Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeS2O: Static to Openable Enhancement for Articulated 3D Objects
Despite much progress in large 3D datasets there are currently few interactive 3D object datasets, and their scale is limited due to the manual effort required in their construction. We introduce the static to openable (S2O) task which creates interactive articulated 3D objects from static counterparts through openable part detection, motion prediction, and interior geometry completion. We formulate a unified framework to tackle this task, and curate a challenging dataset of openable 3D objects that serves as a test bed for systematic evaluation. Our experiments benchmark methods from prior work and simple yet effective heuristics for the S2O task. We find that turning static 3D objects into interactively openable counterparts is possible but that all methods struggle to generalize to realistic settings of the task, and we highlight promising future work directions.
OV-PARTS: Towards Open-Vocabulary Part Segmentation
Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.
Going Denser with Open-Vocabulary Part Segmentation
Object detection has been expanded from a limited number of categories to open vocabulary. Moving forward, a complete intelligent vision system requires understanding more fine-grained object descriptions, object parts. In this paper, we propose a detector with the ability to predict both open-vocabulary objects and their part segmentation. This ability comes from two designs. First, we train the detector on the joint of part-level, object-level and image-level data to build the multi-granularity alignment between language and image. Second, we parse the novel object into its parts by its dense semantic correspondence with the base object. These two designs enable the detector to largely benefit from various data sources and foundation models. In open-vocabulary part segmentation experiments, our method outperforms the baseline by 3.3sim7.3 mAP in cross-dataset generalization on PartImageNet, and improves the baseline by 7.3 novel AP_{50} in cross-category generalization on Pascal Part. Finally, we train a detector that generalizes to a wide range of part segmentation datasets while achieving better performance than dataset-specific training.
Find Any Part in 3D
We study open-world part segmentation in 3D: segmenting any part in any object based on any text query. Prior methods are limited in object categories and part vocabularies. Recent advances in AI have demonstrated effective open-world recognition capabilities in 2D. Inspired by this progress, we propose an open-world, direct-prediction model for 3D part segmentation that can be applied zero-shot to any object. Our approach, called Find3D, trains a general-category point embedding model on large-scale 3D assets from the internet without any human annotation. It combines a data engine, powered by foundation models for annotating data, with a contrastive training method. We achieve strong performance and generalization across multiple datasets, with up to a 3x improvement in mIoU over the next best method. Our model is 6x to over 300x faster than existing baselines. To encourage research in general-category open-world 3D part segmentation, we also release a benchmark for general objects and parts. Project website: https://ziqi-ma.github.io/find3dsite/
PartSLIP++: Enhancing Low-Shot 3D Part Segmentation via Multi-View Instance Segmentation and Maximum Likelihood Estimation
Open-world 3D part segmentation is pivotal in diverse applications such as robotics and AR/VR. Traditional supervised methods often grapple with limited 3D data availability and struggle to generalize to unseen object categories. PartSLIP, a recent advancement, has made significant strides in zero- and few-shot 3D part segmentation. This is achieved by harnessing the capabilities of the 2D open-vocabulary detection module, GLIP, and introducing a heuristic method for converting and lifting multi-view 2D bounding box predictions into 3D segmentation masks. In this paper, we introduce PartSLIP++, an enhanced version designed to overcome the limitations of its predecessor. Our approach incorporates two major improvements. First, we utilize a pre-trained 2D segmentation model, SAM, to produce pixel-wise 2D segmentations, yielding more precise and accurate annotations than the 2D bounding boxes used in PartSLIP. Second, PartSLIP++ replaces the heuristic 3D conversion process with an innovative modified Expectation-Maximization algorithm. This algorithm conceptualizes 3D instance segmentation as unobserved latent variables, and then iteratively refines them through an alternating process of 2D-3D matching and optimization with gradient descent. Through extensive evaluations, we show that PartSLIP++ demonstrates better performance over PartSLIP in both low-shot 3D semantic and instance-based object part segmentation tasks. Code released at https://github.com/zyc00/PartSLIP2.
V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results
Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge
PDiscoNet: Semantically consistent part discovery for fine-grained recognition
Fine-grained classification often requires recognizing specific object parts, such as beak shape and wing patterns for birds. Encouraging a fine-grained classification model to first detect such parts and then using them to infer the class could help us gauge whether the model is indeed looking at the right details better than with interpretability methods that provide a single attribution map. We propose PDiscoNet to discover object parts by using only image-level class labels along with priors encouraging the parts to be: discriminative, compact, distinct from each other, equivariant to rigid transforms, and active in at least some of the images. In addition to using the appropriate losses to encode these priors, we propose to use part-dropout, where full part feature vectors are dropped at once to prevent a single part from dominating in the classification, and part feature vector modulation, which makes the information coming from each part distinct from the perspective of the classifier. Our results on CUB, CelebA, and PartImageNet show that the proposed method provides substantially better part discovery performance than previous methods while not requiring any additional hyper-parameter tuning and without penalizing the classification performance. The code is available at https://github.com/robertdvdk/part_detection.
LLMs Meet VLMs: Boost Open Vocabulary Object Detection with Fine-grained Descriptors
Inspired by the outstanding zero-shot capability of vision language models (VLMs) in image classification tasks, open-vocabulary object detection has attracted increasing interest by distilling the broad VLM knowledge into detector training. However, most existing open-vocabulary detectors learn by aligning region embeddings with categorical labels (e.g., bicycle) only, disregarding the capability of VLMs on aligning visual embeddings with fine-grained text description of object parts (e.g., pedals and bells). This paper presents DVDet, a Descriptor-Enhanced Open Vocabulary Detector that introduces conditional context prompts and hierarchical textual descriptors that enable precise region-text alignment as well as open-vocabulary detection training in general. Specifically, the conditional context prompt transforms regional embeddings into image-like representations that can be directly integrated into general open vocabulary detection training. In addition, we introduce large language models as an interactive and implicit knowledge repository which enables iterative mining and refining visually oriented textual descriptors for precise region-text alignment. Extensive experiments over multiple large-scale benchmarks show that DVDet outperforms the state-of-the-art consistently by large margins.
Boosting Open-Vocabulary Object Detection by Handling Background Samples
Open-vocabulary object detection is the task of accurately detecting objects from a candidate vocabulary list that includes both base and novel categories. Currently, numerous open-vocabulary detectors have achieved success by leveraging the impressive zero-shot capabilities of CLIP. However, we observe that CLIP models struggle to effectively handle background images (i.e. images without corresponding labels) due to their language-image learning methodology. This limitation results in suboptimal performance for open-vocabulary detectors that rely on CLIP when processing background samples. In this paper, we propose Background Information Representation for open-vocabulary Detector (BIRDet), a novel approach to address the limitations of CLIP in handling background samples. Specifically, we design Background Information Modeling (BIM) to replace the single, fixed background embedding in mainstream open-vocabulary detectors with dynamic scene information, and prompt it into image-related background representations. This method effectively enhances the ability to classify oversized regions as background. Besides, we introduce Partial Object Suppression (POS), an algorithm that utilizes the ratio of overlap area to address the issue of misclassifying partial regions as foreground. Experiments on OV-COCO and OV-LVIS benchmarks demonstrate that our proposed model is capable of achieving performance enhancements across various open-vocabulary detectors.
OpenMask3D: Open-Vocabulary 3D Instance Segmentation
We introduce the task of open-vocabulary 3D instance segmentation. Traditional approaches for 3D instance segmentation largely rely on existing 3D annotated datasets, which are restricted to a closed-set of object categories. This is an important limitation for real-life applications where one might need to perform tasks guided by novel, open-vocabulary queries related to objects from a wide variety. Recently, open-vocabulary 3D scene understanding methods have emerged to address this problem by learning queryable features per each point in the scene. While such a representation can be directly employed to perform semantic segmentation, existing methods have limitations in their ability to identify object instances. In this work, we address this limitation, and propose OpenMask3D, which is a zero-shot approach for open-vocabulary 3D instance segmentation. Guided by predicted class-agnostic 3D instance masks, our model aggregates per-mask features via multi-view fusion of CLIP-based image embeddings. We conduct experiments and ablation studies on the ScanNet200 dataset to evaluate the performance of OpenMask3D, and provide insights about the open-vocabulary 3D instance segmentation task. We show that our approach outperforms other open-vocabulary counterparts, particularly on the long-tail distribution. Furthermore, OpenMask3D goes beyond the limitations of close-vocabulary approaches, and enables the segmentation of object instances based on free-form queries describing object properties such as semantics, geometry, affordances, and material properties.
PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers
Computer vision methods that explicitly detect object parts and reason on them are a step towards inherently interpretable models. Existing approaches that perform part discovery driven by a fine-grained classification task make very restrictive assumptions on the geometric properties of the discovered parts; they should be small and compact. Although this prior is useful in some cases, in this paper we show that pre-trained transformer-based vision models, such as self-supervised DINOv2 ViT, enable the relaxation of these constraints. In particular, we find that a total variation (TV) prior, which allows for multiple connected components of any size, substantially outperforms previous work. We test our approach on three fine-grained classification benchmarks: CUB, PartImageNet and Oxford Flowers, and compare our results to previously published methods as well as a re-implementation of the state-of-the-art method PDiscoNet with a transformer-based backbone. We consistently obtain substantial improvements across the board, both on part discovery metrics and the downstream classification task, showing that the strong inductive biases in self-supervised ViT models require to rethink the geometric priors that can be used for unsupervised part discovery.
A Simple Framework for Open-Vocabulary Segmentation and Detection
We present OpenSeeD, a simple Open-vocabulary Segmentation and Detection framework that jointly learns from different segmentation and detection datasets. To bridge the gap of vocabulary and annotation granularity, we first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them. This gives us reasonably good results compared with the counterparts trained on segmentation task only. To further reconcile them, we locate two discrepancies: i) task discrepancy -- segmentation requires extracting masks for both foreground objects and background stuff, while detection merely cares about the former; ii) data discrepancy -- box and mask annotations are with different spatial granularity, and thus not directly interchangeable. To address these issues, we propose a decoupled decoding to reduce the interference between foreground/background and a conditioned mask decoding to assist in generating masks for given boxes. To this end, we develop a simple encoder-decoder model encompassing all three techniques and train it jointly on COCO and Objects365. After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection. Specifically, OpenSeeD beats the state-of-the-art method for open-vocabulary instance and panoptic segmentation across 5 datasets, and outperforms previous work for open-vocabulary detection on LVIS and ODinW under similar settings. When transferred to specific tasks, our model achieves new SoTA for panoptic segmentation on COCO and ADE20K, and instance segmentation on ADE20K and Cityscapes. Finally, we note that OpenSeeD is the first to explore the potential of joint training on segmentation and detection, and hope it can be received as a strong baseline for developing a single model for both tasks in open world.
PromptDet: Towards Open-vocabulary Detection using Uncurated Images
The goal of this work is to establish a scalable pipeline for expanding an object detector towards novel/unseen categories, using zero manual annotations. To achieve that, we make the following four contributions: (i) in pursuit of generalisation, we propose a two-stage open-vocabulary object detector, where the class-agnostic object proposals are classified with a text encoder from pre-trained visual-language model; (ii) To pair the visual latent space (of RPN box proposals) with that of the pre-trained text encoder, we propose the idea of regional prompt learning to align the textual embedding space with regional visual object features; (iii) To scale up the learning procedure towards detecting a wider spectrum of objects, we exploit the available online resource via a novel self-training framework, which allows to train the proposed detector on a large corpus of noisy uncurated web images. Lastly, (iv) to evaluate our proposed detector, termed as PromptDet, we conduct extensive experiments on the challenging LVIS and MS-COCO dataset. PromptDet shows superior performance over existing approaches with fewer additional training images and zero manual annotations whatsoever. Project page with code: https://fcjian.github.io/promptdet.
Prompt-Guided Mask Proposal for Two-Stage Open-Vocabulary Segmentation
We tackle the challenge of open-vocabulary segmentation, where we need to identify objects from a wide range of categories in different environments, using text prompts as our input. To overcome this challenge, existing methods often use multi-modal models like CLIP, which combine image and text features in a shared embedding space to bridge the gap between limited and extensive vocabulary recognition, resulting in a two-stage approach: In the first stage, a mask generator takes an input image to generate mask proposals, and the in the second stage the target mask is picked based on the query. However, the expected target mask may not exist in the generated mask proposals, which leads to an unexpected output mask. In our work, we propose a novel approach named Prompt-guided Mask Proposal (PMP) where the mask generator takes the input text prompts and generates masks guided by these prompts. Compared with mask proposals generated without input prompts, masks generated by PMP are better aligned with the input prompts. To realize PMP, we designed a cross-attention mechanism between text tokens and query tokens which is capable of generating prompt-guided mask proposals after each decoding. We combined our PMP with several existing works employing a query-based segmentation backbone and the experiments on five benchmark datasets demonstrate the effectiveness of this approach, showcasing significant improvements over the current two-stage models (1% ~ 3% absolute performance gain in terms of mIOU). The steady improvement in performance across these benchmarks indicates the effective generalization of our proposed lightweight prompt-aware method.
Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods by enabling the identification of both previously seen and unseen objects in real-world scenarios. It leverages a dual-modality approach, utilizing both 3D point clouds and 2D multi-view images to generate class-agnostic object mask proposals. Previous efforts predominantly focused on enhancing 3D mask proposal models; consequently, the information that could come from 2D association to 3D was not fully exploited. This bias towards 3D data, while effective for familiar indoor objects, limits the system's adaptability to new and varied object types, where 2D models offer greater utility. Addressing this gap, we introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities. Our framework comprises three components: 3D pathway, 2D pathway, and Dual-Path Integration. 3D pathway generates spatially accurate class-agnostic mask proposals of common indoor objects from 3D point cloud data using a pre-trained 3D model, while 2D pathway utilizes pre-trained open-vocabulary instance segmentation model to identify a diverse array of object proposals from multi-view RGB-D images. In Dual-Path Integration, our Conditional Integration process, which operates in two stages, filters and merges the proposals from both pathways adaptively. This process harmonizes output proposals to enhance segmentation capabilities. Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data, as evidenced by comprehensive evaluations on the ScanNet200 and qualitative results on ARKitScenes datasets.
Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts
Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios. To alleviate this issue, researchers introduce open-set perception tasks to detect or segment unseen objects in the training set. However, these models require predefined object categories as inputs during inference, which are not available in real-world scenarios. Recently, researchers pose a new and more practical problem, i.e., open-ended object detection, which discovers unseen objects without any object categories as inputs. In this paper, we present VL-SAM, a training-free framework that combines the generalized object recognition model (i.e., Vision-Language Model) with the generalized object localization model (i.e., Segment-Anything Model), to address the open-ended object detection and segmentation task. Without additional training, we connect these two generalized models with attention maps as the prompts. Specifically, we design an attention map generation module by employing head aggregation and a regularized attention flow to aggregate and propagate attention maps across all heads and layers in VLM, yielding high-quality attention maps. Then, we iteratively sample positive and negative points from the attention maps with a prompt generation module and send the sampled points to SAM to segment corresponding objects. Experimental results on the long-tail instance segmentation dataset (LVIS) show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks. Besides, VL-SAM achieves favorable performance on the corner case object detection dataset (CODA), demonstrating the effectiveness of VL-SAM in real-world applications. Moreover, VL-SAM exhibits good model generalization that can incorporate various VLMs and SAMs.
OpenSD: Unified Open-Vocabulary Segmentation and Detection
Recently, a few open-vocabulary methods have been proposed by employing a unified architecture to tackle generic segmentation and detection tasks. However, their performance still lags behind the task-specific models due to the conflict between different tasks, and their open-vocabulary capability is limited due to the inadequate use of CLIP. To address these challenges, we present a universal transformer-based framework, abbreviated as OpenSD, which utilizes the same architecture and network parameters to handle open-vocabulary segmentation and detection tasks. First, we introduce a decoder decoupled learning strategy to alleviate the semantic conflict between thing and staff categories so that each individual task can be learned more effectively under the same framework. Second, to better leverage CLIP for end-to-end segmentation and detection, we propose dual classifiers to handle the in-vocabulary domain and out-of-vocabulary domain, respectively. The text encoder is further trained to be region-aware for both thing and stuff categories through decoupled prompt learning, enabling them to filter out duplicated and low-quality predictions, which is important to end-to-end segmentation and detection. Extensive experiments are conducted on multiple datasets under various circumstances. The results demonstrate that OpenSD outperforms state-of-the-art open-vocabulary segmentation and detection methods in both closed- and open-vocabulary settings. Code is available at https://github.com/strongwolf/OpenSD
Multi-Modal Classifiers for Open-Vocabulary Object Detection
The goal of this paper is open-vocabulary object detection (OVOD) x2013 building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two-stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yielding a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary benchmark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.
Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation
Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to sim16times speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy
We present T-Rex2, a highly practical model for open-set object detection. Previous open-set object detection methods relying on text prompts effectively encapsulate the abstract concept of common objects, but struggle with rare or complex object representation due to data scarcity and descriptive limitations. Conversely, visual prompts excel in depicting novel objects through concrete visual examples, but fall short in conveying the abstract concept of objects as effectively as text prompts. Recognizing the complementary strengths and weaknesses of both text and visual prompts, we introduce T-Rex2 that synergizes both prompts within a single model through contrastive learning. T-Rex2 accepts inputs in diverse formats, including text prompts, visual prompts, and the combination of both, so that it can handle different scenarios by switching between the two prompt modalities. Comprehensive experiments demonstrate that T-Rex2 exhibits remarkable zero-shot object detection capabilities across a wide spectrum of scenarios. We show that text prompts and visual prompts can benefit from each other within the synergy, which is essential to cover massive and complicated real-world scenarios and pave the way towards generic object detection. Model API is now available at https://github.com/IDEA-Research/T-Rex.
SegPrompt: Boosting Open-world Segmentation via Category-level Prompt Learning
Current closed-set instance segmentation models rely on pre-defined class labels for each mask during training and evaluation, largely limiting their ability to detect novel objects. Open-world instance segmentation (OWIS) models address this challenge by detecting unknown objects in a class-agnostic manner. However, previous OWIS approaches completely erase category information during training to keep the model's ability to generalize to unknown objects. In this work, we propose a novel training mechanism termed SegPrompt that uses category information to improve the model's class-agnostic segmentation ability for both known and unknown categories. In addition, the previous OWIS training setting exposes the unknown classes to the training set and brings information leakage, which is unreasonable in the real world. Therefore, we provide a new open-world benchmark closer to a real-world scenario by dividing the dataset classes into known-seen-unseen parts. For the first time, we focus on the model's ability to discover objects that never appear in the training set images. Experiments show that SegPrompt can improve the overall and unseen detection performance by 5.6% and 6.1% in AR on our new benchmark without affecting the inference efficiency. We further demonstrate the effectiveness of our method on existing cross-dataset transfer and strongly supervised settings, leading to 5.5% and 12.3% relative improvement.
PartGlot: Learning Shape Part Segmentation from Language Reference Games
We introduce PartGlot, a neural framework and associated architectures for learning semantic part segmentation of 3D shape geometry, based solely on part referential language. We exploit the fact that linguistic descriptions of a shape can provide priors on the shape's parts -- as natural language has evolved to reflect human perception of the compositional structure of objects, essential to their recognition and use. For training, we use the paired geometry / language data collected in the ShapeGlot work for their reference game, where a speaker creates an utterance to differentiate a target shape from two distractors and the listener has to find the target based on this utterance. Our network is designed to solve this target discrimination problem, carefully incorporating a Transformer-based attention module so that the output attention can precisely highlight the semantic part or parts described in the language. Furthermore, the network operates without any direct supervision on the 3D geometry itself. Surprisingly, we further demonstrate that the learned part information is generalizable to shape classes unseen during training. Our approach opens the possibility of learning 3D shape parts from language alone, without the need for large-scale part geometry annotations, thus facilitating annotation acquisition.
Object Detectors in the Open Environment: Challenges, Solutions, and Outlook
With the emergence of foundation models, deep learning-based object detectors have shown practical usability in closed set scenarios. However, for real-world tasks, object detectors often operate in open environments, where crucial factors (e.g., data distribution, objective) that influence model learning are often changing. The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors. Unfortunately, current research on object detectors in open environments lacks a comprehensive analysis of their distinctive characteristics, challenges, and corresponding solutions, which hinders their secure deployment in critical real-world scenarios. This paper aims to bridge this gap by conducting a comprehensive review and analysis of object detectors in open environments. We initially identified limitations of key structural components within the existing detection pipeline and propose the open environment object detector challenge framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes. For each quadrant of challenges in the proposed framework, we present a detailed description and systematic analysis of the overarching goals and core difficulties, systematically review the corresponding solutions, and benchmark their performance over multiple widely adopted datasets. In addition, we engage in a discussion of open problems and potential avenues for future research. This paper aims to provide a fresh, comprehensive, and systematic understanding of the challenges and solutions associated with open-environment object detectors, thus catalyzing the development of more solid applications in real-world scenarios. A project related to this survey can be found at https://github.com/LiangSiyuan21/OEOD_Survey.
Tags2Parts: Discovering Semantic Regions from Shape Tags
We propose a novel method for discovering shape regions that strongly correlate with user-prescribed tags. For example, given a collection of chairs tagged as either "has armrest" or "lacks armrest", our system correctly highlights the armrest regions as the main distinctive parts between the two chair types. To obtain point-wise predictions from shape-wise tags we develop a novel neural network architecture that is trained with tag classification loss, but is designed to rely on segmentation to predict the tag. Our network is inspired by U-Net, but we replicate shallow U structures several times with new skip connections and pooling layers, and call the resulting architecture "WU-Net". We test our method on segmentation benchmarks and show that even with weak supervision of whole shape tags, our method can infer meaningful semantic regions, without ever observing shape segmentations. Further, once trained, the model can process shapes for which the tag is entirely unknown. As a bonus, our architecture is directly operational under full supervision and performs strongly on standard benchmarks. We validate our method through experiments with many variant architectures and prior baselines, and demonstrate several applications.
Described Object Detection: Liberating Object Detection with Flexible Expressions
Detecting objects based on language information is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called Described Object Detection (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC only grounding the pre-existing object. We establish the research foundation for DOD by constructing a Description Detection Dataset (D^3). This dataset features flexible language expressions, whether short category names or long descriptions, and annotating all described objects on all images without omission. By evaluating previous SOTA methods on D^3, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code are available at https://github.com/shikras/d-cube and related works are tracked in https://github.com/Charles-Xie/awesome-described-object-detection.
Segment Everything Everywhere All at Once
In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.
PartCraft: Crafting Creative Objects by Parts
This paper propels creative control in generative visual AI by allowing users to "select". Departing from traditional text or sketch-based methods, we for the first time allow users to choose visual concepts by parts for their creative endeavors. The outcome is fine-grained generation that precisely captures selected visual concepts, ensuring a holistically faithful and plausible result. To achieve this, we first parse objects into parts through unsupervised feature clustering. Then, we encode parts into text tokens and introduce an entropy-based normalized attention loss that operates on them. This loss design enables our model to learn generic prior topology knowledge about object's part composition, and further generalize to novel part compositions to ensure the generation looks holistically faithful. Lastly, we employ a bottleneck encoder to project the part tokens. This not only enhances fidelity but also accelerates learning, by leveraging shared knowledge and facilitating information exchange among instances. Visual results in the paper and supplementary material showcase the compelling power of PartCraft in crafting highly customized, innovative creations, exemplified by the "charming" and creative birds. Code is released at https://github.com/kamwoh/partcraft.
PBADet: A One-Stage Anchor-Free Approach for Part-Body Association
The detection of human parts (e.g., hands, face) and their correct association with individuals is an essential task, e.g., for ubiquitous human-machine interfaces and action recognition. Traditional methods often employ multi-stage processes, rely on cumbersome anchor-based systems, or do not scale well to larger part sets. This paper presents PBADet, a novel one-stage, anchor-free approach for part-body association detection. Building upon the anchor-free object representation across multi-scale feature maps, we introduce a singular part-to-body center offset that effectively encapsulates the relationship between parts and their parent bodies. Our design is inherently versatile and capable of managing multiple parts-to-body associations without compromising on detection accuracy or robustness. Comprehensive experiments on various datasets underscore the efficacy of our approach, which not only outperforms existing state-of-the-art techniques but also offers a more streamlined and efficient solution to the part-body association challenge.
PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model
Recent advancements in 3D perception systems have significantly improved their ability to perform visual recognition tasks such as segmentation. However, these systems still heavily rely on explicit human instruction to identify target objects or categories, lacking the capability to actively reason and comprehend implicit user intentions. We introduce a novel segmentation task known as reasoning part segmentation for 3D objects, aiming to output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object. To facilitate evaluation and benchmarking, we present a large 3D dataset comprising over 60k instructions paired with corresponding ground-truth part segmentation annotations specifically curated for reasoning-based 3D part segmentation. We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations corresponding to 3D object segmentation requests. Experiments show that our method achieves competitive performance to models that use explicit queries, with the additional abilities to identify part concepts, reason about them, and complement them with world knowledge. Our source code, dataset, and trained models are available at https://github.com/AmrinKareem/PARIS3D.
Microsoft COCO: Common Objects in Context
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
SAMPart3D: Segment Any Part in 3D Objects
3D part segmentation is a crucial and challenging task in 3D perception, playing a vital role in applications such as robotics, 3D generation, and 3D editing. Recent methods harness the powerful Vision Language Models (VLMs) for 2D-to-3D knowledge distillation, achieving zero-shot 3D part segmentation. However, these methods are limited by their reliance on text prompts, which restricts the scalability to large-scale unlabeled datasets and the flexibility in handling part ambiguities. In this work, we introduce SAMPart3D, a scalable zero-shot 3D part segmentation framework that segments any 3D object into semantic parts at multiple granularities, without requiring predefined part label sets as text prompts. For scalability, we use text-agnostic vision foundation models to distill a 3D feature extraction backbone, allowing scaling to large unlabeled 3D datasets to learn rich 3D priors. For flexibility, we distill scale-conditioned part-aware 3D features for 3D part segmentation at multiple granularities. Once the segmented parts are obtained from the scale-conditioned part-aware 3D features, we use VLMs to assign semantic labels to each part based on the multi-view renderings. Compared to previous methods, our SAMPart3D can scale to the recent large-scale 3D object dataset Objaverse and handle complex, non-ordinary objects. Additionally, we contribute a new 3D part segmentation benchmark to address the lack of diversity and complexity of objects and parts in existing benchmarks. Experiments show that our SAMPart3D significantly outperforms existing zero-shot 3D part segmentation methods, and can facilitate various applications such as part-level editing and interactive segmentation.
FOR: Finetuning for Object Level Open Vocabulary Image Retrieval
As working with large datasets becomes standard, the task of accurately retrieving images containing objects of interest by an open set textual query gains practical importance. The current leading approach utilizes a pre-trained CLIP model without any adaptation to the target domain, balancing accuracy and efficiency through additional post-processing. In this work, we propose FOR: Finetuning for Object-centric Open-vocabulary Image Retrieval, which allows finetuning on a target dataset using closed-set labels while keeping the visual-language association crucial for open vocabulary retrieval. FOR is based on two design elements: a specialized decoder variant of the CLIP head customized for the intended task, and its coupling within a multi-objective training framework. Together, these design choices result in a significant increase in accuracy, showcasing improvements of up to 8 mAP@50 points over SoTA across three datasets. Additionally, we demonstrate that FOR is also effective in a semi-supervised setting, achieving impressive results even when only a small portion of the dataset is labeled.
Open-vocabulary Object Detection via Vision and Language Knowledge Distillation
We aim at advancing open-vocabulary object detection, which detects objects described by arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly to further scale up the number of classes contained in existing object detection datasets. To overcome this challenge, we propose ViLD, a training method via Vision and Language knowledge Distillation. Our method distills the knowledge from a pretrained open-vocabulary image classification model (teacher) into a two-stage detector (student). Specifically, we use the teacher model to encode category texts and image regions of object proposals. Then we train a student detector, whose region embeddings of detected boxes are aligned with the text and image embeddings inferred by the teacher. We benchmark on LVIS by holding out all rare categories as novel categories that are not seen during training. ViLD obtains 16.1 mask AP_r with a ResNet-50 backbone, even outperforming the supervised counterpart by 3.8. When trained with a stronger teacher model ALIGN, ViLD achieves 26.3 AP_r. The model can directly transfer to other datasets without finetuning, achieving 72.2 AP_{50} on PASCAL VOC, 36.6 AP on COCO and 11.8 AP on Objects365. On COCO, ViLD outperforms the previous state-of-the-art by 4.8 on novel AP and 11.4 on overall AP. Code and demo are open-sourced at https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild.
Enhancing Novel Object Detection via Cooperative Foundational Models
In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 AP_{50} for novel classes. Our code is available at https://github.com/rohit901/cooperative-foundational-models .
Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection
Open-vocabulary object detection aims to provide object detectors trained on a fixed set of object categories with the generalizability to detect objects described by arbitrary text queries. Previous methods adopt knowledge distillation to extract knowledge from Pretrained Vision-and-Language Models (PVLMs) and transfer it to detectors. However, due to the non-adaptive proposal cropping and single-level feature mimicking processes, they suffer from information destruction during knowledge extraction and inefficient knowledge transfer. To remedy these limitations, we propose an Object-Aware Distillation Pyramid (OADP) framework, including an Object-Aware Knowledge Extraction (OAKE) module and a Distillation Pyramid (DP) mechanism. When extracting object knowledge from PVLMs, the former adaptively transforms object proposals and adopts object-aware mask attention to obtain precise and complete knowledge of objects. The latter introduces global and block distillation for more comprehensive knowledge transfer to compensate for the missing relation information in object distillation. Extensive experiments show that our method achieves significant improvement compared to current methods. Especially on the MS-COCO dataset, our OADP framework reaches 35.6 mAP^{N}_{50}, surpassing the current state-of-the-art method by 3.3 mAP^{N}_{50}. Code is released at https://github.com/LutingWang/OADP.
InstructDET: Diversifying Referring Object Detection with Generalized Instructions
We propose InstructDET, a data-centric method for referring object detection (ROD) that localizes target objects based on user instructions. While deriving from referring expressions (REC), the instructions we leverage are greatly diversified to encompass common user intentions related to object detection. For one image, we produce tremendous instructions that refer to every single object and different combinations of multiple objects. Each instruction and its corresponding object bounding boxes (bbxs) constitute one training data pair. In order to encompass common detection expressions, we involve emerging vision-language model (VLM) and large language model (LLM) to generate instructions guided by text prompts and object bbxs, as the generalizations of foundation models are effective to produce human-like expressions (e.g., describing object property, category, and relationship). We name our constructed dataset as InDET. It contains images, bbxs and generalized instructions that are from foundation models. Our InDET is developed from existing REC datasets and object detection datasets, with the expanding potential that any image with object bbxs can be incorporated through using our InstructDET method. By using our InDET dataset, we show that a conventional ROD model surpasses existing methods on standard REC datasets and our InDET test set. Our data-centric method InstructDET, with automatic data expansion by leveraging foundation models, directs a promising field that ROD can be greatly diversified to execute common object detection instructions.
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation
Recently, open-vocabulary learning has emerged to accomplish segmentation for arbitrary categories of text-based descriptions, which popularizes the segmentation system to more general-purpose application scenarios. However, existing methods devote to designing specialized architectures or parameters for specific segmentation tasks. These customized design paradigms lead to fragmentation between various segmentation tasks, thus hindering the uniformity of segmentation models. Hence in this paper, we propose FreeSeg, a generic framework to accomplish Unified, Universal and Open-Vocabulary Image Segmentation. FreeSeg optimizes an all-in-one network via one-shot training and employs the same architecture and parameters to handle diverse segmentation tasks seamlessly in the inference procedure. Additionally, adaptive prompt learning facilitates the unified model to capture task-aware and category-sensitive concepts, improving model robustness in multi-task and varied scenarios. Extensive experimental results demonstrate that FreeSeg establishes new state-of-the-art results in performance and generalization on three segmentation tasks, which outperforms the best task-specific architectures by a large margin: 5.5% mIoU on semantic segmentation, 17.6% mAP on instance segmentation, 20.1% PQ on panoptic segmentation for the unseen class on COCO.
Open-Vocabulary Camouflaged Object Segmentation
Recently, the emergence of the large-scale vision-language model (VLM), such as CLIP, has opened the way towards open-world object perception. Many works have explored the utilization of pre-trained VLM for the challenging open-vocabulary dense prediction task that requires perceiving diverse objects with novel classes at inference time. Existing methods construct experiments based on the public datasets of related tasks, which are not tailored for open vocabulary and rarely involve imperceptible objects camouflaged in complex scenes due to data collection bias and annotation costs. To fill in the gaps, we introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS), and construct a large-scale complex scene dataset (OVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes. Further, we build a strong single-stage open-vocabulary camouflaged object segmentation transformer baseline OVCoser attached to the parameter-fixed CLIP with iterative semantic guidance and structure enhancement. By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects. Moreover, this effective framework also surpasses previous state-of-the-arts of open-vocabulary semantic image segmentation by a large margin on our OVCamo dataset. With the proposed dataset and baseline, we hope that this new task with more practical value can further expand the research on open-vocabulary dense prediction tasks. Our code and data can be found in the https://github.com/lartpang/OVCamo{link}.
