Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLearning to Embed Time Series Patches Independently
Masked time series modeling has recently gained much attention as a self-supervised representation learning strategy for time series. Inspired by masked image modeling in computer vision, recent works first patchify and partially mask out time series, and then train Transformers to capture the dependencies between patches by predicting masked patches from unmasked patches. However, we argue that capturing such patch dependencies might not be an optimal strategy for time series representation learning; rather, learning to embed patches independently results in better time series representations. Specifically, we propose to use 1) the simple patch reconstruction task, which autoencode each patch without looking at other patches, and 2) the simple patch-wise MLP that embeds each patch independently. In addition, we introduce complementary contrastive learning to hierarchically capture adjacent time series information efficiently. Our proposed method improves time series forecasting and classification performance compared to state-of-the-art Transformer-based models, while it is more efficient in terms of the number of parameters and training/inference time. Code is available at this repository: https://github.com/seunghan96/pits.
NUWA-Infinity: Autoregressive over Autoregressive Generation for Infinite Visual Synthesis
In this paper, we present NUWA-Infinity, a generative model for infinite visual synthesis, which is defined as the task of generating arbitrarily-sized high-resolution images or long-duration videos. An autoregressive over autoregressive generation mechanism is proposed to deal with this variable-size generation task, where a global patch-level autoregressive model considers the dependencies between patches, and a local token-level autoregressive model considers dependencies between visual tokens within each patch. A Nearby Context Pool (NCP) is introduced to cache-related patches already generated as the context for the current patch being generated, which can significantly save computation costs without sacrificing patch-level dependency modeling. An Arbitrary Direction Controller (ADC) is used to decide suitable generation orders for different visual synthesis tasks and learn order-aware positional embeddings. Compared to DALL-E, Imagen and Parti, NUWA-Infinity can generate high-resolution images with arbitrary sizes and support long-duration video generation additionally. Compared to NUWA, which also covers images and videos, NUWA-Infinity has superior visual synthesis capabilities in terms of resolution and variable-size generation. The GitHub link is https://github.com/microsoft/NUWA. The homepage link is https://nuwa-infinity.microsoft.com.
KNOD: Domain Knowledge Distilled Tree Decoder for Automated Program Repair
Automated Program Repair (APR) improves software reliability by generating patches for a buggy program automatically. Recent APR techniques leverage deep learning (DL) to build models to learn to generate patches from existing patches and code corpora. While promising, DL-based APR techniques suffer from the abundant syntactically or semantically incorrect patches in the patch space. These patches often disobey the syntactic and semantic domain knowledge of source code and thus cannot be the correct patches to fix a bug. We propose a DL-based APR approach KNOD, which incorporates domain knowledge to guide patch generation in a direct and comprehensive way. KNOD has two major novelties, including (1) a novel three-stage tree decoder, which directly generates Abstract Syntax Trees of patched code according to the inherent tree structure, and (2) a novel domain-rule distillation, which leverages syntactic and semantic rules and teacher-student distributions to explicitly inject the domain knowledge into the decoding procedure during both the training and inference phases. We evaluate KNOD on three widely-used benchmarks. KNOD fixes 72 bugs on the Defects4J v1.2, 25 bugs on the QuixBugs, and 50 bugs on the additional Defects4J v2.0 benchmarks, outperforming all existing APR tools.
A Repository-Level Dataset For Detecting, Classifying and Repairing Software Vulnerabilities
Open-Source Software (OSS) vulnerabilities bring great challenges to the software security and pose potential risks to our society. Enormous efforts have been devoted into automated vulnerability detection, among which deep learning (DL)-based approaches have proven to be the most effective. However, the current labeled data present the following limitations: (1) Tangled Patches: Developers may submit code changes unrelated to vulnerability fixes within patches, leading to tangled patches. (2) Lacking Inter-procedural Vulnerabilities: The existing vulnerability datasets typically contain function-level and file-level vulnerabilities, ignoring the relations between functions, thus rendering the approaches unable to detect the inter-procedural vulnerabilities. (3) Outdated Patches: The existing datasets usually contain outdated patches, which may bias the model during training. To address the above limitations, in this paper, we propose an automated data collection framework and construct the first repository-level high-quality vulnerability dataset named ReposVul. The proposed framework mainly contains three modules: (1) A vulnerability untangling module, aiming at distinguishing vulnerability-fixing related code changes from tangled patches, in which the Large Language Models (LLMs) and static analysis tools are jointly employed. (2) A multi-granularity dependency extraction module, aiming at capturing the inter-procedural call relationships of vulnerabilities, in which we construct multiple-granularity information for each vulnerability patch, including repository-level, file-level, function-level, and line-level. (3) A trace-based filtering module, aiming at filtering the outdated patches, which leverages the file path trace-based filter and commit time trace-based filter to construct an up-to-date dataset.
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
A Survey of Learning-based Automated Program Repair
Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely-adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our paper can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at https://github.com/QuanjunZhang/AwesomeLearningAPR.
An Empirical Study on Learning Bug-Fixing Patches in the Wild via Neural Machine Translation
Millions of open-source projects with numerous bug fixes are available in code repositories. This proliferation of software development histories can be leveraged to learn how to fix common programming bugs. To explore such a potential, we perform an empirical study to assess the feasibility of using Neural Machine Translation techniques for learning bug-fixing patches for real defects. First, we mine millions of bug-fixes from the change histories of projects hosted on GitHub, in order to extract meaningful examples of such bug-fixes. Next, we abstract the buggy and corresponding fixed code, and use them to train an Encoder-Decoder model able to translate buggy code into its fixed version. In our empirical investigation we found that such a model is able to fix thousands of unique buggy methods in the wild. Overall, this model is capable of predicting fixed patches generated by developers in 9-50% of the cases, depending on the number of candidate patches we allow it to generate. Also, the model is able to emulate a variety of different Abstract Syntax Tree operations and generate candidate patches in a split second.
Is It Safe to Uplift This Patch? An Empirical Study on Mozilla Firefox
In rapid release development processes, patches that fix critical issues, or implement high-value features are often promoted directly from the development channel to a stabilization channel, potentially skipping one or more stabilization channels. This practice is called patch uplift. Patch uplift is risky, because patches that are rushed through the stabilization phase can end up introducing regressions in the code. This paper examines patch uplift operations at Mozilla, with the aim to identify the characteristics of uplifted patches that introduce regressions. Through statistical and manual analyses, we quantitatively and qualitatively investigate the reasons behind patch uplift decisions and the characteristics of uplifted patches that introduced regressions. Additionally, we interviewed three Mozilla release managers to understand organizational factors that affect patch uplift decisions and outcomes. Results show that most patches are uplifted because of a wrong functionality or a crash. Uplifted patches that lead to faults tend to have larger patch size, and most of the faults are due to semantic or memory errors in the patches. Also, release managers are more inclined to accept patch uplift requests that concern certain specific components, and-or that are submitted by certain specific developers.
SWE-Bench+: Enhanced Coding Benchmark for LLMs
Large Language Models (LLMs) in Software Engineering (SE) can offer assistance for coding. To facilitate a rigorous evaluation of LLMs in practical coding contexts, Carlos et al. introduced the SWE-bench dataset, which comprises 2,294 real-world GitHub issues and their corresponding pull requests, collected from 12 widely used Python repositories. Several impressive LLM-based toolkits recently are developed and evaluated on this dataset. However, a systematic evaluation of the quality of SWE-bench remains missing. In this paper, we addressed this gap by presenting an empirical analysis of the SWE-bench dataset. We conducted a manual screening of instances where SWEAgent + GPT-4 successfully resolved issues by comparing the model-generated patches with the actual pull requests. SWE-Agent+GPT-4 was at the top of SWE-bench leaderboard during the time of our study. Our analysis reveals some critical issues with the SWE-bench dataset: 1) 32.67% of the successful patches involve cheating as the solutions were directly provided in the issue report or the comments. We refer to as solution leakage problem. 2) 31.08% of the passed patches are suspicious patches due to weak test cases, i.e., the tests were not adequate to verify the correctness of a patch. When we filtered out these problematic issues, the resolution rate of SWE-Agent+GPT-4 dropped from 12.47% to 3.97%. We also observed that the same data quality issues also exist in the two variants of SWE-bench, i.e., SWE-bench Lite and SWE-Bench Verified. In addition, over 94% of the issues were created before LLM's knowledge cutoff dates, posing potential data leakage issues.
Conversational Automated Program Repair
Automated Program Repair (APR) can help developers automatically generate patches for bugs. Due to the impressive performance obtained using Large Pre-Trained Language Models (LLMs) on many code related tasks, researchers have started to directly use LLMs for APR. However, prior approaches simply repeatedly sample the LLM given the same constructed input/prompt created from the original buggy code, which not only leads to generating the same incorrect patches repeatedly but also miss the critical information in testcases. To address these limitations, we propose conversational APR, a new paradigm for program repair that alternates between patch generation and validation in a conversational manner. In conversational APR, we iteratively build the input to the model by combining previously generated patches with validation feedback. As such, we leverage the long-term context window of LLMs to not only avoid generating previously incorrect patches but also incorporate validation feedback to help the model understand the semantic meaning of the program under test. We evaluate 10 different LLM including the newly developed ChatGPT model to demonstrate the improvement of conversational APR over the prior LLM for APR approach.
GAMMA: Revisiting Template-based Automated Program Repair via Mask Prediction
Automated program repair (APR) aims to fix software bugs without human intervention and template-based APR has been widely investigated with promising results. However, it is challenging for template-based APR to select the appropriate donor code, which is an important repair ingredient for generating candidate patches. Inappropriate donor code may cause plausible but incorrect patch generation even with correct fix patterns, limiting the repair performance. In this paper, we aim to revisit template-based APR, and propose GAMMA, to directly leverage large pre-trained language models for donor code generation. Our main insight is that instead of retrieving donor code in the local buggy file, we can directly predict the correct code tokens based on the context code snippets and repair patterns by a cloze task. Specifically, (1) GAMMA revises a variety of fix templates from state-of-the-art template-based APR techniques (i.e., TBar) and transforms them into mask patterns. (2) GAMMA adopts a pre-trained language model to predict the correct code for masked code as a fill-in-the-blank task. The experimental results demonstrate that GAMMA correctly repairs 82 bugs on Defects4J-v1.2, which achieves 20.59\% (14 bugs) and 26.15\% (17 bugs) improvement over the previous state-of-the-art template-based approach TBar and learning-based one Recoder. Furthermore, GAMMA repairs 45 bugs and 22 bugs from the additional Defects4J-v2.0 and QuixBugs, indicating the generalizability of GAMMA in addressing the dataset overfitting issue. We also prove that adopting other pre-trained language models can provide substantial advancement, e.g., CodeBERT-based and ChatGPT-based GAMMA is able to fix 80 and 67 bugs on Defects4J-v1.2, indicating the scalability of GAMMA. Overall, our study highlights the promising future of adopting pre-trained models to generate correct patches on top of fix patterns.
AtP*: An efficient and scalable method for localizing LLM behaviour to components
Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.
Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning
Recently, self-supervised learning (SSL) was shown to be vulnerable to patch-based data poisoning backdoor attacks. It was shown that an adversary can poison a small part of the unlabeled data so that when a victim trains an SSL model on it, the final model will have a backdoor that the adversary can exploit. This work aims to defend self-supervised learning against such attacks. We use a three-step defense pipeline, where we first train a model on the poisoned data. In the second step, our proposed defense algorithm (PatchSearch) uses the trained model to search the training data for poisoned samples and removes them from the training set. In the third step, a final model is trained on the cleaned-up training set. Our results show that PatchSearch is an effective defense. As an example, it improves a model's accuracy on images containing the trigger from 38.2% to 63.7% which is very close to the clean model's accuracy, 64.6%. Moreover, we show that PatchSearch outperforms baselines and state-of-the-art defense approaches including those using additional clean, trusted data. Our code is available at https://github.com/UCDvision/PatchSearch
Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair
During Automated Program Repair (APR), it can be challenging to synthesize correct patches for real-world systems in general-purpose programming languages. Recent Large Language Models (LLMs) have been shown to be helpful "copilots" in assisting developers with various coding tasks, and have also been directly applied for patch synthesis. However, most LLMs treat programs as sequences of tokens, meaning that they are ignorant of the underlying semantics constraints of the target programming language. This results in plenty of statically invalid generated patches, impeding the practicality of the technique. Therefore, we propose Repilot, a framework to further copilot the AI "copilots" (i.e., LLMs) by synthesizing more valid patches during the repair process. Our key insight is that many LLMs produce outputs autoregressively (i.e., token by token), resembling human writing programs, which can be significantly boosted and guided through a Completion Engine. Repilot synergistically synthesizes a candidate patch through the interaction between an LLM and a Completion Engine, which 1) prunes away infeasible tokens suggested by the LLM and 2) proactively completes the token based on the suggestions provided by the Completion Engine. Our evaluation on a subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that Repilot fixes 66 and 50 bugs, respectively, surpassing the best-performing baseline by 14 and 16 bugs fixed. More importantly, Repilot is capable of producing more valid and correct patches than the base LLM when given the same generation budget.
REPOEXEC: Evaluate Code Generation with a Repository-Level Executable Benchmark
The ability of CodeLLMs to generate executable and functionally correct code at the repository-level scale remains largely unexplored. We introduce RepoExec, a novel benchmark for evaluating code generation at the repository-level scale. RepoExec focuses on three main aspects: executability, functional correctness through automated test case generation with high coverage rate, and carefully crafted cross-file contexts to accurately generate code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuned models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. We also introduce a new instruction-tuned dataset that focuses on code dependencies and demonstrate that CodeLLMs fine-tuned on our dataset have a better capability to leverage these dependencies effectively. RepoExec aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios. The dataset and source code can be found at~https://github.com/FSoft-AI4Code/RepoExec.
