- A Multi-Labeled Dataset for Indonesian Discourse: Examining Toxicity, Polarization, and Demographics Information Polarization is defined as divisive opinions held by two or more groups on substantive issues. As the world's third-largest democracy, Indonesia faces growing concerns about the interplay between political polarization and online toxicity, which is often directed at vulnerable minority groups. Despite the importance of this issue, previous NLP research has not fully explored the relationship between toxicity and polarization. To bridge this gap, we present a novel multi-label Indonesian dataset that incorporates toxicity, polarization, and annotator demographic information. Benchmarking this dataset using BERT-base models and large language models (LLMs) shows that polarization information enhances toxicity classification, and vice versa. Furthermore, providing demographic information significantly improves the performance of polarization classification. 9 authors · Mar 1
- Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration. 11 authors · Jan 7
- Reasoning About Group Polarization: From Semantic Games to Sequent Systems Group polarization, the phenomenon where individuals become more extreme after interacting, has been gaining attention, especially with the rise of social media shaping people's opinions. Recent interest has emerged in formal reasoning about group polarization using logical systems. In this work we consider the modal logic PNL that captures the notion of agents agreeing or disagreeing on a given topic. Our contribution involves enhancing PNL with advanced formal reasoning techniques, instead of relying on axiomatic systems for analyzing group polarization. To achieve this, we introduce a semantic game tailored for (hybrid) extensions of PNL. This game fosters dynamic reasoning about concrete network models, aligning with our goal of strengthening PNL's effectiveness in studying group polarization. We show how this semantic game leads to a provability game by systemically exploring the truth in all models. This leads to the first cut-free sequent systems for some variants of PNL. Using polarization of formulas, the proposed calculi can be modularly adapted to consider different frame properties of the underlying model. 4 authors · May 2, 2024
- Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available. 7 authors · Nov 29, 2023
- Statistics of X-Ray Polarization Measurements The polarization of an X-ray beam that produces electrons with velocity components perpendicular to the beam generates an azimuthal distribution of the ejected electrons. We present methods for simulating and for analyzing the angular dependence of electron detections which enable us to derive simple analytical expressions for useful statistical properties of observable data. The derivations are verified by simulations. While we confirm the results of previous work on this topic, we provide an extension needed for analytical treatment of the full range of possible polarization amplitudes. 2 authors · Jan 9, 2015
1 SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce Structured Polarization, the first depth and reflectance sensing method using patterns of polarized light (SPIDeRS). The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing. 3 authors · Dec 7, 2023
- GNeRP: Gaussian-guided Neural Reconstruction of Reflective Objects with Noisy Polarization Priors Learning surfaces from neural radiance field (NeRF) became a rising topic in Multi-View Stereo (MVS). Recent Signed Distance Function (SDF)-based methods demonstrated their ability to reconstruct accurate 3D shapes of Lambertian scenes. However, their results on reflective scenes are unsatisfactory due to the entanglement of specular radiance and complicated geometry. To address the challenges, we propose a Gaussian-based representation of normals in SDF fields. Supervised by polarization priors, this representation guides the learning of geometry behind the specular reflection and captures more details than existing methods. Moreover, we propose a reweighting strategy in the optimization process to alleviate the noise issue of polarization priors. To validate the effectiveness of our design, we capture polarimetric information, and ground truth meshes in additional reflective scenes with various geometry. We also evaluated our framework on the PANDORA dataset. Comparisons prove our method outperforms existing neural 3D reconstruction methods in reflective scenes by a large margin. 4 authors · Mar 18, 2024
- Reflection Removal Using Recurrent Polarization-to-Polarization Network This paper addresses reflection removal, which is the task of separating reflection components from a captured image and deriving the image with only transmission components. Considering that the existence of the reflection changes the polarization state of a scene, some existing methods have exploited polarized images for reflection removal. While these methods apply polarized images as the inputs, they predict the reflection and the transmission directly as non-polarized intensity images. In contrast, we propose a polarization-to-polarization approach that applies polarized images as the inputs and predicts "polarized" reflection and transmission images using two sequential networks to facilitate the separation task by utilizing the interrelated polarization information between the reflection and the transmission. We further adopt a recurrent framework, where the predicted reflection and transmission images are used to iteratively refine each other. Experimental results on a public dataset demonstrate that our method outperforms other state-of-the-art methods. 3 authors · Feb 28, 2024
- Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain. 4 authors · Aug 1, 2023
- Transparent Shape from a Single View Polarization Image This paper presents a learning-based method for transparent surface estimation from a single view polarization image. Existing shape from polarization(SfP) methods have the difficulty in estimating transparent shape since the inherent transmission interference heavily reduces the reliability of physics-based prior. To address this challenge, we propose the concept of physics-based prior, which is inspired by the characteristic that the transmission component in the polarization image has more noise than reflection. The confidence is used to determine the contribution of the interfered physics-based prior. Then, we build a network(TransSfP) with multi-branch architecture to avoid the destruction of relationships between different hierarchical inputs. To train and test our method, we construct a dataset for transparent shape from polarization with paired polarization images and ground-truth normal maps. Extensive experiments and comparisons demonstrate the superior accuracy of our method. 5 authors · Apr 13, 2022
- Understanding Political Polarization via Jointly Modeling Users, Connections and Multimodal Contents on Heterogeneous Graphs Understanding political polarization on social platforms is important as public opinions may become increasingly extreme when they are circulated in homogeneous communities, thus potentially causing damage in the real world. Automatically detecting the political ideology of social media users can help better understand political polarization. However, it is challenging due to the scarcity of ideology labels, complexity of multimodal contents, and cost of time-consuming data collection process. In this study, we adopt a heterogeneous graph neural network to jointly model user characteristics, multimodal post contents as well as user-item relations in a bipartite graph to learn a comprehensive and effective user embedding without requiring ideology labels. We apply our framework to online discussions about economy and public health topics. The learned embeddings are then used to detect political ideology and understand political polarization. Our framework outperforms the unimodal, early/late fusion baselines, and homogeneous GNN frameworks by a margin of at least 9% absolute gain in the area under the receiver operating characteristic on two social media datasets. More importantly, our work does not require a time-consuming data collection process, which allows faster detection and in turn allows the policy makers to conduct analysis and design policies in time to respond to crises. We also show that our framework learns meaningful user embeddings and can help better understand political polarization. Notable differences in user descriptions, topics, images, and levels of retweet/quote activities are observed. Our framework for decoding user-content interaction shows wide applicability in understanding political polarization. Furthermore, it can be extended to user-item bipartite information networks for other applications such as content and product recommendation. 2 authors · Jan 15, 2022
1 Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training The subject of green AI has been gaining attention within the deep learning community given the recent trend of ever larger and more complex neural network models. Existing solutions for reducing the computational load of training at inference time usually involve pruning the network parameters. Pruning schemes often create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph. We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks. Our proposed pruning scheme is green-oriented, as it only requires a one-off training to discover the optimal static sub-networks by dynamic pruning methods. The pruning scheme consists of a binary gating module and a novel loss function to uncover sub-networks with user-defined sparsity. Our method enables pruning and training simultaneously, which saves energy in both the training and inference phases and avoids extra computational overhead from gating modules at inference time. Our results on CIFAR-10 and CIFAR-100 suggest that our scheme can remove 50% of connections in deep networks with less than 1% reduction in classification accuracy. Compared to other related pruning methods, our method demonstrates a lower drop in accuracy for equivalent reductions in computational cost. 6 authors · Feb 17, 2023
