generative AI and to provide a taxonomy of the main generative models published recently.
An Old-Fashioned Framework for Machine Learning in Turbulence Modeling
The objective is to provide clear and well-motivated guidance to Machine Learning (ML) teams, founded on our experience in empirical turbulence modeling. Guidance is also needed for modeling outside ML. ML is not yet successful in turbulence modeling, and many papers have produced unusable proposals either due to errors in math or physics, or to severe overfitting. We believe that "Turbulence Culture" (TC) takes years to learn and is difficult to convey especially considering the modern lack of time for careful study; important facts which are self-evident after a career in turbulence research and modeling and extensive reading are easy to miss. In addition, many of them are not absolute facts, a consequence of the gaps in our understanding of turbulence and the weak connection of models to first principles. Some of the mathematical facts are rigorous, but the physical aspects often are not. Turbulence models are surprisingly arbitrary. Disagreement between experts confuses the new entrants. In addition, several key properties of the models are ascertained through non-trivial analytical properties of the differential equations, which puts them out of reach of purely data-driven ML-type approaches. The best example is the crucial behavior of the model at the edge of the turbulent region (ETR). The knowledge we wish to put out here may be divided into "Mission" and "Requirements," each combining physics and mathematics. Clear lists of "Hard" and "Soft" constraints are presented. A concrete example of how DNS data could be used, possibly allied with ML, is first carried through and illustrates the large number of decisions needed. Our focus is on creating effective products which will empower CFD, rather than on publications.
NICE: CVPR 2023 Challenge on Zero-shot Image Captioning
In this report, we introduce NICE (New frontiers for zero-shot Image Captioning Evaluation) project and share the results and outcomes of 2023 challenge. This project is designed to challenge the computer vision community to develop robust image captioning models that advance the state-of-the-art both in terms of accuracy and fairness. Through the challenge, the image captioning models were tested using a new evaluation dataset that includes a large variety of visual concepts from many domains. There was no specific training data provided for the challenge, and therefore the challenge entries were required to adapt to new types of image descriptions that had not been seen during training. This report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries. We expect that the outcomes of the challenge will contribute to the improvement of AI models on various vision-language tasks.
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased.
Multiresolution Textual Inversion
We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion
The Capacity for Moral Self-Correction in Large Language Models
We test the hypothesis that language models trained with reinforcement learning from human feedback (RLHF) have the capability to "morally self-correct" -- to avoid producing harmful outputs -- if instructed to do so. We find strong evidence in support of this hypothesis across three different experiments, each of which reveal different facets of moral self-correction. We find that the capability for moral self-correction emerges at 22B model parameters, and typically improves with increasing model size and RLHF training. We believe that at this level of scale, language models obtain two capabilities that they can use for moral self-correction: (1) they can follow instructions and (2) they can learn complex normative concepts of harm like stereotyping, bias, and discrimination. As such, they can follow instructions to avoid certain kinds of morally harmful outputs. We believe our results are cause for cautious optimism regarding the ability to train language models to abide by ethical principles.
DMLR: Data-centric Machine Learning Research -- Past, Present and Future
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact.
Five open problems in quantum information
We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced.
AI in Pharma for Personalized Sequential Decision-Making: Methods, Applications and Opportunities
In the pharmaceutical industry, the use of artificial intelligence (AI) has seen consistent growth over the past decade. This rise is attributed to major advancements in statistical machine learning methodologies, computational capabilities and the increased availability of large datasets. AI techniques are applied throughout different stages of drug development, ranging from drug discovery to post-marketing benefit-risk assessment. Kolluri et al. provided a review of several case studies that span these stages, featuring key applications such as protein structure prediction, success probability estimation, subgroup identification, and AI-assisted clinical trial monitoring. From a regulatory standpoint, there was a notable uptick in submissions incorporating AI components in 2021. The most prevalent therapeutic areas leveraging AI were oncology (27%), psychiatry (15%), gastroenterology (12%), and neurology (11%). The paradigm of personalized or precision medicine has gained significant traction in recent research, partly due to advancements in AI techniques hamburg2010path. This shift has had a transformative impact on the pharmaceutical industry. Departing from the traditional "one-size-fits-all" model, personalized medicine incorporates various individual factors, such as environmental conditions, lifestyle choices, and health histories, to formulate customized treatment plans. By utilizing sophisticated machine learning algorithms, clinicians and researchers are better equipped to make informed decisions in areas such as disease prevention, diagnosis, and treatment selection, thereby optimizing health outcomes for each individual.