T5APR: Empowering Automated Program Repair across Languages through Checkpoint Ensemble
Automated program repair (APR) using deep learning techniques has become an important area of research in recent years, aiming to automatically generate bug-fixing patches that can improve software reliability and maintainability. However, most existing methods either target a single language or require high computational resources to train multilingual models. In this paper, we propose T5APR, a novel neural program repair approach that provides a unified solution for bug fixing across multiple programming languages. T5APR leverages CodeT5, a powerful pre-trained text-to-text transformer model, and adopts a checkpoint ensemble strategy to improve patch recommendation. We conduct comprehensive evaluations on six well-known benchmarks in four programming languages (Java, Python, C, JavaScript), demonstrating T5APR's competitiveness against state-of-the-art techniques. T5APR correctly fixes 1,985 bugs, including 1,442 bugs that none of the compared techniques has fixed. We further support the effectiveness of our approach by conducting detailed analyses, such as comparing the correct patch ranking among different techniques. The findings of this study demonstrate the potential of T5APR for use in real-world applications and highlight the importance of multilingual approaches in the field of APR.
Towards Best Practices of Activation Patching in Language Models: Metrics and Methods
Mechanistic interpretability seeks to understand the internal mechanisms of machine learning models, where localization -- identifying the important model components -- is a key step. Activation patching, also known as causal tracing or interchange intervention, is a standard technique for this task (Vig et al., 2020), but the literature contains many variants with little consensus on the choice of hyperparameters or methodology. In this work, we systematically examine the impact of methodological details in activation patching, including evaluation metrics and corruption methods. In several settings of localization and circuit discovery in language models, we find that varying these hyperparameters could lead to disparate interpretability results. Backed by empirical observations, we give conceptual arguments for why certain metrics or methods may be preferred. Finally, we provide recommendations for the best practices of activation patching going forwards.
Adversarial Patch
We present a method to create universal, robust, targeted adversarial image patches in the real world. The patches are universal because they can be used to attack any scene, robust because they work under a wide variety of transformations, and targeted because they can cause a classifier to output any target class. These adversarial patches can be printed, added to any scene, photographed, and presented to image classifiers; even when the patches are small, they cause the classifiers to ignore the other items in the scene and report a chosen target class. To reproduce the results from the paper, our code is available at https://github.com/tensorflow/cleverhans/tree/master/examples/adversarial_patch
Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution
The ubiquitous and demonstrably suboptimal choice of resizing images to a fixed resolution before processing them with computer vision models has not yet been successfully challenged. However, models such as the Vision Transformer (ViT) offer flexible sequence-based modeling, and hence varying input sequence lengths. We take advantage of this with NaViT (Native Resolution ViT) which uses sequence packing during training to process inputs of arbitrary resolutions and aspect ratios. Alongside flexible model usage, we demonstrate improved training efficiency for large-scale supervised and contrastive image-text pretraining. NaViT can be efficiently transferred to standard tasks such as image and video classification, object detection, and semantic segmentation and leads to improved results on robustness and fairness benchmarks. At inference time, the input resolution flexibility can be used to smoothly navigate the test-time cost-performance trade-off. We believe that NaViT marks a departure from the standard, CNN-designed, input and modelling pipeline used by most computer vision models, and represents a promising direction for ViTs.
Patch-Level Training for Large Language Models
As Large Language Models (LLMs) achieve remarkable progress in language understanding and generation, their training efficiency has become a critical concern. Traditionally, LLMs are trained to predict the next token in a sequence. Despite the success of token-level training, it suffers from considerable computational costs due to the need to process an extensive number of tokens. To mitigate this issue, this paper introduces patch-level training for LLMs, which reduces the sequence length by compressing multiple tokens into a single patch. During patch-level training, we feed the language model shorter sequences of patches and train it to predict the next patch, thereby processing the majority of the training data at a significantly reduced computational cost. Following this, the model continues token-level training on the remaining training data to align with the inference mode. Experiments on a diverse range of models (370M-2.7B parameters) demonstrate that patch-level training can reduce overall computational costs to 0.5times, without compromising the model performance compared to token-level training. Source code: https://github.com/shaochenze/PatchTrain.
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
In deep learning, mixture-of-experts (MoE) activates one or few experts (sub-networks) on a per-sample or per-token basis, resulting in significant computation reduction. The recently proposed patch-level routing in MoE (pMoE) divides each input into n patches (or tokens) and sends l patches (lll n) to each expert through prioritized routing. pMoE has demonstrated great empirical success in reducing training and inference costs while maintaining test accuracy. However, the theoretical explanation of pMoE and the general MoE remains elusive. Focusing on a supervised classification task using a mixture of two-layer convolutional neural networks (CNNs), we show for the first time that pMoE provably reduces the required number of training samples to achieve desirable generalization (referred to as the sample complexity) by a factor in the polynomial order of n/l, and outperforms its single-expert counterpart of the same or even larger capacity. The advantage results from the discriminative routing property, which is justified in both theory and practice that pMoE routers can filter label-irrelevant patches and route similar class-discriminative patches to the same expert. Our experimental results on MNIST, CIFAR-10, and CelebA support our theoretical findings on pMoE's generalization and show that pMoE can avoid learning spurious correlations.
Patch Is Not All You Need
Vision Transformers have achieved great success in computer visions, delivering exceptional performance across various tasks. However, their inherent reliance on sequential input enforces the manual partitioning of images into patch sequences, which disrupts the image's inherent structural and semantic continuity. To handle this, we propose a novel Pattern Transformer (Patternformer) to adaptively convert images to pattern sequences for Transformer input. Specifically, we employ the Convolutional Neural Network to extract various patterns from the input image, with each channel representing a unique pattern that is fed into the succeeding Transformer as a visual token. By enabling the network to optimize these patterns, each pattern concentrates on its local region of interest, thereby preserving its intrinsic structural and semantic information. Only employing the vanilla ResNet and Transformer, we have accomplished state-of-the-art performance on CIFAR-10 and CIFAR-100, and have achieved competitive results on ImageNet.
Patch-based 3D Natural Scene Generation from a Single Example
We target a 3D generative model for general natural scenes that are typically unique and intricate. Lacking the necessary volumes of training data, along with the difficulties of having ad hoc designs in presence of varying scene characteristics, renders existing setups intractable. Inspired by classical patch-based image models, we advocate for synthesizing 3D scenes at the patch level, given a single example. At the core of this work lies important algorithmic designs w.r.t the scene representation and generative patch nearest-neighbor module, that address unique challenges arising from lifting classical 2D patch-based framework to 3D generation. These design choices, on a collective level, contribute to a robust, effective, and efficient model that can generate high-quality general natural scenes with both realistic geometric structure and visual appearance, in large quantities and varieties, as demonstrated upon a variety of exemplar scenes.
Patch-wise Contrastive Style Learning for Instagram Filter Removal
Image-level corruptions and perturbations degrade the performance of CNNs on different downstream vision tasks. Social media filters are one of the most common resources of various corruptions and perturbations for real-world visual analysis applications. The negative effects of these distractive factors can be alleviated by recovering the original images with their pure style for the inference of the downstream vision tasks. Assuming these filters substantially inject a piece of additional style information to the social media images, we can formulate the problem of recovering the original versions as a reverse style transfer problem. We introduce Contrastive Instagram Filter Removal Network (CIFR), which enhances this idea for Instagram filter removal by employing a novel multi-layer patch-wise contrastive style learning mechanism. Experiments show our proposed strategy produces better qualitative and quantitative results than the previous studies. Moreover, we present the results of our additional experiments for proposed architecture within different settings. Finally, we present the inference outputs and quantitative comparison of filtered and recovered images on localization and segmentation tasks to encourage the main motivation for this problem.
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Tiny deep learning on microcontroller units (MCUs) is challenging due to the limited memory size. We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs: the first several blocks have an order of magnitude larger memory usage than the rest of the network. To alleviate this issue, we propose a generic patch-by-patch inference scheduling, which operates only on a small spatial region of the feature map and significantly cuts down the peak memory. However, naive implementation brings overlapping patches and computation overhead. We further propose network redistribution to shift the receptive field and FLOPs to the later stage and reduce the computation overhead. Manually redistributing the receptive field is difficult. We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2. Patch-based inference effectively reduces the peak memory usage of existing networks by 4-8x. Co-designed with neural networks, MCUNetV2 sets a record ImageNet accuracy on MCU (71.8%), and achieves >90% accuracy on the visual wake words dataset under only 32kB SRAM. MCUNetV2 also unblocks object detection on tiny devices, achieving 16.9% higher mAP on Pascal VOC compared to the state-of-the-art result. Our study largely addressed the memory bottleneck in tinyML and paved the way for various vision applications beyond image classification.
Hierarchical Patch Diffusion Models for High-Resolution Video Generation
Diffusion models have demonstrated remarkable performance in image and video synthesis. However, scaling them to high-resolution inputs is challenging and requires restructuring the diffusion pipeline into multiple independent components, limiting scalability and complicating downstream applications. This makes it very efficient during training and unlocks end-to-end optimization on high-resolution videos. We improve PDMs in two principled ways. First, to enforce consistency between patches, we develop deep context fusion -- an architectural technique that propagates the context information from low-scale to high-scale patches in a hierarchical manner. Second, to accelerate training and inference, we propose adaptive computation, which allocates more network capacity and computation towards coarse image details. The resulting model sets a new state-of-the-art FVD score of 66.32 and Inception Score of 87.68 in class-conditional video generation on UCF-101 256^2, surpassing recent methods by more than 100%. Then, we show that it can be rapidly fine-tuned from a base 36times 64 low-resolution generator for high-resolution 64 times 288 times 512 text-to-video synthesis. To the best of our knowledge, our model is the first diffusion-based architecture which is trained on such high resolutions entirely end-to-end. Project webpage: https://snap-research.github.io/hpdm.
GrounDiT: Grounding Diffusion Transformers via Noisy Patch Transplantation
We introduce a novel training-free spatial grounding technique for text-to-image generation using Diffusion Transformers (DiT). Spatial grounding with bounding boxes has gained attention for its simplicity and versatility, allowing for enhanced user control in image generation. However, prior training-free approaches often rely on updating the noisy image during the reverse diffusion process via backpropagation from custom loss functions, which frequently struggle to provide precise control over individual bounding boxes. In this work, we leverage the flexibility of the Transformer architecture, demonstrating that DiT can generate noisy patches corresponding to each bounding box, fully encoding the target object and allowing for fine-grained control over each region. Our approach builds on an intriguing property of DiT, which we refer to as semantic sharing. Due to semantic sharing, when a smaller patch is jointly denoised alongside a generatable-size image, the two become "semantic clones". Each patch is denoised in its own branch of the generation process and then transplanted into the corresponding region of the original noisy image at each timestep, resulting in robust spatial grounding for each bounding box. In our experiments on the HRS and DrawBench benchmarks, we achieve state-of-the-art performance compared to previous training-free spatial grounding approaches.
MonoPatchNeRF: Improving Neural Radiance Fields with Patch-based Monocular Guidance
The latest regularized Neural Radiance Field (NeRF) approaches produce poor geometry and view extrapolation for multiview stereo (MVS) benchmarks such as ETH3D. In this paper, we aim to create 3D models that provide accurate geometry and view synthesis, partially closing the large geometric performance gap between NeRF and traditional MVS methods. We propose a patch-based approach that effectively leverages monocular surface normal and relative depth predictions. The patch-based ray sampling also enables the appearance regularization of normalized cross-correlation (NCC) and structural similarity (SSIM) between randomly sampled virtual and training views. We further show that "density restrictions" based on sparse structure-from-motion points can help greatly improve geometric accuracy with a slight drop in novel view synthesis metrics. Our experiments show 4x the performance of RegNeRF and 8x that of FreeNeRF on average F1@2cm for ETH3D MVS benchmark, suggesting a fruitful research direction to improve the geometric accuracy of NeRF-based models, and sheds light on a potential future approach to enable NeRF-based optimization to eventually outperform traditional MVS.
Next Patch Prediction for Autoregressive Visual Generation
Autoregressive models, built based on the Next Token Prediction (NTP) paradigm, show great potential in developing a unified framework that integrates both language and vision tasks. In this work, we rethink the NTP for autoregressive image generation and propose a novel Next Patch Prediction (NPP) paradigm. Our key idea is to group and aggregate image tokens into patch tokens containing high information density. With patch tokens as a shorter input sequence, the autoregressive model is trained to predict the next patch, thereby significantly reducing the computational cost. We further propose a multi-scale coarse-to-fine patch grouping strategy that exploits the natural hierarchical property of image data. Experiments on a diverse range of models (100M-1.4B parameters) demonstrate that the next patch prediction paradigm could reduce the training cost to around 0.6 times while improving image generation quality by up to 1.0 FID score on the ImageNet benchmark. We highlight that our method retains the original autoregressive model architecture without introducing additional trainable parameters or specifically designing a custom image tokenizer, thus ensuring flexibility and seamless adaptation to various autoregressive models for visual generation.
ID-Patch: Robust ID Association for Group Photo Personalization
The ability to synthesize personalized group photos and specify the positions of each identity offers immense creative potential. While such imagery can be visually appealing, it presents significant challenges for existing technologies. A persistent issue is identity (ID) leakage, where injected facial features interfere with one another, resulting in low face resemblance, incorrect positioning, and visual artifacts. Existing methods suffer from limitations such as the reliance on segmentation models, increased runtime, or a high probability of ID leakage. To address these challenges, we propose ID-Patch, a novel method that provides robust association between identities and 2D positions. Our approach generates an ID patch and ID embeddings from the same facial features: the ID patch is positioned on the conditional image for precise spatial control, while the ID embeddings integrate with text embeddings to ensure high resemblance. Experimental results demonstrate that ID-Patch surpasses baseline methods across metrics, such as face ID resemblance, ID-position association accuracy, and generation efficiency. Project Page is: https://byteaigc.github.io/ID-Patch/
Deep Patch Visual SLAM
Recent work in visual SLAM has shown the effectiveness of using deep network backbones. Despite excellent accuracy, however, such approaches are often expensive to run or do not generalize well zero-shot. Their runtime can also fluctuate wildly while their frontend and backend fight for access to GPU resources. To address these problems, we introduce Deep Patch Visual (DPV) SLAM, a method for monocular visual SLAM on a single GPU. DPV-SLAM maintains a high minimum framerate and small memory overhead (5-7G) compared to existing deep SLAM systems. On real-world datasets, DPV-SLAM runs at 1x-4x real-time framerates. We achieve comparable accuracy to DROID-SLAM on EuRoC and TartanAir while running 2.5x faster using a fraction of the memory. DPV-SLAM is an extension to the DPVO visual odometry system; its code can be found in the same repository: https://github.com/princeton-vl/DPVO
SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation
Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.
