new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

MobileQuant: Mobile-friendly Quantization for On-device Language Models

Large language models (LLMs) have revolutionized language processing, delivering outstanding results across multiple applications. However, deploying LLMs on edge devices poses several challenges with respect to memory, energy, and compute costs, limiting their widespread use in devices such as mobile phones. A promising solution is to reduce the number of bits used to represent weights and activations. While existing works have found partial success at quantizing LLMs to lower bitwidths, e.g. 4-bit weights, quantizing activations beyond 16 bits often leads to large computational overheads due to poor on-device quantization support, or a considerable accuracy drop. Yet, 8-bit activations are very attractive for on-device deployment as they would enable LLMs to fully exploit mobile-friendly hardware, e.g. Neural Processing Units (NPUs). In this work, we make a first attempt to facilitate the on-device deployment of LLMs using integer-only quantization. We first investigate the limitations of existing quantization methods for on-device deployment, with a special focus on activation quantization. We then address these limitations by introducing a simple post-training quantization method, named MobileQuant, that extends previous weight equivalent transformation works by jointly optimizing the weight transformation and activation range parameters in an end-to-end manner. MobileQuant demonstrates superior capabilities over existing methods by 1) achieving near-lossless quantization on a wide range of LLM benchmarks, 2) reducing latency and energy consumption by 20\%-50\% compared to current on-device quantization strategies, 3) requiring limited compute budget, 4) being compatible with mobile-friendly compute units, e.g. NPU.

We Care: Multimodal Depression Detection and Knowledge Infused Mental Health Therapeutic Response Generation

The detection of depression through non-verbal cues has gained significant attention. Previous research predominantly centred on identifying depression within the confines of controlled laboratory environments, often with the supervision of psychologists or counsellors. Unfortunately, datasets generated in such controlled settings may struggle to account for individual behaviours in real-life situations. In response to this limitation, we present the Extended D-vlog dataset, encompassing a collection of 1, 261 YouTube vlogs. Additionally, the emergence of large language models (LLMs) like GPT3.5, and GPT4 has sparked interest in their potential they can act like mental health professionals. Yet, the readiness of these LLM models to be used in real-life settings is still a concern as they can give wrong responses that can harm the users. We introduce a virtual agent serving as an initial contact for mental health patients, offering Cognitive Behavioral Therapy (CBT)-based responses. It comprises two core functions: 1. Identifying depression in individuals, and 2. Delivering CBT-based therapeutic responses. Our Mistral model achieved impressive scores of 70.1% and 30.9% for distortion assessment and classification, along with a Bert score of 88.7%. Moreover, utilizing the TVLT model on our Multimodal Extended D-vlog Dataset yielded outstanding results, with an impressive F1-score of 67.8%

Vitruvio: 3D Building Meshes via Single Perspective Sketches

Today's architectural engineering and construction (AEC) software require a learning curve to generate a three-dimension building representation. This limits the ability to quickly validate the volumetric implications of an initial design idea communicated via a single sketch. Allowing designers to translate a single sketch to a 3D building will enable owners to instantly visualize 3D project information without the cognitive load required. If previous state-of-the-art (SOTA) data-driven methods for single view reconstruction (SVR) showed outstanding results in the reconstruction process from a single image or sketch, they lacked specific applications, analysis, and experiments in the AEC. Therefore, this research addresses this gap, introducing the first deep learning method focused only on buildings that aim to convert a single sketch to a 3D building mesh: Vitruvio. Vitruvio adapts Occupancy Network for SVR tasks on a specific building dataset (Manhattan 1K). This adaptation brings two main improvements. First, it accelerates the inference process by more than 26% (from 0.5s to 0.37s). Second, it increases the reconstruction accuracy (measured by the Chamfer Distance) by 18%. During this adaptation in the AEC domain, we evaluate the effect of the building orientation in the learning procedure since it constitutes an important design factor. While aligning all the buildings to a canonical pose improved the overall quantitative metrics, it did not capture fine-grain details in more complex building shapes (as shown in our qualitative analysis). Finally, Vitruvio outputs a 3D-printable building mesh with arbitrary topology and genus from a single perspective sketch, providing a step forward to allow owners and designers to communicate 3D information via a 2D, effective, intuitive, and universal communication medium: the sketch.

Advanced Natural-based interaction for the ITAlian language: LLaMAntino-3-ANITA

In the pursuit of advancing natural language processing for the Italian language, we introduce a state-of-the-art Large Language Model (LLM) based on the novel Meta LLaMA-3 model: LLaMAntino-3-ANITA-8B-Inst-DPO-ITA. We fine-tuned the original 8B parameters instruction tuned model using the Supervised Fine-tuning (SFT) technique on the English and Italian language datasets in order to improve the original performance. Consequently, a Dynamic Preference Optimization (DPO) process has been used to align preferences, avoid dangerous and inappropriate answers, and limit biases and prejudices. Our model leverages the efficiency of QLoRA to fine-tune the model on a smaller portion of the original model weights and then adapt the model specifically for the Italian linguistic structure, achieving significant improvements in both performance and computational efficiency. Concurrently, DPO is employed to refine the model's output, ensuring that generated content aligns with quality answers. The synergy between SFT, QLoRA's parameter efficiency and DPO's user-centric optimization results in a robust LLM that excels in a variety of tasks, including but not limited to text completion, zero-shot classification, and contextual understanding. The model has been extensively evaluated over standard benchmarks for the Italian and English languages, showing outstanding results. The model is freely available over the HuggingFace hub and, examples of use can be found in our GitHub repository. https://huggingface.co/swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA

MoVA: Adapting Mixture of Vision Experts to Multimodal Context

As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a context-aware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts. This benefits from the powerful model function understanding ability of the large language model (LLM) equipped with expert-routing low-rank adaptation (LoRA). In the fine-grained stage, we elaborately conduct the mixture-of-vision-expert adapter (MoV-Adapter) to extract and fuse task-specific knowledge from various experts. This coarse-to-fine paradigm effectively leverages representations from experts based on multimodal context and model expertise, further enhancing the generalization ability. We conduct extensive experiments to evaluate the effectiveness of the proposed approach. Without any bells and whistles, MoVA can achieve significant performance gains over current state-of-the-art methods in a wide range of challenging multimodal benchmarks. Codes and models will be available at https://github.com/TempleX98/MoVA.

Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances

Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.

CapS-Adapter: Caption-based MultiModal Adapter in Zero-Shot Classification

Recent advances in vision-language foundational models, such as CLIP, have demonstrated significant strides in zero-shot classification. However, the extensive parameterization of models like CLIP necessitates a resource-intensive fine-tuning process. In response, TIP-Adapter and SuS-X have introduced training-free methods aimed at bolstering the efficacy of downstream tasks. While these approaches incorporate support sets to maintain data distribution consistency between knowledge cache and test sets, they often fall short in terms of generalization on the test set, particularly when faced with test data exhibiting substantial distributional variations. In this work, we present CapS-Adapter, an innovative method that employs a caption-based support set, effectively harnessing both image and caption features to exceed existing state-of-the-art techniques in training-free scenarios. CapS-Adapter adeptly constructs support sets that closely mirror target distributions, utilizing instance-level distribution features extracted from multimodal large models. By leveraging CLIP's single and cross-modal strengths, CapS-Adapter enhances predictive accuracy through the use of multimodal support sets. Our method achieves outstanding zero-shot classification results across 19 benchmark datasets, improving accuracy by 2.19\% over the previous leading method. Our contributions are substantiated through extensive validation on multiple benchmark datasets, demonstrating superior performance and robust generalization capabilities. Our code is made publicly available at https://github.com/WLuLi/CapS-Adapter.

SelfCheckAgent: Zero-Resource Hallucination Detection in Generative Large Language Models

Detecting hallucinations in Large Language Models (LLMs) remains a critical challenge for their reliable deployment in real-world applications. To address this, we introduce SelfCheckAgent, a novel framework integrating three different agents: the Symbolic Agent, the Specialized Detection Agent, and the Contextual Consistency Agent. These agents provide a robust multi-dimensional approach to hallucination detection. Notable results include the Contextual Consistency Agent leveraging Llama 3.1 with Chain-of-Thought (CoT) to achieve outstanding performance on the WikiBio dataset, with NonFactual hallucination detection scoring 93.64%, Factual 70.26%, and Ranking 78.48% respectively. On the AIME dataset, GPT-4o with CoT excels in NonFactual detection with 94.89% but reveals trade-offs in Factual with 30.58% and Ranking with 30.68%, underscoring the complexity of hallucination detection in the complex mathematical domains. The framework also incorporates a triangulation strategy, which increases the strengths of the SelfCheckAgent, yielding significant improvements in real-world hallucination identification. The comparative analysis demonstrates SelfCheckAgent's applicability across diverse domains, positioning it as a crucial advancement for trustworthy LLMs. These findings highlight the potentiality of consistency-driven methodologies in detecting hallucinations in LLMs.

Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning

Large Multimodal Models (LMMs) have made significant breakthroughs with the advancement of instruction tuning. However, while existing models can understand images and videos at a holistic level, they still struggle with instance-level understanding that requires a more nuanced comprehension and alignment. Instance-level understanding is crucial, as it focuses on the specific elements that we are most interested in. Excitingly, existing works find that the state-of-the-art LMMs exhibit strong instance understanding capabilities when provided with explicit visual cues. Motivated by this, we introduce an automated annotation pipeline assisted by GPT-4o to extract instance-level information from images and videos through explicit visual prompting for instance guidance. Building upon this pipeline, we proposed Inst-IT, a solution to enhance LMMs in Instance understanding via explicit visual prompt Instruction Tuning. Inst-IT consists of a benchmark to diagnose multimodal instance-level understanding, a large-scale instruction-tuning dataset, and a continuous instruction-tuning training paradigm to effectively enhance spatial-temporal instance understanding capabilities of existing LMMs. Experimental results show that, with the boost of Inst-IT, our models not only achieve outstanding performance on Inst-IT Bench but also demonstrate significant improvements across various generic image and video understanding benchmarks. This highlights that our dataset not only boosts instance-level understanding but also strengthens the overall capabilities of generic image and video comprehension.

Mamba or RWKV: Exploring High-Quality and High-Efficiency Segment Anything Model

Transformer-based segmentation methods face the challenge of efficient inference when dealing with high-resolution images. Recently, several linear attention architectures, such as Mamba and RWKV, have attracted much attention as they can process long sequences efficiently. In this work, we focus on designing an efficient segment-anything model by exploring these different architectures. Specifically, we design a mixed backbone that contains convolution and RWKV operation, which achieves the best for both accuracy and efficiency. In addition, we design an efficient decoder to utilize the multiscale tokens to obtain high-quality masks. We denote our method as RWKV-SAM, a simple, effective, fast baseline for SAM-like models. Moreover, we build a benchmark containing various high-quality segmentation datasets and jointly train one efficient yet high-quality segmentation model using this benchmark. Based on the benchmark results, our RWKV-SAM achieves outstanding performance in efficiency and segmentation quality compared to transformers and other linear attention models. For example, compared with the same-scale transformer model, RWKV-SAM achieves more than 2x speedup and can achieve better segmentation performance on various datasets. In addition, RWKV-SAM outperforms recent vision Mamba models with better classification and semantic segmentation results. Code and models will be publicly available.

Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models

Iterative retrieval refers to the process in which the model continuously queries the retriever during generation to enhance the relevance of the retrieved knowledge, thereby improving the performance of Retrieval-Augmented Generation (RAG). Existing work typically employs few-shot prompting or manually constructed rules to implement iterative retrieval. This introduces additional inference overhead and overlooks the remarkable reasoning capabilities of Large Language Models (LLMs). In this paper, we introduce Auto-RAG, an autonomous iterative retrieval model centered on the LLM's powerful decision-making capabilities. Auto-RAG engages in multi-turn dialogues with the retriever, systematically planning retrievals and refining queries to acquire valuable knowledge. This process continues until sufficient external information is gathered, at which point the results are presented to the user. To this end, we develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval and fine-tuned the latest open-source LLMs. The experimental results indicate that Auto-RAG is capable of autonomous iterative interaction with the retriever, effectively leveraging the remarkable reasoning and decision-making abilities of LLMs, which lead to outstanding performance across six benchmarks. Further analysis reveals that Auto-RAG can autonomously adjust the number of iterations based on the difficulty of the questions and the utility of the retrieved knowledge, without requiring any human intervention. Moreover, Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability while providing users with a more intuitive experienceCode is available at \url{https://github.com/ictnlp/Auto-RAG.

Evaluation of OpenAI o1: Opportunities and Challenges of AGI

This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.

BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval

Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.

Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences

Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.

LAB-Bench: Measuring Capabilities of Language Models for Biology Research

There is widespread optimism that frontier Large Language Models (LLMs) and LLM-augmented systems have the potential to rapidly accelerate scientific discovery across disciplines. Today, many benchmarks exist to measure LLM knowledge and reasoning on textbook-style science questions, but few if any benchmarks are designed to evaluate language model performance on practical tasks required for scientific research, such as literature search, protocol planning, and data analysis. As a step toward building such benchmarks, we introduce the Language Agent Biology Benchmark (LAB-Bench), a broad dataset of over 2,400 multiple choice questions for evaluating AI systems on a range of practical biology research capabilities, including recall and reasoning over literature, interpretation of figures, access and navigation of databases, and comprehension and manipulation of DNA and protein sequences. Importantly, in contrast to previous scientific benchmarks, we expect that an AI system that can achieve consistently high scores on the more difficult LAB-Bench tasks would serve as a useful assistant for researchers in areas such as literature search and molecular cloning. As an initial assessment of the emergent scientific task capabilities of frontier language models, we measure performance of several against our benchmark and report results compared to human expert biology researchers. We will continue to update and expand LAB-Bench over time, and expect it to serve as a useful tool in the development of automated research systems going forward. A public subset of LAB-Bench is available for use at the following URL: https://huggingface.co/datasets/futurehouse/lab-bench

3D Medical Image Segmentation based on multi-scale MPU-Net

The high cure rate of cancer is inextricably linked to physicians' accuracy in diagnosis and treatment, therefore a model that can accomplish high-precision tumor segmentation has become a necessity in many applications of the medical industry. It can effectively lower the rate of misdiagnosis while considerably lessening the burden on clinicians. However, fully automated target organ segmentation is problematic due to the irregular stereo structure of 3D volume organs. As a basic model for this class of real applications, U-Net excels. It can learn certain global and local features, but still lacks the capacity to grasp spatial long-range relationships and contextual information at multiple scales. This paper proposes a tumor segmentation model MPU-Net for patient volume CT images, which is inspired by Transformer with a global attention mechanism. By combining image serialization with the Position Attention Module, the model attempts to comprehend deeper contextual dependencies and accomplish precise positioning. Each layer of the decoder is also equipped with a multi-scale module and a cross-attention mechanism. The capability of feature extraction and integration at different levels has been enhanced, and the hybrid loss function developed in this study can better exploit high-resolution characteristic information. Moreover, the suggested architecture is tested and evaluated on the Liver Tumor Segmentation Challenge 2017 (LiTS 2017) dataset. Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results. The dice, accuracy, precision, specificity, IOU, and MCC metrics for the best model segmentation results are 92.17%, 99.08%, 91.91%, 99.52%, 85.91%, and 91.74%, respectively. Outstanding indicators in various aspects illustrate the exceptional performance of this framework in automatic medical image segmentation.