Side Adapter Network for Open-Vocabulary Semantic Segmentation
This paper presents a new framework for open-vocabulary semantic segmentation with the pre-trained vision-language model, named Side Adapter Network (SAN). Our approach models the semantic segmentation task as a region recognition problem. A side network is attached to a frozen CLIP model with two branches: one for predicting mask proposals, and the other for predicting attention bias which is applied in the CLIP model to recognize the class of masks. This decoupled design has the benefit CLIP in recognizing the class of mask proposals. Since the attached side network can reuse CLIP features, it can be very light. In addition, the entire network can be trained end-to-end, allowing the side network to be adapted to the frozen CLIP model, which makes the predicted mask proposals CLIP-aware. Our approach is fast, accurate, and only adds a few additional trainable parameters. We evaluate our approach on multiple semantic segmentation benchmarks. Our method significantly outperforms other counterparts, with up to 18 times fewer trainable parameters and 19 times faster inference speed. We hope our approach will serve as a solid baseline and help ease future research in open-vocabulary semantic segmentation. The code will be available at https://github.com/MendelXu/SAN.
The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale
We present Open Images V4, a dataset of 9.2M images with unified annotations for image classification, object detection and visual relationship detection. The images have a Creative Commons Attribution license that allows to share and adapt the material, and they have been collected from Flickr without a predefined list of class names or tags, leading to natural class statistics and avoiding an initial design bias. Open Images V4 offers large scale across several dimensions: 30.1M image-level labels for 19.8k concepts, 15.4M bounding boxes for 600 object classes, and 375k visual relationship annotations involving 57 classes. For object detection in particular, we provide 15x more bounding boxes than the next largest datasets (15.4M boxes on 1.9M images). The images often show complex scenes with several objects (8 annotated objects per image on average). We annotated visual relationships between them, which support visual relationship detection, an emerging task that requires structured reasoning. We provide in-depth comprehensive statistics about the dataset, we validate the quality of the annotations, we study how the performance of several modern models evolves with increasing amounts of training data, and we demonstrate two applications made possible by having unified annotations of multiple types coexisting in the same images. We hope that the scale, quality, and variety of Open Images V4 will foster further research and innovation even beyond the areas of image classification, object detection, and visual relationship detection.
Open3DIS: Open-vocabulary 3D Instance Segmentation with 2D Mask Guidance
We introduce Open3DIS, a novel solution designed to tackle the problem of Open-Vocabulary Instance Segmentation within 3D scenes. Objects within 3D environments exhibit diverse shapes, scales, and colors, making precise instance-level identification a challenging task. Recent advancements in Open-Vocabulary scene understanding have made significant strides in this area by employing class-agnostic 3D instance proposal networks for object localization and learning queryable features for each 3D mask. While these methods produce high-quality instance proposals, they struggle with identifying small-scale and geometrically ambiguous objects. The key idea of our method is a new module that aggregates 2D instance masks across frames and maps them to geometrically coherent point cloud regions as high-quality object proposals addressing the above limitations. These are then combined with 3D class-agnostic instance proposals to include a wide range of objects in the real world. To validate our approach, we conducted experiments on three prominent datasets, including ScanNet200, S3DIS, and Replica, demonstrating significant performance gains in segmenting objects with diverse categories over the state-of-the-art approaches.
WPS-SAM: Towards Weakly-Supervised Part Segmentation with Foundation Models
Segmenting and recognizing diverse object parts is crucial in computer vision and robotics. Despite significant progress in object segmentation, part-level segmentation remains underexplored due to complex boundaries and scarce annotated data. To address this, we propose a novel Weakly-supervised Part Segmentation (WPS) setting and an approach called WPS-SAM, built on the large-scale pre-trained vision foundation model, Segment Anything Model (SAM). WPS-SAM is an end-to-end framework designed to extract prompt tokens directly from images and perform pixel-level segmentation of part regions. During its training phase, it only uses weakly supervised labels in the form of bounding boxes or points. Extensive experiments demonstrate that, through exploiting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
Inject Semantic Concepts into Image Tagging for Open-Set Recognition
In this paper, we introduce the Recognize Anything Plus Model~(RAM++), a fundamental image recognition model with strong open-set recognition capabilities, by injecting semantic concepts into image tagging training framework. Previous approaches are either image tagging models constrained by limited semantics, or vision-language models with shallow interaction for suboptimal performance in multi-tag recognition. In contrast, RAM++ integrates image-text alignment and image-tagging within a unified fine-grained interaction framework based on image-tags-text triplets. This design enables RAM++ not only excel in identifying predefined categories, but also significantly augment the recognition ability in open-set categories. Moreover, RAM++ employs large language models~(LLMs) to generate diverse visual tag descriptions, pioneering the integration of LLM's knowledge into image tagging training. This approach empowers RAM++ to integrate visual description concepts for open-set recognition during inference. Evaluations on comprehensive image recognition benchmarks demonstrate RAM++ exceeds existing state-of-the-art (SOTA) fundamental image recognition models on most aspects. Specifically, for predefined common-used tag categories, RAM++ showcases 10.2 mAP and 15.4 mAP enhancements over CLIP on OpenImages and ImageNet. For open-set categories beyond predefined, RAM++ records improvements of 5 mAP and 6.4 mAP over CLIP and RAM respectively on OpenImages. For diverse human-object interaction phrases, RAM++ achieves 7.8 mAP and 4.7 mAP improvements on the HICO benchmark. Code, datasets and pre-trained models are available at https://github.com/xinyu1205/recognize-anything.
Progressive Open Space Expansion for Open-Set Model Attribution
Despite the remarkable progress in generative technology, the Janus-faced issues of intellectual property protection and malicious content supervision have arisen. Efforts have been paid to manage synthetic images by attributing them to a set of potential source models. However, the closed-set classification setting limits the application in real-world scenarios for handling contents generated by arbitrary models. In this study, we focus on a challenging task, namely Open-Set Model Attribution (OSMA), to simultaneously attribute images to known models and identify those from unknown ones. Compared to existing open-set recognition (OSR) tasks focusing on semantic novelty, OSMA is more challenging as the distinction between images from known and unknown models may only lie in visually imperceptible traces. To this end, we propose a Progressive Open Space Expansion (POSE) solution, which simulates open-set samples that maintain the same semantics as closed-set samples but embedded with different imperceptible traces. Guided by a diversity constraint, the open space is simulated progressively by a set of lightweight augmentation models. We consider three real-world scenarios and construct an OSMA benchmark dataset, including unknown models trained with different random seeds, architectures, and datasets from known ones. Extensive experiments on the dataset demonstrate POSE is superior to both existing model attribution methods and off-the-shelf OSR methods.
Active Coarse-to-Fine Segmentation of Moveable Parts from Real Images
We introduce the first active learning (AL) model for high-accuracy instance segmentation of moveable parts from RGB images of real indoor scenes. Specifically, our goal is to obtain fully validated segmentation results by humans while minimizing manual effort. To this end, we employ a transformer that utilizes a masked-attention mechanism to supervise the active segmentation. To enhance the network tailored to moveable parts, we introduce a coarse-to-fine AL approach which first uses an object-aware masked attention and then a pose-aware one, leveraging the hierarchical nature of the problem and a correlation between moveable parts and object poses and interaction directions. When applying our AL model to 2,000 real images, we obtain fully validated moveable part segmentations with semantic labels, by only needing to manually annotate 11.45% of the images. This translates to significant (60%) time saving over manual effort required by the best non-AL model to attain the same segmentation accuracy. At last, we contribute a dataset of 2,550 real images with annotated moveable parts, demonstrating its superior quality and diversity over the best alternatives.
FrozenSeg: Harmonizing Frozen Foundation Models for Open-Vocabulary Segmentation
Open-vocabulary segmentation poses significant challenges, as it requires segmenting and recognizing objects across an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models, such as CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite notable performance improvements, these models still encounter the critical issue of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this challenge, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into the learnable queries and CLIP features within the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a lightweight transformer decoder for mask proposal generation-the performance bottleneck. Extensive experiments demonstrate that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data, and tested in a zero-shot manner. Code is available at https://github.com/chenxi52/FrozenSeg.
Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively
The CLIP and Segment Anything Model (SAM) are remarkable vision foundation models (VFMs). SAM excels in segmentation tasks across diverse domains, while CLIP is renowned for its zero-shot recognition capabilities. This paper presents an in-depth exploration of integrating these two models into a unified framework. Specifically, we introduce the Open-Vocabulary SAM, a SAM-inspired model designed for simultaneous interactive segmentation and recognition, leveraging two unique knowledge transfer modules: SAM2CLIP and CLIP2SAM. The former adapts SAM's knowledge into the CLIP via distillation and learnable transformer adapters, while the latter transfers CLIP knowledge into SAM, enhancing its recognition capabilities. Extensive experiments on various datasets and detectors show the effectiveness of Open-Vocabulary SAM in both segmentation and recognition tasks, significantly outperforming the naive baselines of simply combining SAM and CLIP. Furthermore, aided with image classification data training, our method can segment and recognize approximately 22,000 classes.
Detection-Oriented Image-Text Pretraining for Open-Vocabulary Detection
We present a new open-vocabulary detection approach based on detection-oriented image-text pretraining to bridge the gap between image-level pretraining and open-vocabulary object detection. At the pretraining phase, we replace the commonly used classification architecture with the detector architecture, which better serves the region-level recognition needs of detection by enabling the detector heads to learn from noisy image-text pairs. Using only standard contrastive loss and no pseudo-labeling, our approach is a simple yet effective extension of the contrastive learning method to learn emergent object-semantic cues. In addition, we propose a shifted-window learning approach upon window attention to make the backbone representation more robust, translation-invariant, and less biased by the window pattern. On the popular LVIS open-vocabulary detection benchmark, our approach sets a new state of the art of 40.4 mask AP_r using the common ViT-L backbone, significantly outperforming the best existing approach by +6.5 mask AP_r at system level. On the COCO benchmark, we achieve very competitive 40.8 novel AP without pseudo labeling or weak supervision. In addition, we evaluate our approach on the transfer detection setup, where ours outperforms the baseline significantly. Visualization reveals emerging object locality from the pretraining recipes compared to the baseline. Code and models will be publicly released.
Towards Open-Ended Visual Recognition with Large Language Model
Localizing and recognizing objects in the open-ended physical world poses a long-standing challenge within the domain of machine perception. Recent methods have endeavored to address the issue by employing a class-agnostic mask (or box) proposal model, complemented by an open-vocabulary classifier (e.g., CLIP) using pre-extracted text embeddings. However, it is worth noting that these open-vocabulary recognition models still exhibit limitations in practical applications. On one hand, they rely on the provision of class names during testing, where the recognition performance heavily depends on this predefined set of semantic classes by users. On the other hand, when training with multiple datasets, human intervention is required to alleviate the label definition conflict between them. In this paper, we introduce the OmniScient Model (OSM), a novel Large Language Model (LLM) based mask classifier, as a straightforward and effective solution to the aforementioned challenges. Specifically, OSM predicts class labels in a generative manner, thus removing the supply of class names during both training and testing. It also enables cross-dataset training without any human interference, exhibiting robust generalization capabilities due to the world knowledge acquired from the LLM. By combining OSM with an off-the-shelf mask proposal model, we present promising results on various benchmarks, and demonstrate its effectiveness in handling novel concepts. Code/model are available at https://github.com/bytedance/OmniScient-Model.
PACO: Parts and Attributes of Common Objects
Object models are gradually progressing from predicting just category labels to providing detailed descriptions of object instances. This motivates the need for large datasets which go beyond traditional object masks and provide richer annotations such as part masks and attributes. Hence, we introduce PACO: Parts and Attributes of Common Objects. It spans 75 object categories, 456 object-part categories and 55 attributes across image (LVIS) and video (Ego4D) datasets. We provide 641K part masks annotated across 260K object boxes, with roughly half of them exhaustively annotated with attributes as well. We design evaluation metrics and provide benchmark results for three tasks on the dataset: part mask segmentation, object and part attribute prediction and zero-shot instance detection. Dataset, models, and code are open-sourced at https://github.com/facebookresearch/paco.
Hierarchical Open-vocabulary Universal Image Segmentation
Open-vocabulary image segmentation aims to partition an image into semantic regions according to arbitrary text descriptions. However, complex visual scenes can be naturally decomposed into simpler parts and abstracted at multiple levels of granularity, introducing inherent segmentation ambiguity. Unlike existing methods that typically sidestep this ambiguity and treat it as an external factor, our approach actively incorporates a hierarchical representation encompassing different semantic-levels into the learning process. We propose a decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff". Additionally, we systematically examine the differences that exist in the textual and visual features between these types of categories. Our resulting model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal segmentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g., ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW, HIPIE achieves the state-of-the-art results at various levels of image comprehension, including semantic-level (e.g., semantic segmentation), instance-level (e.g., panoptic/referring segmentation and object detection), as well as part-level (e.g., part/subpart segmentation) tasks. Our code is released at https://github.com/berkeley-hipie/HIPIE.
Weakly Supervised 3D Open-vocabulary Segmentation
Open-vocabulary segmentation of 3D scenes is a fundamental function of human perception and thus a crucial objective in computer vision research. However, this task is heavily impeded by the lack of large-scale and diverse 3D open-vocabulary segmentation datasets for training robust and generalizable models. Distilling knowledge from pre-trained 2D open-vocabulary segmentation models helps but it compromises the open-vocabulary feature as the 2D models are mostly finetuned with close-vocabulary datasets. We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner. Specifically, given only the open-vocabulary text descriptions of the objects in a scene, we distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF), which effectively lifts 2D features into view-consistent 3D segmentation. A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process. Extensive experiments show that our method even outperforms fully supervised models trained with segmentation annotations in certain scenes, suggesting that 3D open-vocabulary segmentation can be effectively learned from 2D images and text-image pairs. Code is available at https://github.com/Kunhao-Liu/3D-OVS.
OmniLabel: A Challenging Benchmark for Language-Based Object Detection
Language-based object detection is a promising direction towards building a natural interface to describe objects in images that goes far beyond plain category names. While recent methods show great progress in that direction, proper evaluation is lacking. With OmniLabel, we propose a novel task definition, dataset, and evaluation metric. The task subsumes standard- and open-vocabulary detection as well as referring expressions. With more than 28K unique object descriptions on over 25K images, OmniLabel provides a challenging benchmark with diverse and complex object descriptions in a naturally open-vocabulary setting. Moreover, a key differentiation to existing benchmarks is that our object descriptions can refer to one, multiple or even no object, hence, providing negative examples in free-form text. The proposed evaluation handles the large label space and judges performance via a modified average precision metric, which we validate by evaluating strong language-based baselines. OmniLabel indeed provides a challenging test bed for future research on language-based detection.
CNOS: A Strong Baseline for CAD-based Novel Object Segmentation
We propose a simple three-stage approach to segment unseen objects in RGB images using their CAD models. Leveraging recent powerful foundation models, DINOv2 and Segment Anything, we create descriptors and generate proposals, including binary masks for a given input RGB image. By matching proposals with reference descriptors created from CAD models, we achieve precise object ID assignment along with modal masks. We experimentally demonstrate that our method achieves state-of-the-art results in CAD-based novel object segmentation, surpassing existing approaches on the seven core datasets of the BOP challenge by 19.8\% AP using the same BOP evaluation protocol. Our source code is available at https://github.com/nv-nguyen/cnos.
CountGD: Multi-Modal Open-World Counting
The goal of this paper is to improve the generality and accuracy of open-vocabulary object counting in images. To improve the generality, we repurpose an open-vocabulary detection foundation model (GroundingDINO) for the counting task, and also extend its capabilities by introducing modules to enable specifying the target object to count by visual exemplars. In turn, these new capabilities - being able to specify the target object by multi-modalites (text and exemplars) - lead to an improvement in counting accuracy. We make three contributions: First, we introduce the first open-world counting model, CountGD, where the prompt can be specified by a text description or visual exemplars or both; Second, we show that the performance of the model significantly improves the state of the art on multiple counting benchmarks - when using text only, CountGD is comparable to or outperforms all previous text-only works, and when using both text and visual exemplars, we outperform all previous models; Third, we carry out a preliminary study into different interactions between the text and visual exemplar prompts, including the cases where they reinforce each other and where one restricts the other. The code and an app to test the model are available at https://www.robots.ox.ac.uk/~vgg/research/countgd/.
Open Vocabulary Monocular 3D Object Detection
In this work, we pioneer the study of open-vocabulary monocular 3D object detection, a novel task that aims to detect and localize objects in 3D space from a single RGB image without limiting detection to a predefined set of categories. We formalize this problem, establish baseline methods, and introduce a class-agnostic approach that leverages open-vocabulary 2D detectors and lifts 2D bounding boxes into 3D space. Our approach decouples the recognition and localization of objects in 2D from the task of estimating 3D bounding boxes, enabling generalization across unseen categories. Additionally, we propose a target-aware evaluation protocol to address inconsistencies in existing datasets, improving the reliability of model performance assessment. Extensive experiments on the Omni3D dataset demonstrate the effectiveness of the proposed method in zero-shot 3D detection for novel object categories, validating its robust generalization capabilities. Our method and evaluation protocols contribute towards the development of open-vocabulary object detection models that can effectively operate in real-world, category-diverse environments.