SQuAD: 100,000+ Questions for Machine Comprehension of Text
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com
Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models
The recent success of Large Language Models (LLMs) has catalyzed an increasing interest in their self-correction capabilities. This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs, attempting to address the ongoing debate about its feasibility. Our research has identified an important latent factor - the "confidence" of LLMs - during the self-correction process. Overlooking this factor may cause the models to over-criticize themselves, resulting in unreliable conclusions regarding the efficacy of self-correction. We have experimentally observed that LLMs possess the capability to understand the "confidence" in their own responses. It motivates us to develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence", facilitating intrinsic self-corrections. We conduct extensive experiments and demonstrate that our IoE-based Prompt can achieve a consistent improvement regarding the accuracy of self-corrected responses over the initial answers. Our study not only sheds light on the underlying factors affecting self-correction in LLMs, but also introduces a practical framework that utilizes the IoE prompting principle to efficiently improve self-correction capabilities with "confidence". The code is available at https://github.com/MBZUAI-CLeaR/IoE-Prompting.git.
Transformers learn through gradual rank increase
We identify incremental learning dynamics in transformers, where the difference between trained and initial weights progressively increases in rank. We rigorously prove this occurs under the simplifying assumptions of diagonal weight matrices and small initialization. Our experiments support the theory and also show that phenomenon can occur in practice without the simplifying assumptions.
The FathomNet2023 Competition Dataset
Ocean scientists have been collecting visual data to study marine organisms for decades. These images and videos are extremely valuable both for basic science and environmental monitoring tasks. There are tools for automatically processing these data, but none that are capable of handling the extreme variability in sample populations, image quality, and habitat characteristics that are common in visual sampling of the ocean. Such distribution shifts can occur over very short physical distances and in narrow time windows. Creating models that are able to recognize when an image or video sequence contains a new organism, an unusual collection of animals, or is otherwise out-of-sample is critical to fully leverage visual data in the ocean. The FathomNet2023 competition dataset presents a realistic scenario where the set of animals in the target data differs from the training data. The challenge is both to identify the organisms in a target image and assess whether it is out-of-sample.
Textbooks Are All You Need II: phi-1.5 technical report
We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories -- a 10 million parameter model that can produce coherent English -- and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate ``textbook quality" data as a way to enhance the learning process compared to traditional web data. We follow the ``Textbooks Are All You Need" approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good -- such as the ability to ``think step by step" or perform some rudimentary in-context learning -- and bad, including hallucinations and the potential for toxic and biased generations -- encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics.
Evaluation of Embeddings of Laboratory Test Codes for Patients at a Cancer Center
Laboratory test results are an important and generally high dimensional component of a patient's Electronic Health Record (EHR). We train embedding representations (via Word2Vec and GloVe) for LOINC codes of laboratory tests from the EHRs of about 80,000 patients at a cancer center. To include information about lab test outcomes, we also train embeddings on the concatenation of a LOINC code with a symbol indicating normality or abnormality of the result. We observe several clinically meaningful similarities among LOINC embeddings trained over our data. For the embeddings of the concatenation of LOINCs with abnormality codes, we evaluate the performance for mortality prediction tasks and the ability to preserve ordinality properties: i.e. a lab test with normal outcome should be more similar to an abnormal one than to the a very abnormal one.
Evaluating Language Model Math Reasoning via Grounding in Educational Curricula
Our work presents a novel angle for evaluating language models' (LMs) mathematical abilities, by investigating whether they can discern skills and concepts enabled by math content. We contribute two datasets: one consisting of 385 fine-grained descriptions of K-12 math skills and concepts, or standards, from Achieve the Core (ATC), and another of 9.9K problems labeled with these standards (MathFish). Working with experienced teachers, we find that LMs struggle to tag and verify standards linked to problems, and instead predict labels that are close to ground truth, but differ in subtle ways. We also show that LMs often generate problems that do not fully align with standards described in prompts. Finally, we categorize problems in GSM8k using math standards, allowing us to better understand why some problems are more difficult to solve for models than others.