GEB-1.3B: Open Lightweight Large Language Model

Recently developed large language models (LLMs) such as ChatGPT, Claude, and Llama have demonstrated impressive abilities, and even surpass human-level performance in several tasks. Despite their success, the resource-intensive demands of these models, requiring significant computational power for both training and inference, limit their deployment to high-performance servers. Additionally, the extensive calculation requirements of the models often lead to increased latency in response times. With the increasing need for LLMs to operate efficiently on CPUs, research about lightweight models that are optimized for CPU inference has emerged. In this work, we introduce GEB-1.3B, a lightweight LLM trained on 550 billion tokens in both Chinese and English languages. We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance. Additionally, we fine-tune the model using 10 million samples of instruction data to enhance alignment. GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B. Notably, the FP32 version of GEB-1.3B achieves commendable inference times on CPUs, with ongoing efforts to further enhance speed through advanced quantization techniques. The release of GEB-1.3B as an open-source model marks a significant contribution to the development of lightweight LLMs, promising to foster further research and innovation in the field.

Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant

The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.

BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models

Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.

PlacidDreamer: Advancing Harmony in Text-to-3D Generation

Recently, text-to-3D generation has attracted significant attention, resulting in notable performance enhancements. Previous methods utilize end-to-end 3D generation models to initialize 3D Gaussians, multi-view diffusion models to enforce multi-view consistency, and text-to-image diffusion models to refine details with score distillation algorithms. However, these methods exhibit two limitations. Firstly, they encounter conflicts in generation directions since different models aim to produce diverse 3D assets. Secondly, the issue of over-saturation in score distillation has not been thoroughly investigated and solved. To address these limitations, we propose PlacidDreamer, a text-to-3D framework that harmonizes initialization, multi-view generation, and text-conditioned generation with a single multi-view diffusion model, while simultaneously employing a novel score distillation algorithm to achieve balanced saturation. To unify the generation direction, we introduce the Latent-Plane module, a training-friendly plug-in extension that enables multi-view diffusion models to provide fast geometry reconstruction for initialization and enhanced multi-view images to personalize the text-to-image diffusion model. To address the over-saturation problem, we propose to view score distillation as a multi-objective optimization problem and introduce the Balanced Score Distillation algorithm, which offers a Pareto Optimal solution that achieves both rich details and balanced saturation. Extensive experiments validate the outstanding capabilities of our PlacidDreamer. The code is available at https://github.com/HansenHuang0823/PlacidDreamer.

Demystifying the Token Dynamics of Deep Selective State Space Models

Selective state space models (SSM), such as Mamba, have gained prominence for their effectiveness in modeling sequential data. Despite their outstanding empirical performance, a comprehensive theoretical understanding of deep selective SSM remains elusive, hindering their further development and adoption for applications that need high fidelity. In this paper, we investigate the dynamical properties of tokens in a pre-trained Mamba model. In particular, we derive the dynamical system governing the continuous-time limit of the Mamba model and characterize the asymptotic behavior of its solutions. In the one-dimensional case, we prove that only one of the following two scenarios happens: either all tokens converge to zero, or all tokens diverge to infinity. We provide criteria based on model parameters to determine when each scenario occurs. For the convergent scenario, we empirically verify that this scenario negatively impacts the model's performance. For the divergent scenario, we prove that different tokens will diverge to infinity at different rates, thereby contributing unequally to the updates during model training. Based on these investigations, we propose two refinements for the model: excluding the convergent scenario and reordering tokens based on their importance scores, both aimed at improving practical performance. Our experimental results validate these refinements, offering insights into enhancing Mamba's effectiveness in real-world applications.

PEM: Prototype-based Efficient MaskFormer for Image Segmentation

Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines.

CO2: Efficient Distributed Training with Full Communication-Computation Overlap

The fundamental success of large language models hinges upon the efficacious implementation of large-scale distributed training techniques. Nevertheless, building a vast, high-performance cluster featuring high-speed communication interconnectivity is prohibitively costly, and accessible only to prominent entities. In this work, we aim to lower this barrier and democratize large-scale training with limited bandwidth clusters. We propose a new approach called CO2 that introduces local-updating and asynchronous communication to the distributed data-parallel training, thereby facilitating the full overlap of COmunication with COmputation. CO2 is able to attain a high scalability even on extensive multi-node clusters constrained by very limited communication bandwidth. We further propose the staleness gap penalty and outer momentum clipping techniques together with CO2 to bolster its convergence and training stability. Besides, CO2 exhibits seamless integration with well-established ZeRO-series optimizers which mitigate memory consumption of model states with large model training. We also provide a mathematical proof of convergence, accompanied by the establishment of a stringent upper bound. Furthermore, we validate our findings through an extensive set of practical experiments encompassing a wide range of tasks in the fields of computer vision and natural language processing. These experiments serve to demonstrate the capabilities of CO2 in terms of convergence, generalization, and scalability when deployed across configurations comprising up to 128 A100 GPUs. The outcomes emphasize the outstanding capacity of CO2 to hugely improve scalability, no matter on clusters with 800Gbps RDMA or 80Gbps TCP/IP inter-node connections.

Improving GAN Training via Feature Space Shrinkage

Due to the outstanding capability for data generation, Generative Adversarial Networks (GANs) have attracted considerable attention in unsupervised learning. However, training GANs is difficult, since the training distribution is dynamic for the discriminator, leading to unstable image representation. In this paper, we address the problem of training GANs from a novel perspective, i.e., robust image classification. Motivated by studies on robust image representation, we propose a simple yet effective module, namely AdaptiveMix, for GANs, which shrinks the regions of training data in the image representation space of the discriminator. Considering it is intractable to directly bound feature space, we propose to construct hard samples and narrow down the feature distance between hard and easy samples. The hard samples are constructed by mixing a pair of training images. We evaluate the effectiveness of our AdaptiveMix with widely-used and state-of-the-art GAN architectures. The evaluation results demonstrate that our AdaptiveMix can facilitate the training of GANs and effectively improve the image quality of generated samples. We also show that our AdaptiveMix can be further applied to image classification and Out-Of-Distribution (OOD) detection tasks, by equipping it with state-of-the-art methods. Extensive experiments on seven publicly available datasets show that our method effectively boosts the performance of baselines. The code is publicly available at https://github.com/WentianZhang-ML/AdaptiveMix.

LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding

Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .

Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models

Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, in this paper we design a unified framework to measure object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to conduct hallucination evaluation on (object, relation, object) triplets extracted from LVLMs' responses, and thus, could be easily generalized to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. We conduct comprehensive evaluations on Tri-HE and observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple yet effective training-free approach to mitigate hallucinations for LVLMs, with which, we exceed all open-sourced counterparts on Tri-HE, achieving comparable performance with the powerful GPT-4V. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.

AttackGNN: Red-Teaming GNNs in Hardware Security Using Reinforcement Learning

Machine learning has shown great promise in addressing several critical hardware security problems. In particular, researchers have developed novel graph neural network (GNN)-based techniques for detecting intellectual property (IP) piracy, detecting hardware Trojans (HTs), and reverse engineering circuits, to name a few. These techniques have demonstrated outstanding accuracy and have received much attention in the community. However, since these techniques are used for security applications, it is imperative to evaluate them thoroughly and ensure they are robust and do not compromise the security of integrated circuits. In this work, we propose AttackGNN, the first red-team attack on GNN-based techniques in hardware security. To this end, we devise a novel reinforcement learning (RL) agent that generates adversarial examples, i.e., circuits, against the GNN-based techniques. We overcome three challenges related to effectiveness, scalability, and generality to devise a potent RL agent. We target five GNN-based techniques for four crucial classes of problems in hardware security: IP piracy, detecting/localizing HTs, reverse engineering, and hardware obfuscation. Through our approach, we craft circuits that fool all GNNs considered in this work. For instance, to evade IP piracy detection, we generate adversarial pirated circuits that fool the GNN-based defense into classifying our crafted circuits as not pirated. For attacking HT localization GNN, our attack generates HT-infested circuits that fool the defense on all tested circuits. We obtain a similar 100% success rate against GNNs for all classes of problems.

Leveraging Large Language Models for Node Generation in Few-Shot Learning on Text-Attributed Graphs

Text-attributed graphs have recently garnered significant attention due to their wide range of applications in web domains. Existing methodologies employ word embedding models for acquiring text representations as node features, which are subsequently fed into Graph Neural Networks (GNNs) for training. Recently, the advent of Large Language Models (LLMs) has introduced their powerful capabilities in information retrieval and text generation, which can greatly enhance the text attributes of graph data. Furthermore, the acquisition and labeling of extensive datasets are both costly and time-consuming endeavors. Consequently, few-shot learning has emerged as a crucial problem in the context of graph learning tasks. In order to tackle this challenge, we propose a lightweight paradigm called LLM4NG, which adopts a plug-and-play approach to empower text-attributed graphs through node generation using LLMs. Specifically, we utilize LLMs to extract semantic information from the labels and generate samples that belong to these categories as exemplars. Subsequently, we employ an edge predictor to capture the structural information inherent in the raw dataset and integrate the newly generated samples into the original graph. This approach harnesses LLMs for enhancing class-level information and seamlessly introduces labeled nodes and edges without modifying the raw dataset, thereby facilitating the node classification task in few-shot scenarios. Extensive experiments demonstrate the outstanding performance of our proposed paradigm, particularly in low-shot scenarios. For instance, in the 1-shot setting of the ogbn-arxiv dataset, LLM4NG achieves a 76% improvement over the baseline model.

Neural Common Neighbor with Completion for Link Prediction

Despite its outstanding performance in various graph tasks, vanilla Message Passing Neural Network (MPNN) usually fails in link prediction tasks, as it only uses representations of two individual target nodes and ignores the pairwise relation between them. To capture the pairwise relations, some models add manual features to the input graph and use the output of MPNN to produce pairwise representations. In contrast, others directly use manual features as pairwise representations. Though this simplification avoids applying a GNN to each link individually and thus improves scalability, these models still have much room for performance improvement due to the hand-crafted and unlearnable pairwise features. To upgrade performance while maintaining scalability, we propose Neural Common Neighbor (NCN), which uses learnable pairwise representations. To further boost NCN, we study the unobserved link problem. The incompleteness of the graph is ubiquitous and leads to distribution shifts between the training and test set, loss of common neighbor information, and performance degradation of models. Therefore, we propose two intervention methods: common neighbor completion and target link removal. Combining the two methods with NCN, we propose Neural Common Neighbor with Completion (NCNC). NCN and NCNC outperform recent strong baselines by large margins. NCNC achieves state-of-the-art performance in link prediction tasks. Our code is available at https://github.com/GraphPKU/NeuralCommonNeighbor.

Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation

The integration of Vector Quantised Variational AutoEncoder (VQ-VAE) with autoregressive models as generation part has yielded high-quality results on image generation. However, the autoregressive models will strictly follow the progressive scanning order during the sampling phase. This leads the existing VQ series models to hardly escape the trap of lacking global information. Denoising Diffusion Probabilistic Models (DDPM) in the continuous domain have shown a capability to capture the global context, while generating high-quality images. In the discrete state space, some works have demonstrated the potential to perform text generation and low resolution image generation. We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context, which compensates for the deficiency of the classical autoregressive model along pixel space. Meanwhile, the integration of the discrete VAE with the diffusion model resolves the drawback of conventional autoregressive models being oversized, and the diffusion model which demands excessive time in the sampling process when generating images. It is found that the quality of the generated images is heavily dependent on the discrete visual codebook. Extensive experiments demonstrate that the proposed Vector Quantised Discrete Diffusion Model (VQ-DDM) is able to achieve comparable performance to top-tier methods with low complexity. It also demonstrates outstanding advantages over other vectors quantised with autoregressive models in terms of image inpainting tasks without additional training.

Retrieve Anything To Augment Large Language Models

Large language models (LLMs) face significant challenges stemming from the inherent limitations in knowledge, memory, alignment, and action. These challenges cannot be addressed by LLMs alone, but should rely on assistance from the external world, such as knowledge base, memory store, demonstration examples, and tools. Retrieval augmentation stands as a vital mechanism for bridging the gap between LLMs and the external assistance. However, conventional methods encounter two pressing issues. On one hand, the general-purpose retrievers are not properly optimized for the retrieval augmentation of LLMs. On the other hand, the task-specific retrievers lack the required versatility, hindering their performance across the diverse retrieval augmentation scenarios. In this work, we present a novel approach, the LLM Embedder, which comprehensively support the diverse needs of LLMs' retrieval augmentation with one unified embedding model. Training such an unified model is non-trivial, as various retrieval tasks aim to capture distinct semantic relationships, often subject to mutual interference. To address this challenge, we systematically optimize our training methodology. This includes reward formulation based on LLMs' feedback, the stabilization of knowledge distillation, multi-task fine-tuning with explicit instructions, and the use of homogeneous in-batch negative sampling. These optimization strategies contribute to the outstanding empirical performance of the LLM-Embedder. Notably, it yields remarkable enhancements in retrieval augmentation for LLMs, surpassing both general-purpose and task-specific retrievers in various evaluation scenarios. This project is made publicly available at https://github.com/FlagOpen/FlagEmbedding.

HarmoniCa: Harmonizing Training and Inference for Better Feature Cache in Diffusion Transformer Acceleration

Diffusion Transformers (DiTs) have gained prominence for outstanding scalability and extraordinary performance in generative tasks. However, their considerable inference costs impede practical deployment. The feature cache mechanism, which involves storing and retrieving redundant computations across timesteps, holds promise for reducing per-step inference time in diffusion models. Most existing caching methods for DiT are manually designed. Although the learning-based approach attempts to optimize strategies adaptively, it suffers from discrepancies between training and inference, which hampers both the performance and acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies primarily stem from two aspects: (1) Prior Timestep Disregard, where training ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch, where the training target (align predicted noise in each timestep) deviates from the goal of inference (generate the high-quality image). To alleviate these discrepancies, we propose HarmoniCa, a novel method that Harmonizes training and inference with a novel learning-based Caching framework built upon Step-Wise Denoising Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process, enabling the model to leverage information from prior timesteps during training, similar to the way it operates during inference. Furthermore, we design IEPO, which integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature. Therefore, IEPO helps balance final image quality and cache utilization, resolving the issue of training that only considers the impact of cache usage on the predicted output at each timestep.

How Stable is Stable Diffusion under Recursive InPainting (RIP)?

Generative Artificial Intelligence image models have achieved outstanding performance in text-to-image generation and other tasks, such as inpainting that completes images with missing fragments. The performance of inpainting can be accurately measured by taking an image, removing some fragments, performing the inpainting to restore them, and comparing the results with the original image. Interestingly, inpainting can also be applied recursively, starting from an image, removing some parts, applying inpainting to reconstruct the image, and then starting the inpainting process again on the reconstructed image, and so forth. This process of recursively applying inpainting can lead to an image that is similar or completely different from the original one, depending on the fragments that are removed and the ability of the model to reconstruct them. Intuitively, stability, understood as the capability to recover an image that is similar to the original one even after many recursive inpainting operations, is a desirable feature and can be used as an additional performance metric for inpainting. The concept of stability is also being studied in the context of recursive training of generative AI models with their own data. Recursive inpainting is an inference-only recursive process whose understanding may complement ongoing efforts to study the behavior of generative AI models under training recursion. In this paper, the impact of recursive inpainting is studied for one of the most widely used image models: Stable Diffusion. The results show that recursive inpainting can lead to image collapse, so ending with a nonmeaningful image, and that the outcome depends on several factors such as the type of image, the size of the inpainting masks, and the number of iterations.