Diffusion Models for Zero-Shot Open-Vocabulary Segmentation
The variety of objects in the real world is nearly unlimited and is thus impossible to capture using models trained on a fixed set of categories. As a result, in recent years, open-vocabulary methods have attracted the interest of the community. This paper proposes a new method for zero-shot open-vocabulary segmentation. Prior work largely relies on contrastive training using image-text pairs, leveraging grouping mechanisms to learn image features that are both aligned with language and well-localised. This however can introduce ambiguity as the visual appearance of images with similar captions often varies. Instead, we leverage the generative properties of large-scale text-to-image diffusion models to sample a set of support images for a given textual category. This provides a distribution of appearances for a given text circumventing the ambiguity problem. We further propose a mechanism that considers the contextual background of the sampled images to better localise objects and segment the background directly. We show that our method can be used to ground several existing pre-trained self-supervised feature extractors in natural language and provide explainable predictions by mapping back to regions in the support set. Our proposal is training-free, relying on pre-trained components only, yet, shows strong performance on a range of open-vocabulary segmentation benchmarks, obtaining a lead of more than 10% on the Pascal VOC benchmark.
CoReS: Compatible Representations via Stationarity
Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose CoReS, a new training procedure to learn representations that are compatible with those previously learned, grounding on the stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the training-set, which is the typical case in real applications.
Text Promptable Surgical Instrument Segmentation with Vision-Language Models
In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on EndoVis2017 and EndoVis2018 datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery.
Image-text matching for large-scale book collections
We address the problem of detecting and mapping all books in a collection of images to entries in a given book catalogue. Instead of performing independent retrieval for each book detected, we treat the image-text mapping problem as a many-to-many matching process, looking for the best overall match between the two sets. We combine a state-of-the-art segmentation method (SAM) to detect book spines and extract book information using a commercial OCR. We then propose a two-stage approach for text-image matching, where CLIP embeddings are used first for fast matching, followed by a second slower stage to refine the matching, employing either the Hungarian Algorithm or a BERT-based model trained to cope with noisy OCR input and partial text matches. To evaluate our approach, we publish a new dataset of annotated bookshelf images that covers the whole book collection of a public library in Spain. In addition, we provide two target lists of book metadata, a closed-set of 15k book titles that corresponds to the known library inventory, and an open-set of 2.3M book titles to simulate an open-world scenario. We report results on two settings, on one hand on a matching-only task, where the book segments and OCR is given and the objective is to perform many-to-many matching against the target lists, and a combined detection and matching task, where books must be first detected and recognised before they are matched to the target list entries. We show that both the Hungarian Matching and the proposed BERT-based model outperform a fuzzy string matching baseline, and we highlight inherent limitations of the matching algorithms as the target increases in size, and when either of the two sets (detected books or target book list) is incomplete. The dataset and code are available at https://github.com/llabres/library-dataset
Body Part-Based Representation Learning for Occluded Person Re-Identification
Occluded person re-identification (ReID) is a person retrieval task which aims at matching occluded person images with holistic ones. For addressing occluded ReID, part-based methods have been shown beneficial as they offer fine-grained information and are well suited to represent partially visible human bodies. However, training a part-based model is a challenging task for two reasons. Firstly, individual body part appearance is not as discriminative as global appearance (two distinct IDs might have the same local appearance), this means standard ReID training objectives using identity labels are not adapted to local feature learning. Secondly, ReID datasets are not provided with human topographical annotations. In this work, we propose BPBreID, a body part-based ReID model for solving the above issues. We first design two modules for predicting body part attention maps and producing body part-based features of the ReID target. We then propose GiLt, a novel training scheme for learning part-based representations that is robust to occlusions and non-discriminative local appearance. Extensive experiments on popular holistic and occluded datasets show the effectiveness of our proposed method, which outperforms state-of-the-art methods by 0.7% mAP and 5.6% rank-1 accuracy on the challenging Occluded-Duke dataset. Our code is available at https://github.com/VlSomers/bpbreid.
OpenScan: A Benchmark for Generalized Open-Vocabulary 3D Scene Understanding
Open-vocabulary 3D scene understanding (OV-3D) aims to localize and classify novel objects beyond the closed object classes. However, existing approaches and benchmarks primarily focus on the open vocabulary problem within the context of object classes, which is insufficient to provide a holistic evaluation to what extent a model understands the 3D scene. In this paper, we introduce a more challenging task called Generalized Open-Vocabulary 3D Scene Understanding (GOV-3D) to explore the open vocabulary problem beyond object classes. It encompasses an open and diverse set of generalized knowledge, expressed as linguistic queries of fine-grained and object-specific attributes. To this end, we contribute a new benchmark named OpenScan, which consists of 3D object attributes across eight representative linguistic aspects, including affordance, property, material, and more. We further evaluate state-of-the-art OV-3D methods on our OpenScan benchmark, and discover that these methods struggle to comprehend the abstract vocabularies of the GOV-3D task, a challenge that cannot be addressed by simply scaling up object classes during training. We highlight the limitations of existing methodologies and explore a promising direction to overcome the identified shortcomings. Data and code are available at https://github.com/YoujunZhao/OpenScan
Hyp-OW: Exploiting Hierarchical Structure Learning with Hyperbolic Distance Enhances Open World Object Detection
Open World Object Detection (OWOD) is a challenging and realistic task that extends beyond the scope of standard Object Detection task. It involves detecting both known and unknown objects while integrating learned knowledge for future tasks. However, the level of "unknownness" varies significantly depending on the context. For example, a tree is typically considered part of the background in a self-driving scene, but it may be significant in a household context. We argue that this contextual information should already be embedded within the known classes. In other words, there should be a semantic or latent structure relationship between the known and unknown items to be discovered. Motivated by this observation, we propose Hyp-OW, a method that learns and models hierarchical representation of known items through a SuperClass Regularizer. Leveraging this representation allows us to effectively detect unknown objects using a similarity distance-based relabeling module. Extensive experiments on benchmark datasets demonstrate the effectiveness of Hyp-OW, achieving improvement in both known and unknown detection (up to 6 percent). These findings are particularly pronounced in our newly designed benchmark, where a strong hierarchical structure exists between known and unknown objects. Our code can be found at https://github.com/tldoan/-HYP-OW-AAAI-2024-
INT: Instance-Specific Negative Mining for Task-Generic Promptable Segmentation
Task-generic promptable image segmentation aims to achieve segmentation of diverse samples under a single task description by utilizing only one task-generic prompt. Current methods leverage the generalization capabilities of Vision-Language Models (VLMs) to infer instance-specific prompts from these task-generic prompts in order to guide the segmentation process. However, when VLMs struggle to generalise to some image instances, predicting instance-specific prompts becomes poor. To solve this problem, we introduce Instance-specific Negative Mining for Task-Generic Promptable Segmentation (INT). The key idea of INT is to adaptively reduce the influence of irrelevant (negative) prior knowledge whilst to increase the use the most plausible prior knowledge, selected by negative mining with higher contrast, in order to optimise instance-specific prompts generation. Specifically, INT consists of two components: (1) instance-specific prompt generation, which progressively fliters out incorrect information in prompt generation; (2) semantic mask generation, which ensures each image instance segmentation matches correctly the semantics of the instance-specific prompts. INT is validated on six datasets, including camouflaged objects and medical images, demonstrating its effectiveness, robustness and scalability.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies pre-trained text-image diffusion and discriminative models to perform open-vocabulary panoptic segmentation. Text-to-image diffusion models have the remarkable ability to generate high-quality images with diverse open-vocabulary language descriptions. This demonstrates that their internal representation space is highly correlated with open concepts in the real world. Text-image discriminative models like CLIP, on the other hand, are good at classifying images into open-vocabulary labels. We leverage the frozen internal representations of both these models to perform panoptic segmentation of any category in the wild. Our approach outperforms the previous state of the art by significant margins on both open-vocabulary panoptic and semantic segmentation tasks. In particular, with COCO training only, our method achieves 23.4 PQ and 30.0 mIoU on the ADE20K dataset, with 8.3 PQ and 7.9 mIoU absolute improvement over the previous state of the art. We open-source our code and models at https://github.com/NVlabs/ODISE .
Towards Training-free Open-world Segmentation via Image Prompt Foundation Models
The realm of computer vision has witnessed a paradigm shift with the advent of foundational models, mirroring the transformative influence of large language models in the domain of natural language processing. This paper delves into the exploration of open-world segmentation, presenting a novel approach called Image Prompt Segmentation (IPSeg) that harnesses the power of vision foundational models. IPSeg lies the principle of a training-free paradigm, which capitalizes on image prompt techniques. Specifically, IPSeg utilizes a single image containing a subjective visual concept as a flexible prompt to query vision foundation models like DINOv2 and Stable Diffusion. Our approach extracts robust features for the prompt image and input image, then matches the input representations to the prompt representations via a novel feature interaction module to generate point prompts highlighting target objects in the input image. The generated point prompts are further utilized to guide the Segment Anything Model to segment the target object in the input image. The proposed method stands out by eliminating the need for exhaustive training sessions, thereby offering a more efficient and scalable solution. Experiments on COCO, PASCAL VOC, and other datasets demonstrate IPSeg's efficacy for flexible open-world segmentation using intuitive image prompts. This work pioneers tapping foundation models for open-world understanding through visual concepts conveyed in images.
The devil is in the object boundary: towards annotation-free instance segmentation using Foundation Models
Foundation models, pre-trained on a large amount of data have demonstrated impressive zero-shot capabilities in various downstream tasks. However, in object detection and instance segmentation, two fundamental computer vision tasks heavily reliant on extensive human annotations, foundation models such as SAM and DINO struggle to achieve satisfactory performance. In this study, we reveal that the devil is in the object boundary, i.e., these foundation models fail to discern boundaries between individual objects. For the first time, we probe that CLIP, which has never accessed any instance-level annotations, can provide a highly beneficial and strong instance-level boundary prior in the clustering results of its particular intermediate layer. Following this surprising observation, we propose Zip which Zips up CLip and SAM in a novel classification-first-then-discovery pipeline, enabling annotation-free, complex-scene-capable, open-vocabulary object detection and instance segmentation. Our Zip significantly boosts SAM's mask AP on COCO dataset by 12.5% and establishes state-of-the-art performance in various settings, including training-free, self-training, and label-efficient finetuning. Furthermore, annotation-free Zip even achieves comparable performance to the best-performing open-vocabulary object detecters using base annotations. Code is released at https://github.com/ChengShiest/Zip-Your-CLIP
Shatter and Gather: Learning Referring Image Segmentation with Text Supervision
Referring image segmentation, the task of segmenting any arbitrary entities described in free-form texts, opens up a variety of vision applications. However, manual labeling of training data for this task is prohibitively costly, leading to lack of labeled data for training. We address this issue by a weakly supervised learning approach using text descriptions of training images as the only source of supervision. To this end, we first present a new model that discovers semantic entities in input image and then combines such entities relevant to text query to predict the mask of the referent. We also present a new loss function that allows the model to be trained without any further supervision. Our method was evaluated on four public benchmarks for referring image segmentation, where it clearly outperformed the existing method for the same task and recent open-vocabulary segmentation models on all the benchmarks.
QueryNER: Segmentation of E-commerce Queries
We present QueryNER, a manually-annotated dataset and accompanying model for e-commerce query segmentation. Prior work in sequence labeling for e-commerce has largely addressed aspect-value extraction which focuses on extracting portions of a product title or query for narrowly defined aspects. Our work instead focuses on the goal of dividing a query into meaningful chunks with broadly applicable types. We report baseline tagging results and conduct experiments comparing token and entity dropping for null and low recall query recovery. Challenging test sets are created using automatic transformations and show how simple data augmentation techniques can make the models more robust to noise. We make the QueryNER dataset publicly available.
Exploring Transformers for Open-world Instance Segmentation
Open-world instance segmentation is a rising task, which aims to segment all objects in the image by learning from a limited number of base-category objects. This task is challenging, as the number of unseen categories could be hundreds of times larger than that of seen categories. Recently, the DETR-like models have been extensively studied in the closed world while stay unexplored in the open world. In this paper, we utilize the Transformer for open-world instance segmentation and present SWORD. Firstly, we introduce to attach the stop-gradient operation before classification head and further add IoU heads for discovering novel objects. We demonstrate that a simple stop-gradient operation not only prevents the novel objects from being suppressed as background, but also allows the network to enjoy the merit of heuristic label assignment. Secondly, we propose a novel contrastive learning framework to enlarge the representations between objects and background. Specifically, we maintain a universal object queue to obtain the object center, and dynamically select positive and negative samples from the object queries for contrastive learning. While the previous works only focus on pursuing average recall and neglect average precision, we show the prominence of SWORD by giving consideration to both criteria. Our models achieve state-of-the-art performance in various open-world cross-category and cross-dataset generalizations. Particularly, in VOC to non-VOC setup, our method sets new state-of-the-art results of 40.0% on ARb100 and 34.9% on ARm100. For COCO to UVO generalization, SWORD significantly outperforms the previous best open-world model by 5.9% on APm and 8.1% on ARm100.
Towards Content-based Pixel Retrieval in Revisited Oxford and Paris
This paper introduces the first two pixel retrieval benchmarks. Pixel retrieval is segmented instance retrieval. Like semantic segmentation extends classification to the pixel level, pixel retrieval is an extension of image retrieval and offers information about which pixels are related to the query object. In addition to retrieving images for the given query, it helps users quickly identify the query object in true positive images and exclude false positive images by denoting the correlated pixels. Our user study results show pixel-level annotation can significantly improve the user experience. Compared with semantic and instance segmentation, pixel retrieval requires a fine-grained recognition capability for variable-granularity targets. To this end, we propose pixel retrieval benchmarks named PROxford and PRParis, which are based on the widely used image retrieval datasets, ROxford and RParis. Three professional annotators label 5,942 images with two rounds of double-checking and refinement. Furthermore, we conduct extensive experiments and analysis on the SOTA methods in image search, image matching, detection, segmentation, and dense matching using our pixel retrieval benchmarks. Results show that the pixel retrieval task is challenging to these approaches and distinctive from existing problems, suggesting that further research can advance the content-based pixel-retrieval and thus user search experience. The datasets can be downloaded from https://github.com/anguoyuan/Pixel_retrieval-Segmented_instance_retrieval{this link}.
UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface
Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that Unifies Fine-grained visual perception tasks through an Open-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models will be publicly available.
Global Knowledge Calibration for Fast Open-Vocabulary Segmentation
Recent advancements in pre-trained vision-language models, such as CLIP, have enabled the segmentation of arbitrary concepts solely from textual inputs, a process commonly referred to as open-vocabulary semantic segmentation (OVS). However, existing OVS techniques confront a fundamental challenge: the trained classifier tends to overfit on the base classes observed during training, resulting in suboptimal generalization performance to unseen classes. To mitigate this issue, recent studies have proposed the use of an additional frozen pre-trained CLIP for classification. Nonetheless, this approach incurs heavy computational overheads as the CLIP vision encoder must be repeatedly forward-passed for each mask, rendering it impractical for real-world applications. To address this challenge, our objective is to develop a fast OVS model that can perform comparably or better without the extra computational burden of the CLIP image encoder during inference. To this end, we propose a core idea of preserving the generalizable representation when fine-tuning on known classes. Specifically, we introduce a text diversification strategy that generates a set of synonyms for each training category, which prevents the learned representation from collapsing onto specific known category names. Additionally, we employ a text-guided knowledge distillation method to preserve the generalizable knowledge of CLIP. Extensive experiments demonstrate that our proposed model achieves robust generalization performance across various datasets. Furthermore, we perform a preliminary exploration of open-vocabulary video segmentation and present a benchmark that can facilitate future open-vocabulary research in the video domain.
Open-RGBT: Open-vocabulary RGB-T Zero-shot Semantic Segmentation in Open-world Environments
Semantic segmentation is a critical technique for effective scene understanding. Traditional RGB-T semantic segmentation models often struggle to generalize across diverse scenarios due to their reliance on pretrained models and predefined categories. Recent advancements in Visual Language Models (VLMs) have facilitated a shift from closed-set to open-vocabulary semantic segmentation methods. However, these models face challenges in dealing with intricate scenes, primarily due to the heterogeneity between RGB and thermal modalities. To address this gap, we present Open-RGBT, a novel open-vocabulary RGB-T semantic segmentation model. Specifically, we obtain instance-level detection proposals by incorporating visual prompts to enhance category understanding. Additionally, we employ the CLIP model to assess image-text similarity, which helps correct semantic consistency and mitigates ambiguities in category identification. Empirical evaluations demonstrate that Open-RGBT achieves superior performance in diverse and challenging real-world scenarios, even in the wild, significantly advancing the field of RGB-T semantic segmentation.