Adaptive Patch Exiting for Scalable Single Image Super-Resolution
Since the future of computing is heterogeneous, scalability is a crucial problem for single image super-resolution. Recent works try to train one network, which can be deployed on platforms with different capacities. However, they rely on the pixel-wise sparse convolution, which is not hardware-friendly and achieves limited practical speedup. As image can be divided into patches, which have various restoration difficulties, we present a scalable method based on Adaptive Patch Exiting (APE) to achieve more practical speedup. Specifically, we propose to train a regressor to predict the incremental capacity of each layer for the patch. Once the incremental capacity is below the threshold, the patch can exit at the specific layer. Our method can easily adjust the trade-off between performance and efficiency by changing the threshold of incremental capacity. Furthermore, we propose a novel strategy to enable the network training of our method. We conduct extensive experiments across various backbones, datasets and scaling factors to demonstrate the advantages of our method. Code is available at https://github.com/littlepure2333/APE
Are Vision Transformers Robust to Patch Perturbations?
Recent advances in Vision Transformer (ViT) have demonstrated its impressive performance in image classification, which makes it a promising alternative to Convolutional Neural Network (CNN). Unlike CNNs, ViT represents an input image as a sequence of image patches. The patch-based input image representation makes the following question interesting: How does ViT perform when individual input image patches are perturbed with natural corruptions or adversarial perturbations, compared to CNNs? In this work, we study the robustness of ViT to patch-wise perturbations. Surprisingly, we find that ViTs are more robust to naturally corrupted patches than CNNs, whereas they are more vulnerable to adversarial patches. Furthermore, we discover that the attention mechanism greatly affects the robustness of vision transformers. Specifically, the attention module can help improve the robustness of ViT by effectively ignoring natural corrupted patches. However, when ViTs are attacked by an adversary, the attention mechanism can be easily fooled to focus more on the adversarially perturbed patches and cause a mistake. Based on our analysis, we propose a simple temperature-scaling based method to improve the robustness of ViT against adversarial patches. Extensive qualitative and quantitative experiments are performed to support our findings, understanding, and improvement of ViT robustness to patch-wise perturbations across a set of transformer-based architectures.
Certified Patch Robustness via Smoothed Vision Transformers
Certified patch defenses can guarantee robustness of an image classifier to arbitrary changes within a bounded contiguous region. But, currently, this robustness comes at a cost of degraded standard accuracies and slower inference times. We demonstrate how using vision transformers enables significantly better certified patch robustness that is also more computationally efficient and does not incur a substantial drop in standard accuracy. These improvements stem from the inherent ability of the vision transformer to gracefully handle largely masked images. Our code is available at https://github.com/MadryLab/smoothed-vit.
NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency
We propose sorting patch representations across views as a novel self-supervised learning signal to improve pretrained representations. To this end, we introduce NeCo: Patch Neighbor Consistency, a novel training loss that enforces patch-level nearest neighbor consistency across a student and teacher model, relative to reference batches. Our method leverages a differentiable sorting method applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. We demonstrate that this method generates high-quality dense feature encoders and establish several new state-of-the-art results: +5.5% and + 6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, and +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff.
Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing
Vision transformers (ViTs) have significantly changed the computer vision landscape and have periodically exhibited superior performance in vision tasks compared to convolutional neural networks (CNNs). Although the jury is still out on which model type is superior, each has unique inductive biases that shape their learning and generalization performance. For example, ViTs have interesting properties with respect to early layer non-local feature dependence, as well as self-attention mechanisms which enhance learning flexibility, enabling them to ignore out-of-context image information more effectively. We hypothesize that this power to ignore out-of-context information (which we name patch selectivity), while integrating in-context information in a non-local manner in early layers, allows ViTs to more easily handle occlusion. In this study, our aim is to see whether we can have CNNs simulate this ability of patch selectivity by effectively hardwiring this inductive bias using Patch Mixing data augmentation, which consists of inserting patches from another image onto a training image and interpolating labels between the two image classes. Specifically, we use Patch Mixing to train state-of-the-art ViTs and CNNs, assessing its impact on their ability to ignore out-of-context patches and handle natural occlusions. We find that ViTs do not improve nor degrade when trained using Patch Mixing, but CNNs acquire new capabilities to ignore out-of-context information and improve on occlusion benchmarks, leaving us to conclude that this training method is a way of simulating in CNNs the abilities that ViTs already possess. We will release our Patch Mixing implementation and proposed datasets for public use. Project page: https://arielnlee.github.io/PatchMixing/
Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers
Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.
MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner for Open-World Semantic Segmentation
Recently, semantic segmentation models trained with image-level text supervision have shown promising results in challenging open-world scenarios. However, these models still face difficulties in learning fine-grained semantic alignment at the pixel level and predicting accurate object masks. To address this issue, we propose MixReorg, a novel and straightforward pre-training paradigm for semantic segmentation that enhances a model's ability to reorganize patches mixed across images, exploring both local visual relevance and global semantic coherence. Our approach involves generating fine-grained patch-text pairs data by mixing image patches while preserving the correspondence between patches and text. The model is then trained to minimize the segmentation loss of the mixed images and the two contrastive losses of the original and restored features. With MixReorg as a mask learner, conventional text-supervised semantic segmentation models can achieve highly generalizable pixel-semantic alignment ability, which is crucial for open-world segmentation. After training with large-scale image-text data, MixReorg models can be applied directly to segment visual objects of arbitrary categories, without the need for further fine-tuning. Our proposed framework demonstrates strong performance on popular zero-shot semantic segmentation benchmarks, outperforming GroupViT by significant margins of 5.0%, 6.2%, 2.5%, and 3.4% mIoU on PASCAL VOC2012, PASCAL Context, MS COCO, and ADE20K, respectively.
Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference
Diffusion models have exhibited exciting capabilities in generating images and are also very promising for video creation. However, the inference speed of diffusion models is limited by the slow sampling process, restricting its use cases. The sequential denoising steps required for generating a single sample could take tens or hundreds of iterations and thus have become a significant bottleneck. This limitation is more salient for applications that are interactive in nature or require small latency. To address this challenge, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the inference of high-resolution diffusion models. Using the fact that the difference between the images in adjacent diffusion steps is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating asynchronously to compute patches of an image in multiple computing devices based on the entire image (all patches) in the previous diffusion step. PCPP develops PP to reduce computation in inference by conditioning only on parts of the neighboring patches in each diffusion step, which also decreases communication among computing devices. As a result, PCPP decreases the communication cost by around 70% compared to DistriFusion (the state of the art implementation of PP) and achieves 2.36sim 8.02times inference speed-up using 4sim 8 GPUs compared to 2.32sim 6.71times achieved by DistriFusion depending on the computing device configuration and resolution of generation at the cost of a possible decrease in image quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image generation with substantially reduced latency.
Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks
Safety, security, and compliance are essential requirements when aligning large language models (LLMs). However, many seemingly aligned LLMs are soon shown to be susceptible to jailbreak attacks. These attacks aim to circumvent the models' safety guardrails and security mechanisms by introducing jailbreak prompts into malicious queries. In response to these challenges, this paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism specifically designed to protect LLMs against such sophisticated jailbreak strategies. Unlike previous approaches, which have often compromised the utility of the model for the sake of safety, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs. Our method uses strategically designed interpretable suffix prompts that effectively thwart a wide range of standard and adaptive jailbreak techniques. Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP, showing significant reductions in ASR with negligible impact on utility. Our approach not only outperforms existing defense strategies in balancing safety and functionality, but also provides a scalable and interpretable solution applicable to various LLM platforms.
Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning
Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane
SPOT: Self-Training with Patch-Order Permutation for Object-Centric Learning with Autoregressive Transformers
Unsupervised object-centric learning aims to decompose scenes into interpretable object entities, termed slots. Slot-based auto-encoders stand out as a prominent method for this task. Within them, crucial aspects include guiding the encoder to generate object-specific slots and ensuring the decoder utilizes them during reconstruction. This work introduces two novel techniques, (i) an attention-based self-training approach, which distills superior slot-based attention masks from the decoder to the encoder, enhancing object segmentation, and (ii) an innovative patch-order permutation strategy for autoregressive transformers that strengthens the role of slot vectors in reconstruction. The effectiveness of these strategies is showcased experimentally. The combined approach significantly surpasses prior slot-based autoencoder methods in unsupervised object segmentation, especially with complex real-world images. We provide the implementation code at https://github.com/gkakogeorgiou/spot .
PatchCraft: Exploring Texture Patch for Efficient AI-generated Image Detection
Recent generative models show impressive performance in generating photographic images. Humans can hardly distinguish such incredibly realistic-looking AI-generated images from real ones. AI-generated images may lead to ubiquitous disinformation dissemination. Therefore, it is of utmost urgency to develop a detector to identify AI generated images. Most existing detectors suffer from sharp performance drops over unseen generative models. In this paper, we propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models. We observe that the texture patches of images tend to reveal more traces left by generative models compared to the global semantic information of the images. A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches. Furthermore, pixels in rich texture regions exhibit more significant fluctuations than those in poor texture regions. Synthesizing realistic rich texture regions proves to be more challenging for existing generative models. Based on this principle, we leverage the inter-pixel correlation contrast between rich and poor texture regions within an image to further boost the detection performance. In addition, we build a comprehensive AI-generated image detection benchmark, which includes 17 kinds of prevalent generative models, to evaluate the effectiveness of existing baselines and our approach. Our benchmark provides a leaderboard for follow-up studies. Extensive experimental results show that our approach outperforms state-of-the-art baselines by a significant margin. Our project: https://fdmas.github.io/AIGCDetect
PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification
Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.
Unified Adversarial Patch for Cross-modal Attacks in the Physical World
Recently, physical adversarial attacks have been presented to evade DNNs-based object detectors. To ensure the security, many scenarios are simultaneously deployed with visible sensors and infrared sensors, leading to the failures of these single-modal physical attacks. To show the potential risks under such scenes, we propose a unified adversarial patch to perform cross-modal physical attacks, i.e., fooling visible and infrared object detectors at the same time via a single patch. Considering different imaging mechanisms of visible and infrared sensors, our work focuses on modeling the shapes of adversarial patches, which can be captured in different modalities when they change. To this end, we design a novel boundary-limited shape optimization to achieve the compact and smooth shapes, and thus they can be easily implemented in the physical world. In addition, to balance the fooling degree between visible detector and infrared detector during the optimization process, we propose a score-aware iterative evaluation, which can guide the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. We finally test our method against the one-stage detector: YOLOv3 and the two-stage detector: Faster RCNN. Results show that our unified patch achieves an Attack Success Rate (ASR) of 73.33% and 69.17%, respectively. More importantly, we verify the effective attacks in the physical world when visible and infrared sensors shoot the objects under various settings like different angles, distances, postures, and scenes.
SamplingAug: On the Importance of Patch Sampling Augmentation for Single Image Super-Resolution
With the development of Deep Neural Networks (DNNs), plenty of methods based on DNNs have been proposed for Single Image Super-Resolution (SISR). However, existing methods mostly train the DNNs on uniformly sampled LR-HR patch pairs, which makes them fail to fully exploit informative patches within the image. In this paper, we present a simple yet effective data augmentation method. We first devise a heuristic metric to evaluate the informative importance of each patch pair. In order to reduce the computational cost for all patch pairs, we further propose to optimize the calculation of our metric by integral image, achieving about two orders of magnitude speedup. The training patch pairs are sampled according to their informative importance with our method. Extensive experiments show our sampling augmentation can consistently improve the convergence and boost the performance of various SISR architectures, including EDSR, RCAN, RDN, SRCNN and ESPCN across different scaling factors (x2, x3, x4). Code is available at https://github.com/littlepure2333/SamplingAug
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As such, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.
From Pixel to Patch: Synthesize Context-aware Features for Zero-shot Semantic Segmentation
Zero-shot learning has been actively studied for image classification task to relieve the burden of annotating image labels. Interestingly, semantic segmentation task requires more labor-intensive pixel-wise annotation, but zero-shot semantic segmentation has only attracted limited research interest. Thus, we focus on zero-shot semantic segmentation, which aims to segment unseen objects with only category-level semantic representations provided for unseen categories. In this paper, we propose a novel Context-aware feature Generation Network (CaGNet), which can synthesize context-aware pixel-wise visual features for unseen categories based on category-level semantic representations and pixel-wise contextual information. The synthesized features are used to finetune the classifier to enable segmenting unseen objects. Furthermore, we extend pixel-wise feature generation and finetuning to patch-wise feature generation and finetuning, which additionally considers inter-pixel relationship. Experimental results on Pascal-VOC, Pascal-Context, and COCO-stuff show that our method significantly outperforms the existing zero-shot semantic segmentation methods. Code is available at https://github.com/bcmi/CaGNetv2-Zero-Shot-Semantic-Segmentation.
Efficient Long Video Tokenization via Coordinated-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled (x,y,t) coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128times128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens
Contrastive learning-based vision-language pre-training approaches, such as CLIP, have demonstrated great success in many vision-language tasks. These methods achieve cross-modal alignment by encoding a matched image-text pair with similar feature embeddings, which are generated by aggregating information from visual patches and language tokens. However, direct aligning cross-modal information using such representations is challenging, as visual patches and text tokens differ in semantic levels and granularities. To alleviate this issue, we propose a Finite Discrete Tokens (FDT) based multimodal representation. FDT is a set of learnable tokens representing certain visual-semantic concepts. Both images and texts are embedded using shared FDT by first grounding multimodal inputs to FDT space and then aggregating the activated FDT representations. The matched visual and semantic concepts are enforced to be represented by the same set of discrete tokens by a sparse activation constraint. As a result, the granularity gap between the two modalities is reduced. Through both quantitative and qualitative analyses, we demonstrate that using FDT representations in CLIP-style models improves cross-modal alignment and performance in visual recognition and vision-language downstream tasks. Furthermore, we show that our method can learn more comprehensive representations, and the learned FDT capture meaningful cross-modal correspondence, ranging from objects to actions and attributes.