LoCoCo: Dropping In Convolutions for Long Context Compression

This paper tackles the memory hurdle of processing long context sequences in Large Language Models (LLMs), by presenting a novel approach, Dropping In Convolutions for Long Context Compression (LoCoCo). LoCoCo employs only a fixed-size Key-Value (KV) cache, and can enhance efficiency in both inference and fine-tuning stages. Diverging from prior methods that selectively drop KV pairs based on heuristics, LoCoCo leverages a data-driven adaptive fusion technique, blending previous KV pairs with incoming tokens to minimize the loss of contextual information and ensure accurate attention modeling. This token integration is achieved through injecting one-dimensional convolutional kernels that dynamically calculate mixing weights for each KV cache slot. Designed for broad compatibility with existing LLM frameworks, LoCoCo allows for straightforward "drop-in" integration without needing architectural modifications, while incurring minimal tuning overhead. Experiments demonstrate that LoCoCo maintains consistently outstanding performance across various context lengths and can achieve a high context compression rate during both inference and fine-tuning phases. During inference, we successfully compressed up to 3482 tokens into a 128-size KV cache, while retaining comparable performance to the full sequence - an accuracy improvement of up to 0.2791 compared to baselines at the same cache size. During post-training tuning, we also effectively extended the context length from 4K to 32K using a KV cache of fixed size 512, achieving performance similar to fine-tuning with entire sequences.

Distilling Large Vision-Language Model with Out-of-Distribution Generalizability

Large vision-language models have achieved outstanding performance, but their size and computational requirements make their deployment on resource-constrained devices and time-sensitive tasks impractical. Model distillation, the process of creating smaller, faster models that maintain the performance of larger models, is a promising direction towards the solution. This paper investigates the distillation of visual representations in large teacher vision-language models into lightweight student models using a small- or mid-scale dataset. Notably, this study focuses on open-vocabulary out-of-distribution (OOD) generalization, a challenging problem that has been overlooked in previous model distillation literature. We propose two principles from vision and language modality perspectives to enhance student's OOD generalization: (1) by better imitating teacher's visual representation space, and carefully promoting better coherence in vision-language alignment with the teacher; (2) by enriching the teacher's language representations with informative and finegrained semantic attributes to effectively distinguish between different labels. We propose several metrics and conduct extensive experiments to investigate their techniques. The results demonstrate significant improvements in zero-shot and few-shot student performance on open-vocabulary out-of-distribution classification, highlighting the effectiveness of our proposed approaches. Code released at https://github.com/xuanlinli17/large_vlm_distillation_ood

Backpropagation-free Training of Deep Physical Neural Networks

Recent years have witnessed the outstanding success of deep learning in various fields such as vision and natural language processing. This success is largely indebted to the massive size of deep learning models that is expected to increase unceasingly. This growth of the deep learning models is accompanied by issues related to their considerable energy consumption, both during the training and inference phases, as well as their scalability. Although a number of work based on unconventional physical systems have been proposed which addresses the issue of energy efficiency in the inference phase, efficient training of deep learning models has remained unaddressed. So far, training of digital deep learning models mainly relies on backpropagation, which is not suitable for physical implementation as it requires perfect knowledge of the computation performed in the so-called forward pass of the neural network. Here, we tackle this issue by proposing a simple deep neural network architecture augmented by a biologically plausible learning algorithm, referred to as "model-free forward-forward training". The proposed architecture enables training deep physical neural networks consisting of layers of physical nonlinear systems, without requiring detailed knowledge of the nonlinear physical layers' properties. We show that our method outperforms state-of-the-art hardware-aware training methods by improving training speed, decreasing digital computations, and reducing power consumption in physical systems. We demonstrate the adaptability of the proposed method, even in systems exposed to dynamic or unpredictable external perturbations. To showcase the universality of our approach, we train diverse wave-based physical neural networks that vary in the underlying wave phenomenon and the type of non-linearity they use, to perform vowel and image classification tasks experimentally.

Prompting Is Programming: A Query Language for Large Language Models

Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL(short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (26-85% cost savings).

Gradient-Free Classifier Guidance for Diffusion Model Sampling

Image generation using diffusion models have demonstrated outstanding learning capabilities, effectively capturing the full distribution of the training dataset. They are known to generate wide variations in sampled images, albeit with a trade-off in image fidelity. Guided sampling methods, such as classifier guidance (CG) and classifier-free guidance (CFG), focus sampling in well-learned high-probability regions to generate images of high fidelity, but each has its limitations. CG is computationally expensive due to the use of back-propagation for classifier gradient descent, while CFG, being gradient-free, is more efficient but compromises class label alignment compared to CG. In this work, we propose an efficient guidance method that fully utilizes a pre-trained classifier without using gradient descent. By using the classifier solely in inference mode, a time-adaptive reference class label and corresponding guidance scale are determined at each time step for guided sampling. Experiments on both class-conditioned and text-to-image generation diffusion models demonstrate that the proposed Gradient-free Classifier Guidance (GFCG) method consistently improves class prediction accuracy. We also show GFCG to be complementary to other guided sampling methods like CFG. When combined with the state-of-the-art Autoguidance (ATG), without additional computational overhead, it enhances image fidelity while preserving diversity. For ImageNet 512times512, we achieve a record FD_{DINOv2} of 23.09, while simultaneously attaining a higher classification Precision (94.3%) compared to ATG (90.2%)

Text-driven Human Motion Generation with Motion Masked Diffusion Model

Text-driven human motion generation is a multimodal task that synthesizes human motion sequences conditioned on natural language. It requires the model to satisfy textual descriptions under varying conditional inputs, while generating plausible and realistic human actions with high diversity. Existing diffusion model-based approaches have outstanding performance in the diversity and multimodality of generation. However, compared to autoregressive methods that train motion encoders before inference, diffusion methods lack in fitting the distribution of human motion features which leads to an unsatisfactory FID score. One insight is that the diffusion model lack the ability to learn the motion relations among spatio-temporal semantics through contextual reasoning. To solve this issue, in this paper, we proposed Motion Masked Diffusion Model (MMDM), a novel human motion masked mechanism for diffusion model to explicitly enhance its ability to learn the spatio-temporal relationships from contextual joints among motion sequences. Besides, considering the complexity of human motion data with dynamic temporal characteristics and spatial structure, we designed two mask modeling strategies: time frames mask and body parts mask. During training, MMDM masks certain tokens in the motion embedding space. Then, the diffusion decoder is designed to learn the whole motion sequence from masked embedding in each sampling step, this allows the model to recover a complete sequence from incomplete representations. Experiments on HumanML3D and KIT-ML dataset demonstrate that our mask strategy is effective by balancing motion quality and text-motion consistency.

ESP-MedSAM: Efficient Self-Prompting SAM for Universal Image Segmentation

The Segment Anything Model (SAM) has demonstrated outstanding adaptation to medical image segmentation but still faces three major challenges. Firstly, the huge computational costs of SAM limit its real-world applicability. Secondly, SAM depends on manual annotations (e.g., points, boxes) as prompts, which are laborious and impractical in clinical scenarios. Thirdly, SAM handles all segmentation targets equally, which is suboptimal for diverse medical modalities with inherent heterogeneity. To address these issues, we propose an Efficient Self-Prompting SAM for universal medical image segmentation, named ESP-MedSAM. We devise a Multi-Modal Decoupled Knowledge Distillation (MMDKD) strategy to distil common image knowledge and domain-specific medical knowledge from the foundation model to train a lightweight image encoder and a modality controller. Further, they combine with the additionally introduced Self-Patch Prompt Generator (SPPG) and Query-Decoupled Modality Decoder (QDMD) to construct ESP-MedSAM. Specifically, SPPG aims to generate a set of patch prompts automatically and QDMD leverages a one-to-one strategy to provide an independent decoding channel for every modality. Extensive experiments indicate that ESP-MedSAM outperforms state-of-the-arts in diverse medical imaging segmentation takes, displaying superior zero-shot learning and modality transfer ability. Especially, our framework uses only 31.4% parameters compared to SAM-Base.

INS-MMBench: A Comprehensive Benchmark for Evaluating LVLMs' Performance in Insurance

Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in various general multimodal applications such as image recognition and visual reasoning, and have also shown promising potential in specialized domains. However, the application potential of LVLMs in the insurance domain-characterized by rich application scenarios and abundant multimodal data-has not been effectively explored. There is no systematic review of multimodal tasks in the insurance domain, nor a benchmark specifically designed to evaluate the capabilities of LVLMs in insurance. This gap hinders the development of LVLMs within the insurance domain. In this paper, we systematically review and distill multimodal tasks for four representative types of insurance: auto insurance, property insurance, health insurance, and agricultural insurance. We propose INS-MMBench, the first comprehensive LVLMs benchmark tailored for the insurance domain. INS-MMBench comprises a total of 2.2K thoroughly designed multiple-choice questions, covering 12 meta-tasks and 22 fundamental tasks. Furthermore, we evaluate multiple representative LVLMs, including closed-source models such as GPT-4o and open-source models like BLIP-2. This evaluation not only validates the effectiveness of our benchmark but also provides an in-depth performance analysis of current LVLMs on various multimodal tasks in the insurance domain. We hope that INS-MMBench will facilitate the further application of LVLMs in the insurance domain and inspire interdisciplinary development. Our dataset and evaluation code are available at https://github.com/FDU-INS/INS-MMBench.

VLind-Bench: Measuring Language Priors in Large Vision-Language Models

Large Vision-Language Models (LVLMs) have demonstrated outstanding performance across various multimodal tasks. However, they suffer from a problem known as language prior, where responses are generated based solely on textual patterns while disregarding image information. Addressing the issue of language prior is crucial, as it can lead to undesirable biases or hallucinations when dealing with images that are out of training distribution. Despite its importance, current methods for accurately measuring language priors in LVLMs are poorly studied. Although existing benchmarks based on counterfactual or out-of-distribution images can partially be used to measure language priors, they fail to disentangle language priors from other confounding factors. To this end, we propose a new benchmark called VLind-Bench, which is the first benchmark specifically designed to measure the language priors, or blindness, of LVLMs. It not only includes tests on counterfactual images to assess language priors but also involves a series of tests to evaluate more basic capabilities such as commonsense knowledge, visual perception, and commonsense biases. For each instance in our benchmark, we ensure that all these basic tests are passed before evaluating the language priors, thereby minimizing the influence of other factors on the assessment. The evaluation and analysis of recent LVLMs in our benchmark reveal that almost all models exhibit a significant reliance on language priors, presenting a strong challenge in the field.

A Unified Sampling Framework for Solver Searching of Diffusion Probabilistic Models

Recent years have witnessed the rapid progress and broad application of diffusion probabilistic models (DPMs). Sampling from DPMs can be viewed as solving an ordinary differential equation (ODE). Despite the promising performance, the generation of DPMs usually consumes much time due to the large number of function evaluations (NFE). Though recent works have accelerated the sampling to around 20 steps with high-order solvers, the sample quality with less than 10 NFE can still be improved. In this paper, we propose a unified sampling framework (USF) to study the optional strategies for solver. Under this framework, we further reveal that taking different solving strategies at different timesteps may help further decrease the truncation error, and a carefully designed solver schedule has the potential to improve the sample quality by a large margin. Therefore, we propose a new sampling framework based on the exponential integral formulation that allows free choices of solver strategy at each step and design specific decisions for the framework. Moreover, we propose S^3, a predictor-based search method that automatically optimizes the solver schedule to get a better time-quality trade-off of sampling. We demonstrate that S^3 can find outstanding solver schedules which outperform the state-of-the-art sampling methods on CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset, outperforming the SOTA method significantly. We further apply S^3 to Stable-Diffusion model and get an acceleration ratio of 2times, showing the feasibility of sampling in very few steps without retraining the neural network.

JCoLA: Japanese Corpus of Linguistic Acceptability

Neural language models have exhibited outstanding performance in a range of downstream tasks. However, there is limited understanding regarding the extent to which these models internalize syntactic knowledge, so that various datasets have recently been constructed to facilitate syntactic evaluation of language models across languages. In this paper, we introduce JCoLA (Japanese Corpus of Linguistic Acceptability), which consists of 10,020 sentences annotated with binary acceptability judgments. Specifically, those sentences are manually extracted from linguistics textbooks, handbooks and journal articles, and split into in-domain data (86 %; relatively simple acceptability judgments extracted from textbooks and handbooks) and out-of-domain data (14 %; theoretically significant acceptability judgments extracted from journal articles), the latter of which is categorized by 12 linguistic phenomena. We then evaluate the syntactic knowledge of 9 different types of Japanese language models on JCoLA. The results demonstrated that several models could surpass human performance for the in-domain data, while no models were able to exceed human performance for the out-of-domain data. Error analyses by linguistic phenomena further revealed that although neural language models are adept at handling local syntactic dependencies like argument structure, their performance wanes when confronted with long-distance syntactic dependencies like verbal agreement and NPI licensing.

ArtFusion: Arbitrary Style Transfer using Dual Conditional Latent Diffusion Models

Arbitrary Style Transfer (AST) aims to transform images by adopting the style from any selected artwork. Nonetheless, the need to accommodate diverse and subjective user preferences poses a significant challenge. While some users wish to preserve distinct content structures, others might favor a more pronounced stylization. Despite advances in feed-forward AST methods, their limited customizability hinders their practical application. We propose a new approach, ArtFusion, which provides a flexible balance between content and style. In contrast to traditional methods reliant on biased similarity losses, ArtFusion utilizes our innovative Dual Conditional Latent Diffusion Probabilistic Models (Dual-cLDM). This approach mitigates repetitive patterns and enhances subtle artistic aspects like brush strokes and genre-specific features. Despite the promising results of conditional diffusion probabilistic models (cDM) in various generative tasks, their introduction to style transfer is challenging due to the requirement for paired training data. ArtFusion successfully navigates this issue, offering more practical and controllable stylization. A key element of our approach involves using a single image for both content and style during model training, all the while maintaining effective stylization during inference. ArtFusion outperforms existing approaches on outstanding controllability and faithful presentation of artistic details, providing evidence of its superior style transfer capabilities. Furthermore, the Dual-cLDM utilized in ArtFusion carries the potential for a variety of complex multi-condition generative tasks, thus greatly broadening the impact of our research.

Boosting EfficientNets Ensemble Performance via Pseudo-Labels and Synthetic Images by pix2pixHD for Infection and Ischaemia Classification in Diabetic Foot Ulcers

Diabetic foot ulcers are a common manifestation of lesions on the diabetic foot, a syndrome acquired as a long-term complication of diabetes mellitus. Accompanying neuropathy and vascular damage promote acquisition of pressure injuries and tissue death due to ischaemia. Affected areas are prone to infections, hindering the healing progress. The research at hand investigates an approach on classification of infection and ischaemia, conducted as part of the Diabetic Foot Ulcer Challenge (DFUC) 2021. Different models of the EfficientNet family are utilized in ensembles. An extension strategy for the training data is applied, involving pseudo-labeling for unlabeled images, and extensive generation of synthetic images via pix2pixHD to cope with severe class imbalances. The resulting extended training dataset features 8.68 times the size of the baseline and shows a real to synthetic image ratio of 1:3. Performances of models and ensembles trained on the baseline and extended training dataset are compared. Synthetic images featured a broad qualitative variety. Results show that models trained on the extended training dataset as well as their ensemble benefit from the large extension. F1-Scores for rare classes receive outstanding boosts, while those for common classes are either not harmed or boosted moderately. A critical discussion concretizes benefits and identifies limitations, suggesting improvements. The work concludes that classification performance of individual models as well as that of ensembles can be boosted utilizing synthetic images. Especially performance for rare classes benefits notably.