Semantic Understanding of Scenes through the ADE20K Dataset
Scene parsing, or recognizing and segmenting objects and stuff in an image, is one of the key problems in computer vision. Despite the community's efforts in data collection, there are still few image datasets covering a wide range of scenes and object categories with dense and detailed annotations for scene parsing. In this paper, we introduce and analyze the ADE20K dataset, spanning diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. A generic network design called Cascade Segmentation Module is then proposed to enable the segmentation networks to parse a scene into stuff, objects, and object parts in a cascade. We evaluate the proposed module integrated within two existing semantic segmentation networks, yielding significant improvements for scene parsing. We further show that the scene parsing networks trained on ADE20K can be applied to a wide variety of scenes and objects.
OV-VG: A Benchmark for Open-Vocabulary Visual Grounding
Open-vocabulary learning has emerged as a cutting-edge research area, particularly in light of the widespread adoption of vision-based foundational models. Its primary objective is to comprehend novel concepts that are not encompassed within a predefined vocabulary. One key facet of this endeavor is Visual Grounding, which entails locating a specific region within an image based on a corresponding language description. While current foundational models excel at various visual language tasks, there's a noticeable absence of models specifically tailored for open-vocabulary visual grounding. This research endeavor introduces novel and challenging OV tasks, namely Open-Vocabulary Visual Grounding and Open-Vocabulary Phrase Localization. The overarching aim is to establish connections between language descriptions and the localization of novel objects. To facilitate this, we have curated a comprehensive annotated benchmark, encompassing 7,272 OV-VG images and 1,000 OV-PL images. In our pursuit of addressing these challenges, we delved into various baseline methodologies rooted in existing open-vocabulary object detection, VG, and phrase localization frameworks. Surprisingly, we discovered that state-of-the-art methods often falter in diverse scenarios. Consequently, we developed a novel framework that integrates two critical components: Text-Image Query Selection and Language-Guided Feature Attention. These modules are designed to bolster the recognition of novel categories and enhance the alignment between visual and linguistic information. Extensive experiments demonstrate the efficacy of our proposed framework, which consistently attains SOTA performance across the OV-VG task. Additionally, ablation studies provide further evidence of the effectiveness of our innovative models. Codes and datasets will be made publicly available at https://github.com/cv516Buaa/OV-VG.
OvarNet: Towards Open-vocabulary Object Attribute Recognition
In this paper, we consider the problem of simultaneously detecting objects and inferring their visual attributes in an image, even for those with no manual annotations provided at the training stage, resembling an open-vocabulary scenario. To achieve this goal, we make the following contributions: (i) we start with a naive two-stage approach for open-vocabulary object detection and attribute classification, termed CLIP-Attr. The candidate objects are first proposed with an offline RPN and later classified for semantic category and attributes; (ii) we combine all available datasets and train with a federated strategy to finetune the CLIP model, aligning the visual representation with attributes, additionally, we investigate the efficacy of leveraging freely available online image-caption pairs under weakly supervised learning; (iii) in pursuit of efficiency, we train a Faster-RCNN type model end-to-end with knowledge distillation, that performs class-agnostic object proposals and classification on semantic categories and attributes with classifiers generated from a text encoder; Finally, (iv) we conduct extensive experiments on VAW, MS-COCO, LSA, and OVAD datasets, and show that recognition of semantic category and attributes is complementary for visual scene understanding, i.e., jointly training object detection and attributes prediction largely outperform existing approaches that treat the two tasks independently, demonstrating strong generalization ability to novel attributes and categories.
ClothesNet: An Information-Rich 3D Garment Model Repository with Simulated Clothes Environment
We present ClothesNet: a large-scale dataset of 3D clothes objects with information-rich annotations. Our dataset consists of around 4400 models covering 11 categories annotated with clothes features, boundary lines, and keypoints. ClothesNet can be used to facilitate a variety of computer vision and robot interaction tasks. Using our dataset, we establish benchmark tasks for clothes perception, including classification, boundary line segmentation, and keypoint detection, and develop simulated clothes environments for robotic interaction tasks, including rearranging, folding, hanging, and dressing. We also demonstrate the efficacy of our ClothesNet in real-world experiments. Supplemental materials and dataset are available on our project webpage.
Templates for 3D Object Pose Estimation Revisited: Generalization to New Objects and Robustness to Occlusions
We present a method that can recognize new objects and estimate their 3D pose in RGB images even under partial occlusions. Our method requires neither a training phase on these objects nor real images depicting them, only their CAD models. It relies on a small set of training objects to learn local object representations, which allow us to locally match the input image to a set of "templates", rendered images of the CAD models for the new objects. In contrast with the state-of-the-art methods, the new objects on which our method is applied can be very different from the training objects. As a result, we are the first to show generalization without retraining on the LINEMOD and Occlusion-LINEMOD datasets. Our analysis of the failure modes of previous template-based approaches further confirms the benefits of local features for template matching. We outperform the state-of-the-art template matching methods on the LINEMOD, Occlusion-LINEMOD and T-LESS datasets. Our source code and data are publicly available at https://github.com/nv-nguyen/template-pose
Generation and Comprehension of Unambiguous Object Descriptions
We propose a method that can generate an unambiguous description (known as a referring expression) of a specific object or region in an image, and which can also comprehend or interpret such an expression to infer which object is being described. We show that our method outperforms previous methods that generate descriptions of objects without taking into account other potentially ambiguous objects in the scene. Our model is inspired by recent successes of deep learning methods for image captioning, but while image captioning is difficult to evaluate, our task allows for easy objective evaluation. We also present a new large-scale dataset for referring expressions, based on MS-COCO. We have released the dataset and a toolbox for visualization and evaluation, see https://github.com/mjhucla/Google_Refexp_toolbox
Holistic Understanding of 3D Scenes as Universal Scene Description
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered by current works. In this work, we address this shortcoming and introduce (1) an expertly curated dataset in the Universal Scene Description (USD) format, featuring high-quality manual annotations, for instance, segmentation and articulation on 280 indoor scenes; (2) a learning-based model together with a novel baseline capable of predicting part segmentation along with a full specification of motion attributes, including motion type, articulated and interactable parts, and motion parameters; (3) a benchmark serving to compare upcoming methods for the task at hand. Overall, our dataset provides 8 types of annotations - object and part segmentations, motion types, movable and interactable parts, motion parameters, connectivity, and object mass annotations. With its broad and high-quality annotations, the data provides the basis for holistic 3D scene understanding models. All data is provided in the USD format, allowing interoperability and easy integration with downstream tasks. We provide open access to our dataset, benchmark, and method's source code.
Delving into the Openness of CLIP
Contrastive Language-Image Pre-training (CLIP) formulates image classification as an image-to-text matching task, i.e., matching images to the corresponding natural language descriptions instead of discrete category IDs. This allows for open-vocabulary visual recognition, where the model can recognize images from an open class set (also known as an open vocabulary) in a zero-shot manner. However, evaluating the openness of CLIP-like models is challenging, as the models are open to arbitrary vocabulary in theory, but their accuracy varies in practice. To address this, we resort to an incremental perspective to assess the openness through vocabulary expansions, and define extensibility to measure a model's ability to handle novel classes. Our evaluation shows that CLIP-like models are not truly open, and their performance deteriorates as the vocabulary expands. We further dissect the feature space of CLIP from the perspectives of representation alignment and uniformity. Our investigation reveals that the overestimation of openness is due to confusion among competing text features, rather than a failure to capture the similarity between image features and text features of novel classes. We hope that our investigation and analysis will facilitate future research on the CLIP openness issue.
Open World Object Detection in the Era of Foundation Models
Object detection is integral to a bevy of real-world applications, from robotics to medical image analysis. To be used reliably in such applications, models must be capable of handling unexpected - or novel - objects. The open world object detection (OWD) paradigm addresses this challenge by enabling models to detect unknown objects and learn discovered ones incrementally. However, OWD method development is hindered due to the stringent benchmark and task definitions. These definitions effectively prohibit foundation models. Here, we aim to relax these definitions and investigate the utilization of pre-trained foundation models in OWD. First, we show that existing benchmarks are insufficient in evaluating methods that utilize foundation models, as even naive integration methods nearly saturate these benchmarks. This result motivated us to curate a new and challenging benchmark for these models. Therefore, we introduce a new benchmark that includes five real-world application-driven datasets, including challenging domains such as aerial and surgical images, and establish baselines. We exploit the inherent connection between classes in application-driven datasets and introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects. FOMO has ~3x unknown object mAP compared to baselines on our benchmark. However, our results indicate a significant place for improvement - suggesting a great research opportunity in further scaling object detection methods to real-world domains. Our code and benchmark are available at https://orrzohar.github.io/projects/fomo/.
V3Det: Vast Vocabulary Visual Detection Dataset
Recent advances in detecting arbitrary objects in the real world are trained and evaluated on object detection datasets with a relatively restricted vocabulary. To facilitate the development of more general visual object detection, we propose V3Det, a vast vocabulary visual detection dataset with precisely annotated bounding boxes on massive images. V3Det has several appealing properties: 1) Vast Vocabulary: It contains bounding boxes of objects from 13,029 categories on real-world images, which is 10 times larger than the existing large vocabulary object detection dataset, e.g., LVIS. 2) Hierarchical Category Organization: The vast vocabulary of V3Det is organized by a hierarchical category tree which annotates the inclusion relationship among categories, encouraging the exploration of category relationships in vast and open vocabulary object detection. 3) Rich Annotations: V3Det comprises precisely annotated objects in 245k images and professional descriptions of each category written by human experts and a powerful chatbot. By offering a vast exploration space, V3Det enables extensive benchmarks on both vast and open vocabulary object detection, leading to new observations, practices, and insights for future research. It has the potential to serve as a cornerstone dataset for developing more general visual perception systems.
Leveraging Open-Vocabulary Diffusion to Camouflaged Instance Segmentation
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions. This indicates that there exists a strong correlation between the visual and textual domains. In addition, text-image discriminative models such as CLIP excel in image labelling from text prompts, thanks to the rich and diverse information available from open concepts. In this paper, we leverage these technical advances to solve a challenging problem in computer vision: camouflaged instance segmentation. Specifically, we propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations. Such cross-domain representations are desirable in segmenting camouflaged objects where visual cues are subtle to distinguish the objects from the background, especially in segmenting novel objects which are not seen in training. We also develop technically supportive components to effectively fuse cross-domain features and engage relevant features towards respective foreground objects. We validate our method and compare it with existing ones on several benchmark datasets of camouflaged instance segmentation and generic open-vocabulary instance segmentation. Experimental results confirm the advances of our method over existing ones. We will publish our code and pre-trained models to support future research.
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
Zero-guidance Segmentation Using Zero Segment Labels
CLIP has enabled new and exciting joint vision-language applications, one of which is open-vocabulary segmentation, which can locate any segment given an arbitrary text query. In our research, we ask whether it is possible to discover semantic segments without any user guidance in the form of text queries or predefined classes, and label them using natural language automatically? We propose a novel problem zero-guidance segmentation and the first baseline that leverages two pre-trained generalist models, DINO and CLIP, to solve this problem without any fine-tuning or segmentation dataset. The general idea is to first segment an image into small over-segments, encode them into CLIP's visual-language space, translate them into text labels, and merge semantically similar segments together. The key challenge, however, is how to encode a visual segment into a segment-specific embedding that balances global and local context information, both useful for recognition. Our main contribution is a novel attention-masking technique that balances the two contexts by analyzing the attention layers inside CLIP. We also introduce several metrics for the evaluation of this new task. With CLIP's innate knowledge, our method can precisely locate the Mona Lisa painting among a museum crowd. Project page: https://zero-guide-seg.github.io/.
Interfacing Foundation Models' Embeddings
We present FIND, a generalized interface for aligning foundation models' embeddings. As shown in teaser figure, a lightweight transformer interface without tuning any foundation model weights is enough for a unified image (segmentation) and dataset-level (retrieval) understanding. The proposed interface has the following favorable attributes: (1) Generalizable. It applies to various tasks spanning retrieval, segmentation, etc., under the same architecture and weights. (2) Prototypable. Different tasks are able to be implemented through prototyping attention masks and embedding types. (3) Extendable. The proposed interface is adaptive to new tasks, and new models. (4) Interleavable. With the benefit of multi-task multi-modal training, the proposed interface creates an interleaved shared embedding space. In light of the interleaved embedding space, we introduce the FIND-Bench, which introduces new training and evaluation annotations to the COCO dataset for interleave segmentation and retrieval. Our approach achieves state-of-the-art performance on FIND-Bench and competitive performance on standard retrieval and segmentation settings. The training, evaluation, and demo code as well as the dataset have been released at https://github.com/UX-Decoder/FIND.
OpenIns3D: Snap and Lookup for 3D Open-vocabulary Instance Segmentation
Current 3D open-vocabulary scene understanding methods mostly utilize well-aligned 2D images as the bridge to learn 3D features with language. However, applying these approaches becomes challenging in scenarios where 2D images are absent. In this work, we introduce a completely new pipeline, namely, OpenIns3D, which requires no 2D image inputs, for 3D open-vocabulary scene understanding at the instance level. The OpenIns3D framework employs a "Mask-Snap-Lookup" scheme. The "Mask" module learns class-agnostic mask proposals in 3D point clouds. The "Snap" module generates synthetic scene-level images at multiple scales and leverages 2D vision language models to extract interesting objects. The "Lookup" module searches through the outcomes of "Snap" with the help of Mask2Pixel maps, which contain the precise correspondence between 3D masks and synthetic images, to assign category names to the proposed masks. This 2D input-free, easy-to-train, and flexible approach achieved state-of-the-art results on a wide range of indoor and outdoor datasets with a large margin. Furthermore, OpenIns3D allows for effortless switching of 2D detectors without re-training. When integrated with state-of-the-art 2D open-world models such as ODISE and GroundingDINO, superb results are observed on open-vocabulary instance segmentation. When integrated with LLM-powered 2D models like LISA, it demonstrates a remarkable capacity to process highly complex text queries, including those that require intricate reasoning and world knowledge. Project page: https://zheninghuang.github.io/OpenIns3D/
PROB: Probabilistic Objectness for Open World Object Detection
Open World Object Detection (OWOD) is a new and challenging computer vision task that bridges the gap between classic object detection (OD) benchmarks and object detection in the real world. In addition to detecting and classifying seen/labeled objects, OWOD algorithms are expected to detect novel/unknown objects - which can be classified and incrementally learned. In standard OD, object proposals not overlapping with a labeled object are automatically classified as background. Therefore, simply applying OD methods to OWOD fails as unknown objects would be predicted as background. The challenge of detecting unknown objects stems from the lack of supervision in distinguishing unknown objects and background object proposals. Previous OWOD methods have attempted to overcome this issue by generating supervision using pseudo-labeling - however, unknown object detection has remained low. Probabilistic/generative models may provide a solution for this challenge. Herein, we introduce a novel probabilistic framework for objectness estimation, where we alternate between probability distribution estimation and objectness likelihood maximization of known objects in the embedded feature space - ultimately allowing us to estimate the objectness probability of different proposals. The resulting Probabilistic Objectness transformer-based open-world detector, PROB, integrates our framework into traditional object detection models, adapting them for the open-world setting. Comprehensive experiments on OWOD benchmarks show that PROB outperforms all existing OWOD methods in both unknown object detection (sim 2times unknown recall) and known object detection (sim 10% mAP). Our code will be made available upon publication at https://github.com/orrzohar/PROB.
Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers
We present Region-aware Open-vocabulary Vision Transformers (RO-ViT) - a contrastive image-text pretraining recipe to bridge the gap between image-level pretraining and open-vocabulary object detection. At the pretraining phase, we propose to randomly crop and resize regions of positional embeddings instead of using the whole image positional embeddings. This better matches the use of positional embeddings at region-level in the detection finetuning phase. In addition, we replace the common softmax cross entropy loss in contrastive learning with focal loss to better learn the informative yet difficult examples. Finally, we leverage recent advances in novel object proposals to improve open-vocabulary detection finetuning. We evaluate our full model on the LVIS and COCO open-vocabulary detection benchmarks and zero-shot transfer. RO-ViT achieves a state-of-the-art 32.1 AP_r on LVIS, surpassing the best existing approach by +5.8 points in addition to competitive zero-shot transfer detection. Surprisingly, RO-ViT improves the image-level representation as well and achieves the state of the art on 9 out of 12 metrics on COCO and Flickr image-text retrieval benchmarks, outperforming competitive approaches with larger models.