What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization
Summarization models often generate text that is poorly calibrated to quality metrics because they are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has added a calibration step, which exposes a model to its own ranked outputs to improve relevance or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While effective, much of this work has focused on how to generate and optimize these sets. Less is known about why one setup is more effective than another. In this work, we uncover the underlying characteristics of effective sets. For each training instance, we form a large, diverse pool of candidates and systematically vary the subsets used for calibration fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity or the size of the gap between positive and negatives. On three diverse scientific long-form summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among others, that faithfulness calibration is optimal when the negative sets are extractive and more likely to be generated, whereas for relevance calibration, the metric margin between candidates should be maximized and surprise--the disagreement between model and metric defined candidate rankings--minimized. Code to create, select, and optimize calibration sets is available at https://github.com/griff4692/calibrating-summaries
Benchmarking Language Model Creativity: A Case Study on Code Generation
As LLMs become increasingly prevalent, it is interesting to consider how ``creative'' these models can be. From cognitive science, creativity consists of at least two key characteristics: convergent thinking (purposefulness to achieve a given goal) and divergent thinking (adaptability to new environments or constraints) runco2003critical. In this work, we introduce a framework for quantifying LLM creativity that incorporates the two characteristics. This is achieved by (1) Denial Prompting pushes LLMs to come up with more creative solutions to a given problem by incrementally imposing new constraints on the previous solution, compelling LLMs to adopt new strategies, and (2) defining and computing the NeoGauge metric which examines both convergent and divergent thinking in the generated creative responses by LLMs. We apply the proposed framework on Codeforces problems, a natural data source for collecting human coding solutions. We quantify NeoGauge for various proprietary and open-source models and find that even the most creative model, GPT-4, still falls short of demonstrating human-like creativity. We also experiment with advanced reasoning strategies (MCTS, self-correction, etc.) and observe no significant improvement in creativity. As a by-product of our analysis, we release NeoCoder dataset for reproducing our results on future models.
MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses
Scientific discovery contributes largely to human society's prosperity, and recent progress shows that LLMs could potentially catalyze this process. However, it is still unclear whether LLMs can discover novel and valid hypotheses in chemistry. In this work, we investigate this central research question: Can LLMs automatically discover novel and valid chemistry research hypotheses given only a chemistry research background (consisting of a research question and/or a background survey), without limitation on the domain of the research question? After extensive discussions with chemistry experts, we propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations. With this key insight, we break the central question into three smaller fundamental questions. In brief, they are: (1) given a background question, whether LLMs can retrieve good inspirations; (2) with background and inspirations, whether LLMs can lead to hypothesis; and (3) whether LLMs can identify good hypotheses to rank them higher. To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024 (all papers are only available online since 2024). Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis. The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus consisting the ground truth inspiration papers, with LLMs trained with data up to 2023. We also develop an LLM-based multi-agent framework that leverages the assumption, consisting of three stages reflecting the three smaller questions. The proposed method can rediscover many hypotheses with very high similarity with the ground truth ones, covering the main innovations.
Can There be Art Without an Artist?
Generative AI based art has proliferated in the past year, with increasingly impressive use cases from generating fake human faces to the creation of systems that can generate thousands of artistic images from text prompts - some of these images have even been "good" enough to win accolades from qualified judges. In this paper, we explore how Generative Models have impacted artistry, not only from a qualitative point of view, but also from an angle of exploitation of artists -- both via plagiarism, where models are trained on their artwork without permission, and via profit shifting, where profits in the art market have shifted from art creators to model owners. However, we posit that if deployed responsibly, AI generative models have the possibility of being a positive, new modality in art that does not displace or harm existing artists.
