- Pivoting Retail Supply Chain with Deep Generative Techniques: Taxonomy, Survey and Insights Generative AI applications, such as ChatGPT or DALL-E, have shown the world their impressive capabilities in generating human-like text or image. Diving deeper, the science stakeholder for those AI applications are Deep Generative Models, a.k.a DGMs, which are designed to learn the underlying distribution of the data and generate new data points that are statistically similar to the original dataset. One critical question is raised: how can we leverage DGMs into morden retail supply chain realm? To address this question, this paper expects to provide a comprehensive review of DGMs and discuss their existing and potential usecases in retail supply chain, by (1) providing a taxonomy and overview of state-of-the-art DGMs and their variants, (2) reviewing existing DGM applications in retail supply chain from a end-to-end view of point, and (3) discussing insights and potential directions on how DGMs can be further utilized on solving retail supply chain problems. 4 authors · Feb 29, 2024
- Learning Pivoting Manipulation with Force and Vision Feedback Using Optimization-based Demonstrations Non-prehensile manipulation is challenging due to complex contact interactions between objects, the environment, and robots. Model-based approaches can efficiently generate complex trajectories of robots and objects under contact constraints. However, they tend to be sensitive to model inaccuracies and require access to privileged information (e.g., object mass, size, pose), making them less suitable for novel objects. In contrast, learning-based approaches are typically more robust to modeling errors but require large amounts of data. In this paper, we bridge these two approaches to propose a framework for learning closed-loop pivoting manipulation. By leveraging computationally efficient Contact-Implicit Trajectory Optimization (CITO), we design demonstration-guided deep Reinforcement Learning (RL), leading to sample-efficient learning. We also present a sim-to-real transfer approach using a privileged training strategy, enabling the robot to perform pivoting manipulation using only proprioception, vision, and force sensing without access to privileged information. Our method is evaluated on several pivoting tasks, demonstrating that it can successfully perform sim-to-real transfer. The overview of our method and the hardware experiments are shown at https://youtu.be/akjGDgfwLbM?si=QVw6ExoPy2VsU2g6 4 authors · Aug 1
- Scene Graph as Pivoting: Inference-time Image-free Unsupervised Multimodal Machine Translation with Visual Scene Hallucination In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup, inference-time image-free UMMT, where the model is trained with source-text image pairs, and tested with only source-text inputs. First, we represent the input images and texts with the visual and language scene graphs (SG), where such fine-grained vision-language features ensure a holistic understanding of the semantics. To enable pure-text input during inference, we devise a visual scene hallucination mechanism that dynamically generates pseudo visual SG from the given textual SG. Several SG-pivoting based learning objectives are introduced for unsupervised translation training. On the benchmark Multi30K data, our SG-based method outperforms the best-performing baseline by significant BLEU scores on the task and setup, helping yield translations with better completeness, relevance and fluency without relying on paired images. Further in-depth analyses reveal how our model advances in the task setting. 5 authors · May 20, 2023