FlexiViT: One Model for All Patch Sizes
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense
As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs' safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then "unlearn" these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model's responses to safe queries intact. We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak benchmarks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods.
DoPTA: Improving Document Layout Analysis using Patch-Text Alignment
The advent of multimodal learning has brought a significant improvement in document AI. Documents are now treated as multimodal entities, incorporating both textual and visual information for downstream analysis. However, works in this space are often focused on the textual aspect, using the visual space as auxiliary information. While some works have explored pure vision based techniques for document image understanding, they require OCR identified text as input during inference, or do not align with text in their learning procedure. Therefore, we present a novel image-text alignment technique specially designed for leveraging the textual information in document images to improve performance on visual tasks. Our document encoder model DoPTA - trained with this technique demonstrates strong performance on a wide range of document image understanding tasks, without requiring OCR during inference. Combined with an auxiliary reconstruction objective, DoPTA consistently outperforms larger models, while using significantly lesser pre-training compute. DoPTA also sets new state-of-the art results on D4LA, and FUNSD, two challenging document visual analysis benchmarks.
Likelihood-Based Text-to-Image Evaluation with Patch-Level Perceptual and Semantic Credit Assignment
Text-to-image synthesis has made encouraging progress and attracted lots of public attention recently. However, popular evaluation metrics in this area, like the Inception Score and Fr'echet Inception Distance, incur several issues. First of all, they cannot explicitly assess the perceptual quality of generated images and poorly reflect the semantic alignment of each text-image pair. Also, they are inefficient and need to sample thousands of images to stabilise their evaluation results. In this paper, we propose to evaluate text-to-image generation performance by directly estimating the likelihood of the generated images using a pre-trained likelihood-based text-to-image generative model, i.e., a higher likelihood indicates better perceptual quality and better text-image alignment. To prevent the likelihood of being dominated by the non-crucial part of the generated image, we propose several new designs to develop a credit assignment strategy based on the semantic and perceptual significance of the image patches. In the experiments, we evaluate the proposed metric on multiple popular text-to-image generation models and datasets in accessing both the perceptual quality and the text-image alignment. Moreover, it can successfully assess the generation ability of these models with as few as a hundred samples, making it very efficient in practice.
Efficient Decision-based Black-box Patch Attacks on Video Recognition
Although Deep Neural Networks (DNNs) have demonstrated excellent performance, they are vulnerable to adversarial patches that introduce perceptible and localized perturbations to the input. Generating adversarial patches on images has received much attention, while adversarial patches on videos have not been well investigated. Further, decision-based attacks, where attackers only access the predicted hard labels by querying threat models, have not been well explored on video models either, even if they are practical in real-world video recognition scenes. The absence of such studies leads to a huge gap in the robustness assessment for video models. To bridge this gap, this work first explores decision-based patch attacks on video models. We analyze that the huge parameter space brought by videos and the minimal information returned by decision-based models both greatly increase the attack difficulty and query burden. To achieve a query-efficient attack, we propose a spatial-temporal differential evolution (STDE) framework. First, STDE introduces target videos as patch textures and only adds patches on keyframes that are adaptively selected by temporal difference. Second, STDE takes minimizing the patch area as the optimization objective and adopts spatialtemporal mutation and crossover to search for the global optimum without falling into the local optimum. Experiments show STDE has demonstrated state-of-the-art performance in terms of threat, efficiency and imperceptibility. Hence, STDE has the potential to be a powerful tool for evaluating the robustness of video recognition models.
REAP: A Large-Scale Realistic Adversarial Patch Benchmark
Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.
DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover's Distance Improves Out-Of-Distribution Face Identification
Face identification (FI) is ubiquitous and drives many high-stake decisions made by law enforcement. State-of-the-art FI approaches compare two images by taking the cosine similarity between their image embeddings. Yet, such an approach suffers from poor out-of-distribution (OOD) generalization to new types of images (e.g., when a query face is masked, cropped, or rotated) not included in the training set or the gallery. Here, we propose a re-ranking approach that compares two faces using the Earth Mover's Distance on the deep, spatial features of image patches. Our extra comparison stage explicitly examines image similarity at a fine-grained level (e.g., eyes to eyes) and is more robust to OOD perturbations and occlusions than traditional FI. Interestingly, without finetuning feature extractors, our method consistently improves the accuracy on all tested OOD queries: masked, cropped, rotated, and adversarial while obtaining similar results on in-distribution images.
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
Enhancing Mobile Privacy and Security: A Face Skin Patch-Based Anti-Spoofing Approach
As Facial Recognition System(FRS) is widely applied in areas such as access control and mobile payments due to its convenience and high accuracy. The security of facial recognition is also highly regarded. The Face anti-spoofing system(FAS) for face recognition is an important component used to enhance the security of face recognition systems. Traditional FAS used images containing identity information to detect spoofing traces, however there is a risk of privacy leakage during the transmission and storage of these images. Besides, the encryption and decryption of these privacy-sensitive data takes too long compared to inference time by FAS model. To address the above issues, we propose a face anti-spoofing algorithm based on facial skin patches leveraging pure facial skin patch images as input, which contain no privacy information, no encryption or decryption is needed for these images. We conduct experiments on several public datasets, the results prove that our algorithm has demonstrated superiority in both accuracy and speed.
BUS:Efficient and Effective Vision-language Pre-training with Bottom-Up Patch Summarization
Vision Transformer (ViT) based Vision-Language Pre-training (VLP) models have demonstrated impressive performance in various tasks. However, the lengthy visual token sequences fed into ViT can lead to training inefficiency and ineffectiveness. Existing efforts address the challenge by either bottom-level patch extraction in the ViT backbone or top-level patch abstraction outside, not balancing training efficiency and effectiveness well. Inspired by text summarization in natural language processing, we propose a Bottom-Up Patch Summarization approach named BUS, coordinating bottom-level extraction and top-level abstraction to learn a concise summary of lengthy visual token sequences efficiently. Specifically, We incorporate a Text-Semantics-Aware Patch Selector (TSPS) into the ViT backbone to perform a coarse-grained visual token extraction and then attach a flexible Transformer-based Patch Abstraction Decoder (PAD) upon the backbone for top-level visual abstraction. This bottom-up collaboration enables our BUS to yield high training efficiency while maintaining or even improving effectiveness. We evaluate our approach on various visual-language understanding and generation tasks and show competitive downstream task performance while boosting the training efficiency by 50\%. Additionally, our model achieves state-of-the-art performance on many downstream tasks by increasing input image resolution without increasing computational costs over baselines.
Adversarial Attacks on Image Classification Models: FGSM and Patch Attacks and their Impact
This chapter introduces the concept of adversarial attacks on image classification models built on convolutional neural networks (CNN). CNNs are very popular deep-learning models which are used in image classification tasks. However, very powerful and pre-trained CNN models working very accurately on image datasets for image classification tasks may perform disastrously when the networks are under adversarial attacks. In this work, two very well-known adversarial attacks are discussed and their impact on the performance of image classifiers is analyzed. These two adversarial attacks are the fast gradient sign method (FGSM) and adversarial patch attack. These attacks are launched on three powerful pre-trained image classifier architectures, ResNet-34, GoogleNet, and DenseNet-161. The classification accuracy of the models in the absence and presence of the two attacks are computed on images from the publicly accessible ImageNet dataset. The results are analyzed to evaluate the impact of the attacks on the image classification task.
VISION DIFFMASK: Faithful Interpretation of Vision Transformers with Differentiable Patch Masking
The lack of interpretability of the Vision Transformer may hinder its use in critical real-world applications despite its effectiveness. To overcome this issue, we propose a post-hoc interpretability method called VISION DIFFMASK, which uses the activations of the model's hidden layers to predict the relevant parts of the input that contribute to its final predictions. Our approach uses a gating mechanism to identify the minimal subset of the original input that preserves the predicted distribution over classes. We demonstrate the faithfulness of our method, by introducing a faithfulness task, and comparing it to other state-of-the-art attribution methods on CIFAR-10 and ImageNet-1K, achieving compelling results. To aid reproducibility and further extension of our work, we open source our implementation: https://github.com/AngelosNal/Vision-DiffMask
NIRVANA: Neural Implicit Representations of Videos with Adaptive Networks and Autoregressive Patch-wise Modeling
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
Learning multi-domain feature relation for visible and Long-wave Infrared image patch matching
Recently, learning-based algorithms have achieved promising performance on cross-spectral image patch matching, which, however, is still far from satisfactory for practical application. On the one hand, a lack of large-scale dataset with diverse scenes haunts its further improvement for learning-based algorithms, whose performances and generalization rely heavily on the dataset size and diversity. On the other hand, more emphasis has been put on feature relation in the spatial domain whereas the scale dependency between features has often been ignored, leading to performance degeneration especially when encountering significant appearance variations for cross-spectral patches. To address these issues, we publish, to be best of our knowledge, the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM, which contains 1300 pairs of strictly aligned visible and LWIR images and over 2 million patch pairs covering diverse scenes such as asteroid, field, country, build, street and water.In addition, a multi-domain feature relation learning network (MD-FRN) is proposed. Input by the features extracted from a four-branch network, both feature relations in spatial and scale domains are learned via a spatial correlation module (SCM) and multi-scale adaptive aggregation module (MSAG), respectively. To further aggregate the multi-domain relations, a deep domain interactive mechanism (DIM) is applied, where the learnt spatial-relation and scale-relation features are exchanged and further input into MSCRM and SCM. This mechanism allows our model to learn interactive cross-domain feature relations, leading to improved robustness to significant appearance changes due to different modality.
SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution
Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source LLM designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight LLM model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other LLM model to generate patches for the identified files. Then, to mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches, and train the two modules of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving state-of-the-art performance among open-source models with scores of 23.3% and 30.2%, respectively. These outcomes highlight the efficacy of our approach. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.
Patched RTC: evaluating LLMs for diverse software development tasks
This paper introduces Patched Round-Trip Correctness (Patched RTC), a novel evaluation technique for Large Language Models (LLMs) applied to diverse software development tasks, particularly focusing on "outer loop" activities such as bug fixing, code review, and documentation updates. Patched RTC extends the original Round-Trip Correctness method to work with any LLM and downstream task, offering a self-evaluating framework that measures consistency and robustness of model responses without human intervention. The study demonstrates a correlation between Patched RTC scores and task-specific accuracy metrics, presenting it as an alternative to the LLM-as-Judge paradigm for open-domain task evaluation. We implement Patched RTC in an open-source framework called patchwork, allowing for transparent evaluation during inference across various patchflows. Experiments comparing GPT-3.5 and GPT-4 models across different software development tasks reveal that Patched RTC effectively distinguishes model performance and task difficulty. The paper also explores the impact of consistency prompts on improving model accuracy, suggesting that Patched RTC can guide prompt refinement and model selection for complex software development workflows.
RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair
Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.
How to use and interpret activation patching
Activation patching is a popular mechanistic interpretability technique, but has many subtleties regarding how it is applied and how one may interpret the results. We provide a summary of advice and best practices, based on our experience using this technique in practice. We include an overview of the different ways to apply activation patching and a discussion on how to interpret the results. We focus on what evidence patching experiments provide about circuits, and on the choice of metric and associated pitfalls.
How Effective Are Neural Networks for Fixing Security Vulnerabilities
Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.
The Impact of Program Reduction on Automated Program Repair
Correcting bugs using modern Automated Program Repair (APR) can be both time-consuming and resource-expensive. We describe a program repair approach that aims to improve the scalability of modern APR tools. The approach leverages program reduction in the form of program slicing to eliminate code irrelevant to fixing the bug, which improves the APR tool's overall performance. We investigate slicing's impact on all three phases of the repair process: fault localization, patch generation, and patch validation. Our empirical exploration finds that the proposed approach, on average, enhances the repair ability of the TBar APR tool, but we also discovered a few cases where it was less successful. Specifically, on examples from the widely used Defects4J dataset, we obtain a substantial reduction in median repair time, which falls from 80 minutes to just under 18 minutes. We conclude that program reduction can improve the performance of APR without degrading repair quality, but this improvement is not universal. A replication package is available via Zenodo at https://doi.org/10.5281/zenodo.13074333. Keywords: automated program repair, dynamic program slicing, fault localization, test-suite reduction, hybrid techniques.
CodePlan: Repository-level Coding using LLMs and Planning
Software engineering activities such as package migration, fixing errors reports from static analysis or testing, and adding type annotations or other specifications to a codebase, involve pervasively editing the entire repository of code. We formulate these activities as repository-level coding tasks. Recent tools like GitHub Copilot, which are powered by Large Language Models (LLMs), have succeeded in offering high-quality solutions to localized coding problems. Repository-level coding tasks are more involved and cannot be solved directly using LLMs, since code within a repository is inter-dependent and the entire repository may be too large to fit into the prompt. We frame repository-level coding as a planning problem and present a task-agnostic framework, called CodePlan to solve it. CodePlan synthesizes a multi-step chain of edits (plan), where each step results in a call to an LLM on a code location with context derived from the entire repository, previous code changes and task-specific instructions. CodePlan is based on a novel combination of an incremental dependency analysis, a change may-impact analysis and an adaptive planning algorithm. We evaluate the effectiveness of CodePlan on two repository-level tasks: package migration (C#) and temporal code edits (Python). Each task is evaluated on multiple code repositories, each of which requires inter-dependent changes to many files (between 2-97 files). Coding tasks of this level of complexity have not been automated using LLMs before. Our results show that CodePlan has better match with the ground truth compared to baselines. CodePlan is able to get 5/6 repositories to pass the validity checks (e.g., to build without errors and make correct code edits) whereas the baselines (without planning but with the same type of contextual information as CodePlan) cannot get any of the repositories to pass them.