Rethinking Supervised Pre-training for Better Downstream Transferring

The pretrain-finetune paradigm has shown outstanding performance on many applications of deep learning, where a model is pre-trained on a upstream large dataset (e.g. ImageNet), and is then fine-tuned to different downstream tasks. Though for most cases, the pre-training stage is conducted based on supervised methods, recent works on self-supervised pre-training have shown powerful transferability and even outperform supervised pre-training on multiple downstream tasks. It thus remains an open question how to better generalize supervised pre-training model to downstream tasks. In this paper, we argue that the worse transferability of existing supervised pre-training methods arise from the negligence of valuable intra-class semantic difference. This is because these methods tend to push images from the same class close to each other despite of the large diversity in their visual contents, a problem to which referred as "overfit of upstream tasks". To alleviate this problem, we propose a new supervised pre-training method based on Leave-One-Out K-Nearest-Neighbor, or LOOK for short. It relieves the problem of overfitting upstream tasks by only requiring each image to share its class label with most of its k nearest neighbors, thus allowing each class to exhibit a multi-mode distribution and consequentially preserving part of intra-class difference for better transferring to downstream tasks. We developed efficient implementation of the proposed method that scales well to large datasets. Experimental studies on multiple downstream tasks show that LOOK outperforms other state-of-the-art methods for supervised and self-supervised pre-training.

Understanding the Behaviour of Contrastive Loss

Unsupervised contrastive learning has achieved outstanding success, while the mechanism of contrastive loss has been less studied. In this paper, we concentrate on the understanding of the behaviours of unsupervised contrastive loss. We will show that the contrastive loss is a hardness-aware loss function, and the temperature {\tau} controls the strength of penalties on hard negative samples. The previous study has shown that uniformity is a key property of contrastive learning. We build relations between the uniformity and the temperature {\tau} . We will show that uniformity helps the contrastive learning to learn separable features, however excessive pursuit to the uniformity makes the contrastive loss not tolerant to semantically similar samples, which may break the underlying semantic structure and be harmful to the formation of features useful for downstream tasks. This is caused by the inherent defect of the instance discrimination objective. Specifically, instance discrimination objective tries to push all different instances apart, ignoring the underlying relations between samples. Pushing semantically consistent samples apart has no positive effect for acquiring a prior informative to general downstream tasks. A well-designed contrastive loss should have some extents of tolerance to the closeness of semantically similar samples. Therefore, we find that the contrastive loss meets a uniformity-tolerance dilemma, and a good choice of temperature can compromise these two properties properly to both learn separable features and tolerant to semantically similar samples, improving the feature qualities and the downstream performances.

How convolutional neural network see the world - A survey of convolutional neural network visualization methods

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

O1 Embedder: Let Retrievers Think Before Action

The growing power of large language models (LLMs) has revolutionized how people access and utilize information. Notably, the LLMs excel at performing fine-grained data representation, which facilitates precise retrieval of information. They also generate high-quality answers based on external references, enabling the production of useful knowledge. The recent introduction of reasoning models, like OpenAI O1 and DeepSeek R1, marks another leap forward, highlighting LLMs' ability to think progressively before delivering final answers. This breakthrough significantly improves the ability to address complex tasks, e.g., coding and math proofs. Inspired by this progress, we aim to develop similar capabilities for retrieval models, which hold great promise for tackling critical challenges in the field, including multi-task retrieval, zero-shot retrieval, and tasks requiring intensive reasoning of complex relationships. With this motivation, we propose a novel approach called O1 Embedder, which generates useful thoughts for the input query before making retrieval for the target documents. To realize this objective, we conquer two technical difficulties. First, we design a data synthesis workflow, creating training signals for O1 Embedder by generating initial thoughts from an LLM-expert and subsequently refining them using a retrieval committee. Second, we optimize the training process, enabling a pre-trained model to be jointly fine-tuned to generate retrieval thoughts via behavior cloning and perform dense retrieval through contrastive learning. Our approach is evaluated by comprehensive experiments, where substantial improvements are achieved across 12 popular datasets, spanning both in-domain and out-of-domain scenarios. These results highlight O1 Embedder's remarkable accuracy and generalizability, paving the way for the development of next-generation IR foundation models.

The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4

In recent years, groundbreaking advancements in natural language processing have culminated in the emergence of powerful large language models (LLMs), which have showcased remarkable capabilities across a vast array of domains, including the understanding, generation, and translation of natural language, and even tasks that extend beyond language processing. In this report, we delve into the performance of LLMs within the context of scientific discovery, focusing on GPT-4, the state-of-the-art language model. Our investigation spans a diverse range of scientific areas encompassing drug discovery, biology, computational chemistry (density functional theory (DFT) and molecular dynamics (MD)), materials design, and partial differential equations (PDE). Evaluating GPT-4 on scientific tasks is crucial for uncovering its potential across various research domains, validating its domain-specific expertise, accelerating scientific progress, optimizing resource allocation, guiding future model development, and fostering interdisciplinary research. Our exploration methodology primarily consists of expert-driven case assessments, which offer qualitative insights into the model's comprehension of intricate scientific concepts and relationships, and occasionally benchmark testing, which quantitatively evaluates the model's capacity to solve well-defined domain-specific problems. Our preliminary exploration indicates that GPT-4 exhibits promising potential for a variety of scientific applications, demonstrating its aptitude for handling complex problem-solving and knowledge integration tasks. Broadly speaking, we evaluate GPT-4's knowledge base, scientific understanding, scientific numerical calculation abilities, and various scientific prediction capabilities.

SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs

Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.

M^{3}-20M: A Large-Scale Multi-Modal Molecule Dataset for AI-driven Drug Design and Discovery

This paper introduces M^{3}-20M, a large-scale Multi-Modal Molecular dataset that contains over 20 million molecules. Designed to support AI-driven drug design and discovery, M^{3}-20M is 71 times more in the number of molecules than the largest existing dataset, providing an unprecedented scale that can highly benefit training or fine-tuning large (language) models with superior performance for drug design and discovery. This dataset integrates one-dimensional SMILES, two-dimensional molecular graphs, three-dimensional molecular structures, physicochemical properties, and textual descriptions collected through web crawling and generated by using GPT-3.5, offering a comprehensive view of each molecule. To demonstrate the power of M^{3}-20M in drug design and discovery, we conduct extensive experiments on two key tasks: molecule generation and molecular property prediction, using large language models including GLM4, GPT-3.5, and GPT-4. Our experimental results show that M^{3}-20M can significantly boost model performance in both tasks. Specifically, it enables the models to generate more diverse and valid molecular structures and achieve higher property prediction accuracy than the existing single-modal datasets, which validates the value and potential of M^{3}-20M in supporting AI-driven drug design and discovery. The dataset is available at https://github.com/bz99bz/M-3.

TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding

With large language models (LLMs) widely deployed in long content generation recently, there has emerged an increasing demand for efficient long-sequence inference support. However, key-value (KV) cache, which is stored to avoid re-computation, has emerged as a critical bottleneck by growing linearly in size with the sequence length. Due to the auto-regressive nature of LLMs, the entire KV cache will be loaded for every generated token, resulting in low utilization of computational cores and high latency. While various compression methods for KV cache have been proposed to alleviate this issue, they suffer from degradation in generation quality. We introduce TriForce, a hierarchical speculative decoding system that is scalable to long sequence generation. This approach leverages the original model weights and dynamic sparse KV cache via retrieval as a draft model, which serves as an intermediate layer in the hierarchy and is further speculated by a smaller model to reduce its drafting latency. TriForce not only facilitates impressive speedups for Llama2-7B-128K, achieving up to 2.31times on an A100 GPU but also showcases scalability in handling even longer contexts. For the offloading setting on two RTX 4090 GPUs, TriForce achieves 0.108s/tokenx2014only half as slow as the auto-regressive baseline on an A100, which attains 7.78times on our optimized offloading system. Additionally, TriForce performs 4.86times than DeepSpeed-Zero-Inference on a single RTX 4090 GPU. TriForce's robustness is highlighted by its consistently outstanding performance across various temperatures. The code is available at https://github.com/Infini-AI-Lab/TriForce.

Florence: A New Foundation Model for Computer Vision

Automated visual understanding of our diverse and open world demands computer vision models to generalize well with minimal customization for specific tasks, similar to human vision. Computer vision foundation models, which are trained on diverse, large-scale dataset and can be adapted to a wide range of downstream tasks, are critical for this mission to solve real-world computer vision applications. While existing vision foundation models such as CLIP, ALIGN, and Wu Dao 2.0 focus mainly on mapping images and textual representations to a cross-modal shared representation, we introduce a new computer vision foundation model, Florence, to expand the representations from coarse (scene) to fine (object), from static (images) to dynamic (videos), and from RGB to multiple modalities (caption, depth). By incorporating universal visual-language representations from Web-scale image-text data, our Florence model can be easily adapted for various computer vision tasks, such as classification, retrieval, object detection, VQA, image caption, video retrieval and action recognition. Moreover, Florence demonstrates outstanding performance in many types of transfer learning: fully sampled fine-tuning, linear probing, few-shot transfer and zero-shot transfer for novel images and objects. All of these properties are critical for our vision foundation model to serve general purpose vision tasks. Florence achieves new state-of-the-art results in majority of 44 representative benchmarks, e.g., ImageNet-1K zero-shot classification with top-1 accuracy of 83.74 and the top-5 accuracy of 97.18, 62.4 mAP on COCO fine tuning, 80.36 on VQA, and 87.8 on Kinetics-600.

Grounding Text-to-Image Diffusion Models for Controlled High-Quality Image Generation

Text-to-image (T2I) generative diffusion models have demonstrated outstanding performance in synthesizing diverse, high-quality visuals from text captions. Several layout-to-image models have been developed to control the generation process by utilizing a wide range of layouts, such as segmentation maps, edges, and human keypoints. In this work, we propose ObjectDiffusion, a model that conditions T2I diffusion models on semantic and spatial grounding information, enabling the precise rendering and placement of desired objects in specific locations defined by bounding boxes. To achieve this, we make substantial modifications to the network architecture introduced in ControlNet to integrate it with the grounding method proposed in GLIGEN. We fine-tune ObjectDiffusion on the COCO2017 training dataset and evaluate it on the COCO2017 validation dataset. Our model improves the precision and quality of controllable image generation, achieving an AP_{50} of 46.6, an AR of 44.5, and an FID of 19.8, outperforming the current SOTA model trained on open-source datasets across all three metrics. ObjectDiffusion demonstrates a distinctive capability in synthesizing diverse, high-quality, high-fidelity images that seamlessly conform to the semantic and spatial control layout. Evaluated in qualitative and quantitative tests, ObjectDiffusion exhibits remarkable grounding capabilities in closed-set and open-set vocabulary settings across a wide variety of contexts. The qualitative assessment verifies the ability of ObjectDiffusion to generate multiple detailed objects in varying sizes, forms, and locations.

SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation

In this paper, we introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios. Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud to obtain a precise alignment with the model point cloud. Training our framework involves two operations: An SE(3) diffusion process and an SE(3) reverse process. The SE(3) diffusion process gradually perturbs the optimal rigid transformation of a pair of point clouds by continuously injecting noise (perturbation transformation). By contrast, the SE(3) reverse process focuses on learning a denoising network that refines the noisy transformation step-by-step, bringing it closer to the optimal transformation for accurate pose estimation. Unlike standard diffusion models used in linear Euclidean spaces, our diffusion model operates on the SE(3) manifold. This requires exploiting the linear Lie algebra se(3) associated with SE(3) to constrain the transformation transitions during the diffusion and reverse processes. Additionally, to effectively train our denoising network, we derive a registration-specific variational lower bound as the optimization objective for model learning. Furthermore, we show that our denoising network can be constructed with a surrogate registration model, making our approach applicable to different deep registration networks. Extensive experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.

A Simple Aerial Detection Baseline of Multimodal Language Models

The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.

Video-CCAM: Enhancing Video-Language Understanding with Causal Cross-Attention Masks for Short and Long Videos

Multi-modal large language models (MLLMs) have demonstrated considerable potential across various downstream tasks that require cross-domain knowledge. MLLMs capable of processing videos, known as Video-MLLMs, have attracted broad interest in video-language understanding. However, videos, especially long videos, contain more visual tokens than images, making them difficult for LLMs to process. Existing works either downsample visual features or extend the LLM context size, risking the loss of high-resolution information or slowing down inference speed. To address these limitations, we apply cross-attention layers in the intermediate projector between the visual encoder and the large language model (LLM). As the naive cross-attention mechanism is insensitive to temporal order, we further introduce causal cross-attention masks (CCAMs) within the cross-attention layers. This Video-MLLM, named Video-CCAM, is trained in a straightforward two-stage fashion: feature alignment and visual instruction tuning. We develop several Video-CCAM models based on LLMs of different sizes (4B, 9B, and 14B). Video-CCAM proves to be a robust Video-MLLM and shows outstanding performance from short videos to long ones. Among standard video benchmarks like MVBench and VideoChatGPT-QA, Video-CCAM shows outstanding performances (1st/2nd/3rd in MVBench and TGIF-QA, 2nd/3rd/4th in MSVD-QA, MSRVTT-QA, and ActivityNet-QA). In benchmarks encompassing long videos, Video-CCAM models can be directly adapted to long video understanding and still achieve exceptional scores despite being trained solely with images and 16-frame videos. Using 96 frames (6times the training number of frames), Video-CCAM models rank 1st/2nd/3rd in VideoVista and 1st/2nd/4th in MLVU among all open-source Video-MLLMs, respectively. The code is publicly available in https://github.com/QQ-MM/Video-CCAM.

GPT-4o: Visual perception performance of multimodal large language models in piglet activity understanding

Animal ethology is an crucial aspect of animal research, and animal behavior labeling is the foundation for studying animal behavior. This process typically involves labeling video clips with behavioral semantic tags, a task that is complex, subjective, and multimodal. With the rapid development of multimodal large language models(LLMs), new application have emerged for animal behavior understanding tasks in livestock scenarios. This study evaluates the visual perception capabilities of multimodal LLMs in animal activity recognition. To achieve this, we created piglet test data comprising close-up video clips of individual piglets and annotated full-shot video clips. These data were used to assess the performance of four multimodal LLMs-Video-LLaMA, MiniGPT4-Video, Video-Chat2, and GPT-4 omni (GPT-4o)-in piglet activity understanding. Through comprehensive evaluation across five dimensions, including counting, actor referring, semantic correspondence, time perception, and robustness, we found that while current multimodal LLMs require improvement in semantic correspondence and time perception, they have initially demonstrated visual perception capabilities for animal activity recognition. Notably, GPT-4o showed outstanding performance, with Video-Chat2 and GPT-4o exhibiting significantly better semantic correspondence and time perception in close-up video clips compared to full-shot clips. The initial evaluation experiments in this study validate the potential of multimodal large language models in livestock scene video understanding and provide new directions and references for future research on animal behavior video understanding. Furthermore, by deeply exploring the influence of visual prompts on multimodal large language models, we expect to enhance the accuracy and efficiency of animal behavior recognition in livestock scenarios through human visual processing methods.

CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification

The CLIP (Contrastive Language-Image Pretraining) model has exhibited outstanding performance in recognition problems, such as zero-shot image classification and object detection. However, its ability to count remains understudied due to the inherent challenges of transforming counting--a regression task--into a recognition task. In this paper, we investigate CLIP's potential in counting, focusing specifically on estimating crowd sizes. Existing classification-based crowd-counting methods have encountered issues, including inappropriate discretization strategies, which impede the application of CLIP and result in suboptimal performance. To address these challenges, we propose the Enhanced Blockwise Classification (EBC) framework. In contrast to previous methods, EBC relies on integer-valued bins that facilitate the learning of robust decision boundaries. Within our model-agnostic EBC framework, we introduce CLIP-EBC, the first fully CLIP-based crowd-counting model capable of generating density maps. Comprehensive evaluations across diverse crowd-counting datasets demonstrate the state-of-the-art performance of our methods. Particularly, EBC can improve existing models by up to 76.9%. Moreover, our CLIP-EBC model surpasses current crowd-counting methods, achieving mean absolute errors of 55.0 and 6.3 on ShanghaiTech part A and part B datasets, respectively. The code will be made publicly available.

Toward a Deeper Understanding: RetNet Viewed through Convolution

The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. ViT can learn global dependencies superior to CNN, yet CNN's inherent locality can substitute for expensive training resources. Recently, the outstanding performance of RetNet in the field of language modeling has garnered attention, surpassing that of the Transformer with explicit local modeling, shifting researchers' focus towards Transformers in the CV field. This paper investigates the effectiveness of RetNet from a CNN perspective and presents a variant of RetNet tailored to the visual domain. Similar to RetNet we improves ViT's local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code can be publicly available at https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention.

Symmetries and Asymptotically Flat Space

The construction of a theory of quantum gravity is an outstanding problem that can benefit from better understanding the laws of nature that are expected to hold in regimes currently inaccessible to experiment. Such fundamental laws can be found by considering the classical counterparts of a quantum theory. For example, conservation laws in a quantum theory often stem from conservation laws of the corresponding classical theory. In order to construct such laws, this thesis is concerned with the interplay between symmetries and conservation laws of classical field theories and their application to asymptotically flat spacetimes. This work begins with an explanation of symmetries in field theories with a focus on variational symmetries and their associated conservation laws. Boundary conditions for general relativity are then formulated on three-dimensional asymptotically flat spacetimes at null infinity using the method of conformal completion. Conserved quantities related to asymptotic symmetry transformations are derived and their properties are studied. This is done in a manifestly coordinate independent manner. In a separate step a coordinate system is introduced, such that the results can be compared to existing literature. Next, asymptotically flat spacetimes which contain both future as well as past null infinity are considered. Asymptotic symmetries occurring at these disjoint regions of three-dimensional asymptotically flat spacetimes are linked and the corresponding conserved quantities are matched. Finally, it is shown how asymptotic symmetries lead to the notion of distinct Minkowski spaces that can be differentiated by conserved quantities.

LLM Tree Search

This project aims to investigate a novel sequence generation method inspired by the AlphaGo paradigm, adapting it for use with large language models (LLMs). The proposed approach involves creating search trees of different possible completions and evaluating these completions based on model confidence. By considering various paths in the search tree and scoring them according to the model's confidence in each completion, we can generate diverse and high-quality sequences. This research explores the implementation of this paradigm by using confidence as a proxy for response quality akin to beam search vijayakumar2016diverse. The primary goal of this paper is to outline the paradigm and demonstrate its potential, rather than focusing on achieving perfect results. The paper will outline the reasons why we believe this paradigm has the potential to improve LLMs in the following manners: 1) increase output quality, 2) decrease errors, 3) eliminate or reduce the compound error problems, 4) generate diverse and creative completions, 5) allow for iterative problem-solving, and 6) self-training. We expect this approach to yield a set of diverse and coherent sequences, offering insights into balancing exploration and exploitation in sequence generation. Potential applications include creative text generation tasks, such as storytelling and content creation, as well as other natural language processing domains, like machine translation and automated summarization. The goal is that the model will be far more effective as it will be able to consider many possible variations allowing it to find the ideal completion. This research aims to contribute to the understanding of effective search strategies in sequence generation and their impact on generating high-quality, varied textual outputs.

2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining

Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality multimodal textbook corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving~Our code are available at \url{https://github.com/DAMO-NLP-SG/multimodal_textbook}.

DotaMath: Decomposition of Thought with Code Assistance and Self-correction for Mathematical Reasoning

Large language models (LLMs) have made impressive progress in handling simple math problems, yet they still struggle with more challenging and complex mathematical tasks. In this paper, we introduce a series of LLMs that employs the Decomposition of thought with code assistance and self-correction for mathematical reasoning, dubbed as DotaMath. DotaMath models tackle complex mathematical tasks by decomposing them into simpler logical subtasks, leveraging code to solve these subtasks, obtaining fine-grained feedback from the code interpreter, and engaging in self-reflection and correction. By annotating diverse interactive tool-use trajectories and employing query evolution on GSM8K and MATH datasets, we generate an instruction fine-tuning dataset called DotaMathQA with 574K query-response pairs. We train a series of base LLMs using imitation learning on DotaMathQA, resulting in DotaMath models that achieve remarkable performance compared to open-source LLMs across various in-domain and out-of-domain benchmarks. Notably, DotaMath-deepseek-7B showcases an outstanding performance of 64.8% on the competitive MATH dataset and 86.7% on GSM8K. Besides, DotaMath-deepseek-7B maintains strong competitiveness on a series of in-domain and out-of-domain benchmarks (Avg. 80.1%). Looking forward, we anticipate that the DotaMath paradigm will open new pathways for addressing intricate mathematical problems. Our code is publicly available at https://github.com/ChengpengLi1003/DotaMath.

Towards Conversational Diagnostic AI

At the heart of medicine lies the physician-patient dialogue, where skillful history-taking paves the way for accurate diagnosis, effective management, and enduring trust. Artificial Intelligence (AI) systems capable of diagnostic dialogue could increase accessibility, consistency, and quality of care. However, approximating clinicians' expertise is an outstanding grand challenge. Here, we introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue. AMIE uses a novel self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions, specialties, and contexts. We designed a framework for evaluating clinically-meaningful axes of performance including history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy. We compared AMIE's performance to that of primary care physicians (PCPs) in a randomized, double-blind crossover study of text-based consultations with validated patient actors in the style of an Objective Structured Clinical Examination (OSCE). The study included 149 case scenarios from clinical providers in Canada, the UK, and India, 20 PCPs for comparison with AMIE, and evaluations by specialist physicians and patient actors. AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors. Our research has several limitations and should be interpreted with appropriate caution. Clinicians were limited to unfamiliar synchronous text-chat which permits large-scale LLM-patient interactions but is not representative of usual clinical practice. While further research is required before AMIE could be translated to real-world settings, the results represent a milestone towards conversational diagnostic AI.

MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection

Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. Despite recent attempts to design efficient and effective architecture backbone for multi-dimensional data, such as images and multivariate time series, existing models are either data independent, or fail to allow inter- and intra-dimension communication. Recently, State Space Models (SSMs), and more specifically Selective State Space Models, with efficient hardware-aware implementation, have shown promising potential for long sequence modeling. Motivated by the success of SSMs, we present MambaMixer, a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels, called Selective Token and Channel Mixer. MambaMixer connects selective mixers using a weighted averaging mechanism, allowing layers to have direct access to early features. As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block and explore their performance in various vision and time series forecasting tasks. Our results underline the importance of selective mixing across both tokens and channels. In ImageNet classification, object detection, and semantic segmentation tasks, ViM2 achieves competitive performance with well-established vision models and outperforms SSM-based vision models. In time series forecasting, TSM2 achieves outstanding performance compared to state-of-the-art methods while demonstrating significantly improved computational cost. These results show that while Transformers, cross-channel attention, and MLPs are sufficient for good performance in time series forecasting, neither is necessary.

Visual Context Window Extension: A New Perspective for Long Video Understanding

Large Multimodal Models (LMMs) have demonstrated impressive performance in short video understanding tasks but face great challenges when applied to long video understanding. In contrast, Large Language Models (LLMs) exhibit outstanding capabilities in modeling long texts. Existing work attempts to address this issue by introducing long video-text pairs during training. However, these approaches require substantial computational and data resources. In this paper, we tackle the challenge of long video understanding from the perspective of context windows, aiming to apply LMMs to long video tasks without retraining on long video datasets. We first conduct an in-depth analysis of why pretrained LMMs struggle to understand lengthy video content, identifying that discrepancies between visual and language modalities lead to different context windows for visual and language tokens, making it difficult to directly extend the visual tokens to match the language context window. Based on this, we propose to adapt LMMs for long video understanding tasks by extending the visual context window, eliminating the need for retraining on large scalelong video datasets. To further mitigate the significant memory consumption caused by long sequences, we introduce a progressive pooling inference strategy that selectively adjusts the spatial resolution of frame embeddings, reducing the number of visual tokens while retaining important spatial information. Across multiple long video understanding benchmarks, our method consistently improves the performance as the number of video frames increases. On the MLVU benchmark, our method outperforms GPT-4o, even though our model size is only 7B. Additionally, in the 256-frame setting, our method reduces memory usage by approximately 45% compared to the baseline, without introducing any performance loss.

SePPO: Semi-Policy Preference Optimization for Diffusion Alignment

Reinforcement learning from human feedback (RLHF) methods are emerging as a way to fine-tune diffusion models (DMs) for visual generation. However, commonly used on-policy strategies are limited by the generalization capability of the reward model, while off-policy approaches require large amounts of difficult-to-obtain paired human-annotated data, particularly in visual generation tasks. To address the limitations of both on- and off-policy RLHF, we propose a preference optimization method that aligns DMs with preferences without relying on reward models or paired human-annotated data. Specifically, we introduce a Semi-Policy Preference Optimization (SePPO) method. SePPO leverages previous checkpoints as reference models while using them to generate on-policy reference samples, which replace "losing images" in preference pairs. This approach allows us to optimize using only off-policy "winning images." Furthermore, we design a strategy for reference model selection that expands the exploration in the policy space. Notably, we do not simply treat reference samples as negative examples for learning. Instead, we design an anchor-based criterion to assess whether the reference samples are likely to be winning or losing images, allowing the model to selectively learn from the generated reference samples. This approach mitigates performance degradation caused by the uncertainty in reference sample quality. We validate SePPO across both text-to-image and text-to-video benchmarks. SePPO surpasses all previous approaches on the text-to-image benchmarks and also demonstrates outstanding performance on the text-to-video benchmarks. Code will be released in https://github.com/DwanZhang-AI/SePPO.

Flexible Parallel Neural Network Architecture Model for Early Prediction of Lithium Battery Life

The early prediction of battery life (EPBL) is vital for enhancing the efficiency and extending the lifespan of lithium batteries. Traditional models with fixed architectures often encounter underfitting or overfitting issues due to the diverse data distributions in different EPBL tasks. An interpretable deep learning model of flexible parallel neural network (FPNN) is proposed, which includes an InceptionBlock, a 3D convolutional neural network (CNN), a 2D CNN, and a dual-stream network. The proposed model effectively extracts electrochemical features from video-like formatted data using the 3D CNN and achieves advanced multi-scale feature abstraction through the InceptionBlock. The FPNN can adaptively adjust the number of InceptionBlocks to flexibly handle tasks of varying complexity in EPBL. The test on the MIT dataset shows that the FPNN model achieves outstanding predictive accuracy in EPBL tasks, with MAPEs of 2.47%, 1.29%, 1.08%, and 0.88% when the input cyclic data volumes are 10, 20, 30, and 40, respectively. The interpretability of the FPNN is mainly reflected in its flexible unit structure and parameter selection: its diverse branching structure enables the model to capture features at different scales, thus allowing the machine to learn informative features. The approach presented herein provides an accurate, adaptable, and comprehensible solution for early life prediction of lithium batteries, opening new possibilities in the field of battery health monitoring.

ChartBench: A Benchmark for Complex Visual Reasoning in Charts

Multimodal Large Language Models (MLLMs) have demonstrated remarkable multimodal understanding and generation capabilities. However, their understanding of synthetic charts is limited, while existing benchmarks are simplistic and the charts deviate significantly from real-world examples, making it challenging to accurately assess MLLMs' chart comprehension abilities. Hence, a challenging benchmark is essential for investigating progress and uncovering the limitations of current MLLMs on chart data. In this work, we propose to examine chart comprehension through more complex visual logic and introduce ChartBench, a comprehensive chart benchmark to accurately measure MLLMs' fundamental chart comprehension and data reliability. Specifically, ChartBench consists of 41 categories, 2K charts, and 16K QA annotations. While significantly expanding chart types, ChartBench avoids direct labelling of data points, which requires MLLMs to infer values akin to humans by leveraging elements like color, legends, and coordinate systems. We also introduce an improved metric, Acc+, which accurately reflects MLLMs' chart comprehension abilities while avoiding labor-intensive manual evaluations or costly GPT-based evaluations. We conduct evaluations on 12 mainstream open-source models and 2 outstanding proprietary models. Through extensive experiments, we reveal the limitations of MLLMs on charts and provide insights to inspire the community to pay closer attention to MLLMs' chart comprehension abilities. The benchmark and code will be publicly available for research.

Fast FullSubNet: Accelerate Full-band and Sub-band Fusion Model for Single-channel Speech Enhancement

FullSubNet is our recently proposed real-time single-channel speech enhancement network that achieves outstanding performance on the Deep Noise Suppression (DNS) Challenge dataset. A number of variants of FullSubNet have been proposed, but they all focus on the structure design towards better performance and are rarely concerned with computational efficiency. For many speech enhancement applications, a key feature is that system runs on a real-time, latency-sensitive, battery-powered platform, which strictly limits the algorithm latency and computational complexity. In this work, we propose a new architecture named Fast FullSubNet dedicated to accelerating the computation of FullSubNet. Specifically, Fast FullSubNet processes sub-band speech spectra in the mel-frequency domain by using cascaded linear-to-mel full-band, sub-band, and mel-to-linear full-band models such that frequencies involved in the sub-band computation are vastly reduced. After that, a down-sampling operation is proposed for the sub-band input sequence to further reduce the computational complexity along the time axis. Experimental results show that, compared to FullSubNet, Fast FullSubNet has only 13\% computational complexity and 16\% processing time, and achieves comparable or even better performance. Code and audio samples are available at https://github.com/Audio-WestlakeU/FullSubNet.

Cross-Layer Cache Aggregation for Token Reduction in Ultra-Fine-Grained Image Recognition

Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: https://github.com/arkel23/CLCA

eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data

With tremendous efforts on developing effective e-commerce models, conventional e-commerce models show limited success in generalist e-commerce modeling, and suffer from unsatisfactory performance on new users and new products - a typical out-of-domain generalization challenge. Meanwhile, large language models (LLMs) demonstrate outstanding performance in generalist modeling and out-of-domain generalizability in many fields. Toward fully unleashing their power for e-commerce, in this paper, we construct ECInstruct, the first open-sourced, large-scale, and high-quality benchmark instruction dataset for e-commerce. Leveraging ECInstruct, we develop eCeLLM, a series of e-commerce LLMs, by instruction-tuning general-purpose LLMs. Our comprehensive experiments and evaluation demonstrate that eCeLLM models substantially outperform baseline models, including the most advanced GPT-4, and the state-of-the-art task-specific models in in-domain evaluation. Moreover, eCeLLM exhibits excellent generalizability to out-of-domain settings, including unseen products and unseen instructions, highlighting its superiority as a generalist e-commerce model. Both the ECInstruct dataset and the eCeLLM models show great potential in empowering versatile and effective LLMs for e-commerce. ECInstruct and eCeLLM models are publicly accessible through https://ninglab.github.io/eCeLLM.

