Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCarDreamer: Open-Source Learning Platform for World Model based Autonomous Driving
To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on https://github.com/ucd-dare/CarDreamer.
ReSim: Reliable World Simulation for Autonomous Driving
How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.
WiseAD: Knowledge Augmented End-to-End Autonomous Driving with Vision-Language Model
The emergence of general human knowledge and impressive logical reasoning capacity in rapidly progressed vision-language models (VLMs) have driven increasing interest in applying VLMs to high-level autonomous driving tasks, such as scene understanding and decision-making. However, an in-depth study on the relationship between knowledge proficiency, especially essential driving expertise, and closed-loop autonomous driving performance requires further exploration. In this paper, we investigate the effects of the depth and breadth of fundamental driving knowledge on closed-loop trajectory planning and introduce WiseAD, a specialized VLM tailored for end-to-end autonomous driving capable of driving reasoning, action justification, object recognition, risk analysis, driving suggestions, and trajectory planning across diverse scenarios. We employ joint training on driving knowledge and planning datasets, enabling the model to perform knowledge-aligned trajectory planning accordingly. Extensive experiments indicate that as the diversity of driving knowledge extends, critical accidents are notably reduced, contributing 11.9% and 12.4% improvements in the driving score and route completion on the Carla closed-loop evaluations, achieving state-of-the-art performance. Moreover, WiseAD also demonstrates remarkable performance in knowledge evaluations on both in-domain and out-of-domain datasets.
World knowledge-enhanced Reasoning Using Instruction-guided Interactor in Autonomous Driving
The Multi-modal Large Language Models (MLLMs) with extensive world knowledge have revitalized autonomous driving, particularly in reasoning tasks within perceivable regions. However, when faced with perception-limited areas (dynamic or static occlusion regions), MLLMs struggle to effectively integrate perception ability with world knowledge for reasoning. These perception-limited regions can conceal crucial safety information, especially for vulnerable road users. In this paper, we propose a framework, which aims to improve autonomous driving performance under perceptionlimited conditions by enhancing the integration of perception capabilities and world knowledge. Specifically, we propose a plug-and-play instruction-guided interaction module that bridges modality gaps and significantly reduces the input sequence length, allowing it to adapt effectively to multi-view video inputs. Furthermore, to better integrate world knowledge with driving-related tasks, we have collected and refined a large-scale multi-modal dataset that includes 2 million natural language QA pairs, 1.7 million grounding task data. To evaluate the model's utilization of world knowledge, we introduce an object-level risk assessment dataset comprising 200K QA pairs, where the questions necessitate multi-step reasoning leveraging world knowledge for resolution. Extensive experiments validate the effectiveness of our proposed method.
OpenDriveVLA: Towards End-to-end Autonomous Driving with Large Vision Language Action Model
We present OpenDriveVLA, a Vision-Language Action (VLA) model designed for end-to-end autonomous driving. OpenDriveVLA builds upon open-source pre-trained large Vision-Language Models (VLMs) to generate reliable driving actions, conditioned on 3D environmental perception, ego vehicle states, and driver commands. To bridge the modality gap between driving visual representations and language embeddings, we propose a hierarchical vision-language alignment process, projecting both 2D and 3D structured visual tokens into a unified semantic space. Besides, OpenDriveVLA models the dynamic relationships between the ego vehicle, surrounding agents, and static road elements through an autoregressive agent-env-ego interaction process, ensuring both spatially and behaviorally informed trajectory planning. Extensive experiments on the nuScenes dataset demonstrate that OpenDriveVLA achieves state-of-the-art results across open-loop trajectory planning and driving-related question-answering tasks. Qualitative analyses further illustrate OpenDriveVLA's superior capability to follow high-level driving commands and robustly generate trajectories under challenging scenarios, highlighting its potential for next-generation end-to-end autonomous driving. We will release our code to facilitate further research in this domain.
DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large Language Models
Recent advancements in autonomous driving have relied on data-driven approaches, which are widely adopted but face challenges including dataset bias, overfitting, and uninterpretability. Drawing inspiration from the knowledge-driven nature of human driving, we explore the question of how to instill similar capabilities into autonomous driving systems and summarize a paradigm that integrates an interactive environment, a driver agent, as well as a memory component to address this question. Leveraging large language models (LLMs) with emergent abilities, we propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge and evolve continuously. Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability over reinforcement learning-based methods. Moreover, DiLu is able to directly acquire experiences from real-world datasets which highlights its potential to be deployed on practical autonomous driving systems. To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles. Through the proposed DiLu framework, LLM is strengthened to apply knowledge and to reason causally in the autonomous driving domain. Project page: https://pjlab-adg.github.io/DiLu/
HERMES: A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model (LLM), enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.
GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
Driving into the Future: Multiview Visual Forecasting and Planning with World Model for Autonomous Driving
In autonomous driving, predicting future events in advance and evaluating the foreseeable risks empowers autonomous vehicles to better plan their actions, enhancing safety and efficiency on the road. To this end, we propose Drive-WM, the first driving world model compatible with existing end-to-end planning models. Through a joint spatial-temporal modeling facilitated by view factorization, our model generates high-fidelity multiview videos in driving scenes. Building on its powerful generation ability, we showcase the potential of applying the world model for safe driving planning for the first time. Particularly, our Drive-WM enables driving into multiple futures based on distinct driving maneuvers, and determines the optimal trajectory according to the image-based rewards. Evaluation on real-world driving datasets verifies that our method could generate high-quality, consistent, and controllable multiview videos, opening up possibilities for real-world simulations and safe planning.
ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
Beyond Simulation: Benchmarking World Models for Planning and Causality in Autonomous Driving
World models have become increasingly popular in acting as learned traffic simulators. Recent work has explored replacing traditional traffic simulators with world models for policy training. In this work, we explore the robustness of existing metrics to evaluate world models as traffic simulators to see if the same metrics are suitable for evaluating a world model as a pseudo-environment for policy training. Specifically, we analyze the metametric employed by the Waymo Open Sim-Agents Challenge (WOSAC) and compare world model predictions on standard scenarios where the agents are fully or partially controlled by the world model (partial replay). Furthermore, since we are interested in evaluating the ego action-conditioned world model, we extend the standard WOSAC evaluation domain to include agents that are causal to the ego vehicle. Our evaluations reveal a significant number of scenarios where top-ranking models perform well under no perturbation but fail when the ego agent is forced to replay the original trajectory. To address these cases, we propose new metrics to highlight the sensitivity of world models to uncontrollable objects and evaluate the performance of world models as pseudo-environments for policy training and analyze some state-of-the-art world models under these new metrics.
DistillDrive: End-to-End Multi-Mode Autonomous Driving Distillation by Isomorphic Hetero-Source Planning Model
End-to-end autonomous driving has been recently seen rapid development, exerting a profound influence on both industry and academia. However, the existing work places excessive focus on ego-vehicle status as their sole learning objectives and lacks of planning-oriented understanding, which limits the robustness of the overall decision-making prcocess. In this work, we introduce DistillDrive, an end-to-end knowledge distillation-based autonomous driving model that leverages diversified instance imitation to enhance multi-mode motion feature learning. Specifically, we employ a planning model based on structured scene representations as the teacher model, leveraging its diversified planning instances as multi-objective learning targets for the end-to-end model. Moreover, we incorporate reinforcement learning to enhance the optimization of state-to-decision mappings, while utilizing generative modeling to construct planning-oriented instances, fostering intricate interactions within the latent space. We validate our model on the nuScenes and NAVSIM datasets, achieving a 50\% reduction in collision rate and a 3-point improvement in closed-loop performance compared to the baseline model. Code and model are publicly available at https://github.com/YuruiAI/DistillDrive
Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability
World models can foresee the outcomes of different actions, which is of paramount importance for autonomous driving. Nevertheless, existing driving world models still have limitations in generalization to unseen environments, prediction fidelity of critical details, and action controllability for flexible application. In this paper, we present Vista, a generalizable driving world model with high fidelity and versatile controllability. Based on a systematic diagnosis of existing methods, we introduce several key ingredients to address these limitations. To accurately predict real-world dynamics at high resolution, we propose two novel losses to promote the learning of moving instances and structural information. We also devise an effective latent replacement approach to inject historical frames as priors for coherent long-horizon rollouts. For action controllability, we incorporate a versatile set of controls from high-level intentions (command, goal point) to low-level maneuvers (trajectory, angle, and speed) through an efficient learning strategy. After large-scale training, the capabilities of Vista can seamlessly generalize to different scenarios. Extensive experiments on multiple datasets show that Vista outperforms the most advanced general-purpose video generator in over 70% of comparisons and surpasses the best-performing driving world model by 55% in FID and 27% in FVD. Moreover, for the first time, we utilize the capacity of Vista itself to establish a generalizable reward for real-world action evaluation without accessing the ground truth actions.
DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving
World models, especially in autonomous driving, are trending and drawing extensive attention due to their capacity for comprehending driving environments. The established world model holds immense potential for the generation of high-quality driving videos, and driving policies for safe maneuvering. However, a critical limitation in relevant research lies in its predominant focus on gaming environments or simulated settings, thereby lacking the representation of real-world driving scenarios. Therefore, we introduce DriveDreamer, a pioneering world model entirely derived from real-world driving scenarios. Regarding that modeling the world in intricate driving scenes entails an overwhelming search space, we propose harnessing the powerful diffusion model to construct a comprehensive representation of the complex environment. Furthermore, we introduce a two-stage training pipeline. In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states. The proposed DriveDreamer is the first world model established from real-world driving scenarios. We instantiate DriveDreamer on the challenging nuScenes benchmark, and extensive experiments verify that DriveDreamer empowers precise, controllable video generation that faithfully captures the structural constraints of real-world traffic scenarios. Additionally, DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.
Graph-based Topology Reasoning for Driving Scenes
Understanding the road genome is essential to realize autonomous driving. This highly intelligent problem contains two aspects - the connection relationship of lanes, and the assignment relationship between lanes and traffic elements, where a comprehensive topology reasoning method is vacant. On one hand, previous map learning techniques struggle in deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-oriented approaches focus on centerline detection and neglect the interaction modeling. On the other hand, the traffic element to lane assignment problem is limited in the image domain, leaving how to construct the correspondence from two views an unexplored challenge. To address these issues, we present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks. To capture the driving scene topology, we introduce three key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements into a unified feature space; (2) a curated scene graph neural network to model relationships and enable feature interaction inside the network; (3) instead of transmitting messages arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various types of the road genome. We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2, where our approach outperforms all previous works by a great margin on all perceptual and topological metrics. The code is released at https://github.com/OpenDriveLab/TopoNet
DriveQA: Passing the Driving Knowledge Test
If a Large Language Model (LLM) were to take a driving knowledge test today, would it pass? Beyond standard spatial and visual question-answering (QA) tasks on current autonomous driving benchmarks, driving knowledge tests require a complete understanding of all traffic rules, signage, and right-of-way principles. To pass this test, human drivers must discern various edge cases that rarely appear in real-world datasets. In this work, we present DriveQA, an extensive open-source text and vision-based benchmark that exhaustively covers traffic regulations and scenarios. Through our experiments using DriveQA, we show that (1) state-of-the-art LLMs and Multimodal LLMs (MLLMs) perform well on basic traffic rules but exhibit significant weaknesses in numerical reasoning and complex right-of-way scenarios, traffic sign variations, and spatial layouts, (2) fine-tuning on DriveQA improves accuracy across multiple categories, particularly in regulatory sign recognition and intersection decision-making, (3) controlled variations in DriveQA-V provide insights into model sensitivity to environmental factors such as lighting, perspective, distance, and weather conditions, and (4) pretraining on DriveQA enhances downstream driving task performance, leading to improved results on real-world datasets such as nuScenes and BDD, while also demonstrating that models can internalize text and synthetic traffic knowledge to generalize effectively across downstream QA tasks.