Advancing Referring Expression Segmentation Beyond Single Image
Referring Expression Segmentation (RES) is a widely explored multi-modal task, which endeavors to segment the pre-existing object within a single image with a given linguistic expression. However, in broader real-world scenarios, it is not always possible to determine if the described object exists in a specific image. Typically, we have a collection of images, some of which may contain the described objects. The current RES setting curbs its practicality in such situations. To overcome this limitation, we propose a more realistic and general setting, named Group-wise Referring Expression Segmentation (GRES), which expands RES to a collection of related images, allowing the described objects to be present in a subset of input images. To support this new setting, we introduce an elaborately compiled dataset named Grouped Referring Dataset (GRD), containing complete group-wise annotations of target objects described by given expressions. We also present a baseline method named Grouped Referring Segmenter (GRSer), which explicitly captures the language-vision and intra-group vision-vision interactions to achieve state-of-the-art results on the proposed GRES and related tasks, such as Co-Salient Object Detection and RES. Our dataset and codes will be publicly released in https://github.com/yixuan730/group-res.
Open-set object detection: towards unified problem formulation and benchmarking
In real-world applications where confidence is key, like autonomous driving, the accurate detection and appropriate handling of classes differing from those used during training are crucial. Despite the proposal of various unknown object detection approaches, we have observed widespread inconsistencies among them regarding the datasets, metrics, and scenarios used, alongside a notable absence of a clear definition for unknown objects, which hampers meaningful evaluation. To counter these issues, we introduce two benchmarks: a unified VOC-COCO evaluation, and the new OpenImagesRoad benchmark which provides clear hierarchical object definition besides new evaluation metrics. Complementing the benchmark, we exploit recent self-supervised Vision Transformers performance, to improve pseudo-labeling-based OpenSet Object Detection (OSOD), through OW-DETR++. State-of-the-art methods are extensively evaluated on the proposed benchmarks. This study provides a clear problem definition, ensures consistent evaluations, and draws new conclusions about effectiveness of OSOD strategies.
3x2: 3D Object Part Segmentation by 2D Semantic Correspondences
3D object part segmentation is essential in computer vision applications. While substantial progress has been made in 2D object part segmentation, the 3D counterpart has received less attention, in part due to the scarcity of annotated 3D datasets, which are expensive to collect. In this work, we propose to leverage a few annotated 3D shapes or richly annotated 2D datasets to perform 3D object part segmentation. We present our novel approach, termed 3-By-2 that achieves SOTA performance on different benchmarks with various granularity levels. By using features from pretrained foundation models and exploiting semantic and geometric correspondences, we are able to overcome the challenges of limited 3D annotations. Our approach leverages available 2D labels, enabling effective 3D object part segmentation. Our method 3-By-2 can accommodate various part taxonomies and granularities, demonstrating interesting part label transfer ability across different object categories. Project website: https://ngailapdi.github.io/projects/3by2/.
Localizing Object-level Shape Variations with Text-to-Image Diffusion Models
Text-to-image models give rise to workflows which often begin with an exploration step, where users sift through a large collection of generated images. The global nature of the text-to-image generation process prevents users from narrowing their exploration to a particular object in the image. In this paper, we present a technique to generate a collection of images that depicts variations in the shape of a specific object, enabling an object-level shape exploration process. Creating plausible variations is challenging as it requires control over the shape of the generated object while respecting its semantics. A particular challenge when generating object variations is accurately localizing the manipulation applied over the object's shape. We introduce a prompt-mixing technique that switches between prompts along the denoising process to attain a variety of shape choices. To localize the image-space operation, we present two techniques that use the self-attention layers in conjunction with the cross-attention layers. Moreover, we show that these localization techniques are general and effective beyond the scope of generating object variations. Extensive results and comparisons demonstrate the effectiveness of our method in generating object variations, and the competence of our localization techniques.
CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection
Open-vocabulary 3D Object Detection (OV-3DDet) aims to detect objects from an arbitrary list of categories within a 3D scene, which remains seldom explored in the literature. There are primarily two fundamental problems in OV-3DDet, i.e., localizing and classifying novel objects. This paper aims at addressing the two problems simultaneously via a unified framework, under the condition of limited base categories. To localize novel 3D objects, we propose an effective 3D Novel Object Discovery strategy, which utilizes both the 3D box geometry priors and 2D semantic open-vocabulary priors to generate pseudo box labels of the novel objects. To classify novel object boxes, we further develop a cross-modal alignment module based on discovered novel boxes, to align feature spaces between 3D point cloud and image/text modalities. Specifically, the alignment process contains a class-agnostic and a class-discriminative alignment, incorporating not only the base objects with annotations but also the increasingly discovered novel objects, resulting in an iteratively enhanced alignment. The novel box discovery and crossmodal alignment are jointly learned to collaboratively benefit each other. The novel object discovery can directly impact the cross-modal alignment, while a better feature alignment can, in turn, boost the localization capability, leading to a unified OV-3DDet framework, named CoDA, for simultaneous novel object localization and classification. Extensive experiments on two challenging datasets (i.e., SUN-RGBD and ScanNet) demonstrate the effectiveness of our method and also show a significant mAP improvement upon the best-performing alternative method by 80%. Codes and pre-trained models are released on the project page.
Image Segmentation Using Text and Image Prompts
Image segmentation is usually addressed by training a model for a fixed set of object classes. Incorporating additional classes or more complex queries later is expensive as it requires re-training the model on a dataset that encompasses these expressions. Here we propose a system that can generate image segmentations based on arbitrary prompts at test time. A prompt can be either a text or an image. This approach enables us to create a unified model (trained once) for three common segmentation tasks, which come with distinct challenges: referring expression segmentation, zero-shot segmentation and one-shot segmentation. We build upon the CLIP model as a backbone which we extend with a transformer-based decoder that enables dense prediction. After training on an extended version of the PhraseCut dataset, our system generates a binary segmentation map for an image based on a free-text prompt or on an additional image expressing the query. We analyze different variants of the latter image-based prompts in detail. This novel hybrid input allows for dynamic adaptation not only to the three segmentation tasks mentioned above, but to any binary segmentation task where a text or image query can be formulated. Finally, we find our system to adapt well to generalized queries involving affordances or properties. Code is available at https://eckerlab.org/code/clipseg.
Recognize Any Regions
Understanding the semantics of individual regions or patches within unconstrained images, such as in open-world object detection, represents a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient region recognition architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information extracted from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Through extensive experiments in the context of open-world object recognition, our RegionSpot demonstrates significant performance improvements over prior alternatives, while also providing substantial computational savings. For instance, training our model with 3 million data in a single day using 8 V100 GPUs. Our model outperforms GLIP by 6.5 % in mean average precision (mAP), with an even larger margin by 14.8 % for more challenging and rare categories.
YOLO-World: Real-Time Open-Vocabulary Object Detection
The You Only Look Once (YOLO) series of detectors have established themselves as efficient and practical tools. However, their reliance on predefined and trained object categories limits their applicability in open scenarios. Addressing this limitation, we introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities through vision-language modeling and pre-training on large-scale datasets. Specifically, we propose a new Re-parameterizable Vision-Language Path Aggregation Network (RepVL-PAN) and region-text contrastive loss to facilitate the interaction between visual and linguistic information. Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency. On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed. Furthermore, the fine-tuned YOLO-World achieves remarkable performance on several downstream tasks, including object detection and open-vocabulary instance segmentation.
Towards Open-Vocabulary Video Instance Segmentation
Video Instance Segmentation (VIS) aims at segmenting and categorizing objects in videos from a closed set of training categories, lacking the generalization ability to handle novel categories in real-world videos. To address this limitation, we make the following three contributions. First, we introduce the novel task of Open-Vocabulary Video Instance Segmentation, which aims to simultaneously segment, track, and classify objects in videos from open-set categories, including novel categories unseen during training. Second, to benchmark Open-Vocabulary VIS, we collect a Large-Vocabulary Video Instance Segmentation dataset (LV-VIS), that contains well-annotated objects from 1,196 diverse categories, significantly surpassing the category size of existing datasets by more than one order of magnitude. Third, we propose an efficient Memory-Induced Transformer architecture, OV2Seg, to first achieve Open-Vocabulary VIS in an end-to-end manner with near real-time inference speed. Extensive experiments on LV-VIS and four existing VIS datasets demonstrate the strong zero-shot generalization ability of OV2Seg on novel categories. The dataset and code are released here https://github.com/haochenheheda/LVVIS.
YOLOE: Real-Time Seeing Anything
Object detection and segmentation are widely employed in computer vision applications, yet conventional models like YOLO series, while efficient and accurate, are limited by predefined categories, hindering adaptability in open scenarios. Recent open-set methods leverage text prompts, visual cues, or prompt-free paradigm to overcome this, but often compromise between performance and efficiency due to high computational demands or deployment complexity. In this work, we introduce YOLOE, which integrates detection and segmentation across diverse open prompt mechanisms within a single highly efficient model, achieving real-time seeing anything. For text prompts, we propose Re-parameterizable Region-Text Alignment (RepRTA) strategy. It refines pretrained textual embeddings via a re-parameterizable lightweight auxiliary network and enhances visual-textual alignment with zero inference and transferring overhead. For visual prompts, we present Semantic-Activated Visual Prompt Encoder (SAVPE). It employs decoupled semantic and activation branches to bring improved visual embedding and accuracy with minimal complexity. For prompt-free scenario, we introduce Lazy Region-Prompt Contrast (LRPC) strategy. It utilizes a built-in large vocabulary and specialized embedding to identify all objects, avoiding costly language model dependency. Extensive experiments show YOLOE's exceptional zero-shot performance and transferability with high inference efficiency and low training cost. Notably, on LVIS, with 3times less training cost and 1.4times inference speedup, YOLOE-v8-S surpasses YOLO-Worldv2-S by 3.5 AP. When transferring to COCO, YOLOE-v8-L achieves 0.6 AP^b and 0.4 AP^m gains over closed-set YOLOv8-L with nearly 4times less training time. Code and models are available at https://github.com/THU-MIG/yoloe.
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.
OMG-Seg: Is One Model Good Enough For All Segmentation?
In this work, we address various segmentation tasks, each traditionally tackled by distinct or partially unified models. We propose OMG-Seg, One Model that is Good enough to efficiently and effectively handle all the segmentation tasks, including image semantic, instance, and panoptic segmentation, as well as their video counterparts, open vocabulary settings, prompt-driven, interactive segmentation like SAM, and video object segmentation. To our knowledge, this is the first model to handle all these tasks in one model and achieve satisfactory performance. We show that OMG-Seg, a transformer-based encoder-decoder architecture with task-specific queries and outputs, can support over ten distinct segmentation tasks and yet significantly reduce computational and parameter overhead across various tasks and datasets. We rigorously evaluate the inter-task influences and correlations during co-training. Code and models are available at https://github.com/lxtGH/OMG-Seg.
SPACE-IDEAS: A Dataset for Salient Information Detection in Space Innovation
Detecting salient parts in text using natural language processing has been widely used to mitigate the effects of information overflow. Nevertheless, most of the datasets available for this task are derived mainly from academic publications. We introduce SPACE-IDEAS, a dataset for salient information detection from innovation ideas related to the Space domain. The text in SPACE-IDEAS varies greatly and includes informal, technical, academic and business-oriented writing styles. In addition to a manually annotated dataset we release an extended version that is annotated using a large generative language model. We train different sentence and sequential sentence classifiers, and show that the automatically annotated dataset can be leveraged using multitask learning to train better classifiers.
CLIM: Contrastive Language-Image Mosaic for Region Representation
Detecting objects accurately from a large or open vocabulary necessitates the vision-language alignment on region representations. However, learning such a region-text alignment by obtaining high-quality box annotations with text labels or descriptions is expensive and infeasible. In contrast, collecting image-text pairs is simpler but lacks precise object location information to associate regions with texts. In this paper, we propose a novel approach called Contrastive Language-Image Mosaic (CLIM), which leverages large-scale image-text pairs effectively for aligning region and text representations. CLIM combines multiple images into a mosaicked image and treats each image as a `pseudo region'. The feature of each pseudo region is extracted and trained to be similar to the corresponding text embedding while dissimilar from others by a contrastive loss, enabling the model to learn the region-text alignment without costly box annotations. As a generally applicable approach, CLIM consistently improves different open-vocabulary object detection methods that use caption supervision. Furthermore, CLIM can effectively enhance the region representation of vision-language models, thus providing stronger backbones for open-vocabulary object detectors. Our experimental results demonstrate that CLIM improves different baseline open-vocabulary object detectors by a large margin on both OV-COCO and OV-LVIS benchmarks. The code is available at https://github.com/wusize/CLIM.
Betrayed by Captions: Joint Caption Grounding and Generation for Open Vocabulary Instance Segmentation
In this work, we focus on open vocabulary instance segmentation to expand a segmentation model to classify and segment instance-level novel categories. Previous approaches have relied on massive caption datasets and complex pipelines to establish one-to-one mappings between image regions and words in captions. However, such methods build noisy supervision by matching non-visible words to image regions, such as adjectives and verbs. Meanwhile, context words are also important for inferring the existence of novel objects as they show high inter-correlations with novel categories. To overcome these limitations, we devise a joint Caption Grounding and Generation (CGG) framework, which incorporates a novel grounding loss that only focuses on matching object nouns to improve learning efficiency. We also introduce a caption generation head that enables additional supervision and contextual modeling as a complementation to the grounding loss. Our analysis and results demonstrate that grounding and generation components complement each other, significantly enhancing the segmentation performance for novel classes. Experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS) demonstrate the superiority of the CGG. Specifically, CGG achieves a substantial improvement of 6.8% mAP for novel classes without extra data on the OVIS task and 15% PQ improvements for novel classes on the OSPS benchmark.
DINO-X: A Unified Vision Model for Open-World Object Detection and Understanding
In this paper, we introduce DINO-X, which is a unified object-centric vision model developed by IDEA Research with the best open-world object detection performance to date. DINO-X employs the same Transformer-based encoder-decoder architecture as Grounding DINO 1.5 to pursue an object-level representation for open-world object understanding. To make long-tailed object detection easy, DINO-X extends its input options to support text prompt, visual prompt, and customized prompt. With such flexible prompt options, we develop a universal object prompt to support prompt-free open-world detection, making it possible to detect anything in an image without requiring users to provide any prompt. To enhance the model's core grounding capability, we have constructed a large-scale dataset with over 100 million high-quality grounding samples, referred to as Grounding-100M, for advancing the model's open-vocabulary detection performance. Pre-training on such a large-scale grounding dataset leads to a foundational object-level representation, which enables DINO-X to integrate multiple perception heads to simultaneously support multiple object perception and understanding tasks, including detection, segmentation, pose estimation, object captioning, object-based QA, etc. Experimental results demonstrate the superior performance of DINO-X. Specifically, the DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the COCO, LVIS-minival, and LVIS-val zero-shot object detection benchmarks, respectively. Notably, it scores 63.3 AP and 56.5 AP on the rare classes of LVIS-minival and LVIS-val benchmarks, both improving the previous SOTA performance by 5.8 AP. Such a result underscores its significantly improved capacity for recognizing long-tailed objects.
Disentangled 3D Scene Generation with Layout Learning
We introduce a method to generate 3D scenes that are disentangled into their component objects. This disentanglement is unsupervised, relying only on the knowledge of a large pretrained text-to-image model. Our key insight is that objects can be discovered by finding parts of a 3D scene that, when rearranged spatially, still produce valid configurations of the same scene. Concretely, our method jointly optimizes multiple NeRFs from scratch - each representing its own object - along with a set of layouts that composite these objects into scenes. We then encourage these composited scenes to be in-distribution according to the image generator. We show that despite its simplicity, our approach successfully generates 3D scenes decomposed into individual objects, enabling new capabilities in text-to-3D content creation. For results and an interactive demo, see our project page at https://dave.ml/layoutlearning/
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of a maximum logit score OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve state-of-the-art on a number of OSR benchmarks. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but the resulting discrepancy with the strong baseline is marginal. Our third contribution is to present the 'Semantic Shift Benchmark' (SSB), which better respects the task of detecting semantic novelty, in contrast to other forms of distribution shift also considered in related sub-fields, such as out-of-distribution detection. On this new evaluation, we again demonstrate that there is negligible difference between the strong baseline and the existing state-of-the-art. Project Page: https://www.robots.ox.ac.uk/~vgg/research/osr/
Algorithmic Ways of Seeing: Using Object Detection to Facilitate Art Exploration
This Research through Design paper explores how object detection may be applied to a large digital art museum collection to facilitate new ways of encountering and experiencing art. We present the design and evaluation of an interactive application called SMKExplore, which allows users to explore a museum's digital collection of paintings by browsing through objects detected in the images, as a novel form of open-ended exploration. We provide three contributions. First, we show how an object detection pipeline can be integrated into a design process for visual exploration. Second, we present the design and development of an app that enables exploration of an art museum's collection. Third, we offer reflections on future possibilities for museums and HCI researchers to incorporate object detection techniques into the digitalization of museums.
Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
Open-vocabulary semantic segmentation aims to segment an image into semantic regions according to text descriptions, which may not have been seen during training. Recent two-stage methods first generate class-agnostic mask proposals and then leverage pre-trained vision-language models, e.g., CLIP, to classify masked regions. We identify the performance bottleneck of this paradigm to be the pre-trained CLIP model, since it does not perform well on masked images. To address this, we propose to finetune CLIP on a collection of masked image regions and their corresponding text descriptions. We collect training data by mining an existing image-caption dataset (e.g., COCO Captions), using CLIP to match masked image regions to nouns in the image captions. Compared with the more precise and manually annotated segmentation labels with fixed classes (e.g., COCO-Stuff), we find our noisy but diverse dataset can better retain CLIP's generalization ability. Along with finetuning the entire model, we utilize the "blank" areas in masked images using a method we dub mask prompt tuning. Experiments demonstrate mask prompt tuning brings significant improvement without modifying any weights of CLIP, and it can further improve a fully finetuned model. In particular, when trained on COCO and evaluated on ADE20K-150, our best model achieves 29.6% mIoU, which is +8.5% higher than the previous state-of-the-art. For the first time, open-vocabulary generalist models match the performance of supervised specialist models in 2017 without dataset-specific adaptations.
From Occlusion to Insight: Object Search in Semantic Shelves using Large Language Models
How can a robot efficiently extract a desired object from a shelf when it is fully occluded by other objects? Prior works propose geometric approaches for this problem but do not consider object semantics. Shelves in pharmacies, restaurant kitchens, and grocery stores are often organized such that semantically similar objects are placed close to one another. Can large language models (LLMs) serve as semantic knowledge sources to accelerate robotic mechanical search in semantically arranged environments? With Semantic Spatial Search on Shelves (S^4), we use LLMs to generate affinity matrices, where entries correspond to semantic likelihood of physical proximity between objects. We derive semantic spatial distributions by synthesizing semantics with learned geometric constraints. S^4 incorporates Optical Character Recognition (OCR) and semantic refinement with predictions from ViLD, an open-vocabulary object detection model. Simulation experiments suggest that semantic spatial search reduces the search time relative to pure spatial search by an average of 24% across three domains: pharmacy, kitchen, and office shelves. A manually collected dataset of 100 semantic scenes suggests that OCR and semantic refinement improve object detection accuracy by 35%. Lastly, physical experiments in a pharmacy shelf suggest 47.1% improvement over pure spatial search. Supplementary material can be found at https://sites.google.com/view/s4-rss/home.
Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing objects from an open set of categories. One way to address this challenge is to leverage multi-modal models, such as CLIP, to provide image and text features in a shared embedding space, which bridges the gap between closed-vocabulary and open-vocabulary recognition. Hence, existing methods often adopt a two-stage framework to tackle the problem, where the inputs first go through a mask generator and then through the CLIP model along with the predicted masks. This process involves extracting features from images multiple times, which can be ineffective and inefficient. By contrast, we propose to build everything into a single-stage framework using a shared Frozen Convolutional CLIP backbone, which not only significantly simplifies the current two-stage pipeline, but also remarkably yields a better accuracy-cost trade-off. The proposed FC-CLIP, benefits from the following observations: the frozen CLIP backbone maintains the ability of open-vocabulary classification and can also serve as a strong mask generator, and the convolutional CLIP generalizes well to a larger input resolution than the one used during contrastive image-text pretraining. When training on COCO panoptic data only and testing in a zero-shot manner, FC-CLIP achieve 26.8 PQ, 16.8 AP, and 34.1 mIoU on ADE20K, 18.2 PQ, 27.9 mIoU on Mapillary Vistas, 44.0 PQ, 26.8 AP, 56.2 mIoU on Cityscapes, outperforming the prior art by +4.2 PQ, +2.4 AP, +4.2 mIoU on ADE20K, +4.0 PQ on Mapillary Vistas and +20.1 PQ on Cityscapes, respectively. Additionally, the training and testing time of FC-CLIP is 7.5x and 6.6x significantly faster than the same prior art, while using 5.9x fewer parameters. FC-CLIP also sets a new state-of-the-art performance across various open-vocabulary semantic segmentation datasets. Code at https://github.com/bytedance/fc-clip
Segment Anything
We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at https://segment-anything.com to foster research into foundation models for computer vision.
Objects Can Move: 3D Change Detection by Geometric Transformation Constistency
AR/VR applications and robots need to know when the scene has changed. An example is when objects are moved, added, or removed from the scene. We propose a 3D object discovery method that is based only on scene changes. Our method does not need to encode any assumptions about what is an object, but rather discovers objects by exploiting their coherent move. Changes are initially detected as differences in the depth maps and segmented as objects if they undergo rigid motions. A graph cut optimization propagates the changing labels to geometrically consistent regions. Experiments show that our method achieves state-of-the-art performance on the 3RScan dataset against competitive baselines. The source code of our method can be found at https://github.com/katadam/ObjectsCanMove.
Semantic-SAM: Segment and Recognize Anything at Any Granularity
In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, combining SA-1B training with other segmentation tasks, such as panoptic and part segmentation, leads to performance improvements. We will provide code and a demo for further exploration and evaluation.
Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments
In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal Find n' Propagate approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available at https://github.com/djamahl99/findnpropagate.
Grounding Descriptions in Images informs Zero-Shot Visual Recognition
Vision-language models (VLMs) like CLIP have been cherished for their ability to perform zero-shot visual recognition on open-vocabulary concepts. This is achieved by selecting the object category whose textual representation bears the highest similarity with the query image. While successful in some domains, this method struggles with identifying fine-grained entities as well as generalizing to unseen concepts that are not captured by the training distribution. Recent works attempt to mitigate these challenges by integrating category descriptions at test time, albeit yielding modest improvements. We attribute these limited gains to a fundamental misalignment between image and description representations, which is rooted in the pretraining structure of CLIP. In this paper, we propose GRAIN, a new pretraining strategy aimed at aligning representations at both fine and coarse levels simultaneously. Our approach learns to jointly ground textual descriptions in image regions along with aligning overarching captions with global image representations. To drive this pre-training, we leverage frozen Multimodal Large Language Models (MLLMs) to derive large-scale synthetic annotations. We demonstrate the enhanced zero-shot performance of our model compared to current state-of-the art methods across 11 diverse image classification datasets. Additionally, we introduce Products-2023, a newly curated, manually labeled dataset featuring novel concepts, and showcase our model's ability to recognize these concepts by benchmarking on it. Significant improvements achieved by our model on other downstream tasks like retrieval further highlight the superior quality of representations learned by our approach. Code available at https://github.com/shaunak27/grain-clip .
V^2L: Leveraging Vision and Vision-language Models into Large-scale Product Retrieval
Product retrieval is of great importance in the ecommerce domain. This paper introduces our 1st-place solution in eBay eProduct Visual Search Challenge (FGVC9), which is featured for an ensemble of about 20 models from vision models and vision-language models. While model ensemble is common, we show that combining the vision models and vision-language models brings particular benefits from their complementarity and is a key factor to our superiority. Specifically, for the vision models, we use a two-stage training pipeline which first learns from the coarse labels provided in the training set and then conducts fine-grained self-supervised training, yielding a coarse-to-fine metric learning manner. For the vision-language models, we use the textual description of the training image as the supervision signals for fine-tuning the image-encoder (feature extractor). With these designs, our solution achieves 0.7623 MAR@10, ranking the first place among all the competitors. The code is available at: https://github.com/WangWenhao0716/V2L{V^2L}.
Deep Floor Plan Recognition Using a Multi-Task Network with Room-Boundary-Guided Attention
This paper presents a new approach to recognize elements in floor plan layouts. Besides walls and rooms, we aim to recognize diverse floor plan elements, such as doors, windows and different types of rooms, in the floor layouts. To this end, we model a hierarchy of floor plan elements and design a deep multi-task neural network with two tasks: one to learn to predict room-boundary elements, and the other to predict rooms with types. More importantly, we formulate the room-boundary-guided attention mechanism in our spatial contextual module to carefully take room-boundary features into account to enhance the room-type predictions. Furthermore, we design a cross-and-within-task weighted loss to balance the multi-label tasks and prepare two new datasets for floor plan recognition. Experimental results demonstrate the superiority and effectiveness of our network over the state-of-the-art methods.
Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
Simple Open-Vocabulary Object Detection with Vision Transformers
Combining simple architectures with large-scale pre-training has led to massive improvements in image classification. For object detection, pre-training and scaling approaches are less well established, especially in the long-tailed and open-vocabulary setting, where training data is relatively scarce. In this paper, we propose a strong recipe for transferring image-text models to open-vocabulary object detection. We use a standard Vision Transformer architecture with minimal modifications, contrastive image-text pre-training, and end-to-end detection fine-tuning. Our analysis of the scaling properties of this setup shows that increasing image-level pre-training and model size yield consistent improvements on the downstream detection task. We provide the adaptation strategies and regularizations needed to attain very strong performance on zero-shot text-conditioned and one-shot image-conditioned object detection. Code and models are available on GitHub.
LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models
Recent open-vocabulary detectors achieve promising performance with abundant region-level annotated data. In this work, we show that an open-vocabulary detector co-training with a large language model by generating image-level detailed captions for each image can further improve performance. To achieve the goal, we first collect a dataset, GroundingCap-1M, wherein each image is accompanied by associated grounding labels and an image-level detailed caption. With this dataset, we finetune an open-vocabulary detector with training objectives including a standard grounding loss and a caption generation loss. We take advantage of a large language model to generate both region-level short captions for each region of interest and image-level long captions for the whole image. Under the supervision of the large language model, the resulting detector, LLMDet, outperforms the baseline by a clear margin, enjoying superior open-vocabulary ability. Further, we show that the improved LLMDet can in turn build a stronger large multi-modal model, achieving mutual benefits. The code, model, and dataset is available at https://github.com/iSEE-Laboratory/LLMDet.
Towards Real-World Prohibited Item Detection: A Large-Scale X-ray Benchmark
Automatic security inspection using computer vision technology is a challenging task in real-world scenarios due to various factors, including intra-class variance, class imbalance, and occlusion. Most of the previous methods rarely solve the cases that the prohibited items are deliberately hidden in messy objects due to the lack of large-scale datasets, restricted their applications in real-world scenarios. Towards real-world prohibited item detection, we collect a large-scale dataset, named as PIDray, which covers various cases in real-world scenarios for prohibited item detection, especially for deliberately hidden items. With an intensive amount of effort, our dataset contains 12 categories of prohibited items in 47,677 X-ray images with high-quality annotated segmentation masks and bounding boxes. To the best of our knowledge, it is the largest prohibited items detection dataset to date. Meanwhile, we design the selective dense attention network (SDANet) to construct a strong baseline, which consists of the dense attention module and the dependency refinement module. The dense attention module formed by the spatial and channel-wise dense attentions, is designed to learn the discriminative features to boost the performance. The dependency refinement module is used to exploit the dependencies of multi-scale features. Extensive experiments conducted on the collected PIDray dataset demonstrate that the proposed method performs favorably against the state-of-the-art methods, especially for detecting the deliberately hidden items.
Semantic Amodal Segmentation
Common visual recognition tasks such as classification, object detection, and semantic segmentation are rapidly reaching maturity, and given the recent rate of progress, it is not unreasonable to conjecture that techniques for many of these problems will approach human levels of performance in the next few years. In this paper we look to the future: what is the next frontier in visual recognition? We offer one possible answer to this question. We propose a detailed image annotation that captures information beyond the visible pixels and requires complex reasoning about full scene structure. Specifically, we create an amodal segmentation of each image: the full extent of each region is marked, not just the visible pixels. Annotators outline and name all salient regions in the image and specify a partial depth order. The result is a rich scene structure, including visible and occluded portions of each region, figure-ground edge information, semantic labels, and object overlap. We create two datasets for semantic amodal segmentation. First, we label 500 images in the BSDS dataset with multiple annotators per image, allowing us to study the statistics of human annotations. We show that the proposed full scene annotation is surprisingly consistent between annotators, including for regions and edges. Second, we annotate 5000 images from COCO. This larger dataset allows us to explore a number of algorithmic ideas for amodal segmentation and depth ordering. We introduce novel metrics for these tasks, and along with our strong baselines, define concrete new challenges for the community.
PUMGPT: A Large Vision-Language Model for Product Understanding
Recent developments of multi-modal large language models have demonstrated its strong ability in solving vision-language tasks. In this paper, we focus on the product understanding task, which plays an essential role in enhancing online shopping experience. Product understanding task includes a variety of sub-tasks, which require models to respond diverse queries based on multi-modal product information. Traditional methods design distinct model architectures for each sub-task. On the contrary, we present PUMGPT, a large vision-language model aims at unifying all product understanding tasks under a singular model structure. To bridge the gap between vision and text representations, we propose Layer-wise Adapters (LA), an approach that provides enhanced alignment with fewer visual tokens and enables parameter-efficient fine-tuning. Moreover, the inherent parameter-efficient fine-tuning ability allows PUMGPT to be readily adapted to new product understanding tasks and emerging products. We design instruction templates to generate diverse product instruction datasets. Simultaneously, we utilize open-domain datasets during training to improve the performance of PUMGPT and its generalization ability. Through extensive evaluations, PUMGPT demonstrates its superior performance across multiple product understanding tasks, including product captioning, category question-answering, attribute extraction, attribute question-answering, and even free-form question-answering about products.
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection
In this paper, we present an open-set object detector, called Grounding DINO, by marrying Transformer-based detector DINO with grounded pre-training, which can detect arbitrary objects with human inputs such as category names or referring expressions. The key solution of open-set object detection is introducing language to a closed-set detector for open-set concept generalization. To effectively fuse language and vision modalities, we conceptually divide a closed-set detector into three phases and propose a tight fusion solution, which includes a feature enhancer, a language-guided query selection, and a cross-modality decoder for cross-modality fusion. While previous works mainly evaluate open-set object detection on novel categories, we propose to also perform evaluations on referring expression comprehension for objects specified with attributes. Grounding DINO performs remarkably well on all three settings, including benchmarks on COCO, LVIS, ODinW, and RefCOCO/+/g. Grounding DINO achieves a 52.5 AP on the COCO detection zero-shot transfer benchmark, i.e., without any training data from COCO. It sets a new record on the ODinW zero-shot benchmark with a mean 26.1 AP. Code will be available at https://github.com/IDEA-Research/GroundingDINO.
MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent work leverages text instructions to allow users to more freely express their search intents. However, existing work primarily focuses on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via large multimodal models (LMMs) and large language models (LLMs). Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves comparable or better results on eight benchmarks of various image retrieval tasks than prior state-of-the-art (SOTA) methods. Remarkably, it outperforms previous SOTA but with a 50X smaller model size on multiple benchmarks. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens.
SATR: Zero-Shot Semantic Segmentation of 3D Shapes
We explore the task of zero-shot semantic segmentation of 3D shapes by using large-scale off-the-shelf 2D image recognition models. Surprisingly, we find that modern zero-shot 2D object detectors are better suited for this task than contemporary text/image similarity predictors or even zero-shot 2D segmentation networks. Our key finding is that it is possible to extract accurate 3D segmentation maps from multi-view bounding box predictions by using the topological properties of the underlying surface. For this, we develop the Segmentation Assignment with Topological Reweighting (SATR) algorithm and evaluate it on ShapeNetPart and our proposed FAUST benchmarks. SATR achieves state-of-the-art performance and outperforms a baseline algorithm by 1.3% and 4% average mIoU on the FAUST coarse and fine-grained benchmarks, respectively, and by 5.2% average mIoU on the ShapeNetPart benchmark. Our source code and data will be publicly released. Project webpage: https://samir55.github.io/SATR/.
CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor
Existing open-vocabulary image segmentation methods require a fine-tuning step on mask annotations and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets. As a result, the open-vocabulary capacity of pre-trained VLMs is severely reduced after fine-tuning. However, without fine-tuning, VLMs trained under weak image-text supervision tend to make suboptimal mask predictions when there are text queries referring to non-existing concepts in the image. To alleviate these issues, we introduce a novel recurrent framework that progressively filters out irrelevant texts and enhances mask quality without training efforts. The recurrent unit is a two-stage segmenter built upon a VLM with frozen weights. Thus, our model retains the VLM's broad vocabulary space and strengthens its segmentation capability. Experimental results show that our method outperforms not only the training-free counterparts, but also those fine-tuned with millions of additional data samples, and sets new state-of-the-art records for both zero-shot semantic and referring image segmentation tasks. Specifically, we improve the current record by 28.8, 16.0, and 6.9 mIoU on Pascal VOC, COCO Object, and Pascal Context.