Learning to Quantize Vulnerability Patterns and Match to Locate Statement-Level Vulnerabilities
Deep learning (DL) models have become increasingly popular in identifying software vulnerabilities. Prior studies found that vulnerabilities across different vulnerable programs may exhibit similar vulnerable scopes, implicitly forming discernible vulnerability patterns that can be learned by DL models through supervised training. However, vulnerable scopes still manifest in various spatial locations and formats within a program, posing challenges for models to accurately identify vulnerable statements. Despite this challenge, state-of-the-art vulnerability detection approaches fail to exploit the vulnerability patterns that arise in vulnerable programs. To take full advantage of vulnerability patterns and unleash the ability of DL models, we propose a novel vulnerability-matching approach in this paper, drawing inspiration from program analysis tools that locate vulnerabilities based on pre-defined patterns. Specifically, a vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns. During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities within a given program. Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions. The evaluation results show that our approach achieves an F1-score of 94% (6% higher than the previous best) and 82% (19% higher than the previous best) for function and statement-level vulnerability identification, respectively. These substantial enhancements highlight the effectiveness of our approach to identifying vulnerabilities. The training code and pre-trained models are available at https://github.com/optimatch/optimatch.
Learning to Predict Program Execution by Modeling Dynamic Dependency on Code Graphs
Predicting program behavior without execution is an essential and challenging task in software engineering. Traditional models often struggle to capture dynamic dependencies and interactions within code. This paper introduces a novel machine learning-based framework called CodeFlowrepresents, which predicts code coverage and detects runtime errors through Dynamic Dependencies Learning. Utilizing control flow graphs (CFGs), CodeFlowrepresents all possible execution paths and the relationships between different statements, offering a comprehensive understanding of program behavior. It constructs CFGs to depict execution paths and learns vector representations for CFG nodes, capturing static control-flow dependencies. Additionally, it learns dynamic dependencies through execution traces, which reflect the impacts among statements during execution. This approach enables accurate prediction of code coverage and identification of runtime errors. Empirical evaluations show significant improvements in code coverage prediction accuracy and effective localization of runtime errors, surpassing current models.
A Unified Debugging Approach via LLM-Based Multi-Agent Synergy
Tremendous efforts have been devoted to automating software debugging, a time-consuming process involving fault localization and repair generation. Recently, Large Language Models (LLMs) have shown great potential in automated debugging. However, we identified three challenges posed to traditional and LLM-based debugging tools: 1) the upstream imperfection of fault localization affects the downstream repair, 2) the deficiency in handling complex logic errors, and 3) the ignorance of program contexts. In this context, we propose the first automated, unified debugging framework, FixAgent, via LLM agent synergy. FixAgent can perform end-to-end localization, repair, and analysis of bugs. Our insight is that LLMs can benefit from general software engineering principles recognized by human developers in debugging, such as rubber duck debugging, enabling a better understanding of program functionality and logic bugs. Hence, we create three designs inspired by rubber ducking to address these challenges. They are agent specialization and synergy, key variable tracking, and program context comprehension, which request LLMs to provide explicit explanations and force them to focus on crucial program logic information. Experiments on the widely used dataset QuixBugs show that FixAgent correctly fixes 79 out of 80 bugs, 9 of which have never been fixed. It also plausibly patches 1.9X more defects than the best-performing repair tool on CodeFlaws, even with no bug location information and fewer than 0.6% sampling times. On average, FixAgent increases about 20% plausible and correct fixes compared to its base model using different LLMs, showing the effectiveness of our designs. Moreover, the correctness rate of FixAgent reaches remarkably 97.26%, indicating that FixAgent can potentially overcome the overfitting issue of the existing approaches.
SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
Identification of vessel structures of different sizes in biomedical images is crucial in the diagnosis of many neurodegenerative diseases. However, the sparsity of good-quality annotations of such images makes the task of vessel segmentation challenging. Deep learning offers an efficient way to segment vessels of different sizes by learning their high-level feature representations and the spatial continuity of such features across dimensions. Semi-supervised patch-based approaches have been effective in identifying small vessels of one to two voxels in diameter. This study focuses on improving the segmentation quality by considering the spatial correlation of the features using the Maximum Intensity Projection~(MIP) as an additional loss criterion. Two methods are proposed with the incorporation of MIPs of label segmentation on the single~(z-axis) and multiple perceivable axes of the 3D volume. The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs. Patch-based training is improved by introducing an additional loss term, MIP loss, to penalise the predicted discontinuity of vessels. A training set of 14 volumes is selected from the StudyForrest dataset comprising of 18 7-Tesla 3D Time-of-Flight~(ToF) Magnetic Resonance Angiography (MRA) images. The generalisation performance of the method is evaluated using the other unseen volumes in the dataset. It is observed that the proposed method with multi-axes MIP loss produces better quality segmentations with a median Dice of 80.245 pm 0.129. Also, the method with single-axis MIP loss produces segmentations with a median Dice of 79.749 pm 0.109. Furthermore, a visual comparison of the ROIs in the predicted segmentation reveals a significant improvement in the continuity of the vessels when MIP loss is incorporated into training.
Patched Denoising Diffusion Models For High-Resolution Image Synthesis
We propose an effective denoising diffusion model for generating high-resolution images (e.g., 1024times512), trained on small-size image patches (e.g., 64times64). We name our algorithm Patch-DM, in which a new feature collage strategy is designed to avoid the boundary artifact when synthesizing large-size images. Feature collage systematically crops and combines partial features of the neighboring patches to predict the features of a shifted image patch, allowing the seamless generation of the entire image due to the overlap in the patch feature space. Patch-DM produces high-quality image synthesis results on our newly collected dataset of nature images (1024times512), as well as on standard benchmarks of smaller sizes (256times256), including LSUN-Bedroom, LSUN-Church, and FFHQ. We compare our method with previous patch-based generation methods and achieve state-of-the-art FID scores on all four datasets. Further, Patch-DM also reduces memory complexity compared to the classic diffusion models.
SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models
Advancing AI in computational pathology requires large, high-quality, and diverse datasets, yet existing public datasets are often limited in organ diversity, class coverage, or annotation quality. To bridge this gap, we introduce SPIDER (Supervised Pathology Image-DEscription Repository), the largest publicly available patch-level dataset covering multiple organ types, including Skin, Colorectal, and Thorax, with comprehensive class coverage for each organ. SPIDER provides high-quality annotations verified by expert pathologists and includes surrounding context patches, which enhance classification performance by providing spatial context. Alongside the dataset, we present baseline models trained on SPIDER using the Hibou-L foundation model as a feature extractor combined with an attention-based classification head. The models achieve state-of-the-art performance across multiple tissue categories and serve as strong benchmarks for future digital pathology research. Beyond patch classification, the model enables rapid identification of significant areas, quantitative tissue metrics, and establishes a foundation for multimodal approaches. Both the dataset and trained models are publicly available to advance research, reproducibility, and AI-driven pathology development. Access them at: https://github.com/HistAI/SPIDER
Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation
Automatic high-quality rendering of anime scenes from complex real-world images is of significant practical value. The challenges of this task lie in the complexity of the scenes, the unique features of anime style, and the lack of high-quality datasets to bridge the domain gap. Despite promising attempts, previous efforts are still incompetent in achieving satisfactory results with consistent semantic preservation, evident stylization, and fine details. In this study, we propose Scenimefy, a novel semi-supervised image-to-image translation framework that addresses these challenges. Our approach guides the learning with structure-consistent pseudo paired data, simplifying the pure unsupervised setting. The pseudo data are derived uniquely from a semantic-constrained StyleGAN leveraging rich model priors like CLIP. We further apply segmentation-guided data selection to obtain high-quality pseudo supervision. A patch-wise contrastive style loss is introduced to improve stylization and fine details. Besides, we contribute a high-resolution anime scene dataset to facilitate future research. Our extensive experiments demonstrate the superiority of our method over state-of-the-art baselines in terms of both perceptual quality and quantitative performance.
ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained Visual Categorization
As computer vision continues to advance and finds widespread applications across various domains, the need for interpretability in deep learning models becomes paramount. Existing methods often resort to post-hoc techniques or prototypes to explain the decision-making process, which can be indirect and lack intrinsic illustration. In this research, we introduce ViTree, a novel approach for fine-grained visual categorization that combines the popular vision transformer as a feature extraction backbone with neural decision trees. By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions, thereby refining representations in a step-wise manner. Unlike previous tree-based models that rely on soft distributions or ensembles of paths, ViTree selects a single tree path, offering a clearer and simpler decision-making process. This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings. Remarkably, extensive experimentation validates that this streamlined approach surpasses various strong competitors and achieves state-of-the-art performance while maintaining exceptional interpretability which is proved by multi-perspective methods. Code can be found at https://github.com/SJTU-DeepVisionLab/ViTree.
reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.
Harvest Video Foundation Models via Efficient Post-Pretraining
Building video-language foundation models is costly and difficult due to the redundant nature of video data and the lack of high-quality video-language datasets. In this paper, we propose an efficient framework to harvest video foundation models from image ones. Our method is intuitively simple by randomly dropping input video patches and masking out input text during the post-pretraining procedure. The patch dropping boosts the training efficiency significantly and text masking enforces the learning of cross-modal fusion. We conduct extensive experiments to validate the effectiveness of our method on a wide range of video-language downstream tasks including various zero-shot tasks, video question answering, and video-text retrieval. Despite its simplicity, our method achieves state-of-the-art performances, which are comparable to some heavily pretrained video foundation models. Our method is extremely efficient and can be trained in less than one day on 8 GPUs, requiring only WebVid-10M as pretraining data. We hope our method can serve as a simple yet strong counterpart for prevalent video foundation models, provide useful insights when building them, and make large pretrained models more accessible and sustainable. This is part of the InternVideo project https://github.com/OpenGVLab/InternVideo.
Free-form Video Inpainting with 3D Gated Convolution and Temporal PatchGAN
Free-form video inpainting is a very challenging task that could be widely used for video editing such as text removal. Existing patch-based methods could not handle non-repetitive structures such as faces, while directly applying image-based inpainting models to videos will result in temporal inconsistency (see http://bit.ly/2Fu1n6b ). In this paper, we introduce a deep learn-ing based free-form video inpainting model, with proposed 3D gated convolutions to tackle the uncertainty of free-form masks and a novel Temporal PatchGAN loss to enhance temporal consistency. In addition, we collect videos and design a free-form mask generation algorithm to build the free-form video inpainting (FVI) dataset for training and evaluation of video inpainting models. We demonstrate the benefits of these components and experiments on both the FaceForensics and our FVI dataset suggest that our method is superior to existing ones. Related source code, full-resolution result videos and the FVI dataset could be found on Github https://github.com/amjltc295/Free-Form-Video-Inpainting .
An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels
This work does not introduce a new method. Instead, we present an interesting finding that questions the necessity of the inductive bias -- locality in modern computer vision architectures. Concretely, we find that vanilla Transformers can operate by directly treating each individual pixel as a token and achieve highly performant results. This is substantially different from the popular design in Vision Transformer, which maintains the inductive bias from ConvNets towards local neighborhoods (e.g. by treating each 16x16 patch as a token). We mainly showcase the effectiveness of pixels-as-tokens across three well-studied tasks in computer vision: supervised learning for object classification, self-supervised learning via masked autoencoding, and image generation with diffusion models. Although directly operating on individual pixels is less computationally practical, we believe the community must be aware of this surprising piece of knowledge when devising the next generation of neural architectures for computer vision.
Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability. However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length. While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions. To address this challenge, we propose augmenting the Diffusion model with the Multi-Resolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution. Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance. Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants outperform prior diffusion models, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512. Project page: https://qihao067.github.io/projects/DiMR
DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning
The ability to predict future outcomes given control actions is fundamental for physical reasoning. However, such predictive models, often called world models, have proven challenging to learn and are typically developed for task-specific solutions with online policy learning. We argue that the true potential of world models lies in their ability to reason and plan across diverse problems using only passive data. Concretely, we require world models to have the following three properties: 1) be trainable on offline, pre-collected trajectories, 2) support test-time behavior optimization, and 3) facilitate task-agnostic reasoning. To realize this, we present DINO World Model (DINO-WM), a new method to model visual dynamics without reconstructing the visual world. DINO-WM leverages spatial patch features pre-trained with DINOv2, enabling it to learn from offline behavioral trajectories by predicting future patch features. This design allows DINO-WM to achieve observational goals through action sequence optimization, facilitating task-agnostic behavior planning by treating desired goal patch features as prediction targets. We evaluate DINO-WM across various domains, including maze navigation, tabletop pushing, and particle manipulation. Our experiments demonstrate that DINO-WM can generate zero-shot behavioral solutions at test time without relying on expert demonstrations, reward modeling, or pre-learned inverse models. Notably, DINO-WM exhibits strong generalization capabilities compared to prior state-of-the-art work, adapting to diverse task families such as arbitrarily configured mazes, push manipulation with varied object shapes, and multi-particle scenarios.
Scaling Laws in Patchification: An Image Is Worth 50,176 Tokens And More
Since the introduction of Vision Transformer (ViT), patchification has long been regarded as a de facto image tokenization approach for plain visual architectures. By compressing the spatial size of images, this approach can effectively shorten the token sequence and reduce the computational cost of ViT-like plain architectures. In this work, we aim to thoroughly examine the information loss caused by this patchification-based compressive encoding paradigm and how it affects visual understanding. We conduct extensive patch size scaling experiments and excitedly observe an intriguing scaling law in patchification: the models can consistently benefit from decreased patch sizes and attain improved predictive performance, until it reaches the minimum patch size of 1x1, i.e., pixel tokenization. This conclusion is broadly applicable across different vision tasks, various input scales, and diverse architectures such as ViT and the recent Mamba models. Moreover, as a by-product, we discover that with smaller patches, task-specific decoder heads become less critical for dense prediction. In the experiments, we successfully scale up the visual sequence to an exceptional length of 50,176 tokens, achieving a competitive test accuracy of 84.6% with a base-sized model on the ImageNet-1k benchmark. We hope this study can provide insights and theoretical foundations for future works of building non-compressive vision models. Code is available at https://github.com/wangf3014/Patch_Scaling.