Odyssey: Empowering Agents with Open-World Skills
Recent studies have delved into constructing generalist agents for open-world embodied environments like Minecraft. Despite the encouraging results, existing efforts mainly focus on solving basic programmatic tasks, e.g., material collection and tool-crafting following the Minecraft tech-tree, treating the ObtainDiamond task as the ultimate goal. This limitation stems from the narrowly defined set of actions available to agents, requiring them to learn effective long-horizon strategies from scratch. Consequently, discovering diverse gameplay opportunities in the open world becomes challenging. In this work, we introduce ODYSSEY, a new framework that empowers Large Language Model (LLM)-based agents with open-world skills to explore the vast Minecraft world. ODYSSEY comprises three key parts: (1) An interactive agent with an open-world skill library that consists of 40 primitive skills and 183 compositional skills. (2) A fine-tuned LLaMA-3 model trained on a large question-answering dataset with 390k+ instruction entries derived from the Minecraft Wiki. (3) A new open-world benchmark includes thousands of long-term planning tasks, tens of dynamic-immediate planning tasks, and one autonomous exploration task. Extensive experiments demonstrate that the proposed ODYSSEY framework can effectively evaluate the planning and exploration capabilities of agents. All datasets, model weights, and code are publicly available to motivate future research on more advanced autonomous agent solutions.
Agent Planning with World Knowledge Model
Recent endeavors towards directly using large language models (LLMs) as agent models to execute interactive planning tasks have shown commendable results. Despite their achievements, however, they still struggle with brainless trial-and-error in global planning and generating hallucinatory actions in local planning due to their poor understanding of the ''real'' physical world. Imitating humans' mental world knowledge model which provides global prior knowledge before the task and maintains local dynamic knowledge during the task, in this paper, we introduce parametric World Knowledge Model (WKM) to facilitate agent planning. Concretely, we steer the agent model to self-synthesize knowledge from both expert and sampled trajectories. Then we develop WKM, providing prior task knowledge to guide the global planning and dynamic state knowledge to assist the local planning. Experimental results on three complex real-world simulated datasets with three state-of-the-art open-source LLMs, Mistral-7B, Gemma-7B, and Llama-3-8B, demonstrate that our method can achieve superior performance compared to various strong baselines. Besides, we analyze to illustrate that our WKM can effectively alleviate the blind trial-and-error and hallucinatory action issues, providing strong support for the agent's understanding of the world. Other interesting findings include: 1) our instance-level task knowledge can generalize better to unseen tasks, 2) weak WKM can guide strong agent model planning, and 3) unified WKM training has promising potential for further development. Code will be available at https://github.com/zjunlp/WKM.
LLM4Drive: A Survey of Large Language Models for Autonomous Driving
Autonomous driving technology, a catalyst for revolutionizing transportation and urban mobility, has the tend to transition from rule-based systems to data-driven strategies. Traditional module-based systems are constrained by cumulative errors among cascaded modules and inflexible pre-set rules. In contrast, end-to-end autonomous driving systems have the potential to avoid error accumulation due to their fully data-driven training process, although they often lack transparency due to their "black box" nature, complicating the validation and traceability of decisions. Recently, large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers. A natural thought is to utilize these abilities to empower autonomous driving. By combining LLM with foundation vision models, it could open the door to open-world understanding, reasoning, and few-shot learning, which current autonomous driving systems are lacking. In this paper, we systematically review a research line about Large Language Models for Autonomous Driving (LLM4AD). This study evaluates the current state of technological advancements, distinctly outlining the principal challenges and prospective directions for the field. For the convenience of researchers in academia and industry, we provide real-time updates on the latest advances in the field as well as relevant open-source resources via the designated link: https://github.com/Thinklab-SJTU/Awesome-LLM4AD.
End-to-end Autonomous Driving: Challenges and Frontiers
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 250 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. To facilitate future research, we maintain an active repository that contains up-to-date links to relevant literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.
RIFT: Closed-Loop RL Fine-Tuning for Realistic and Controllable Traffic Simulation
Achieving both realism and controllability in interactive closed-loop traffic simulation remains a key challenge in autonomous driving. Data-driven simulation methods reproduce realistic trajectories but suffer from covariate shift in closed-loop deployment, compounded by simplified dynamics models that further reduce reliability. Conversely, physics-based simulation methods enhance reliable and controllable closed-loop interactions but often lack expert demonstrations, compromising realism. To address these challenges, we introduce a dual-stage AV-centered simulation framework that conducts open-loop imitation learning pre-training in a data-driven simulator to capture trajectory-level realism and multimodality, followed by closed-loop reinforcement learning fine-tuning in a physics-based simulator to enhance controllability and mitigate covariate shift. In the fine-tuning stage, we propose RIFT, a simple yet effective closed-loop RL fine-tuning strategy that preserves the trajectory-level multimodality through a GRPO-style group-relative advantage formulation, while enhancing controllability and training stability by replacing KL regularization with the dual-clip mechanism. Extensive experiments demonstrate that RIFT significantly improves the realism and controllability of generated traffic scenarios, providing a robust platform for evaluating autonomous vehicle performance in diverse and interactive scenarios.