- Synthetic Modelling of Polarized Dust Emission in Intermediate-Mass YSOs: I: Constraining the Role of Iron Inclusions and Inelastic Relaxation on Grain Alignment with ALMA Polarization Iron inclusions embedded inside dust grains play a crucial role in both internal alignment (IA) via Barnett relaxation and external alignment via the MAgnetically Enhanced RAdiative Torque (MRAT) mechanism. Moreover, inelastic relaxation is predicted to dominate over Barnett relaxation in driving the IA of micron-sized and very large grains above 10mu m (VLGs). Yet, a detailed modeling of polarized thermal dust emission from Class 0/I Young Stellar Objects (YSOs) taking into account these effects and their observational constraints is still lacking. In this paper, we update the POLARIS code and use it to perform synthetic dust polarization modeling for MHD simulations of an intermediate-mass YSO. Results will be post-processed with CASA to confront ALMA polarimetric observations. We found that to reproduce the high polarization degree of p sim 5-30% observed in protostellar envelopes by ALMA, micron-sized and VLGs must contain iron inclusions with N_{rm cl} sim 5 - 10^{3} iron atoms per cluster, assuming 30% of iron abundance locked inside dust grains under the cluster form. Inside the inner sim 500 au region, inelastic relaxation must participate in driving the grain internal alignment, and grains must contain larger iron inclusions of N_{rm cl} sim 10^{2}-10^{4} and grow beyond geq 10mu m to reproduce sim 3-10% of dust polarization observed by ALMA. But given such a combination, the internal alignment and MRAT efficiency acting on VLGs still decrease toward the center, inducing the decrease of p(%) with increasing gas density, reaching p sim 1% inside the disk. 5 authors · Jul 14, 2024
- A helical magnetic field in quasar NRAO150 revealed by Faraday rotation Active Galactic Nuclei (AGN) are some of the most luminous and extreme environments in the Universe. The central engines of AGN, believed to be super-massive black-holes, are fed by accretion discs threaded by magnetic fields within a dense magneto-ionic medium. We report our findings from polarimetric Very-long-baseline Interferometry (VLBI) observations of quasar NRAO150 taken in October 2022 using a combined network of the Very Long Baseline Array (VLBA) and Effelsberg 100-m Radio Telescope. These observations are the first co-temporal multi-frequency polarimetric VLBI observations of NRAO150 at frequencies above 15GHz. We use the new VLBI polarization calibration procedure, GPCAL, with polarization observations of frequencies of 12GHz, 15GHz, 24GHz, and 43GHz of NRAO150. From these observations, we measure Faraday rotation. Using our measurement of Faraday rotation, we also derive the intrinsic electric vector position angle (EVPA0) for the source. As a complementary measurement we determine the behavior of polarization as a function of observed frequency. The polarization from NRAO150 only comes from the core region, with a peak polarization intensity occurring at 24GHz. Across the core region of NRAO150 we see clear gradients in Faraday rotation and EVPA0 values that are aligned with the direction of the jet curving around the core region. We find that for the majority of the polarized region the polarization fraction is greater at higher frequencies, with intrinsic polarization fractions in the core 3%. The Faraday rotation gradients and circular patterns in EVPA0 are strong evidence for a helical/toroidal magnetic field, and the presence of low intrinsic polarization fractions indicate that the polarized emission and hence the helical/toroidal magnetic field, occur within the innermost jet. 10 authors · Mar 5
- IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65. 137 authors · Nov 25, 2024
- Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry. 5 authors · Jun 5, 2021
- Probing the axion-photon coupling with space-based gravitational waves detectors We propose a simple modification of space-based gravitational wave (GW) detector optical benches which would enable the measurement of vacuum birefringence of light induced by axion dark matterthrough its coupling to electromagnetism. Specifically, we propose to change a half-wave plate by a circular polarizer. While marginally affecting the sensitivity to GW by a factor 2, we show that such an adjustment would make future detectors such as LISA, TianQin, Taiji and Big-Bang Observer the most sensitive experiments at low axion masses 3 authors · Oct 23, 2024
- Indirect measurement of atomic magneto-optical rotation via Hilbert transform The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime. 4 authors · Mar 1, 2024
- Observational Signatures of Galactic Turbulent Dynamos We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation. 3 authors · Aug 30, 2022
- Planck 2018 results. V. CMB power spectra and likelihoods This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter tau to better than 15% (in combination with with the other low- and high-ell likelihoods). We also update the 2015 baseline low-ell joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker tau constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the LambdaCDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-ell implementations, we estimate the consistency of the results to be better than the 0.5sigma level. Minor curiosities already present before (differences between ell<800 and ell>800 parameters or the preference for more smoothing of the C_ell peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged) 168 authors · Jul 30, 2019