Sundial: A Family of Highly Capable Time Series Foundation Models
We introduce Sundial, a family of native, flexible, and scalable time series foundation models. To predict the next-patch's distribution, we propose a TimeFlow Loss based on flow-matching, which facilitates native pre-training of Transformers on time series without discrete tokenization. Conditioned on arbitrary-length time series, our model is pre-trained without specifying any prior distribution and can generate multiple probable predictions, achieving flexibility in representation learning beyond using parametric densities. Towards time series foundation models, we leverage minimal but crucial adaptations of Transformers and curate TimeBench with 1 trillion time points, comprising mostly real-world datasets and synthetic data. By mitigating mode collapse through TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which exhibit unprecedented model capacity and generalization performance on zero-shot forecasting. In addition to presenting good scaling behavior, Sundial achieves new state-of-the-art on both point forecasting and probabilistic forecasting benchmarks. We believe that Sundial's pioneering generative paradigm will facilitate a wide variety of forecasting scenarios.
A Time Series is Worth 64 Words: Long-term Forecasting with Transformers
We propose an efficient design of Transformer-based models for multivariate time series forecasting and self-supervised representation learning. It is based on two key components: (i) segmentation of time series into subseries-level patches which are served as input tokens to Transformer; (ii) channel-independence where each channel contains a single univariate time series that shares the same embedding and Transformer weights across all the series. Patching design naturally has three-fold benefit: local semantic information is retained in the embedding; computation and memory usage of the attention maps are quadratically reduced given the same look-back window; and the model can attend longer history. Our channel-independent patch time series Transformer (PatchTST) can improve the long-term forecasting accuracy significantly when compared with that of SOTA Transformer-based models. We also apply our model to self-supervised pre-training tasks and attain excellent fine-tuning performance, which outperforms supervised training on large datasets. Transferring of masked pre-trained representation on one dataset to others also produces SOTA forecasting accuracy. Code is available at: https://github.com/yuqinie98/PatchTST.
Accelerating Image Super-Resolution Networks with Pixel-Level Classification
In recent times, the need for effective super-resolution (SR) techniques has surged, especially for large-scale images ranging 2K to 8K resolutions. For DNN-based SISR, decomposing images into overlapping patches is typically necessary due to computational constraints. In such patch-decomposing scheme, one can allocate computational resources differently based on each patch's difficulty to further improve efficiency while maintaining SR performance. However, this approach has a limitation: computational resources is uniformly allocated within a patch, leading to lower efficiency when the patch contain pixels with varying levels of restoration difficulty. To address the issue, we propose the Pixel-level Classifier for Single Image Super-Resolution (PCSR), a novel method designed to distribute computational resources adaptively at the pixel level. A PCSR model comprises a backbone, a pixel-level classifier, and a set of pixel-level upsamplers with varying capacities. The pixel-level classifier assigns each pixel to an appropriate upsampler based on its restoration difficulty, thereby optimizing computational resource usage. Our method allows for performance and computational cost balance during inference without re-training. Our experiments demonstrate PCSR's advantage over existing patch-distributing methods in PSNR-FLOP trade-offs across different backbone models and benchmarks. The code is available at https://github.com/3587jjh/PCSR.
Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting detailed artifact maps. The absence of such quality metrics hinders accurate predictions of the quality of generated views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. In this work, we propose a new no-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution that is later used to identify poorly reconstructed regions in the novel views. We test and evaluate our method in the context of 3D reconstruction; to this end, we collected a novel dataset of human quality assessment in unseen reconstructed views. Through this dataset, we demonstrate that our method can not only successfully localize artifacts in novel views, correlating with human assessment, but do so without direct references. Surprisingly, our metric outperforms both no-reference metrics and popular full-reference image metrics. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs.
Towards Physically Realizable Adversarial Attacks in Embodied Vision Navigation
The significant advancements in embodied vision navigation have raised concerns about its susceptibility to adversarial attacks exploiting deep neural networks. Investigating the adversarial robustness of embodied vision navigation is crucial, especially given the threat of 3D physical attacks that could pose risks to human safety. However, existing attack methods for embodied vision navigation often lack physical feasibility due to challenges in transferring digital perturbations into the physical world. Moreover, current physical attacks for object detection struggle to achieve both multi-view effectiveness and visual naturalness in navigation scenarios. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches to objects, where both opacity and textures are learnable. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which optimizes the patch's texture based on feedback from the vision-based perception model used in navigation. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, in which opacity is fine-tuned after texture optimization. Experimental results demonstrate that our adversarial patches decrease the navigation success rate by an average of 22.39%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: https://github.com/chen37058/Physical-Attacks-in-Embodied-Nav
DocLayLLM: An Efficient and Effective Multi-modal Extension of Large Language Models for Text-rich Document Understanding
Text-rich document understanding (TDU) refers to analyzing and comprehending documents containing substantial textual content. With the rapid evolution of large language models (LLMs), they have been widely leveraged for TDU due to their remarkable versatility and generalization. In this paper, we introduce DocLayLLM, an efficient and effective multi-modal extension of LLMs specifically designed for TDU. By integrating visual patch tokens and 2D positional tokens into LLMs and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of the chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM surpasses existing OCR-dependent methods and also outperforms OCR-free competitors.
SUMix: Mixup with Semantic and Uncertain Information
Mixup data augmentation approaches have been applied for various tasks of deep learning to improve the generalization ability of deep neural networks. Some existing approaches CutMix, SaliencyMix, etc. randomly replace a patch in one image with patches from another to generate the mixed image. Similarly, the corresponding labels are linearly combined by a fixed ratio lambda by l. The objects in two images may be overlapped during the mixing process, so some semantic information is corrupted in the mixed samples. In this case, the mixed image does not match the mixed label information. Besides, such a label may mislead the deep learning model training, which results in poor performance. To solve this problem, we proposed a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process. First, we design a learnable similarity function to compute an accurate mix ratio. Second, an approach is investigated as a regularized term to model the uncertainty of the mixed samples. We conduct experiments on five image benchmarks, and extensive experimental results imply that our method is capable of improving the performance of classifiers with different cutting-based mixup approaches. The source code is available at https://github.com/JinXins/SUMix.
Multi-Branch Generative Models for Multichannel Imaging with an Application to PET/CT Joint Reconstruction
This paper presents a proof-of-concept approach for learned synergistic reconstruction of medical images using multi-branch generative models. Leveraging variational autoencoders (VAEs) and generative adversarial networks (GANs), our models learn from pairs of images simultaneously, enabling effective denoising and reconstruction. Synergistic image reconstruction is achieved by incorporating the trained models in a regularizer that evaluates the distance between the images and the model, in a similar fashion to multichannel dictionary learning (DiL). We demonstrate the efficacy of our approach on both Modified National Institute of Standards and Technology (MNIST) and positron emission tomography (PET)/computed tomography (CT) datasets, showcasing improved image quality and information sharing between modalities. Despite challenges such as patch decomposition and model limitations, our results underscore the potential of generative models for enhancing medical imaging reconstruction.
WDM: 3D Wavelet Diffusion Models for High-Resolution Medical Image Synthesis
Due to the three-dimensional nature of CT- or MR-scans, generative modeling of medical images is a particularly challenging task. Existing approaches mostly apply patch-wise, slice-wise, or cascaded generation techniques to fit the high-dimensional data into the limited GPU memory. However, these approaches may introduce artifacts and potentially restrict the model's applicability for certain downstream tasks. This work presents WDM, a wavelet-based medical image synthesis framework that applies a diffusion model on wavelet decomposed images. The presented approach is a simple yet effective way of scaling diffusion models to high resolutions and can be trained on a single 40 GB GPU. Experimental results on BraTS and LIDC-IDRI unconditional image generation at a resolution of 128 times 128 times 128 show state-of-the-art image fidelity (FID) and sample diversity (MS-SSIM) scores compared to GANs, Diffusion Models, and Latent Diffusion Models. Our proposed method is the only one capable of generating high-quality images at a resolution of 256 times 256 times 256.
FastBlend: a Powerful Model-Free Toolkit Making Video Stylization Easier
With the emergence of diffusion models and rapid development in image processing, it has become effortless to generate fancy images in tasks such as style transfer and image editing. However, these impressive image processing approaches face consistency issues in video processing. In this paper, we propose a powerful model-free toolkit called FastBlend to address the consistency problem for video processing. Based on a patch matching algorithm, we design two inference modes, including blending and interpolation. In the blending mode, FastBlend eliminates video flicker by blending the frames within a sliding window. Moreover, we optimize both computational efficiency and video quality according to different application scenarios. In the interpolation mode, given one or more keyframes rendered by diffusion models, FastBlend can render the whole video. Since FastBlend does not modify the generation process of diffusion models, it exhibits excellent compatibility. Extensive experiments have demonstrated the effectiveness of FastBlend. In the blending mode, FastBlend outperforms existing methods for video deflickering and video synthesis. In the interpolation mode, FastBlend surpasses video interpolation and model-based video processing approaches. The source codes have been released on GitHub.
Self-Calibrated Cross Attention Network for Few-Shot Segmentation
The key to the success of few-shot segmentation (FSS) lies in how to effectively utilize support samples. Most solutions compress support foreground (FG) features into prototypes, but lose some spatial details. Instead, others use cross attention to fuse query features with uncompressed support FG. Query FG could be fused with support FG, however, query background (BG) cannot find matched BG features in support FG, yet inevitably integrates dissimilar features. Besides, as both query FG and BG are combined with support FG, they get entangled, thereby leading to ineffective segmentation. To cope with these issues, we design a self-calibrated cross attention (SCCA) block. For efficient patch-based attention, query and support features are firstly split into patches. Then, we design a patch alignment module to align each query patch with its most similar support patch for better cross attention. Specifically, SCCA takes a query patch as Q, and groups the patches from the same query image and the aligned patches from the support image as K&V. In this way, the query BG features are fused with matched BG features (from query patches), and thus the aforementioned issues will be mitigated. Moreover, when calculating SCCA, we design a scaled-cosine mechanism to better utilize the support features for similarity calculation. Extensive experiments conducted on PASCAL-5^i and COCO-20^i demonstrate the superiority of our model, e.g., the mIoU score under 5-shot setting on COCO-20^i is 5.6%+ better than previous state-of-the-arts. The code is available at https://github.com/Sam1224/SCCAN.
2D3D-MATR: 2D-3D Matching Transformer for Detection-free Registration between Images and Point Clouds
The commonly adopted detect-then-match approach to registration finds difficulties in the cross-modality cases due to the incompatible keypoint detection and inconsistent feature description. We propose, 2D3D-MATR, a detection-free method for accurate and robust registration between images and point clouds. Our method adopts a coarse-to-fine pipeline where it first computes coarse correspondences between downsampled patches of the input image and the point cloud and then extends them to form dense correspondences between pixels and points within the patch region. The coarse-level patch matching is based on transformer which jointly learns global contextual constraints with self-attention and cross-modality correlations with cross-attention. To resolve the scale ambiguity in patch matching, we construct a multi-scale pyramid for each image patch and learn to find for each point patch the best matching image patch at a proper resolution level. Extensive experiments on two public benchmarks demonstrate that 2D3D-MATR outperforms the previous state-of-the-art P2-Net by around 20 percentage points on inlier ratio and over 10 points on registration recall. Our code and models are available at https://github.com/minhaolee/2D3DMATR.
Cross-view Semantic Alignment for Livestreaming Product Recognition
Live commerce is the act of selling products online through live streaming. The customer's diverse demands for online products introduce more challenges to Livestreaming Product Recognition. Previous works have primarily focused on fashion clothing data or utilize single-modal input, which does not reflect the real-world scenario where multimodal data from various categories are present. In this paper, we present LPR4M, a large-scale multimodal dataset that covers 34 categories, comprises 3 modalities (image, video, and text), and is 50x larger than the largest publicly available dataset. LPR4M contains diverse videos and noise modality pairs while exhibiting a long-tailed distribution, resembling real-world problems. Moreover, a cRoss-vIew semantiC alignmEnt (RICE) model is proposed to learn discriminative instance features from the image and video views of the products. This is achieved through instance-level contrastive learning and cross-view patch-level feature propagation. A novel Patch Feature Reconstruction loss is proposed to penalize the semantic misalignment between cross-view patches. Extensive experiments demonstrate the effectiveness of RICE and provide insights into the importance of dataset diversity and expressivity. The dataset and code are available at https://github.com/adxcreative/RICE
Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification
Interstitial lung diseases (ILD) present diagnostic challenges due to their varied manifestations and overlapping imaging features. To address this, we propose a machine learning approach that utilizes CLIP, a multimodal (image and text) self-supervised model, for ILD classification. We extensively integrate zero-shot CLIP throughout our workflow, starting from the initial extraction of image patches from volumetric CT scans and proceeding to ILD classification using "patch montages". Furthermore, we investigate how domain adaptive pretraining (DAPT) CLIP with task-specific images (CT "patch montages" extracted with ILD-specific prompts for CLIP) and/or text (lung-specific sections of radiology reports) affects downstream ILD classification performance. By leveraging CLIP-extracted "patch montages" and DAPT, we achieve strong zero-shot ILD classification results, including an AUROC of 0.893, without the need for any labeled training data. This work highlights the versatility and potential of multimodal models like CLIP for medical image classification tasks where labeled data is scarce.
DCFace: Synthetic Face Generation with Dual Condition Diffusion Model
Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by 6.11% on average in 4 out of 5 test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code is available at https://github.com/mk-minchul/dcface
Zero-Shot Contrastive Loss for Text-Guided Diffusion Image Style Transfer
Diffusion models have shown great promise in text-guided image style transfer, but there is a trade-off between style transformation and content preservation due to their stochastic nature. Existing methods require computationally expensive fine-tuning of diffusion models or additional neural network. To address this, here we propose a zero-shot contrastive loss for diffusion models that doesn't require additional fine-tuning or auxiliary networks. By leveraging patch-wise contrastive loss between generated samples and original image embeddings in the pre-trained diffusion model, our method can generate images with the same semantic content as the source image in a zero-shot manner. Our approach outperforms existing methods while preserving content and requiring no additional training, not only for image style transfer but also for image-to-image translation and manipulation. Our experimental results validate the effectiveness of our proposed method.