LLaMA Rider: Spurring Large Language Models to Explore the Open World
Recently, various studies have leveraged Large Language Models (LLMs) to help decision-making and planning in environments, and try to align the LLMs' knowledge with the world conditions. Nonetheless, the capacity of LLMs to continuously acquire environmental knowledge and adapt in an open world remains uncertain. In this paper, we propose an approach to spur LLMs to explore the open world, gather experiences, and learn to improve their task-solving capabilities. In this approach, a multi-round feedback-revision mechanism is utilized to encourage LLMs to actively select appropriate revision actions guided by feedback information from the environment. This facilitates exploration and enhances the model's performance. Besides, we integrate sub-task relabeling to assist LLMs in maintaining consistency in sub-task planning and help the model learn the combinatorial nature between tasks, enabling it to complete a wider range of tasks through training based on the acquired exploration experiences. By evaluation in Minecraft, an open-ended sandbox world, we demonstrate that our approach LLaMA-Rider enhances the efficiency of the LLM in exploring the environment, and effectively improves the LLM's ability to accomplish more tasks through fine-tuning with merely 1.3k instances of collected data, showing minimal training costs compared to the baseline using reinforcement learning.
Learning to Drive from a World Model
Most self-driving systems rely on hand-coded perception outputs and engineered driving rules. Learning directly from human driving data with an end-to-end method can allow for a training architecture that is simpler and scales well with compute and data. In this work, we propose an end-to-end training architecture that uses real driving data to train a driving policy in an on-policy simulator. We show two different methods of simulation, one with reprojective simulation and one with a learned world model. We show that both methods can be used to train a policy that learns driving behavior without any hand-coded driving rules. We evaluate the performance of these policies in a closed-loop simulation and when deployed in a real-world advanced driver-assistance system.
Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
AlphaDrive: Unleashing the Power of VLMs in Autonomous Driving via Reinforcement Learning and Reasoning
OpenAI o1 and DeepSeek R1 achieve or even surpass human expert-level performance in complex domains like mathematics and science, with reinforcement learning (RL) and reasoning playing a crucial role. In autonomous driving, recent end-to-end models have greatly improved planning performance but still struggle with long-tailed problems due to limited common sense and reasoning abilities. Some studies integrate vision-language models (VLMs) into autonomous driving, but they typically rely on pre-trained models with simple supervised fine-tuning (SFT) on driving data, without further exploration of training strategies or optimizations specifically tailored for planning. In this paper, we propose AlphaDrive, a RL and reasoning framework for VLMs in autonomous driving. AlphaDrive introduces four GRPO-based RL rewards tailored for planning and employs a two-stage planning reasoning training strategy that combines SFT with RL. As a result, AlphaDrive significantly improves both planning performance and training efficiency compared to using only SFT or without reasoning. Moreover, we are also excited to discover that, following RL training, AlphaDrive exhibits some emergent multimodal planning capabilities, which is critical for improving driving safety and efficiency. To the best of our knowledge, AlphaDrive is the first to integrate GRPO-based RL with planning reasoning into autonomous driving. Code will be released to facilitate future research.
Optimus-1: Hybrid Multimodal Memory Empowered Agents Excel in Long-Horizon Tasks
Building a general-purpose agent is a long-standing vision in the field of artificial intelligence. Existing agents have made remarkable progress in many domains, yet they still struggle to complete long-horizon tasks in an open world. We attribute this to the lack of necessary world knowledge and multimodal experience that can guide agents through a variety of long-horizon tasks. In this paper, we propose a Hybrid Multimodal Memory module to address the above challenges. It 1) transforms knowledge into Hierarchical Directed Knowledge Graph that allows agents to explicitly represent and learn world knowledge, and 2) summarises historical information into Abstracted Multimodal Experience Pool that provide agents with rich references for in-context learning. On top of the Hybrid Multimodal Memory module, a multimodal agent, Optimus-1, is constructed with dedicated Knowledge-guided Planner and Experience-Driven Reflector, contributing to a better planning and reflection in the face of long-horizon tasks in Minecraft. Extensive experimental results show that Optimus-1 significantly outperforms all existing agents on challenging long-horizon task benchmarks, and exhibits near human-level performance on many tasks. In addition, we introduce various Multimodal Large Language Models (MLLMs) as the backbone of Optimus-1. Experimental results show that Optimus-1 exhibits strong generalization with the help of the Hybrid Multimodal Memory module, outperforming the GPT-4V baseline on many tasks.
LMDrive: Closed-Loop End-to-End Driving with Large Language Models
Despite significant recent progress in the field of autonomous driving, modern methods still struggle and can incur serious accidents when encountering long-tail unforeseen events and challenging urban scenarios. On the one hand, large language models (LLM) have shown impressive reasoning capabilities that approach "Artificial General Intelligence". On the other hand, previous autonomous driving methods tend to rely on limited-format inputs (e.g. sensor data and navigation waypoints), restricting the vehicle's ability to understand language information and interact with humans. To this end, this paper introduces LMDrive, a novel language-guided, end-to-end, closed-loop autonomous driving framework. LMDrive uniquely processes and integrates multi-modal sensor data with natural language instructions, enabling interaction with humans and navigation software in realistic instructional settings. To facilitate further research in language-based closed-loop autonomous driving, we also publicly release the corresponding dataset which includes approximately 64K instruction-following data clips, and the LangAuto benchmark that tests the system's ability to handle complex instructions and challenging driving scenarios. Extensive closed-loop experiments are conducted to demonstrate LMDrive's effectiveness. To the best of our knowledge, we're the very first work to leverage LLMs for closed-loop end-to-end autonomous driving. Codes can be found at https://github.com/opendilab/LMDrive
DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos based on real-world driving data. Notably, we explicitly leverage structured conditions to control the spatial-temporal consistency of foreground and background elements, thus the generated data adheres closely to traffic constraints. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 24.5%, 39.0%, and 10.5% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 20.3%, 42.0%, and 13.7% in the NTA-IoU metric.
Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models. However, in real life applications these models often encounter scenarios that are inadequately represented in the data used for training. There are various reasons for the absence of sufficient data, ranging from time and cost constraints to ethical considerations. As a consequence, the reliable usage of these models, especially in safety-critical applications, is still a tremendous challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches. Knowledge augmented machine learning approaches offer the possibility of compensating for deficiencies, errors, or ambiguities in the data, thus increasing the generalization capability of the applied models. Even more, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-driven models with existing knowledge. The identified approaches are structured according to the categories knowledge integration, extraction and conformity. In particular, we address the application of the presented methods in the field of autonomous driving.