Evaluating AI Vocational Skills Through Professional Testing
Using a novel professional certification survey, the study focuses on assessing the vocational skills of two highly cited AI models, GPT-3 and Turbo-GPT3.5. The approach emphasizes the importance of practical readiness over academic performance by examining the models' performances on a benchmark dataset consisting of 1149 professional certifications. This study also includes a comparison with human test scores, providing perspective on the potential of AI models to match or even surpass human performance in professional certifications. GPT-3, even without any fine-tuning or exam preparation, managed to achieve a passing score (over 70% correct) on 39% of the professional certifications. It showcased proficiency in computer-related fields, including cloud and virtualization, business analytics, cybersecurity, network setup and repair, and data analytics. Turbo-GPT3.5, on the other hand, scored a perfect 100% on the highly regarded Offensive Security Certified Professional (OSCP) exam. This model also demonstrated competency in diverse professional fields, such as nursing, licensed counseling, pharmacy, and aviation. Turbo-GPT3.5 exhibited strong performance on customer service tasks, indicating potential use cases in enhancing chatbots for call centers and routine advice services. Both models also scored well on sensory and experience-based tests outside a machine's traditional roles, including wine sommelier, beer tasting, emotional quotient, and body language reading. The study found that OpenAI's model improvement from Babbage to Turbo led to a 60% better performance on the grading scale within a few years. This progress indicates that addressing the current model's limitations could yield an AI capable of passing even the most rigorous professional certifications.
Orca 2: Teaching Small Language Models How to Reason
Orca 1 learns from rich signals, such as explanation traces, allowing it to outperform conventional instruction-tuned models on benchmarks like BigBench Hard and AGIEval. In Orca 2, we continue exploring how improved training signals can enhance smaller LMs' reasoning abilities. Research on training small LMs has often relied on imitation learning to replicate the output of more capable models. We contend that excessive emphasis on imitation may restrict the potential of smaller models. We seek to teach small LMs to employ different solution strategies for different tasks, potentially different from the one used by the larger model. For example, while larger models might provide a direct answer to a complex task, smaller models may not have the same capacity. In Orca 2, we teach the model various reasoning techniques (step-by-step, recall then generate, recall-reason-generate, direct answer, etc.). More crucially, we aim to help the model learn to determine the most effective solution strategy for each task. We evaluate Orca 2 using a comprehensive set of 15 diverse benchmarks (corresponding to approximately 100 tasks and over 36,000 unique prompts). Orca 2 significantly surpasses models of similar size and attains performance levels similar or better to those of models 5-10x larger, as assessed on complex tasks that test advanced reasoning abilities in zero-shot settings. We open-source Orca 2 to encourage further research on the development, evaluation, and alignment of smaller LMs.
An Explainable Machine Learning Approach to Visual-Interactive Labeling: A Case Study on Non-communicable Disease Data
We introduce a new visual-interactive tool: Explainable Labeling Assistant (XLabel) that takes an explainable machine learning approach to data labeling. The main component of XLabel is the Explainable Boosting Machine (EBM), a predictive model that can calculate the contribution of each input feature towards the final prediction. As a case study, we use XLabel to predict the labels of four non-communicable diseases (NCDs): diabetes, hypertension, chronic kidney disease, and dyslipidemia. We demonstrate that EBM is an excellent choice of predictive model by comparing it against a rule-based and four other machine learning models. By performing 5-fold cross-validation on 427 medical records, EBM's prediction accuracy, precision, and F1-score are greater than 0.95 in all four NCDs. It performed as well as two black-box models and outperformed the other models in these metrics. In an additional experiment, when 40% of the records were intentionally mislabeled, EBM could recall the correct labels of more than 90% of these records.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
MatSynth: A Modern PBR Materials Dataset
We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: https://www.gvecchio.com/matsynth.
Microcontroller based automated life savior -- Medisûr
With the course of progress in the field of medicine, most of the patients lives can be saved. The only thing required is the proper attention at the proper time. Our wearable solution tries to solve this issue by taking the patients vitals and transmitting them to the server for live monitoring using the mobile app along with the patients current location. In case of an emergency, that is if any vitals show any abnormalities, an SMS is sent to the caregiver of the patient with the patients location so that he can reach there on time.
Regression with Sensor Data Containing Incomplete Observations
This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments.
FEET: A Framework for Evaluating Embedding Techniques
In this study, we introduce FEET, a standardized protocol designed to guide the development and benchmarking of foundation models. While numerous benchmark datasets exist for evaluating these models, we propose a structured evaluation protocol across three distinct scenarios to gain a comprehensive understanding of their practical performance. We define three primary use cases: frozen embeddings, few-shot embeddings, and fully fine-tuned embeddings. Each scenario is detailed and illustrated through two case studies: one in sentiment analysis and another in the medical domain, demonstrating how these evaluations provide a thorough assessment of foundation models' effectiveness in research applications. We recommend this protocol as a standard for future research aimed at advancing representation learning models.