Centroid-centered Modeling for Efficient Vision Transformer Pre-training
Masked Image Modeling (MIM) is a new self-supervised vision pre-training paradigm using Vision Transformer (ViT). Previous works can be pixel-based or token-based, using original pixels or discrete visual tokens from parametric tokenizer models, respectively. Our proposed approach, CCViT, leverages k-means clustering to obtain centroids for image modeling without supervised training of tokenizer model. The centroids represent patch pixels and index tokens and have the property of local invariance. Non-parametric centroid tokenizer only takes seconds to create and is faster for token inference. Specifically, we adopt patch masking and centroid replacement strategies to construct corrupted inputs, and two stacked encoder blocks to predict corrupted patch tokens and reconstruct original patch pixels. Experiments show that the ViT-B model with only 300 epochs achieves 84.3\% top-1 accuracy on ImageNet-1K classification and 51.6\% on ADE20K semantic segmentation. Our approach achieves competitive results with BEiTv2 without distillation training from other models and outperforms other methods such as MAE.
Token Contrast for Weakly-Supervised Semantic Segmentation
Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the local structure perception of CNN, CAM usually cannot identify the integral object regions. Though the recent Vision Transformer (ViT) can remedy this flaw, we observe it also brings the over-smoothing issue, \ie, the final patch tokens incline to be uniform. In this work, we propose Token Contrast (ToCo) to address this issue and further explore the virtue of ViT for WSSS. Firstly, motivated by the observation that intermediate layers in ViT can still retain semantic diversity, we designed a Patch Token Contrast module (PTC). PTC supervises the final patch tokens with the pseudo token relations derived from intermediate layers, allowing them to align the semantic regions and thus yield more accurate CAM. Secondly, to further differentiate the low-confidence regions in CAM, we devised a Class Token Contrast module (CTC) inspired by the fact that class tokens in ViT can capture high-level semantics. CTC facilitates the representation consistency between uncertain local regions and global objects by contrasting their class tokens. Experiments on the PASCAL VOC and MS COCO datasets show the proposed ToCo can remarkably surpass other single-stage competitors and achieve comparable performance with state-of-the-art multi-stage methods. Code is available at https://github.com/rulixiang/ToCo.
Three things everyone should know about Vision Transformers
After their initial success in natural language processing, transformer architectures have rapidly gained traction in computer vision, providing state-of-the-art results for tasks such as image classification, detection, segmentation, and video analysis. We offer three insights based on simple and easy to implement variants of vision transformers. (1) The residual layers of vision transformers, which are usually processed sequentially, can to some extent be processed efficiently in parallel without noticeably affecting the accuracy. (2) Fine-tuning the weights of the attention layers is sufficient to adapt vision transformers to a higher resolution and to other classification tasks. This saves compute, reduces the peak memory consumption at fine-tuning time, and allows sharing the majority of weights across tasks. (3) Adding MLP-based patch pre-processing layers improves Bert-like self-supervised training based on patch masking. We evaluate the impact of these design choices using the ImageNet-1k dataset, and confirm our findings on the ImageNet-v2 test set. Transfer performance is measured across six smaller datasets.
Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification
A large-scale labeled dataset is a key factor for the success of supervised deep learning in computer vision. However, a limited number of annotated data is very common, especially in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not need massive annotations. With an attempt to use as many as possible unlabeled ophthalmic images, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images. In this paper, we propose a universal self-supervised Transformer framework, named Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in ophthalmic images. Uni4Eye can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer (ViT) architecture. We employ a Unified Patch Embedding module to replace the origin patch embedding module in ViT for jointly processing both 2D and 3D input images. Besides, we design a dual-branch multitask decoder module to simultaneously perform two reconstruction tasks on the input image and its gradient map, delivering discriminative representations for better convergence. We evaluate the performance of our pre-trained Uni4Eye encoder by fine-tuning it on six downstream ophthalmic image classification tasks. The superiority of Uni4Eye is successfully established through comparisons to other state-of-the-art SSL pre-training methods.
OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion
A well-known challenge in applying deep-learning methods to omnidirectional images is spherical distortion. In dense regression tasks such as depth estimation, where structural details are required, using a vanilla CNN layer on the distorted 360 image results in undesired information loss. In this paper, we propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spherical distortion issue. Our pipeline transforms a 360 image into less-distorted perspective patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge the patch-wise results for final output. To handle the discrepancy between patch-wise predictions which is a major issue affecting the merging quality, we propose a new framework with the following key components. First, we propose a geometry-aware feature fusion mechanism that combines 3D geometric features with 2D image features to compensate for the patch-wise discrepancy. Second, we employ the self-attention-based transformer architecture to conduct a global aggregation of patch-wise information, which further improves the consistency. Last, we introduce an iterative depth refinement mechanism, to further refine the estimated depth based on the more accurate geometric features. Experiments show that our method greatly mitigates the distortion issue, and achieves state-of-the-art performances on several 360 monocular depth estimation benchmark datasets.
Vision Transformer for Small-Size Datasets
Recently, the Vision Transformer (ViT), which applied the transformer structure to the image classification task, has outperformed convolutional neural networks. However, the high performance of the ViT results from pre-training using a large-size dataset such as JFT-300M, and its dependence on a large dataset is interpreted as due to low locality inductive bias. This paper proposes Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA), which effectively solve the lack of locality inductive bias and enable it to learn from scratch even on small-size datasets. Moreover, SPT and LSA are generic and effective add-on modules that are easily applicable to various ViTs. Experimental results show that when both SPT and LSA were applied to the ViTs, the performance improved by an average of 2.96% in Tiny-ImageNet, which is a representative small-size dataset. Especially, Swin Transformer achieved an overwhelming performance improvement of 4.08% thanks to the proposed SPT and LSA.
FILIP: Fine-grained Interactive Language-Image Pre-Training
Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions using cross/self-attention upon visual and textual tokens. However, cross/self-attention suffers from inferior efficiency in both training and inference. In this paper, we introduce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP) to achieve finer-level alignment through a cross-modal late interaction mechanism, which uses a token-wise maximum similarity between visual and textual tokens to guide the contrastive objective. FILIP successfully leverages the finer-grained expressiveness between image patches and textual words by modifying only contrastive loss, while simultaneously gaining the ability to pre-compute image and text representations offline at inference, keeping both large-scale training and inference efficient. Furthermore, we construct a new large-scale image-text pair dataset called FILIP300M for pre-training. Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks including zero-shot image classification and image-text retrieval. The visualization on word-patch alignment further shows that FILIP can learn meaningful fine-grained features with promising localization ability.
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2\% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at https://github.com/IBM/CrossViT.
ResizeMix: Mixing Data with Preserved Object Information and True Labels
Data augmentation is a powerful technique to increase the diversity of data, which can effectively improve the generalization ability of neural networks in image recognition tasks. Recent data mixing based augmentation strategies have achieved great success. Especially, CutMix uses a simple but effective method to improve the classifiers by randomly cropping a patch from one image and pasting it on another image. To further promote the performance of CutMix, a series of works explore to use the saliency information of the image to guide the mixing. We systematically study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance. Furthermore, we find that the cutting based data mixing methods carry two problems of label misallocation and object information missing, which cannot be resolved simultaneously. We propose a more effective but very easily implemented method, namely ResizeMix. We mix the data by directly resizing the source image to a small patch and paste it on another image. The obtained patch preserves more substantial object information compared with conventional cut-based methods. ResizeMix shows evident advantages over CutMix and the saliency-guided methods on both image classification and object detection tasks without additional computation cost, which even outperforms most costly search-based automatic augmentation methods.
SuperPoint: Self-Supervised Interest Point Detection and Description
This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Photorealistic frontal view synthesis from a single face image has a wide range of applications in the field of face recognition. Although data-driven deep learning methods have been proposed to address this problem by seeking solutions from ample face data, this problem is still challenging because it is intrinsically ill-posed. This paper proposes a Two-Pathway Generative Adversarial Network (TP-GAN) for photorealistic frontal view synthesis by simultaneously perceiving global structures and local details. Four landmark located patch networks are proposed to attend to local textures in addition to the commonly used global encoder-decoder network. Except for the novel architecture, we make this ill-posed problem well constrained by introducing a combination of adversarial loss, symmetry loss and identity preserving loss. The combined loss function leverages both frontal face distribution and pre-trained discriminative deep face models to guide an identity preserving inference of frontal views from profiles. Different from previous deep learning methods that mainly rely on intermediate features for recognition, our method directly leverages the synthesized identity preserving image for downstream tasks like face recognition and attribution estimation. Experimental results demonstrate that our method not only presents compelling perceptual results but also outperforms state-of-the-art results on large pose face recognition.
Feature Refinement to Improve High Resolution Image Inpainting
In this paper, we address the problem of degradation in inpainting quality of neural networks operating at high resolutions. Inpainting networks are often unable to generate globally coherent structures at resolutions higher than their training set. This is partially attributed to the receptive field remaining static, despite an increase in image resolution. Although downscaling the image prior to inpainting produces coherent structure, it inherently lacks detail present at higher resolutions. To get the best of both worlds, we optimize the intermediate featuremaps of a network by minimizing a multiscale consistency loss at inference. This runtime optimization improves the inpainting results and establishes a new state-of-the-art for high resolution inpainting. Code is available at: https://github.com/geomagical/lama-with-refiner/tree/refinement.
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Vision transformers (ViTs) have emerged as a significant area of focus, particularly for their capacity to be jointly trained with large language models and to serve as robust vision foundation models. Yet, the development of trustworthy explanation methods for ViTs has lagged, particularly in the context of post-hoc interpretations of ViT predictions. Existing sub-image selection approaches, such as feature-attribution and conceptual models, fall short in this regard. This paper proposes five desiderata for explaining ViTs -- faithfulness, stability, sparsity, multi-level structure, and parsimony -- and demonstrates the inadequacy of current methods in meeting these criteria comprehensively. We introduce a variational Bayesian explanation framework, dubbed ProbAbilistic Concept Explainers (PACE), which models the distributions of patch embeddings to provide trustworthy post-hoc conceptual explanations. Our qualitative analysis reveals the distributions of patch-level concepts, elucidating the effectiveness of ViTs by modeling the joint distribution of patch embeddings and ViT's predictions. Moreover, these patch-level explanations bridge the gap between image-level and dataset-level explanations, thus completing the multi-level structure of PACE. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that PACE surpasses state-of-the-art methods in terms of the defined desiderata.
Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
Mixture-of-Experts (MoE) enhances model performance while maintaining computational efficiency, making it well-suited for large-scale applications. However, expert in exist MoE paradigm works as an individual, thereby lacking high-quality expert interactions. Moreover, they have not been effectively extended to attention block, which constrains further efficiency improvements. To tackle these issues, we propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement dynamic routing on input data and experts. Our approach advances MoE design with three key innovations: (1) We conducted equitant expert decomposition on both MLP blocks and attention blocks based on matrix partition in tensor parallelism. (2) We developed two routing paradigms: patch wise data selection and expert selection, to apply routing across different levels. (3) We design the architecture of UoE model, including Selective Multi-Head Attention (SMHA) and Union-of-MLP-Experts (UoME). (4) We develop parallel implementation of UoE's routing and computation operation, and optimize efficiency based on the hardware processing analysis. The experiments demonstrate that the model employed with UoE surpass Full Attention, state-of-art MoEs and efficient transformers in several tasks across image and natural language domains. The source codes are available at https://github.com/YujiaoYang-work/UoE.
SSR-Encoder: Encoding Selective Subject Representation for Subject-Driven Generation
Recent advancements in subject-driven image generation have led to zero-shot generation, yet precise selection and focus on crucial subject representations remain challenging. Addressing this, we introduce the SSR-Encoder, a novel architecture designed for selectively capturing any subject from single or multiple reference images. It responds to various query modalities including text and masks, without necessitating test-time fine-tuning. The SSR-Encoder combines a Token-to-Patch Aligner that aligns query inputs with image patches and a Detail-Preserving Subject Encoder for extracting and preserving fine features of the subjects, thereby generating subject embeddings. These embeddings, used in conjunction with original text embeddings, condition the generation process. Characterized by its model generalizability and efficiency, the SSR-Encoder adapts to a range of custom models and control modules. Enhanced by the Embedding Consistency Regularization Loss for improved training, our extensive experiments demonstrate its effectiveness in versatile and high-quality image generation, indicating its broad applicability. Project page: https://ssr-encoder.github.io
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate
High-resolution images offer more information about scenes that can improve model accuracy. However, the dominant model architecture in computer vision, the vision transformer (ViT), cannot effectively leverage larger images without finetuning -- ViTs poorly extrapolate to more patches at test time, although transformers offer sequence length flexibility. We attribute this shortcoming to the current patch position encoding methods, which create a distribution shift when extrapolating. We propose a drop-in replacement for the position encoding of plain ViTs that restricts attention heads to fixed fields of view, pointed in different directions, using 2D attention masks. Our novel method, called LookHere, provides translation-equivariance, ensures attention head diversity, and limits the distribution shift that attention heads face when extrapolating. We demonstrate that LookHere improves performance on classification (avg. 1.6%), against adversarial attack (avg. 5.4%), and decreases calibration error (avg. 1.5%) -- on ImageNet without extrapolation. With extrapolation, LookHere outperforms the current SoTA position encoding method, 2D-RoPE, by 21.7% on ImageNet when trained at 224^2 px and tested at 1024^2 px. Additionally, we release a high-resolution test set to improve the evaluation of high-resolution image classifiers, called ImageNet-HR.
Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning
As advanced image manipulation techniques emerge, detecting the manipulation becomes increasingly important. Despite the success of recent learning-based approaches for image manipulation detection, they typically require expensive pixel-level annotations to train, while exhibiting degraded performance when testing on images that are differently manipulated compared with training images. To address these limitations, we propose weakly-supervised image manipulation detection, such that only binary image-level labels (authentic or tampered with) are required for training purpose. Such a weakly-supervised setting can leverage more training images and has the potential to adapt quickly to new manipulation techniques. To improve the generalization ability, we propose weakly-supervised self-consistency learning (WSCL) to leverage the weakly annotated images. Specifically, two consistency properties are learned: multi-source consistency (MSC) and inter-patch consistency (IPC). MSC exploits different content-agnostic information and enables cross-source learning via an online pseudo label generation and refinement process. IPC performs global pair-wise patch-patch relationship reasoning to discover a complete region of manipulation. Extensive experiments validate that our WSCL, even though is weakly supervised, exhibits competitive performance compared with fully-supervised counterpart under both in-distribution and out-of-distribution evaluations, as well as reasonable manipulation localization ability.