Ferret-UI: Grounded Mobile UI Understanding with Multimodal LLMs

Recent advancements in multimodal large language models (MLLMs) have been noteworthy, yet, these general-domain MLLMs often fall short in their ability to comprehend and interact effectively with user interface (UI) screens. In this paper, we present Ferret-UI, a new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities. Given that UI screens typically exhibit a more elongated aspect ratio and contain smaller objects of interest (e.g., icons, texts) than natural images, we incorporate "any resolution" on top of Ferret to magnify details and leverage enhanced visual features. Specifically, each screen is divided into 2 sub-images based on the original aspect ratio (i.e., horizontal division for portrait screens and vertical division for landscape screens). Both sub-images are encoded separately before being sent to LLMs. We meticulously gather training samples from an extensive range of elementary UI tasks, such as icon recognition, find text, and widget listing. These samples are formatted for instruction-following with region annotations to facilitate precise referring and grounding. To augment the model's reasoning ability, we further compile a dataset for advanced tasks, including detailed description, perception/interaction conversations, and function inference. After training on the curated datasets, Ferret-UI exhibits outstanding comprehension of UI screens and the capability to execute open-ended instructions. For model evaluation, we establish a comprehensive benchmark encompassing all the aforementioned tasks. Ferret-UI excels not only beyond most open-source UI MLLMs, but also surpasses GPT-4V on all the elementary UI tasks.

WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling

Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.

RMT: Retentive Networks Meet Vision Transformers

Transformer first appears in the field of natural language processing and is later migrated to the computer vision domain, where it demonstrates excellent performance in vision tasks. However, recently, Retentive Network (RetNet) has emerged as an architecture with the potential to replace Transformer, attracting widespread attention in the NLP community. Therefore, we raise the question of whether transferring RetNet's idea to vision can also bring outstanding performance to vision tasks. To address this, we combine RetNet and Transformer to propose RMT. Inspired by RetNet, RMT introduces explicit decay into the vision backbone, bringing prior knowledge related to spatial distances to the vision model. This distance-related spatial prior allows for explicit control of the range of tokens that each token can attend to. Additionally, to reduce the computational cost of global modeling, we decompose this modeling process along the two coordinate axes of the image. Abundant experiments have demonstrated that our RMT exhibits exceptional performance across various computer vision tasks. For example, RMT achieves 84.1% Top1-acc on ImageNet-1k using merely 4.5G FLOPs. To the best of our knowledge, among all models, RMT achieves the highest Top1-acc when models are of similar size and trained with the same strategy. Moreover, RMT significantly outperforms existing vision backbones in downstream tasks such as object detection, instance segmentation, and semantic segmentation. Our work is still in progress.

LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content

The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.

Graph Mamba: Towards Learning on Graphs with State Space Models

Graph Neural Networks (GNNs) have shown promising potential in graph representation learning. The majority of GNNs define a local message-passing mechanism, propagating information over the graph by stacking multiple layers. These methods, however, are known to suffer from two major limitations: over-squashing and poor capturing of long-range dependencies. Recently, Graph Transformers (GTs) emerged as a powerful alternative to Message-Passing Neural Networks (MPNNs). GTs, however, have quadratic computational cost, lack inductive biases on graph structures, and rely on complex Positional/Structural Encodings (SE/PE). In this paper, we show that while Transformers, complex message-passing, and SE/PE are sufficient for good performance in practice, neither is necessary. Motivated by the recent success of State Space Models (SSMs), such as Mamba, we present Graph Mamba Networks (GMNs), a general framework for a new class of GNNs based on selective SSMs. We discuss and categorize the new challenges when adopting SSMs to graph-structured data, and present four required and one optional steps to design GMNs, where we choose (1) Neighborhood Tokenization, (2) Token Ordering, (3) Architecture of Bidirectional Selective SSM Encoder, (4) Local Encoding, and dispensable (5) PE and SE. We further provide theoretical justification for the power of GMNs. Experiments demonstrate that despite much less computational cost, GMNs attain an outstanding performance in long-range, small-scale, large-scale, and heterophilic benchmark datasets.

IMAGINE-E: Image Generation Intelligence Evaluation of State-of-the-art Text-to-Image Models

With the rapid development of diffusion models, text-to-image(T2I) models have made significant progress, showcasing impressive abilities in prompt following and image generation. Recently launched models such as FLUX.1 and Ideogram2.0, along with others like Dall-E3 and Stable Diffusion 3, have demonstrated exceptional performance across various complex tasks, raising questions about whether T2I models are moving towards general-purpose applicability. Beyond traditional image generation, these models exhibit capabilities across a range of fields, including controllable generation, image editing, video, audio, 3D, and motion generation, as well as computer vision tasks like semantic segmentation and depth estimation. However, current evaluation frameworks are insufficient to comprehensively assess these models' performance across expanding domains. To thoroughly evaluate these models, we developed the IMAGINE-E and tested six prominent models: FLUX.1, Ideogram2.0, Midjourney, Dall-E3, Stable Diffusion 3, and Jimeng. Our evaluation is divided into five key domains: structured output generation, realism, and physical consistency, specific domain generation, challenging scenario generation, and multi-style creation tasks. This comprehensive assessment highlights each model's strengths and limitations, particularly the outstanding performance of FLUX.1 and Ideogram2.0 in structured and specific domain tasks, underscoring the expanding applications and potential of T2I models as foundational AI tools. This study provides valuable insights into the current state and future trajectory of T2I models as they evolve towards general-purpose usability. Evaluation scripts will be released at https://github.com/jylei16/Imagine-e.

D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement

We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD). FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: https://github.com/Peterande/D-FINE.

Deep Learning-Based Object Pose Estimation: A Comprehensive Survey

Object pose estimation is a fundamental computer vision problem with broad applications in augmented reality and robotics. Over the past decade, deep learning models, due to their superior accuracy and robustness, have increasingly supplanted conventional algorithms reliant on engineered point pair features. Nevertheless, several challenges persist in contemporary methods, including their dependency on labeled training data, model compactness, robustness under challenging conditions, and their ability to generalize to novel unseen objects. A recent survey discussing the progress made on different aspects of this area, outstanding challenges, and promising future directions, is missing. To fill this gap, we discuss the recent advances in deep learning-based object pose estimation, covering all three formulations of the problem, i.e., instance-level, category-level, and unseen object pose estimation. Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks, providing the readers with a holistic understanding of this field. Additionally, it discusses training paradigms of different domains, inference modes, application areas, evaluation metrics, and benchmark datasets, as well as reports the performance of current state-of-the-art methods on these benchmarks, thereby facilitating the readers in selecting the most suitable method for their application. Finally, the survey identifies key challenges, reviews the prevailing trends along with their pros and cons, and identifies promising directions for future research. We also keep tracing the latest works at https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation.

ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices

Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.

Applying Pre-trained Multilingual BERT in Embeddings for Improved Malicious Prompt Injection Attacks Detection

Large language models (LLMs) are renowned for their exceptional capabilities, and applying to a wide range of applications. However, this widespread use brings significant vulnerabilities. Also, it is well observed that there are huge gap which lies in the need for effective detection and mitigation strategies against malicious prompt injection attacks in large language models, as current approaches may not adequately address the complexity and evolving nature of these vulnerabilities in real-world applications. Therefore, this work focuses the impact of malicious prompt injection attacks which is one of most dangerous vulnerability on real LLMs applications. It examines to apply various BERT (Bidirectional Encoder Representations from Transformers) like multilingual BERT, DistilBert for classifying malicious prompts from legitimate prompts. Also, we observed how tokenizing the prompt texts and generating embeddings using multilingual BERT contributes to improve the performance of various machine learning methods: Gaussian Naive Bayes, Random Forest, Support Vector Machine, and Logistic Regression. The performance of each model is rigorously analyzed with various parameters to improve the binary classification to discover malicious prompts. Multilingual BERT approach to embed the prompts significantly improved and outperformed the existing works and achieves an outstanding accuracy of 96.55% by Logistic regression. Additionally, we investigated the incorrect predictions of the model to gain insights into its limitations. The findings can guide researchers in tuning various BERT for finding the most suitable model for diverse LLMs vulnerabilities.

FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models

In recent years, large-scale pre-trained diffusion models have demonstrated their outstanding capabilities in image and video generation tasks. However, existing models tend to produce visual objects commonly found in the training dataset, which diverges from user input prompts. The underlying reason behind the inaccurate generated results lies in the model's difficulty in sampling from specific intervals of the initial noise distribution corresponding to the prompt. Moreover, it is challenging to directly optimize the initial distribution, given that the diffusion process involves multiple denoising steps. In this paper, we introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization, which unleashes the powerful potential of pre-trained diffusion networks by directly optimizing the initial distribution to align the generated contents with user-input prompts. To this end, we first reformulate the diffusion denoising procedure as a one-step Markov decision process and employ policy optimization to directly optimize the initial distribution. In addition, a dynamic reward calibration module is proposed to ensure training stability during optimization. Furthermore, we introduce a ratio clipping algorithm to utilize historical data for network training and prevent the optimized distribution from deviating too far from the original policy to restrain excessive optimization magnitudes. Extensive experiments demonstrate the effectiveness of our method in both text-to-image and text-to-video tasks, surpassing SOTA methods in achieving consistency between prompts and the generated content. Our method achieves 10 times faster than the SOTA approach. Our homepage is available at https://github.com/vpx-ecnu/FIND-website.

15M Multimodal Facial Image-Text Dataset

Currently, image-text-driven multi-modal deep learning models have demonstrated their outstanding potential in many fields. In practice, tasks centered around facial images have broad application prospects. This paper presents FaceCaption-15M, a large-scale, diverse, and high-quality dataset of facial images accompanied by their natural language descriptions (facial image-to-text). This dataset aims to facilitate a study on face-centered tasks. FaceCaption-15M comprises over 15 million pairs of facial images and their corresponding natural language descriptions of facial features, making it the largest facial image-caption dataset to date. We conducted a comprehensive analysis of image quality, text naturalness, text complexity, and text-image relevance to demonstrate the superiority of FaceCaption-15M. To validate the effectiveness of FaceCaption-15M, we first trained a facial language-image pre-training model (FLIP, similar to CLIP) to align facial image with its corresponding captions in feature space. Subsequently, using both image and text encoders and fine-tuning only the linear layer, our FLIP-based models achieved state-of-the-art results on two challenging face-centered tasks. The purpose is to promote research in the field of face-related tasks through the availability of the proposed FaceCaption-15M dataset. All data, codes, and models are publicly available. https://huggingface.co/datasets/OpenFace-CQUPT/FaceCaption-15M

GraphFM: A Comprehensive Benchmark for Graph Foundation Model

Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.

ParaTransCNN: Parallelized TransCNN Encoder for Medical Image Segmentation

The convolutional neural network-based methods have become more and more popular for medical image segmentation due to their outstanding performance. However, they struggle with capturing long-range dependencies, which are essential for accurately modeling global contextual correlations. Thanks to the ability to model long-range dependencies by expanding the receptive field, the transformer-based methods have gained prominence. Inspired by this, we propose an advanced 2D feature extraction method by combining the convolutional neural network and Transformer architectures. More specifically, we introduce a parallelized encoder structure, where one branch uses ResNet to extract local information from images, while the other branch uses Transformer to extract global information. Furthermore, we integrate pyramid structures into the Transformer to extract global information at varying resolutions, especially in intensive prediction tasks. To efficiently utilize the different information in the parallelized encoder at the decoder stage, we use a channel attention module to merge the features of the encoder and propagate them through skip connections and bottlenecks. Intensive numerical experiments are performed on both aortic vessel tree, cardiac, and multi-organ datasets. By comparing with state-of-the-art medical image segmentation methods, our method is shown with better segmentation accuracy, especially on small organs. The code is publicly available on https://github.com/HongkunSun/ParaTransCNN.

FBLNet: FeedBack Loop Network for Driver Attention Prediction

The problem of predicting driver attention from the driving perspective is gaining increasing research focus due to its remarkable significance for autonomous driving and assisted driving systems. The driving experience is extremely important for safe driving,a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on the driving experience and quickly pay attention to the corresponding zones.However, the nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods, and the current methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative and long-term temporal information. The incremental knowledge in our model is like the driving experience of humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.

Don't Stop Learning: Towards Continual Learning for the CLIP Model

The Contrastive Language-Image Pre-training (CLIP) Model is a recently proposed large-scale pre-train model which attracts increasing attention in the computer vision community. Benefiting from its gigantic image-text training set, the CLIP model has learned outstanding capabilities in zero-shot learning and image-text matching. To boost the recognition performance of CLIP on some target visual concepts, it is often desirable to further update the CLIP model by fine-tuning some classes-of-interest on extra training data. This operation, however, raises an important concern: will the update hurt the zero-shot learning or image-text matching capability of the CLIP, i.e., the catastrophic forgetting issue? If yes, could existing continual learning algorithms be adapted to alleviate the risk of catastrophic forgetting? To answer these questions, this work conducts a systemic study on the continual learning issue of the CLIP model. We construct evaluation protocols to measure the impact of fine-tuning updates and explore different ways to upgrade existing continual learning methods to mitigate the forgetting issue of the CLIP model. Our study reveals the particular challenges of CLIP continual learning problem and lays a foundation for further researches. Moreover, we propose a new algorithm, dubbed Learning without Forgetting via Replayed Vocabulary (VR-LwF), which shows exact effectiveness for alleviating the forgetting issue of the CLIP model.

Seedream 2.0: A Native Chinese-English Bilingual Image Generation Foundation Model

Rapid advancement of diffusion models has catalyzed remarkable progress in the field of image generation. However, prevalent models such as Flux, SD3.5 and Midjourney, still grapple with issues like model bias, limited text rendering capabilities, and insufficient understanding of Chinese cultural nuances. To address these limitations, we present Seedream 2.0, a native Chinese-English bilingual image generation foundation model that excels across diverse dimensions, which adeptly manages text prompt in both Chinese and English, supporting bilingual image generation and text rendering. We develop a powerful data system that facilitates knowledge integration, and a caption system that balances the accuracy and richness for image description. Particularly, Seedream is integrated with a self-developed bilingual large language model as a text encoder, allowing it to learn native knowledge directly from massive data. This enable it to generate high-fidelity images with accurate cultural nuances and aesthetic expressions described in either Chinese or English. Beside, Glyph-Aligned ByT5 is applied for flexible character-level text rendering, while a Scaled ROPE generalizes well to untrained resolutions. Multi-phase post-training optimizations, including SFT and RLHF iterations, further improve the overall capability. Through extensive experimentation, we demonstrate that Seedream 2.0 achieves state-of-the-art performance across multiple aspects, including prompt-following, aesthetics, text rendering, and structural correctness. Furthermore, Seedream 2.0 has been optimized through multiple RLHF iterations to closely align its output with human preferences, as revealed by its outstanding ELO score. In addition, it can be readily adapted to an instruction-based image editing model, such as SeedEdit, with strong editing capability that balances instruction-following and image consistency.