- Neural Networks for cosmological model selection and feature importance using Cosmic Microwave Background data The measurements of the temperature and polarisation anisotropies of the Cosmic Microwave Background (CMB) by the ESA Planck mission have strongly supported the current concordance model of cosmology. However, the latest cosmological data release from ESA Planck mission still has a powerful potential to test new data science algorithms and inference techniques. In this paper, we use advanced Machine Learning (ML) algorithms, such as Neural Networks (NNs), to discern among different underlying cosmological models at the angular power spectra level, using both temperature and polarisation Planck 18 data. We test two different models beyond LambdaCDM: a modified gravity model: the Hu-Sawicki model, and an alternative inflationary model: a feature-template in the primordial power spectrum. Furthermore, we also implemented an interpretability method based on SHAP values to evaluate the learning process and identify the most relevant elements that drive our architecture to certain outcomes. We find that our NN is able to distinguish between different angular power spectra successfully for both alternative models and LambdaCDM. We conclude by explaining how archival scientific data has still a strong potential to test novel data science algorithms that are interesting for the next generation of cosmological experiments. 3 authors · Oct 7, 2024
- RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions The topology of the hyperlink graph among pages expressing different opinions may influence the exposure of readers to diverse content. Structural bias may trap a reader in a polarized bubble with no access to other opinions. We model readers' behavior as random walks. A node is in a polarized bubble if the expected length of a random walk from it to a page of different opinion is large. The structural bias of a graph is the sum of the radii of highly-polarized bubbles. We study the problem of decreasing the structural bias through edge insertions. Healing all nodes with high polarized bubble radius is hard to approximate within a logarithmic factor, so we focus on finding the best k edges to insert to maximally reduce the structural bias. We present RePBubLik, an algorithm that leverages a variant of the random walk closeness centrality to select the edges to insert. RePBubLik obtains, under mild conditions, a constant-factor approximation. It reduces the structural bias faster than existing edge-recommendation methods, including some designed to reduce the polarization of a graph. 4 authors · Jan 12, 2021
- Multifrequency Radio Observations of the Magnetar Swift J1818.0--1607 We report on Green Bank Telescope observations of the radio magnetar Swift J1818.0--1607 between 820 MHz and 35 GHz, taken from six to nine months after its 2020 March outburst. We obtained multi-hour observations at six frequencies, recording polarimetric, spectral, and single-pulse information. The spectrum peaks at a frequency of 5.4 pm 0.6 GHz, making Swift J1818.0--1607 one of many radio magnetars which exhibit a gigahertz-peaked spectrum (GPS). The radio flux decays steeply above the peak frequency, with in-band spectral indices alpha < -2.3 above 9 GHz. The emission is highly (> 50%) linearly polarized, with a lower degree (< 30%) of circular polarization which can change handedness between single pulses. Across the frequency range of our observations, the time-integrated radio profiles share a common shape: a narrow ``pulsar-like'' central component flanked by ``magnetar-like'' components comprised of bright, spiky subpulses. The outer profile components exhibit larger degrees of flux modulation and flatter spectral indices when compared to the central pulse component. 4 authors · Feb 20
- Polarity is all you need to learn and transfer faster Natural intelligences (NIs) thrive in a dynamic world - they learn quickly, sometimes with only a few samples. In contrast, artificial intelligences (AIs) typically learn with a prohibitive number of training samples and computational power. What design principle difference between NI and AI could contribute to such a discrepancy? Here, we investigate the role of weight polarity: development processes initialize NIs with advantageous polarity configurations; as NIs grow and learn, synapse magnitudes update, yet polarities are largely kept unchanged. We demonstrate with simulation and image classification tasks that if weight polarities are adequately set a priori, then networks learn with less time and data. We also explicitly illustrate situations in which a priori setting the weight polarities is disadvantageous for networks. Our work illustrates the value of weight polarities from the perspective of statistical and computational efficiency during learning. 5 authors · Mar 29, 2023
- Complex chiral columns made of achiral quinoxaline derivatives with semi-flexible cores Mesogenic materials, quinoxaline derivatives with semi-flexible cores, are reported to form new type of 3D columnar structure with large crystallographic unit cell and Fddd symmetry below columnar hexagonal phase. The 3D columnar structure is a result of frustration imposed by arrangement of helical columns of opposite chirality into triangular lattice. The studied materials exhibit fluorescent properties that could be easily tuned by modification of molecular structure, compounds with the extended {\pi} electron conjugated systems form aggregates and fluorescence is quenched. For molecules with flexible structure the fluorescence quantum yield reaches 25%. On the other hand, compounds with more rigid mesogenic core, for which fluorescence is suppressed show strong hole photocurrent. For some materials also bi-polar: hole and electron transfer was observed. 5 authors · Sep 9, 2021