Teaching LLMs at Charles University: Assignments and Activities
This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language models (LLMs) taught at Charles University. The assignments include experiments with LLM inference for weather report generation and machine translation. The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive "best paper" session aimed at reading and comprehension of research papers.
A Constructive, Type-Theoretic Approach to Regression via Global Optimisation
We examine the connections between deterministic, complete, and general global optimisation of continuous functions and a general concept of regression from the perspective of constructive type theory via the concept of 'searchability'. We see how the property of convergence of global optimisation is a straightforward consequence of searchability. The abstract setting allows us to generalise searchability and continuity to higher-order functions, so that we can formulate novel convergence criteria for regression, derived from the convergence of global optimisation. All the theory and the motivating examples are fully formalised in the proof assistant Agda.
A Survey on Bias and Fairness in Machine Learning
With the widespread use of AI systems and applications in our everyday lives, it is important to take fairness issues into consideration while designing and engineering these types of systems. Such systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that the decisions do not reflect discriminatory behavior toward certain groups or populations. We have recently seen work in machine learning, natural language processing, and deep learning that addresses such challenges in different subdomains. With the commercialization of these systems, researchers are becoming aware of the biases that these applications can contain and have attempted to address them. In this survey we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined in order to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and how they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.
ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles
We present the "Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles" (ABOUT ML) project as an initiative to operationalize ML transparency and work towards a standard ML documentation practice. We make the case for the project's relevance and effectiveness in consolidating disparate efforts across a variety of stakeholders, as well as bringing in the perspectives of currently missing voices that will be valuable in shaping future conversations. We describe the details of the initiative and the gaps we hope this project will help address.
GPT-4 passes most of the 297 written Polish Board Certification Examinations
Introduction: Recently, the effectiveness of Large Language Models (LLMs) has increased rapidly, allowing them to be used in a great number of applications. However, the risks posed by the generation of false information through LLMs significantly limit their applications in sensitive areas such as healthcare, highlighting the necessity for rigorous validations to determine their utility and reliability. To date, no study has extensively compared the performance of LLMs on Polish medical examinations across a broad spectrum of specialties on a very large dataset. Objectives: This study evaluated the performance of three Generative Pretrained Transformer (GPT) models on the Polish Board Certification Exam (Pa\'nstwowy Egzamin Specjalizacyjny, PES) dataset, which consists of 297 tests. Methods: We developed a software program to download and process PES exams and tested the performance of GPT models using OpenAI Application Programming Interface. Results: Our findings reveal that GPT-3.5 did not pass any of the analyzed exams. In contrast, the GPT-4 models demonstrated the capability to pass the majority of the exams evaluated, with the most recent model, gpt-4-0125, successfully passing 222 (75%) of them. The performance of the GPT models varied significantly, displaying excellence in exams related to certain specialties while completely failing others. Conclusions: The significant progress and impressive performance of LLM models hold great promise for the increased application of AI in the field of medicine in Poland. For instance, this advancement could lead to the development of AI-based medical assistants for healthcare professionals, enhancing the efficiency and accuracy of medical services.
HAPRec: Hybrid Activity and Plan Recognizer
Computer-based assistants have recently attracted much interest due to its applicability to ambient assisted living. Such assistants have to detect and recognize the high-level activities and goals performed by the assisted human beings. In this work, we demonstrate activity recognition in an indoor environment in order to identify the goal towards which the subject of the video is pursuing. Our hybrid approach combines an action recognition module and a goal recognition algorithm to identify the ultimate goal of the subject in the video.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation
Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}.
TigerBot: An Open Multilingual Multitask LLM
We release and introduce the TigerBot family of large language models (LLMs), consisting of base and chat models, sized from 7, 13, 70 and 180 billion parameters. We develop our models embarking from Llama-2 and BLOOM, and push the boundary further in data, training algorithm, infrastructure, and application tools. Our models yield meaningful performance gain over SOTA open-source models, e.g., Llama-2, specifically 6\% gain in English and 20\% gain in Chinese. TigerBot model family also achieves leading performance in major academic and industrial benchmarks and leaderboards. We believe that TigerBot represents just a snapshot of lightning-fast progression in LLM open-source community. Therefore, we are thrilled to give back by publicly releasing our models and reporting our approach behind, with additional emphases on building SOTA LLMs in a democratized way and making LLMs of use in real-world applications.