RAD: Training an End-to-End Driving Policy via Large-Scale 3DGS-based Reinforcement Learning
Existing end-to-end autonomous driving (AD) algorithms typically follow the Imitation Learning (IL) paradigm, which faces challenges such as causal confusion and the open-loop gap. In this work, we establish a 3DGS-based closed-loop Reinforcement Learning (RL) training paradigm. By leveraging 3DGS techniques, we construct a photorealistic digital replica of the real physical world, enabling the AD policy to extensively explore the state space and learn to handle out-of-distribution scenarios through large-scale trial and error. To enhance safety, we design specialized rewards that guide the policy to effectively respond to safety-critical events and understand real-world causal relationships. For better alignment with human driving behavior, IL is incorporated into RL training as a regularization term. We introduce a closed-loop evaluation benchmark consisting of diverse, previously unseen 3DGS environments. Compared to IL-based methods, RAD achieves stronger performance in most closed-loop metrics, especially 3x lower collision rate. Abundant closed-loop results are presented at https://hgao-cv.github.io/RAD.
A Language Agent for Autonomous Driving
Human-level driving is an ultimate goal of autonomous driving. Conventional approaches formulate autonomous driving as a perception-prediction-planning framework, yet their systems do not capitalize on the inherent reasoning ability and experiential knowledge of humans. In this paper, we propose a fundamental paradigm shift from current pipelines, exploiting Large Language Models (LLMs) as a cognitive agent to integrate human-like intelligence into autonomous driving systems. Our approach, termed Agent-Driver, transforms the traditional autonomous driving pipeline by introducing a versatile tool library accessible via function calls, a cognitive memory of common sense and experiential knowledge for decision-making, and a reasoning engine capable of chain-of-thought reasoning, task planning, motion planning, and self-reflection. Powered by LLMs, our Agent-Driver is endowed with intuitive common sense and robust reasoning capabilities, thus enabling a more nuanced, human-like approach to autonomous driving. We evaluate our approach on the large-scale nuScenes benchmark, and extensive experiments substantiate that our Agent-Driver significantly outperforms the state-of-the-art driving methods by a large margin. Our approach also demonstrates superior interpretability and few-shot learning ability to these methods. Code will be released.
Informed Reinforcement Learning for Situation-Aware Traffic Rule Exceptions
Reinforcement Learning is a highly active research field with promising advancements. In the field of autonomous driving, however, often very simple scenarios are being examined. Common approaches use non-interpretable control commands as the action space and unstructured reward designs which lack structure. In this work, we introduce Informed Reinforcement Learning, where a structured rulebook is integrated as a knowledge source. We learn trajectories and asses them with a situation-aware reward design, leading to a dynamic reward which allows the agent to learn situations which require controlled traffic rule exceptions. Our method is applicable to arbitrary RL models. We successfully demonstrate high completion rates of complex scenarios with recent model-based agents.
TartanDrive: A Large-Scale Dataset for Learning Off-Road Dynamics Models
We present TartanDrive, a large scale dataset for learning dynamics models for off-road driving. We collected a dataset of roughly 200,000 off-road driving interactions on a modified Yamaha Viking ATV with seven unique sensing modalities in diverse terrains. To the authors' knowledge, this is the largest real-world multi-modal off-road driving dataset, both in terms of number of interactions and sensing modalities. We also benchmark several state-of-the-art methods for model-based reinforcement learning from high-dimensional observations on this dataset. We find that extending these models to multi-modality leads to significant performance on off-road dynamics prediction, especially in more challenging terrains. We also identify some shortcomings with current neural network architectures for the off-road driving task. Our dataset is available at https://github.com/castacks/tartan_drive.
Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction
Understanding drivers' decision-making is crucial for road safety. Although predicting the ego-vehicle's path is valuable for driver-assistance systems, existing methods mainly focus on external factors like other vehicles' motions, often neglecting the driver's attention and intent. To address this gap, we infer the ego-trajectory by integrating the driver's gaze and the surrounding scene. We introduce RouteFormer, a novel multimodal ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view, comprising first-person video and gaze fixations. We also present the Path Complexity Index (PCI), a new metric for trajectory complexity that enables a more nuanced evaluation of challenging scenarios. To tackle data scarcity and enhance diversity, we introduce GEM, a comprehensive dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data. Extensive evaluations on GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms state-of-the-art methods, achieving notable improvements in prediction accuracy across diverse conditions. Ablation studies reveal that incorporating driver field-of-view data yields significantly better average displacement error, especially in challenging scenarios with high PCI scores, underscoring the importance of modeling driver attention. All data and code are available at https://meakbiyik.github.io/routeformer.