Open-Vocabulary Universal Image Segmentation with MaskCLIP
In this paper, we tackle an emerging computer vision task, open-vocabulary universal image segmentation, that aims to perform semantic/instance/panoptic segmentation (background semantic labeling + foreground instance segmentation) for arbitrary categories of text-based descriptions in inference time. We first build a baseline method by directly adopting pre-trained CLIP models without finetuning or distillation. We then develop MaskCLIP, a Transformer-based approach with a MaskCLIP Visual Encoder, which is an encoder-only module that seamlessly integrates mask tokens with a pre-trained ViT CLIP model for semantic/instance segmentation and class prediction. MaskCLIP learns to efficiently and effectively utilize pre-trained partial/dense CLIP features within the MaskCLIP Visual Encoder that avoids the time-consuming student-teacher training process. MaskCLIP outperforms previous methods for semantic/instance/panoptic segmentation on ADE20K and PASCAL datasets. We show qualitative illustrations for MaskCLIP with online custom categories. Project website: https://maskclip.github.io.
Mask R-CNN
We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: https://github.com/facebookresearch/Detectron
Part2Object: Hierarchical Unsupervised 3D Instance Segmentation
Unsupervised 3D instance segmentation aims to segment objects from a 3D point cloud without any annotations. Existing methods face the challenge of either too loose or too tight clustering, leading to under-segmentation or over-segmentation. To address this issue, we propose Part2Object, hierarchical clustering with object guidance. Part2Object employs multi-layer clustering from points to object parts and objects, allowing objects to manifest at any layer. Additionally, it extracts and utilizes 3D objectness priors from temporally consecutive 2D RGB frames to guide the clustering process. Moreover, we propose Hi-Mask3D to support hierarchical 3D object part and instance segmentation. By training Hi-Mask3D on the objects and object parts extracted from Part2Object, we achieve consistent and superior performance compared to state-of-the-art models in various settings, including unsupervised instance segmentation, data-efficient fine-tuning, and cross-dataset generalization. Code is release at https://github.com/ChengShiest/Part2Object
VideoClick: Video Object Segmentation with a Single Click
Annotating videos with object segmentation masks typically involves a two stage procedure of drawing polygons per object instance for all the frames and then linking them through time. While simple, this is a very tedious, time consuming and expensive process, making the creation of accurate annotations at scale only possible for well-funded labs. What if we were able to segment an object in the full video with only a single click? This will enable video segmentation at scale with a very low budget opening the door to many applications. Towards this goal, in this paper we propose a bottom up approach where given a single click for each object in a video, we obtain the segmentation masks of these objects in the full video. In particular, we construct a correlation volume that assigns each pixel in a target frame to either one of the objects in the reference frame or the background. We then refine this correlation volume via a recurrent attention module and decode the final segmentation. To evaluate the performance, we label the popular and challenging Cityscapes dataset with video object segmentations. Results on this new CityscapesVideo dataset show that our approach outperforms all the baselines in this challenging setting.
Visual In-Context Prompting
In-context prompting in large language models (LLMs) has become a prevalent approach to improve zero-shot capabilities, but this idea is less explored in the vision domain. Existing visual prompting methods focus on referring segmentation to segment the most relevant object, falling short of addressing many generic vision tasks like open-set segmentation and detection. In this paper, we introduce a universal visual in-context prompting framework for both tasks. In particular, we build on top of an encoder-decoder architecture, and develop a versatile prompt encoder to support a variety of prompts like strokes, boxes, and points. We further enhance it to take an arbitrary number of reference image segments as the context. Our extensive explorations show that the proposed visual in-context prompting elicits extraordinary referring and generic segmentation capabilities to refer and detect, yielding competitive performance to close-set in-domain datasets and showing promising results on many open-set segmentation datasets. By joint training on COCO and SA-1B, our model achieves 57.7 PQ on COCO and 23.2 PQ on ADE20K. Code will be available at https://github.com/UX-Decoder/DINOv.
Multi-Modal Prototypes for Open-World Semantic Segmentation
In semantic segmentation, generalizing a visual system to both seen categories and novel categories at inference time has always been practically valuable yet challenging. To enable such functionality, existing methods mainly rely on either providing several support demonstrations from the visual aspect or characterizing the informative clues from the textual aspect (e.g., the class names). Nevertheless, both two lines neglect the complementary intrinsic of low-level visual and high-level language information, while the explorations that consider visual and textual modalities as a whole to promote predictions are still limited. To close this gap, we propose to encompass textual and visual clues as multi-modal prototypes to allow more comprehensive support for open-world semantic segmentation, and build a novel prototype-based segmentation framework to realize this promise. To be specific, unlike the straightforward combination of bi-modal clues, we decompose the high-level language information as multi-aspect prototypes and aggregate the low-level visual information as more semantic prototypes, on basis of which, a fine-grained complementary fusion makes the multi-modal prototypes more powerful and accurate to promote the prediction. Based on an elastic mask prediction module that permits any number and form of prototype inputs, we are able to solve the zero-shot, few-shot and generalized counterpart tasks in one architecture. Extensive experiments on both PASCAL-5^i and COCO-20^i datasets show the consistent superiority of the proposed method compared with the previous state-of-the-art approaches, and a range of ablation studies thoroughly dissects each component in our framework both quantitatively and qualitatively that verify their effectiveness.
Random Boxes Are Open-world Object Detectors
We show that classifiers trained with random region proposals achieve state-of-the-art Open-world Object Detection (OWOD): they can not only maintain the accuracy of the known objects (w/ training labels), but also considerably improve the recall of unknown ones (w/o training labels). Specifically, we propose RandBox, a Fast R-CNN based architecture trained on random proposals at each training iteration, surpassing existing Faster R-CNN and Transformer based OWOD. Its effectiveness stems from the following two benefits introduced by randomness. First, as the randomization is independent of the distribution of the limited known objects, the random proposals become the instrumental variable that prevents the training from being confounded by the known objects. Second, the unbiased training encourages more proposal explorations by using our proposed matching score that does not penalize the random proposals whose prediction scores do not match the known objects. On two benchmarks: Pascal-VOC/MS-COCO and LVIS, RandBox significantly outperforms the previous state-of-the-art in all metrics. We also detail the ablations on randomization and loss designs. Codes are available at https://github.com/scuwyh2000/RandBox.
T-Rex: Counting by Visual Prompting
We introduce T-Rex, an interactive object counting model designed to first detect and then count any objects. We formulate object counting as an open-set object detection task with the integration of visual prompts. Users can specify the objects of interest by marking points or boxes on a reference image, and T-Rex then detects all objects with a similar pattern. Guided by the visual feedback from T-Rex, users can also interactively refine the counting results by prompting on missing or falsely-detected objects. T-Rex has achieved state-of-the-art performance on several class-agnostic counting benchmarks. To further exploit its potential, we established a new counting benchmark encompassing diverse scenarios and challenges. Both quantitative and qualitative results show that T-Rex possesses exceptional zero-shot counting capabilities. We also present various practical application scenarios for T-Rex, illustrating its potential in the realm of visual prompting.
What does a platypus look like? Generating customized prompts for zero-shot image classification
Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL.
The All-Seeing Project: Towards Panoptic Visual Recognition and Understanding of the Open World
We present the All-Seeing (AS) project: a large-scale data and model for recognizing and understanding everything in the open world. Using a scalable data engine that incorporates human feedback and efficient models in the loop, we create a new dataset (AS-1B) with over 1 billion regions annotated with semantic tags, question-answering pairs, and detailed captions. It covers a wide range of 3.5 million common and rare concepts in the real world, and has 132.2 billion tokens that describe the concepts and their attributes. Leveraging this new dataset, we develop the All-Seeing model (ASM), a unified framework for panoptic visual recognition and understanding. The model is trained with open-ended language prompts and locations, which allows it to generalize to various vision and language tasks with remarkable zero-shot performance, including region-text retrieval, region recognition, captioning, and question-answering. We hope that this project can serve as a foundation for vision-language artificial general intelligence research. Models and the dataset shall be released at https://github.com/OpenGVLab/All-Seeing, and demo can be seen at https://huggingface.co/spaces/OpenGVLab/all-seeing.
Contextual Object Detection with Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) are remarkable in vision-language tasks, such as image captioning and question answering, but lack the essential perception ability, i.e., object detection. In this work, we address this limitation by introducing a novel research problem of contextual object detection -- understanding visible objects within different human-AI interactive contexts. Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering. Moreover, we present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts, so as to locate, identify, and associate visual objects with language inputs for human-AI interaction. Our ContextDET involves three key submodels: (i) a visual encoder for extracting visual representations, (ii) a pre-trained LLM for multimodal context decoding, and (iii) a visual decoder for predicting bounding boxes given contextual object words. The new generate-then-detect framework enables us to detect object words within human vocabulary. Extensive experiments show the advantages of ContextDET on our proposed CODE benchmark, open-vocabulary detection, and referring image segmentation. Github: https://github.com/yuhangzang/ContextDET.
OpenNeRF: Open Set 3D Neural Scene Segmentation with Pixel-Wise Features and Rendered Novel Views
Large visual-language models (VLMs), like CLIP, enable open-set image segmentation to segment arbitrary concepts from an image in a zero-shot manner. This goes beyond the traditional closed-set assumption, i.e., where models can only segment classes from a pre-defined training set. More recently, first works on open-set segmentation in 3D scenes have appeared in the literature. These methods are heavily influenced by closed-set 3D convolutional approaches that process point clouds or polygon meshes. However, these 3D scene representations do not align well with the image-based nature of the visual-language models. Indeed, point cloud and 3D meshes typically have a lower resolution than images and the reconstructed 3D scene geometry might not project well to the underlying 2D image sequences used to compute pixel-aligned CLIP features. To address these challenges, we propose OpenNeRF which naturally operates on posed images and directly encodes the VLM features within the NeRF. This is similar in spirit to LERF, however our work shows that using pixel-wise VLM features (instead of global CLIP features) results in an overall less complex architecture without the need for additional DINO regularization. Our OpenNeRF further leverages NeRF's ability to render novel views and extract open-set VLM features from areas that are not well observed in the initial posed images. For 3D point cloud segmentation on the Replica dataset, OpenNeRF outperforms recent open-vocabulary methods such as LERF and OpenScene by at least +4.9 mIoU.
Compositional Sketch Search
We present an algorithm for searching image collections using free-hand sketches that describe the appearance and relative positions of multiple objects. Sketch based image retrieval (SBIR) methods predominantly match queries containing a single, dominant object invariant to its position within an image. Our work exploits drawings as a concise and intuitive representation for specifying entire scene compositions. We train a convolutional neural network (CNN) to encode masked visual features from sketched objects, pooling these into a spatial descriptor encoding the spatial relationships and appearances of objects in the composition. Training the CNN backbone as a Siamese network under triplet loss yields a metric search embedding for measuring compositional similarity which may be efficiently leveraged for visual search by applying product quantization.
Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset
In this work we explore the task of instance segmentation with attribute localization, which unifies instance segmentation (detect and segment each object instance) and fine-grained visual attribute categorization (recognize one or multiple attributes). The proposed task requires both localizing an object and describing its properties. To illustrate the various aspects of this task, we focus on the domain of fashion and introduce Fashionpedia as a step toward mapping out the visual aspects of the fashion world. Fashionpedia consists of two parts: (1) an ontology built by fashion experts containing 27 main apparel categories, 19 apparel parts, 294 fine-grained attributes and their relationships; (2) a dataset with everyday and celebrity event fashion images annotated with segmentation masks and their associated per-mask fine-grained attributes, built upon the Fashionpedia ontology. In order to solve this challenging task, we propose a novel Attribute-Mask RCNN model to jointly perform instance segmentation and localized attribute recognition, and provide a novel evaluation metric for the task. We also demonstrate instance segmentation models pre-trained on Fashionpedia achieve better transfer learning performance on other fashion datasets than ImageNet pre-training. Fashionpedia is available at: https://fashionpedia.github.io/home/index.html.
Towards Total Recall in Industrial Anomaly Detection
Being able to spot defective parts is a critical component in large-scale industrial manufacturing. A particular challenge that we address in this work is the cold-start problem: fit a model using nominal (non-defective) example images only. While handcrafted solutions per class are possible, the goal is to build systems that work well simultaneously on many different tasks automatically. The best performing approaches combine embeddings from ImageNet models with an outlier detection model. In this paper, we extend on this line of work and propose PatchCore, which uses a maximally representative memory bank of nominal patch-features. PatchCore offers competitive inference times while achieving state-of-the-art performance for both detection and localization. On the challenging, widely used MVTec AD benchmark PatchCore achieves an image-level anomaly detection AUROC score of up to 99.6%, more than halving the error compared to the next best competitor. We further report competitive results on two additional datasets and also find competitive results in the few samples regime.^* Work done during a research internship at Amazon AWS. Code: github.com/amazon-research/patchcore-inspection.
Segment and Caption Anything
We propose a method to efficiently equip the Segment Anything Model (SAM) with the ability to generate regional captions. SAM presents strong generalizability to segment anything while is short for semantic understanding. By introducing a lightweight query-based feature mixer, we align the region-specific features with the embedding space of language models for later caption generation. As the number of trainable parameters is small (typically in the order of tens of millions), it costs less computation, less memory usage, and less communication bandwidth, resulting in both fast and scalable training. To address the scarcity problem of regional caption data, we propose to first pre-train our model on objection detection and segmentation tasks. We call this step weak supervision pretraining since the pre-training data only contains category names instead of full-sentence descriptions. The weak supervision pretraining allows us to leverage many publicly available object detection and segmentation datasets. We conduct extensive experiments to demonstrate the superiority of our method and validate each design choice. This work serves as a stepping stone towards scaling up regional captioning data and sheds light on exploring efficient ways to augment SAM with regional semantics. The project page, along with the associated code, can be accessed via the following https://xk-huang.github.io/segment-caption-anything/.
Cascaded Sparse Feature Propagation Network for Interactive Segmentation
We aim to tackle the problem of point-based interactive segmentation, in which the key challenge is to propagate the user-provided annotations to unlabeled regions efficiently. Existing methods tackle this challenge by utilizing computationally expensive fully connected graphs or transformer architectures that sacrifice important fine-grained information required for accurate segmentation. To overcome these limitations, we propose a cascade sparse feature propagation network that learns a click-augmented feature representation for propagating user-provided information to unlabeled regions. The sparse design of our network enables efficient information propagation on high-resolution features, resulting in more detailed object segmentation. We validate the effectiveness of our method through comprehensive experiments on various benchmarks, and the results demonstrate the superior performance of our approach. Code is available at https://github.com/kleinzcy/CSFPN{https://github.com/kleinzcy/CSFPN}.
Towards Universal Object Detection by Domain Attention
Despite increasing efforts on universal representations for visual recognition, few have addressed object detection. In this paper, we develop an effective and efficient universal object detection system that is capable of working on various image domains, from human faces and traffic signs to medical CT images. Unlike multi-domain models, this universal model does not require prior knowledge of the domain of interest. This is achieved by the introduction of a new family of adaptation layers, based on the principles of squeeze and excitation, and a new domain-attention mechanism. In the proposed universal detector, all parameters and computations are shared across domains, and a single network processes all domains all the time. Experiments, on a newly established universal object detection benchmark of 11 diverse datasets, show that the proposed detector outperforms a bank of individual detectors, a multi-domain detector, and a baseline universal detector, with a 1.3x parameter increase over a single-domain baseline detector. The code and benchmark will be released at http://www.svcl.ucsd.edu/projects/universal-detection/.
Open-NeRF: Towards Open Vocabulary NeRF Decomposition
In this paper, we address the challenge of decomposing Neural Radiance Fields (NeRF) into objects from an open vocabulary, a critical task for object manipulation in 3D reconstruction and view synthesis. Current techniques for NeRF decomposition involve a trade-off between the flexibility of processing open-vocabulary queries and the accuracy of 3D segmentation. We present, Open-vocabulary Embedded Neural Radiance Fields (Open-NeRF), that leverage large-scale, off-the-shelf, segmentation models like the Segment Anything Model (SAM) and introduce an integrate-and-distill paradigm with hierarchical embeddings to achieve both the flexibility of open-vocabulary querying and 3D segmentation accuracy. Open-NeRF first utilizes large-scale foundation models to generate hierarchical 2D mask proposals from varying viewpoints. These proposals are then aligned via tracking approaches and integrated within the 3D space and subsequently distilled into the 3D field. This process ensures consistent recognition and granularity of objects from different viewpoints, even in challenging scenarios involving occlusion and indistinct features. Our experimental results show that the proposed Open-NeRF outperforms state-of-the-art methods such as LERF lerf and FFD ffd in open-vocabulary scenarios. Open-NeRF offers a promising solution to NeRF decomposition, guided by open-vocabulary queries, enabling novel applications in robotics and vision-language interaction in open-world 3D scenes.
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
DesCo: Learning Object Recognition with Rich Language Descriptions
Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. "a photo of a cat") and improve the models' adaptability to identify novel objects and domains. Recently, several studies have attempted to query these models with complex language expressions that include specifications of fine-grained semantic details, such as attributes, shapes, textures, and relations. However, simply incorporating language descriptions as queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, the state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenges, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two major innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects based on object names and the raw image-text caption; 2) we design context-sensitive queries to improve the model's ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.
Revisiting Table Detection Datasets for Visually Rich Documents
Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.