Scaling TransNormer to 175 Billion Parameters

We present TransNormerLLM, the first linear attention-based Large Language Model (LLM) that outperforms conventional softmax attention-based models in terms of both accuracy and efficiency. TransNormerLLM evolves from the previous linear attention architecture TransNormer by making advanced modifications that include positional embedding, linear attention acceleration, gating mechanism, tensor normalization, inference acceleration and stabilization. Specifically, we use LRPE together with an exponential decay to avoid attention dilution issues while allowing the model to retain global interactions between tokens. Additionally, we propose Lightning Attention, a cutting-edge technique that accelerates linear attention by more than twice in runtime and reduces memory usage by a remarkable four times. To further enhance the performance of TransNormer, we leverage a gating mechanism to smooth training and a new tensor normalization scheme to accelerate the model, resulting in an impressive acceleration of over 20%. Furthermore, we have developed a robust inference algorithm that ensures numerical stability and consistent inference speed, regardless of the sequence length, showcasing superior efficiency during both training and inference stages. Scalability is at the heart of our model's design, enabling seamless deployment on large-scale clusters and facilitating expansion to even more extensive models, all while maintaining outstanding performance metrics. Rigorous validation of our model design is achieved through a series of comprehensive experiments on our self-collected corpus, boasting a size exceeding 6TB and containing over 2 trillion tokens. To ensure data quality and relevance, we implement a new self-cleaning strategy to filter our collected data. Our pre-trained models will be released to foster community advancements in efficient LLMs.

EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba

Prior efforts in light-weight model development mainly centered on CNN and Transformer-based designs yet faced persistent challenges. CNNs adept at local feature extraction compromise resolution while Transformers offer global reach but escalate computational demands O(N^2). This ongoing trade-off between accuracy and efficiency remains a significant hurdle. Recently, state space models (SSMs), such as Mamba, have shown outstanding performance and competitiveness in various tasks such as language modeling and computer vision, while reducing the time complexity of global information extraction to O(N). Inspired by this, this work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba. Concretely, our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features. Additionally, we investigate the integration between SSM blocks and convolutions, and introduce an efficient visual state space block combined with an additional convolution branch, which further elevate the model performance. Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks. For example, our EfficientVMamba-S with 1.3G FLOPs improves Vim-Ti with 1.5G FLOPs by a large margin of 5.6% accuracy on ImageNet. Code is available at: https://github.com/TerryPei/EfficientVMamba.

Sakuga-42M Dataset: Scaling Up Cartoon Research

Hand-drawn cartoon animation employs sketches and flat-color segments to create the illusion of motion. While recent advancements like CLIP, SVD, and Sora show impressive results in understanding and generating natural video by scaling large models with extensive datasets, they are not as effective for cartoons. Through our empirical experiments, we argue that this ineffectiveness stems from a notable bias in hand-drawn cartoons that diverges from the distribution of natural videos. Can we harness the success of the scaling paradigm to benefit cartoon research? Unfortunately, until now, there has not been a sizable cartoon dataset available for exploration. In this research, we propose the Sakuga-42M Dataset, the first large-scale cartoon animation dataset. Sakuga-42M comprises 42 million keyframes covering various artistic styles, regions, and years, with comprehensive semantic annotations including video-text description pairs, anime tags, content taxonomies, etc. We pioneer the benefits of such a large-scale cartoon dataset on comprehension and generation tasks by finetuning contemporary foundation models like Video CLIP, Video Mamba, and SVD, achieving outstanding performance on cartoon-related tasks. Our motivation is to introduce large-scaling to cartoon research and foster generalization and robustness in future cartoon applications. Dataset, Code, and Pretrained Models will be publicly available.

Universal Image Restoration Pre-training via Degradation Classification

This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.

Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning

The recent surge in large-scale foundation models has spurred the development of efficient methods for adapting these models to various downstream tasks. Low-rank adaptation methods, such as LoRA, have gained significant attention due to their outstanding parameter efficiency and no additional inference latency. This paper investigates a more general form of adapter module based on the analysis that parallel and sequential adaptation branches learn novel and general features during fine-tuning, respectively. The proposed method, named Hydra, due to its multi-head computational branches, combines parallel and sequential branch to integrate capabilities, which is more expressive than existing single branch methods and enables the exploration of a broader range of optimal points in the fine-tuning process. In addition, the proposed adaptation method explicitly leverages the pre-trained weights by performing a linear combination of the pre-trained features. It allows the learned features to have better generalization performance across diverse downstream tasks. Furthermore, we perform a comprehensive analysis of the characteristics of each adaptation branch with empirical evidence. Through an extensive range of experiments, encompassing comparisons and ablation studies, we substantiate the efficiency and demonstrate the superior performance of Hydra. This comprehensive evaluation underscores the potential impact and effectiveness of Hydra in a variety of applications. Our code is available on https://github.com/extremebird/Hydra

UMat: Uncertainty-Aware Single Image High Resolution Material Capture

We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material, using microgeometry appearance as our primary cue. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. In contrast, in this work, we propose a novel capture approach that leverages a generative network with attention and a U-Net discriminator, which shows outstanding performance integrating global information at reduced computational complexity. We showcase the performance of our method with a real dataset of digitized textile materials and show that a commodity flatbed scanner can produce the type of diffuse illumination required as input to our method. Additionally, because the problem might be illposed -more than a single diffuse image might be needed to disambiguate the specular reflection- or because the training dataset is not representative enough of the real distribution, we propose a novel framework to quantify the model's confidence about its prediction at test time. Our method is the first one to deal with the problem of modeling uncertainty in material digitization, increasing the trustworthiness of the process and enabling more intelligent strategies for dataset creation, as we demonstrate with an active learning experiment.

Multi-level Matching Network for Multimodal Entity Linking

Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.

Basic Research, Lethal Effects: Military AI Research Funding as Enlistment

In the context of unprecedented U.S. Department of Defense (DoD) budgets, this paper examines the recent history of DoD funding for academic research in algorithmically based warfighting. We draw from a corpus of DoD grant solicitations from 2007 to 2023, focusing on those addressed to researchers in the field of artificial intelligence (AI). Considering the implications of DoD funding for academic research, the paper proceeds through three analytic sections. In the first, we offer a critical examination of the distinction between basic and applied research, showing how funding calls framed as basic research nonetheless enlist researchers in a war fighting agenda. In the second, we offer a diachronic analysis of the corpus, showing how a 'one small problem' caveat, in which affirmation of progress in military technologies is qualified by acknowledgement of outstanding problems, becomes justification for additional investments in research. We close with an analysis of DoD aspirations based on a subset of Defense Advanced Research Projects Agency (DARPA) grant solicitations for the use of AI in battlefield applications. Taken together, we argue that grant solicitations work as a vehicle for the mutual enlistment of DoD funding agencies and the academic AI research community in setting research agendas. The trope of basic research in this context offers shelter from significant moral questions that military applications of one's research would raise, by obscuring the connections that implicate researchers in U.S. militarism.

EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models

Large Language Models (LLMs), with their increasing depth and number of parameters, have demonstrated outstanding performance across a variety of natural language processing tasks. However, this growth in scale leads to increased computational demands, particularly during inference and fine-tuning. To address these challenges, we introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers. Our analysis reveals that many inner layers in LLMs, especially larger ones, exhibit highly similar attention matrices. By exploiting this similarity, EchoAtt enables the sharing of attention matrices in less critical layers, significantly reducing computational requirements without compromising performance. We incorporate this approach within a knowledge distillation setup, where a pre-trained teacher model guides the training of a smaller student model. The student model selectively shares attention matrices in layers with high similarity while inheriting key parameters from the teacher. Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15\%, training speed by 25\%, and reduces the number of parameters by approximately 4\%, all while improving zero-shot performance. These findings highlight the potential of attention matrix sharing to enhance the efficiency of LLMs, making them more practical for real-time and resource-limited applications.

EA-VTR: Event-Aware Video-Text Retrieval

Understanding the content of events occurring in the video and their inherent temporal logic is crucial for video-text retrieval. However, web-crawled pre-training datasets often lack sufficient event information, and the widely adopted video-level cross-modal contrastive learning also struggles to capture detailed and complex video-text event alignment. To address these challenges, we make improvements from both data and model perspectives. In terms of pre-training data, we focus on supplementing the missing specific event content and event temporal transitions with the proposed event augmentation strategies. Based on the event-augmented data, we construct a novel Event-Aware Video-Text Retrieval model, ie, EA-VTR, which achieves powerful video-text retrieval ability through superior video event awareness. EA-VTR can efficiently encode frame-level and video-level visual representations simultaneously, enabling detailed event content and complex event temporal cross-modal alignment, ultimately enhancing the comprehensive understanding of video events. Our method not only significantly outperforms existing approaches on multiple datasets for Text-to-Video Retrieval and Video Action Recognition tasks, but also demonstrates superior event content perceive ability on Multi-event Video-Text Retrieval and Video Moment Retrieval tasks, as well as outstanding event temporal logic understanding ability on Test of Time task.

BEACON: Benchmark for Comprehensive RNA Tasks and Language Models

RNA plays a pivotal role in translating genetic instructions into functional outcomes, underscoring its importance in biological processes and disease mechanisms. Despite the emergence of numerous deep learning approaches for RNA, particularly universal RNA language models, there remains a significant lack of standardized benchmarks to assess the effectiveness of these methods. In this study, we introduce the first comprehensive RNA benchmark BEACON (BEnchmArk for COmprehensive RNA Task and Language Models). First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications, enabling a comprehensive assessment of the performance of methods on various RNA understanding tasks. Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models. Third, we investigate the vital RNA language model components from the tokenizer and positional encoding aspects. Notably, our findings emphasize the superiority of single nucleotide tokenization and the effectiveness of Attention with Linear Biases (ALiBi) over traditional positional encoding methods. Based on these insights, a simple yet strong baseline called BEACON-B is proposed, which can achieve outstanding performance with limited data and computational resources. The datasets and source code of our benchmark are available at https://github.com/terry-r123/RNABenchmark.

Classification of Non-native Handwritten Characters Using Convolutional Neural Network

The use of convolutional neural networks (CNNs) has accelerated the progress of handwritten character classification/recognition. Handwritten character recognition (HCR) has found applications in various domains, such as traffic signal detection, language translation, and document information extraction. However, the widespread use of existing HCR technology is yet to be seen as it does not provide reliable character recognition with outstanding accuracy. One of the reasons for unreliable HCR is that existing HCR methods do not take the handwriting styles of non-native writers into account. Hence, further improvement is needed to ensure the reliability and extensive deployment of character recognition technologies for critical tasks. In this work, the classification of English characters written by non-native users is performed by proposing a custom-tailored CNN model. We train this CNN with a new dataset called the handwritten isolated English character (HIEC) dataset. This dataset consists of 16,496 images collected from 260 persons. This paper also includes an ablation study of our CNN by adjusting hyperparameters to identify the best model for the HIEC dataset. The proposed model with five convolutional layers and one hidden layer outperforms state-of-the-art models in terms of character recognition accuracy and achieves an accuracy of 97.04%. Compared with the second-best model, the relative improvement of our model in terms of classification accuracy is 4.38%.

ScatterFormer: Efficient Voxel Transformer with Scattered Linear Attention

Window-based transformers excel in large-scale point cloud understanding by capturing context-aware representations with affordable attention computation in a more localized manner. However, the sparse nature of point clouds leads to a significant variance in the number of voxels per window. Existing methods group the voxels in each window into fixed-length sequences through extensive sorting and padding operations, resulting in a non-negligible computational and memory overhead. In this paper, we introduce ScatterFormer, which to the best of our knowledge, is the first to directly apply attention to voxels across different windows as a single sequence. The key of ScatterFormer is a Scattered Linear Attention (SLA) module, which leverages the pre-computation of key-value pairs in linear attention to enable parallel computation on the variable-length voxel sequences divided by windows. Leveraging the hierarchical structure of GPUs and shared memory, we propose a chunk-wise algorithm that reduces the SLA module's latency to less than 1 millisecond on moderate GPUs. Furthermore, we develop a cross-window interaction module that improves the locality and connectivity of voxel features across different windows, eliminating the need for extensive window shifting. Our proposed ScatterFormer demonstrates 73.8 mAP (L2) on the Waymo Open Dataset and 72.4 NDS on the NuScenes dataset, running at an outstanding detection rate of 23 FPS.The code is available at https://github.com/skyhehe123/ScatterFormer{https://github.com/skyhehe123/ScatterFormer}.

Video-Text as Game Players: Hierarchical Banzhaf Interaction for Cross-Modal Representation Learning

Contrastive learning-based video-language representation learning approaches, e.g., CLIP, have achieved outstanding performance, which pursue semantic interaction upon pre-defined video-text pairs. To clarify this coarse-grained global interaction and move a step further, we have to encounter challenging shell-breaking interactions for fine-grained cross-modal learning. In this paper, we creatively model video-text as game players with multivariate cooperative game theory to wisely handle the uncertainty during fine-grained semantic interaction with diverse granularity, flexible combination, and vague intensity. Concretely, we propose Hierarchical Banzhaf Interaction (HBI) to value possible correspondence between video frames and text words for sensitive and explainable cross-modal contrast. To efficiently realize the cooperative game of multiple video frames and multiple text words, the proposed method clusters the original video frames (text words) and computes the Banzhaf Interaction between the merged tokens. By stacking token merge modules, we achieve cooperative games at different semantic levels. Extensive experiments on commonly used text-video retrieval and video-question answering benchmarks with superior performances justify the efficacy of our HBI. More encouragingly, it can also serve as a visualization tool to promote the understanding of cross-modal interaction, which have a far-reaching impact on the community. Project page is available at https://jpthu17.github.io/HBI/.

Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (1)assuming that we train the same model architecture on both a clean dataset and its corrupted version, resultant weights mostly differ in shallow layers; (2)the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (3)for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. We propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We verify our proposed framework to be remarkably (1)lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2)in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3)composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4)transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.

Automated Review Generation Method Based on Large Language Models

Literature research, vital for scientific work, faces the challenge of the surging torrent of information in the vast ocean of literature exceeding researchers' processing capabilities. To address this issue, we present an automated review generation method based on Large Language Models (LLMs), aimed at overcoming efficiency bottlenecks in literature processing and reducing cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields due to minimal domain knowledge requirements. In a case study on propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we implemented a multi-layered quality control strategy, effectively mitigating risks and ensuring reliability, as quantitatively demonstrated through manual verification. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5\% with over 95\% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.

JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments

This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials

The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.

Are large language models superhuman chemists?

Large language models (LLMs) have gained widespread interest due to their ability to process human language and perform tasks on which they have not been explicitly trained. This is relevant for the chemical sciences, which face the problem of small and diverse datasets that are frequently in the form of text. LLMs have shown promise in addressing these issues and are increasingly being harnessed to predict chemical properties, optimize reactions, and even design and conduct experiments autonomously. However, we still have only a very limited systematic understanding of the chemical reasoning capabilities of LLMs, which would be required to improve models and mitigate potential harms. Here, we introduce "ChemBench," an automated framework designed to rigorously evaluate the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of human chemists. We curated more than 7,000 question-answer pairs for a wide array of subfields of the chemical sciences, evaluated leading open and closed-source LLMs, and found that the best models outperformed the best human chemists in our study on average. The models, however, struggle with some chemical reasoning tasks that are easy for human experts and provide overconfident, misleading predictions, such as about chemicals' safety profiles. These findings underscore the dual reality that, although LLMs demonstrate remarkable proficiency in chemical tasks, further research is critical to enhancing their safety and utility in chemical sciences. Our findings also indicate a need for adaptations to chemistry curricula and highlight the importance of continuing to develop evaluation frameworks to improve safe and useful LLMs.