Calibrating Uncertainty for Semi-Supervised Crowd Counting
Semi-supervised crowd counting is an important yet challenging task. A popular approach is to iteratively generate pseudo-labels for unlabeled data and add them to the training set. The key is to use uncertainty to select reliable pseudo-labels. In this paper, we propose a novel method to calibrate model uncertainty for crowd counting. Our method takes a supervised uncertainty estimation strategy to train the model through a surrogate function. This ensures the uncertainty is well controlled throughout the training. We propose a matching-based patch-wise surrogate function to better approximate uncertainty for crowd counting tasks. The proposed method pays a sufficient amount of attention to details, while maintaining a proper granularity. Altogether our method is able to generate reliable uncertainty estimation, high quality pseudolabels, and achieve state-of-the-art performance in semisupervised crowd counting.
VisTabNet: Adapting Vision Transformers for Tabular Data
Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning.
Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis
Background. Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software and hardware is an ongoing challenge. Methods. Datasets from 3 medical centers acquired at 3T (n = 150 subjects) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. Results. The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (p = n.s.) whereas it significantly outperformed on the external datasets (p < 0.005 for exD-1 and exD-2). Moreover, the number of image series with "failed" segmentation was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions. The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.
STEERER: Resolving Scale Variations for Counting and Localization via Selective Inheritance Learning
Scale variation is a deep-rooted problem in object counting, which has not been effectively addressed by existing scale-aware algorithms. An important factor is that they typically involve cooperative learning across multi-resolutions, which could be suboptimal for learning the most discriminative features from each scale. In this paper, we propose a novel method termed STEERER (SelecTivE inhERitance lEaRning) that addresses the issue of scale variations in object counting. STEERER selects the most suitable scale for patch objects to boost feature extraction and only inherits discriminative features from lower to higher resolution progressively. The main insights of STEERER are a dedicated Feature Selection and Inheritance Adaptor (FSIA), which selectively forwards scale-customized features at each scale, and a Masked Selection and Inheritance Loss (MSIL) that helps to achieve high-quality density maps across all scales. Our experimental results on nine datasets with counting and localization tasks demonstrate the unprecedented scale generalization ability of STEERER. Code is available at https://github.com/taohan10200/STEERER.
Audio-Visual Glance Network for Efficient Video Recognition
Deep learning has made significant strides in video understanding tasks, but the computation required to classify lengthy and massive videos using clip-level video classifiers remains impractical and prohibitively expensive. To address this issue, we propose Audio-Visual Glance Network (AVGN), which leverages the commonly available audio and visual modalities to efficiently process the spatio-temporally important parts of a video. AVGN firstly divides the video into snippets of image-audio clip pair and employs lightweight unimodal encoders to extract global visual features and audio features. To identify the important temporal segments, we use an Audio-Visual Temporal Saliency Transformer (AV-TeST) that estimates the saliency scores of each frame. To further increase efficiency in the spatial dimension, AVGN processes only the important patches instead of the whole images. We use an Audio-Enhanced Spatial Patch Attention (AESPA) module to produce a set of enhanced coarse visual features, which are fed to a policy network that produces the coordinates of the important patches. This approach enables us to focus only on the most important spatio-temporally parts of the video, leading to more efficient video recognition. Moreover, we incorporate various training techniques and multi-modal feature fusion to enhance the robustness and effectiveness of our AVGN. By combining these strategies, our AVGN sets new state-of-the-art performance in multiple video recognition benchmarks while achieving faster processing speed.
Agglomerative Transformer for Human-Object Interaction Detection
We propose an agglomerative Transformer (AGER) that enables Transformer-based human-object interaction (HOI) detectors to flexibly exploit extra instance-level cues in a single-stage and end-to-end manner for the first time. AGER acquires instance tokens by dynamically clustering patch tokens and aligning cluster centers to instances with textual guidance, thus enjoying two benefits: 1) Integrality: each instance token is encouraged to contain all discriminative feature regions of an instance, which demonstrates a significant improvement in the extraction of different instance-level cues and subsequently leads to a new state-of-the-art performance of HOI detection with 36.75 mAP on HICO-Det. 2) Efficiency: the dynamical clustering mechanism allows AGER to generate instance tokens jointly with the feature learning of the Transformer encoder, eliminating the need of an additional object detector or instance decoder in prior methods, thus allowing the extraction of desirable extra cues for HOI detection in a single-stage and end-to-end pipeline. Concretely, AGER reduces GFLOPs by 8.5% and improves FPS by 36%, even compared to a vanilla DETR-like pipeline without extra cue extraction.
Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection
Humans recognize anomalies through two aspects: larger patch-wise representation discrepancies and weaker patch-to-normal-patch correlations. However, the previous AD methods didn't sufficiently combine the two complementary aspects to design AD models. To this end, we find that Transformer can ideally satisfy the two aspects as its great power in the unified modeling of patch-wise representations and patch-to-patch correlations. In this paper, we propose a novel AD framework: FOcus-the-Discrepancy (FOD), which can simultaneously spot the patch-wise, intra- and inter-discrepancies of anomalies. The major characteristic of our method is that we renovate the self-attention maps in transformers to Intra-Inter-Correlation (I2Correlation). The I2Correlation contains a two-branch structure to first explicitly establish intra- and inter-image correlations, and then fuses the features of two-branch to spotlight the abnormal patterns. To learn the intra- and inter-correlations adaptively, we propose the RBF-kernel-based target-correlations as learning targets for self-supervised learning. Besides, we introduce an entropy constraint strategy to solve the mode collapse issue in optimization and further amplify the normal-abnormal distinguishability. Extensive experiments on three unsupervised real-world AD benchmarks show the superior performance of our approach. Code will be available at https://github.com/xcyao00/FOD.
Cumulative Spatial Knowledge Distillation for Vision Transformers
Distilling knowledge from convolutional neural networks (CNNs) is a double-edged sword for vision transformers (ViTs). It boosts the performance since the image-friendly local-inductive bias of CNN helps ViT learn faster and better, but leading to two problems: (1) Network designs of CNN and ViT are completely different, which leads to different semantic levels of intermediate features, making spatial-wise knowledge transfer methods (e.g., feature mimicking) inefficient. (2) Distilling knowledge from CNN limits the network convergence in the later training period since ViT's capability of integrating global information is suppressed by CNN's local-inductive-bias supervision. To this end, we present Cumulative Spatial Knowledge Distillation (CSKD). CSKD distills spatial-wise knowledge to all patch tokens of ViT from the corresponding spatial responses of CNN, without introducing intermediate features. Furthermore, CSKD exploits a Cumulative Knowledge Fusion (CKF) module, which introduces the global response of CNN and increasingly emphasizes its importance during the training. Applying CKF leverages CNN's local inductive bias in the early training period and gives full play to ViT's global capability in the later one. Extensive experiments and analysis on ImageNet-1k and downstream datasets demonstrate the superiority of our CSKD. Code will be publicly available.
Adaptive Supervised PatchNCE Loss for Learning H&E-to-IHC Stain Translation with Inconsistent Groundtruth Image Pairs
Immunohistochemical (IHC) staining highlights the molecular information critical to diagnostics in tissue samples. However, compared to H&E staining, IHC staining can be much more expensive in terms of both labor and the laboratory equipment required. This motivates recent research that demonstrates that the correlations between the morphological information present in the H&E-stained slides and the molecular information in the IHC-stained slides can be used for H&E-to-IHC stain translation. However, due to a lack of pixel-perfect H&E-IHC groundtruth pairs, most existing methods have resorted to relying on expert annotations. To remedy this situation, we present a new loss function, Adaptive Supervised PatchNCE (ASP), to directly deal with the input to target inconsistencies in a proposed H&E-to-IHC image-to-image translation framework. The ASP loss is built upon a patch-based contrastive learning criterion, named Supervised PatchNCE (SP), and augments it further with weight scheduling to mitigate the negative impact of noisy supervision. Lastly, we introduce the Multi-IHC Stain Translation (MIST) dataset, which contains aligned H&E-IHC patches for 4 different IHC stains critical to breast cancer diagnosis. In our experiment, we demonstrate that our proposed method outperforms existing image-to-image translation methods for stain translation to multiple IHC stains. All of our code and datasets are available at https://github.com/lifangda01/AdaptiveSupervisedPatchNCE.
Image Labels Are All You Need for Coarse Seagrass Segmentation
Seagrass meadows serve as critical carbon sinks, but accurately estimating the amount of carbon they store requires knowledge of the seagrass species present. Using underwater and surface vehicles equipped with machine learning algorithms can help to accurately estimate the composition and extent of seagrass meadows at scale. However, previous approaches for seagrass detection and classification have required full supervision from patch-level labels. In this paper, we reframe seagrass classification as a weakly supervised coarse segmentation problem where image-level labels are used during training (25 times fewer labels compared to patch-level labeling) and patch-level outputs are obtained at inference time. To this end, we introduce SeaFeats, an architecture that uses unsupervised contrastive pretraining and feature similarity to separate background and seagrass patches, and SeaCLIP, a model that showcases the effectiveness of large language models as a supervisory signal in domain-specific applications. We demonstrate that an ensemble of SeaFeats and SeaCLIP leads to highly robust performance, with SeaCLIP conservatively predicting the background class to avoid false seagrass misclassifications in blurry or dark patches. Our method outperforms previous approaches that require patch-level labels on the multi-species 'DeepSeagrass' dataset by 6.8% (absolute) for the class-weighted F1 score, and by 12.1% (absolute) F1 score for seagrass presence/absence on the 'Global Wetlands' dataset. We also present two case studies for real-world deployment: outlier detection on the Global Wetlands dataset, and application of our method on imagery collected by FloatyBoat, an autonomous surface vehicle.
Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?
Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (1)assuming that we train the same model architecture on both a clean dataset and its corrupted version, resultant weights mostly differ in shallow layers; (2)the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (3)for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. We propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We verify our proposed framework to be remarkably (1)lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2)in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3)composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4)transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.
Stare at What You See: Masked Image Modeling without Reconstruction
Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training. By reconstructing masked image patches from a small portion of visible image regions, MAE forces the model to infer semantic correlation within an image. Recently, some approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance. However, unlike the low-level features such as pixel values, we argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.This raises one question: is reconstruction necessary in Masked Image Modeling (MIM) with a teacher model? In this paper, we propose an efficient MIM paradigm named MaskAlign. MaskAlign simply learns the consistency of visible patch features extracted by the student model and intact image features extracted by the teacher model. To further advance the performance and tackle the problem of input inconsistency between the student and teacher model, we propose a Dynamic Alignment (DA) module to apply learnable alignment. Our experimental results demonstrate that masked modeling does not lose effectiveness even without reconstruction on masked regions. Combined with Dynamic Alignment, MaskAlign can achieve state-of-the-art performance with much higher efficiency. Code and models will be available at https://github.com/OpenPerceptionX/maskalign.
Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images
Histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we used 624 whole slide images (WSIs) of breast cancer from a Norwegian cohort. We propose a cascaded convolutional neural network design, called H2G-Net, for semantic segmentation of gigapixel histopathological images. The design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder. To validate the design, we conducted an ablation study to assess the impact of selected components in the pipeline on tumour segmentation. Guiding segmentation, using hierarchical sampling and deep heatmap refinement, proved to be beneficial when segmenting the histopathological images. We found a significant improvement when using a refinement network for postprocessing the generated tumour segmentation heatmaps. The overall best design achieved a Dice score of 0.933 on an independent test set of 90 WSIs. The design outperformed single-resolution approaches, such as cluster-guided, patch-wise high-resolution classification using MobileNetV2 (0.872) and a low-resolution U-Net (0.874). In addition, segmentation on a representative x400 WSI took ~58 seconds, using only the CPU. The findings demonstrate the potential of utilizing a refinement network to improve patch-wise predictions. The solution is efficient and does not require overlapping patch inference or ensembling. Furthermore, we showed that deep neural networks can be trained using a random sampling scheme that balances on multiple different labels simultaneously, without the need of storing patches on disk. Future work should involve more efficient patch generation and sampling, as well as improved clustering.
GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis
While 2D generative adversarial networks have enabled high-resolution image synthesis, they largely lack an understanding of the 3D world and the image formation process. Thus, they do not provide precise control over camera viewpoint or object pose. To address this problem, several recent approaches leverage intermediate voxel-based representations in combination with differentiable rendering. However, existing methods either produce low image resolution or fall short in disentangling camera and scene properties, e.g., the object identity may vary with the viewpoint. In this paper, we propose a generative model for radiance fields which have recently proven successful for novel view synthesis of a single scene. In contrast to voxel-based representations, radiance fields are not confined to a coarse discretization of the 3D space, yet allow for disentangling camera and scene properties while degrading gracefully in the presence of reconstruction ambiguity. By introducing a multi-scale patch-based discriminator, we demonstrate synthesis of high-resolution images while training our model from unposed 2D images alone. We systematically analyze our approach on several challenging synthetic and real-world datasets. Our experiments reveal that radiance fields are a powerful representation for generative image synthesis, leading to 3D consistent models that render with high fidelity.
Improvements to context based self-supervised learning
We develop a set of methods to improve on the results of self-supervised learning using context. We start with a baseline of patch based arrangement context learning and go from there. Our methods address some overt problems such as chromatic aberration as well as other potential problems such as spatial skew and mid-level feature neglect. We prevent problems with testing generalization on common self-supervised benchmark tests by using different datasets during our development. The results of our methods combined yield top scores on all standard self-supervised benchmarks, including classification and detection on PASCAL VOC 2007, segmentation on PASCAL VOC 2012, and "linear tests" on the ImageNet and CSAIL Places datasets. We obtain an improvement over our baseline method of between 4.0 to 7.1 percentage points on transfer learning classification tests. We also show results on different standard network architectures to demonstrate generalization as well as portability. All data, models and programs are available at: https://gdo-datasci.llnl.gov/selfsupervised/.