Hybrid Imitative Planning with Geometric and Predictive Costs in Off-road Environments
Geometric methods for solving open-world off-road navigation tasks, by learning occupancy and metric maps, provide good generalization but can be brittle in outdoor environments that violate their assumptions (e.g., tall grass). Learning-based methods can directly learn collision-free behavior from raw observations, but are difficult to integrate with standard geometry-based pipelines. This creates an unfortunate conflict -- either use learning and lose out on well-understood geometric navigational components, or do not use it, in favor of extensively hand-tuned geometry-based cost maps. In this work, we reject this dichotomy by designing the learning and non-learning-based components in a way such that they can be effectively combined in a self-supervised manner. Both components contribute to a planning criterion: the learned component contributes predicted traversability as rewards, while the geometric component contributes obstacle cost information. We instantiate and comparatively evaluate our system in both in-distribution and out-of-distribution environments, showing that this approach inherits complementary gains from the learned and geometric components and significantly outperforms either of them. Videos of our results are hosted at https://sites.google.com/view/hybrid-imitative-planning
JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models
Achieving human-like planning and control with multimodal observations in an open world is a key milestone for more functional generalist agents. Existing approaches can handle certain long-horizon tasks in an open world. However, they still struggle when the number of open-world tasks could potentially be infinite and lack the capability to progressively enhance task completion as game time progresses. We introduce JARVIS-1, an open-world agent that can perceive multimodal input (visual observations and human instructions), generate sophisticated plans, and perform embodied control, all within the popular yet challenging open-world Minecraft universe. Specifically, we develop JARVIS-1 on top of pre-trained multimodal language models, which map visual observations and textual instructions to plans. The plans will be ultimately dispatched to the goal-conditioned controllers. We outfit JARVIS-1 with a multimodal memory, which facilitates planning using both pre-trained knowledge and its actual game survival experiences. In our experiments, JARVIS-1 exhibits nearly perfect performances across over 200 varying tasks from the Minecraft Universe Benchmark, ranging from entry to intermediate levels. JARVIS-1 has achieved a completion rate of 12.5% in the long-horizon diamond pickaxe task. This represents a significant increase up to 5 times compared to previous records. Furthermore, we show that JARVIS-1 is able to self-improve following a life-long learning paradigm thanks to multimodal memory, sparking a more general intelligence and improved autonomy. The project page is available at https://craftjarvis-jarvis1.github.io.
DriveAdapter: Breaking the Coupling Barrier of Perception and Planning in End-to-End Autonomous Driving
End-to-end autonomous driving aims to build a fully differentiable system that takes raw sensor data as inputs and directly outputs the planned trajectory or control signals of the ego vehicle. State-of-the-art methods usually follow the `Teacher-Student' paradigm. The Teacher model uses privileged information (ground-truth states of surrounding agents and map elements) to learn the driving strategy. The student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model. By eliminating the noise of the perception part during planning learning, state-of-the-art works could achieve better performance with significantly less data compared to those coupled ones. However, under the current Teacher-Student paradigm, the student model still needs to learn a planning head from scratch, which could be challenging due to the redundant and noisy nature of raw sensor inputs and the casual confusion issue of behavior cloning. In this work, we aim to explore the possibility of directly adopting the strong teacher model to conduct planning while letting the student model focus more on the perception part. We find that even equipped with a SOTA perception model, directly letting the student model learn the required inputs of the teacher model leads to poor driving performance, which comes from the large distribution gap between predicted privileged inputs and the ground-truth. To this end, we propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules. Additionally, since the pure learning-based teacher model itself is imperfect and occasionally breaks safety rules, we propose a method of action-guided feature learning with a mask for those imperfect teacher features to further inject the priors of hand-crafted rules into the learning process.
AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving
Autonomous vehicle (AV) systems rely on robust perception models as a cornerstone of safety assurance. However, objects encountered on the road exhibit a long-tailed distribution, with rare or unseen categories posing challenges to a deployed perception model. This necessitates an expensive process of continuously curating and annotating data with significant human effort. We propose to leverage recent advances in vision-language and large language models to design an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios. This process operates iteratively, allowing for continuous self-improvement of the model. We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
Open-World Skill Discovery from Unsegmented Demonstrations
Learning skills in open-world environments is essential for developing agents capable of handling a variety of tasks by combining basic skills. Online demonstration videos are typically long but unsegmented, making them difficult to segment and label with skill identifiers. Unlike existing methods that rely on sequence sampling or human labeling, we have developed a self-supervised learning-based approach to segment these long videos into a series of semantic-aware and skill-consistent segments. Drawing inspiration from human cognitive event segmentation theory, we introduce Skill Boundary Detection (SBD), an annotation-free temporal video segmentation algorithm. SBD detects skill boundaries in a video by leveraging prediction errors from a pretrained unconditional action-prediction model. This approach is based on the assumption that a significant increase in prediction error indicates a shift in the skill being executed. We evaluated our method in Minecraft, a rich open-world simulator with extensive gameplay videos available online. Our SBD-generated segments improved the average performance of conditioned policies by 63.7% and 52.1% on short-term atomic skill tasks, and their corresponding hierarchical agents by 11.3% and 20.8% on long-horizon tasks. Our method can leverage the diverse YouTube videos to train instruction-following agents. The project page can be found in https://craftjarvis.github.io/SkillDiscovery.
Steve-Eye: Equipping LLM-based Embodied Agents with Visual Perception in Open Worlds
Recent studies have presented compelling evidence that large language models (LLMs) can equip embodied agents with the self-driven capability to interact with the world, which marks an initial step toward versatile robotics. However, these efforts tend to overlook the visual richness of open worlds, rendering the entire interactive process akin to "a blindfolded text-based game." Consequently, LLM-based agents frequently encounter challenges in intuitively comprehending their surroundings and producing responses that are easy to understand. In this paper, we propose Steve-Eye, an end-to-end trained large multimodal model designed to address this limitation. Steve-Eye integrates the LLM with a visual encoder which enables it to process visual-text inputs and generate multimodal feedback. In addition, we use a semi-automatic strategy to collect an extensive dataset comprising 850K open-world instruction pairs, empowering our model to encompass three essential functions for an agent: multimodal perception, foundational knowledge base, and skill prediction and planning. Lastly, we develop three open-world evaluation benchmarks, then carry out extensive experiments from a wide range of perspectives to validate our model's capability to strategically act and plan. Codes and datasets will be released.