Quality-Diversity through AI Feedback

In many text-generation problems, users may prefer not only a single response, but a diverse range of high-quality outputs from which to choose. Quality-diversity (QD) search algorithms aim at such outcomes, by continually improving and diversifying a population of candidates. However, the applicability of QD to qualitative domains, like creative writing, has been limited by the difficulty of algorithmically specifying measures of quality and diversity. Interestingly, recent developments in language models (LMs) have enabled guiding search through AI feedback, wherein LMs are prompted in natural language to evaluate qualitative aspects of text. Leveraging this development, we introduce Quality-Diversity through AI Feedback (QDAIF), wherein an evolutionary algorithm applies LMs to both generate variation and evaluate the quality and diversity of candidate text. When assessed on creative writing domains, QDAIF covers more of a specified search space with high-quality samples than do non-QD controls. Further, human evaluation of QDAIF-generated creative texts validates reasonable agreement between AI and human evaluation. Our results thus highlight the potential of AI feedback to guide open-ended search for creative and original solutions, providing a recipe that seemingly generalizes to many domains and modalities. In this way, QDAIF is a step towards AI systems that can independently search, diversify, evaluate, and improve, which are among the core skills underlying human society's capacity for innovation.

A foundation model for human-AI collaboration in medical literature mining

Systematic literature review is essential for evidence-based medicine, requiring comprehensive analysis of clinical trial publications. However, the application of artificial intelligence (AI) models for medical literature mining has been limited by insufficient training and evaluation across broad therapeutic areas and diverse tasks. Here, we present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature. The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries. We showed that LEADS demonstrates consistent improvements over four cutting-edge generic large language models (LLMs) on six tasks. Furthermore, LEADS enhances expert workflows by providing supportive references following expert requests, streamlining processes while maintaining high-quality results. A study with 16 clinicians and medical researchers from 14 different institutions revealed that experts collaborating with LEADS achieved a recall of 0.81 compared to 0.77 experts working alone in study selection, with a time savings of 22.6%. In data extraction tasks, experts using LEADS achieved an accuracy of 0.85 versus 0.80 without using LEADS, alongside a 26.9% time savings. These findings highlight the potential of specialized medical literature foundation models to outperform generic models, delivering significant quality and efficiency benefits when integrated into expert workflows for medical literature mining.

SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension

Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating text-rich visual comprehension of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench.

Evidence Inference 2.0: More Data, Better Models

How do we most effectively treat a disease or condition? Ideally, we could consult a database of evidence gleaned from clinical trials to answer such questions. Unfortunately, no such database exists; clinical trial results are instead disseminated primarily via lengthy natural language articles. Perusing all such articles would be prohibitively time-consuming for healthcare practitioners; they instead tend to depend on manually compiled systematic reviews of medical literature to inform care. NLP may speed this process up, and eventually facilitate immediate consult of published evidence. The Evidence Inference dataset was recently released to facilitate research toward this end. This task entails inferring the comparative performance of two treatments, with respect to a given outcome, from a particular article (describing a clinical trial) and identifying supporting evidence. For instance: Does this article report that chemotherapy performed better than surgery for five-year survival rates of operable cancers? In this paper, we collect additional annotations to expand the Evidence Inference dataset by 25\%, provide stronger baseline models, systematically inspect the errors that these make, and probe dataset quality. We also release an abstract only (as opposed to full-texts) version of the task for rapid model prototyping. The updated corpus, documentation, and code for new baselines and evaluations are available at http://evidence-inference.ebm-nlp.com/.

Zero-Indexing Internet Search Augmented Generation for Large Language Models

Retrieval augmented generation has emerged as an effective method to enhance large language model performance. This approach typically relies on an internal retrieval module that uses various indexing mechanisms to manage a static pre-processed corpus. However, such a paradigm often falls short when it is necessary to integrate the most up-to-date information that has not been updated into the corpus during generative inference time. In this paper, we explore an alternative approach that leverages standard search engine APIs to dynamically integrate the latest online information (without maintaining any index for any fixed corpus), thereby improving the quality of generated content. We design a collaborative LLM-based paradigm, where we include: (i) a parser-LLM that determines if the Internet augmented generation is demanded and extracts the search keywords if so with a single inference; (ii) a mixed ranking strategy that re-ranks the retrieved HTML files to eliminate bias introduced from the search engine API; and (iii) an extractor-LLM that can accurately and efficiently extract relevant information from the fresh content in each HTML file. We conduct extensive empirical studies to evaluate the performance of this Internet search augmented generation paradigm. The experimental results demonstrate that our method generates content with significantly improved quality. Our system has been successfully deployed in a production environment to serve 01.AI's generative inference requests.

A Comparative Study of Open-Source Large Language Models, GPT-4 and Claude 2: Multiple-Choice Test Taking in Nephrology

In recent years, there have been significant breakthroughs in the field of natural language processing, particularly with the development of large language models (LLMs). These LLMs have showcased remarkable capabilities on various benchmarks. In the healthcare field, the exact role LLMs and other future AI models will play remains unclear. There is a potential for these models in the future to be used as part of adaptive physician training, medical co-pilot applications, and digital patient interaction scenarios. The ability of AI models to participate in medical training and patient care will depend in part on their mastery of the knowledge content of specific medical fields. This study investigated the medical knowledge capability of LLMs, specifically in the context of internal medicine subspecialty multiple-choice test-taking ability. We compared the performance of several open-source LLMs (Koala 7B, Falcon 7B, Stable-Vicuna 13B, and Orca Mini 13B), to GPT-4 and Claude 2 on multiple-choice questions in the field of Nephrology. Nephrology was chosen as an example of a particularly conceptually complex subspecialty field within internal medicine. The study was conducted to evaluate the ability of LLM models to provide correct answers to nephSAP (Nephrology Self-Assessment Program) multiple-choice questions. The overall success of open-sourced LLMs in answering the 858 nephSAP multiple-choice questions correctly was 17.1% - 25.5%. In contrast, Claude 2 answered 54.4% of the questions correctly, whereas GPT-4 achieved a score of 73.3%. We show that current widely used open-sourced LLMs do poorly in their ability for zero-shot reasoning when compared to GPT-4 and Claude 2. The findings of this study potentially have significant implications for the future of subspecialty medical training and patient care.

GPT-4 passes most of the 297 written Polish Board Certification Examinations

Introduction: Recently, the effectiveness of Large Language Models (LLMs) has increased rapidly, allowing them to be used in a great number of applications. However, the risks posed by the generation of false information through LLMs significantly limit their applications in sensitive areas such as healthcare, highlighting the necessity for rigorous validations to determine their utility and reliability. To date, no study has extensively compared the performance of LLMs on Polish medical examinations across a broad spectrum of specialties on a very large dataset. Objectives: This study evaluated the performance of three Generative Pretrained Transformer (GPT) models on the Polish Board Certification Exam (Pa\'nstwowy Egzamin Specjalizacyjny, PES) dataset, which consists of 297 tests. Methods: We developed a software program to download and process PES exams and tested the performance of GPT models using OpenAI Application Programming Interface. Results: Our findings reveal that GPT-3.5 did not pass any of the analyzed exams. In contrast, the GPT-4 models demonstrated the capability to pass the majority of the exams evaluated, with the most recent model, gpt-4-0125, successfully passing 222 (75%) of them. The performance of the GPT models varied significantly, displaying excellence in exams related to certain specialties while completely failing others. Conclusions: The significant progress and impressive performance of LLM models hold great promise for the increased application of AI in the field of medicine in Poland. For instance, this advancement could lead to the development of AI-based medical assistants for healthcare professionals, enhancing the efficiency and accuracy of medical services.

Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

Ad-hoc search calls for the selection of appropriate answers from a massive-scale corpus. Nowadays, the embedding-based retrieval (EBR) becomes a promising solution, where deep learning based document representation and ANN search techniques are allied to handle this task. However, a major challenge is that the ANN index can be too large to fit into memory, given the considerable size of answer corpus. In this work, we tackle this problem with Bi-Granular Document Representation, where the lightweight sparse embeddings are indexed and standby in memory for coarse-grained candidate search, and the heavyweight dense embeddings are hosted in disk for fine-grained post verification. For the best of retrieval accuracy, a Progressive Optimization framework is designed. The sparse embeddings are learned ahead for high-quality search of candidates. Conditioned on the candidate distribution induced by the sparse embeddings, the dense embeddings are continuously learned to optimize the discrimination of ground-truth from the shortlisted candidates. Besides, two techniques: the contrastive quantization and the locality-centric sampling are introduced for the learning of sparse and dense embeddings, which substantially contribute to their performances. Thanks to the above features, our method effectively handles massive-scale EBR with strong advantages in accuracy: with up to +4.3% recall gain on million-scale corpus, and up to +17.5% recall gain on billion-scale corpus. Besides, Our method is applied to a major sponsored search platform with substantial gains on revenue (+1.95%), Recall (+1.01%) and CTR (+0.49%). Our code is available at https://github.com/microsoft/BiDR.

DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data

Proof assistants like Lean have revolutionized mathematical proof verification, ensuring high accuracy and reliability. Although large language models (LLMs) show promise in mathematical reasoning, their advancement in formal theorem proving is hindered by a lack of training data. To address this issue, we introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems. This approach involves translating natural language problems into formal statements, filtering out low-quality statements, and generating proofs to create synthetic data. After fine-tuning the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs, our model achieved whole-proof generation accuracies of 46.3% with 64 samples and 52% cumulatively on the Lean 4 miniF2F test, surpassing the baseline GPT-4 at 23.0% with 64 samples and a tree search reinforcement learning method at 41.0%. Additionally, our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any. These results demonstrate the potential of leveraging large-scale synthetic data to enhance theorem-proving capabilities in LLMs. Both the synthetic dataset and the model will be made available to facilitate further research in this promising field.

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

Manipulating Large Language Models to Increase Product Visibility

Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries. Customers and end-users are also becoming more dependent on these models for quick and easy purchase decisions. In this work, we investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility. We demonstrate that adding a strategic text sequence (STS) -- a carefully crafted message -- to a product's information page can significantly increase its likelihood of being listed as the LLM's top recommendation. To understand the impact of STS, we use a catalog of fictitious coffee machines and analyze its effect on two target products: one that seldom appears in the LLM's recommendations and another that usually ranks second. We observe that the strategic text sequence significantly enhances the visibility of both products by increasing their chances of appearing as the top recommendation. This ability to manipulate LLM-generated search responses provides vendors with a considerable competitive advantage and has the potential to disrupt fair market competition. Just as search engine optimization (SEO) revolutionized how webpages are customized to rank higher in search engine results, influencing LLM recommendations could profoundly impact content optimization for AI-driven search services. Code for our experiments is available at https://github.com/aounon/llm-rank-optimizer.

Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities

With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.

CLARA: Clinical Report Auto-completion

Generating clinical reports from raw recordings such as X-rays and electroencephalogram (EEG) is an essential and routine task for doctors. However, it is often time-consuming to write accurate and detailed reports. Most existing methods try to generate the whole reports from the raw input with limited success because 1) generated reports often contain errors that need manual review and correction, 2) it does not save time when doctors want to write additional information into the report, and 3) the generated reports are not customized based on individual doctors' preference. We propose {\it CL}inic{\it A}l {\it R}eport {\it A}uto-completion (CLARA), an interactive method that generates reports in a sentence by sentence fashion based on doctors' anchor words and partially completed sentences. CLARA searches for most relevant sentences from existing reports as the template for the current report. The retrieved sentences are sequentially modified by combining with the input feature representations to create the final report. In our experimental evaluation, CLARA achieved 0.393 CIDEr and 0.248 BLEU-4 on X-ray reports and 0.482 CIDEr and 0.491 BLEU-4 for EEG reports for sentence-level generation, which is up to 35% improvement over the best baseline. Also via our qualitative evaluation, CLARA is shown to produce reports which have a significantly higher level of approval by doctors in a user study (3.74 out of 5 for CLARA vs 2.52 out of 5 for the baseline).

Alloprof: a new French question-answer education dataset and its use in an information retrieval case study

Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting.

Accelerating Clinical Evidence Synthesis with Large Language Models

Synthesizing clinical evidence largely relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating clinical evidence. Here, we introduce TrialMind, a generative artificial intelligence (AI) pipeline for facilitating human-AI collaboration in three crucial tasks for evidence synthesis: study search, screening, and data extraction. To assess its performance, we chose published systematic reviews to build the benchmark dataset, named TrialReviewBench, which contains 100 systematic reviews and the associated 2,220 clinical studies. Our results show that TrialMind excels across all three tasks. In study search, it generates diverse and comprehensive search queries to achieve high recall rates (Ours 0.711-0.834 v.s. Human baseline 0.138-0.232). For study screening, TrialMind surpasses traditional embedding-based methods by 30% to 160%. In data extraction, it outperforms a GPT-4 baseline by 29.6% to 61.5%. We further conducted user studies to confirm its practical utility. Compared to manual efforts, human-AI collaboration using TrialMind yielded a 71.4% recall lift and 44.2% time savings in study screening and a 23.5% accuracy lift and 63.4% time savings in data extraction. Additionally, when comparing synthesized clinical evidence presented in forest plots, medical experts favored TrialMind's outputs over GPT-4's outputs in 62.5% to 100% of cases. These findings show the promise of LLM-based approaches like TrialMind to accelerate clinical evidence synthesis via streamlining study search, screening, and data extraction from medical literature, with exceptional performance improvement when working with human experts.

Exploiting Pretrained Biochemical Language Models for Targeted Drug Design

Motivation: The development of novel compounds targeting proteins of interest is one of the most important tasks in the pharmaceutical industry. Deep generative models have been applied to targeted molecular design and have shown promising results. Recently, target-specific molecule generation has been viewed as a translation between the protein language and the chemical language. However, such a model is limited by the availability of interacting protein-ligand pairs. On the other hand, large amounts of unlabeled protein sequences and chemical compounds are available and have been used to train language models that learn useful representations. In this study, we propose exploiting pretrained biochemical language models to initialize (i.e. warm start) targeted molecule generation models. We investigate two warm start strategies: (i) a one-stage strategy where the initialized model is trained on targeted molecule generation (ii) a two-stage strategy containing a pre-finetuning on molecular generation followed by target specific training. We also compare two decoding strategies to generate compounds: beam search and sampling. Results: The results show that the warm-started models perform better than a baseline model trained from scratch. The two proposed warm-start strategies achieve similar results to each other with respect to widely used metrics from benchmarks. However, docking evaluation of the generated compounds for a number of novel proteins suggests that the one-stage strategy generalizes better than the two-stage strategy. Additionally, we observe that beam search outperforms sampling in both docking evaluation and benchmark metrics for assessing compound quality. Availability and implementation: The source code is available at https://github.com/boun-tabi/biochemical-lms-for-drug-design and the materials are archived in Zenodo at https://doi.org/10.5281/zenodo.6832145