Bridging the Sim-to-Real Gap from the Information Bottleneck Perspective
Reinforcement Learning (RL) has recently achieved remarkable success in robotic control. However, most works in RL operate in simulated environments where privileged knowledge (e.g., dynamics, surroundings, terrains) is readily available. Conversely, in real-world scenarios, robot agents usually rely solely on local states (e.g., proprioceptive feedback of robot joints) to select actions, leading to a significant sim-to-real gap. Existing methods address this gap by either gradually reducing the reliance on privileged knowledge or performing a two-stage policy imitation. However, we argue that these methods are limited in their ability to fully leverage the available privileged knowledge, resulting in suboptimal performance. In this paper, we formulate the sim-to-real gap as an information bottleneck problem and therefore propose a novel privileged knowledge distillation method called the Historical Information Bottleneck (HIB). In particular, HIB learns a privileged knowledge representation from historical trajectories by capturing the underlying changeable dynamic information. Theoretical analysis shows that the learned privileged knowledge representation helps reduce the value discrepancy between the oracle and learned policies. Empirical experiments on both simulated and real-world tasks demonstrate that HIB yields improved generalizability compared to previous methods. Videos of real-world experiments are available at https://sites.google.com/view/history-ib .
StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.
OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping
Accurately depicting the complex traffic scene is a vital component for autonomous vehicles to execute correct judgments. However, existing benchmarks tend to oversimplify the scene by solely focusing on lane perception tasks. Observing that human drivers rely on both lanes and traffic signals to operate their vehicles safely, we present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure. The objective of the presented dataset is to advance research in understanding the structure of road scenes by examining the relationship between perceived entities, such as traffic elements and lanes. Leveraging existing datasets, OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes. It comprises three primary sub-tasks, including the 3D lane detection inherited from OpenLane, accompanied by corresponding metrics to evaluate the model's performance. We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
Cosmos-Drive-Dreams: Scalable Synthetic Driving Data Generation with World Foundation Models
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform. Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams
Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications ranging from virtual environments to decision-making systems. Recently, the emergence of the Sora model has attained significant attention due to its remarkable simulation capabilities, which exhibits an incipient comprehension of physical laws. In this survey, we embark on a comprehensive exploration of the latest advancements in world models. Our analysis navigates through the forefront of generative methodologies in video generation, where world models stand as pivotal constructs facilitating the synthesis of highly realistic visual content. Additionally, we scrutinize the burgeoning field of autonomous-driving world models, meticulously delineating their indispensable role in reshaping transportation and urban mobility. Furthermore, we delve into the intricacies inherent in world models deployed within autonomous agents, shedding light on their profound significance in enabling intelligent interactions within dynamic environmental contexts. At last, we examine challenges and limitations of world models, and discuss their potential future directions. We hope this survey can serve as a foundational reference for the research community and inspire continued innovation. This survey will be regularly updated at: https://github.com/GigaAI-research/General-World-Models-Survey.
IntersectionZoo: Eco-driving for Benchmarking Multi-Agent Contextual Reinforcement Learning
Despite the popularity of multi-agent reinforcement learning (RL) in simulated and two-player applications, its success in messy real-world applications has been limited. A key challenge lies in its generalizability across problem variations, a common necessity for many real-world problems. Contextual reinforcement learning (CRL) formalizes learning policies that generalize across problem variations. However, the lack of standardized benchmarks for multi-agent CRL has hindered progress in the field. Such benchmarks are desired to be based on real-world applications to naturally capture the many open challenges of real-world problems that affect generalization. To bridge this gap, we propose IntersectionZoo, a comprehensive benchmark suite for multi-agent CRL through the real-world application of cooperative eco-driving in urban road networks. The task of cooperative eco-driving is to control a fleet of vehicles to reduce fleet-level vehicular emissions. By grounding IntersectionZoo in a real-world application, we naturally capture real-world problem characteristics, such as partial observability and multiple competing objectives. IntersectionZoo is built on data-informed simulations of 16,334 signalized intersections derived from 10 major US cities, modeled in an open-source industry-grade microscopic traffic simulator. By modeling factors affecting vehicular exhaust emissions (e.g., temperature, road conditions, travel demand), IntersectionZoo provides one million data-driven traffic scenarios. Using these traffic scenarios, we benchmark popular multi-agent RL and human-like driving algorithms and demonstrate that the popular multi-agent RL algorithms struggle to generalize in CRL settings.
ACT-Bench: Towards Action Controllable World Models for Autonomous Driving
World models have emerged as promising neural simulators for autonomous driving, with the potential to supplement scarce real-world data and enable closed-loop evaluations. However, current research primarily evaluates these models based on visual realism or downstream task performance, with limited focus on fidelity to specific action instructions - a crucial property for generating targeted simulation scenes. Although some studies address action fidelity, their evaluations rely on closed-source mechanisms, limiting reproducibility. To address this gap, we develop an open-access evaluation framework, ACT-Bench, for quantifying action fidelity, along with a baseline world model, Terra. Our benchmarking framework includes a large-scale dataset pairing short context videos from nuScenes with corresponding future trajectory data, which provides conditional input for generating future video frames and enables evaluation of action fidelity for executed motions. Furthermore, Terra is trained on multiple large-scale trajectory-annotated datasets to enhance action fidelity. Leveraging this framework, we demonstrate that the state-of-the-art model does not fully adhere to given instructions, while Terra achieves improved action fidelity. All components of our benchmark framework will be made publicly available to support future research.
DOME: Taming Diffusion Model into High-Fidelity Controllable Occupancy World Model
We propose DOME, a diffusion-based world model that predicts future occupancy frames based on past occupancy observations. The ability of this world model to capture the evolution of the environment is crucial for planning in autonomous driving. Compared to 2D video-based world models, the occupancy world model utilizes a native 3D representation, which features easily obtainable annotations and is modality-agnostic. This flexibility has the potential to facilitate the development of more advanced world models. Existing occupancy world models either suffer from detail loss due to discrete tokenization or rely on simplistic diffusion architectures, leading to inefficiencies and difficulties in predicting future occupancy with controllability. Our DOME exhibits two key features:(1) High-Fidelity and Long-Duration Generation. We adopt a spatial-temporal diffusion transformer to predict future occupancy frames based on historical context. This architecture efficiently captures spatial-temporal information, enabling high-fidelity details and the ability to generate predictions over long durations. (2)Fine-grained Controllability. We address the challenge of controllability in predictions by introducing a trajectory resampling method, which significantly enhances the model's ability to generate controlled predictions. Extensive experiments on the widely used nuScenes dataset demonstrate that our method surpasses existing baselines in both qualitative and quantitative evaluations, establishing a new state-of-the-art performance on nuScenes. Specifically, our approach surpasses the baseline by 10.5% in mIoU and 21.2% in IoU for occupancy reconstruction and by 36.0% in mIoU and 24.6% in IoU for 4D occupancy forecasting.
Planning-oriented Autonomous Driving
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction, and planning. In order to perform a wide diversity of tasks and achieve advanced-level intelligence, contemporary approaches either deploy standalone models for individual tasks, or design a multi-task paradigm with separate heads. However, they might suffer from accumulative errors or deficient task coordination. Instead, we argue that a favorable framework should be devised and optimized in pursuit of the ultimate goal, i.e., planning of the self-driving car. Oriented at this, we revisit the key components within perception and prediction, and prioritize the tasks such that all these tasks contribute to planning. We introduce Unified Autonomous Driving (UniAD), a comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query interfaces to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven by substantially outperforming previous state-of-the-arts in all aspects. Code and models are public.
VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision
Human drivers rely on commonsense reasoning to navigate diverse and dynamic real-world scenarios. Existing end-to-end (E2E) autonomous driving (AD) models are typically optimized to mimic driving patterns observed in data, without capturing the underlying reasoning processes. This limitation constrains their ability to handle challenging driving scenarios. To close this gap, we propose VLM-AD, a method that leverages vision-language models (VLMs) as teachers to enhance training by providing additional supervision that incorporates unstructured reasoning information and structured action labels. Such supervision enhances the model's ability to learn richer feature representations that capture the rationale behind driving patterns. Importantly, our method does not require a VLM during inference, making it practical for real-time deployment. When integrated with state-of-the-art methods, VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: https://github.com/PJLab-ADG/GPT4V-AD-Exploration
WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents
Can we build accurate world models out of large language models (LLMs)? How can world models benefit LLM agents? The gap between the prior knowledge of LLMs and the specified environment's dynamics usually bottlenecks LLMs' performance as world models. To bridge the gap, we propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and scene graphs, which are extracted by LLMs from exploration trajectories and encoded into executable codes to regulate LLM agents' policies. We further propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control (MPC) framework. Unlike classical MPC requiring costly optimization on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future steps' actions by interacting with the neurosymbolic world model. While the LLM agent's strong heuristics make it an efficient planner in MPC, the quality of its planned actions is also secured by the accurate predictions of the aligned world model. They together considerably improve learning efficiency in a new environment. On open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments), WALL-E 2.0 significantly outperforms existing methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success rate after only 4 iterations.
DriVLMe: Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experiences
Recent advancements in foundation models (FMs) have unlocked new prospects in autonomous driving, yet the experimental settings of these studies are preliminary, over-simplified, and fail to capture the complexity of real-world driving scenarios in human environments. It remains under-explored whether FM agents can handle long-horizon navigation tasks with free-from dialogue and deal with unexpected situations caused by environmental dynamics or task changes. To explore the capabilities and boundaries of FMs faced with the challenges above, we introduce DriVLMe, a video-language-model-based agent to facilitate natural and effective communication between humans and autonomous vehicles that perceive the environment and navigate. We develop DriVLMe from both embodied experiences in a simulated environment and social experiences from real human dialogue. While DriVLMe demonstrates competitive performance in both open-loop benchmarks and closed-loop human studies, we reveal several limitations and challenges, including unacceptable inference time, imbalanced training data, limited visual understanding, challenges with multi-turn interactions, simplified language generation from robotic experiences, and difficulties in handling on-the-fly unexpected situations like environmental dynamics and task changes.
NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving
We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at https://github.com/atonderski/neuro-ncap
Drive Like a Human: Rethinking Autonomous Driving with Large Language Models
In this paper, we explore the potential of using a large language model (LLM) to understand the driving environment in a human-like manner and analyze its ability to reason, interpret, and memorize when facing complex scenarios. We argue that traditional optimization-based and modular autonomous driving (AD) systems face inherent performance limitations when dealing with long-tail corner cases. To address this problem, we propose that an ideal AD system should drive like a human, accumulating experience through continuous driving and using common sense to solve problems. To achieve this goal, we identify three key abilities necessary for an AD system: reasoning, interpretation, and memorization. We demonstrate the feasibility of employing an LLM in driving scenarios by building a closed-loop system to showcase its comprehension and environment-interaction abilities. Our extensive experiments show that the LLM exhibits the impressive ability to reason and solve long-tailed cases, providing valuable insights for the development of human-like autonomous driving. The related code are available at https://github.com/PJLab-ADG/DriveLikeAHuman .
DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
WOMD-Reasoning: A Large-Scale Dataset for Interaction Reasoning in Driving
Language models uncover unprecedented abilities in analyzing driving scenarios, owing to their limitless knowledge accumulated from text-based pre-training. Naturally, they should particularly excel in analyzing rule-based interactions, such as those triggered by traffic laws, which are well documented in texts. However, such interaction analysis remains underexplored due to the lack of dedicated language datasets that address it. Therefore, we propose Waymo Open Motion Dataset-Reasoning (WOMD-Reasoning), a comprehensive large-scale Q&As dataset built on WOMD focusing on describing and reasoning traffic rule-induced interactions in driving scenarios. WOMD-Reasoning also presents by far the largest multi-modal Q&A dataset, with 3 million Q&As on real-world driving scenarios, covering a wide range of driving topics from map descriptions and motion status descriptions to narratives and analyses of agents' interactions, behaviors, and intentions. To showcase the applications of WOMD-Reasoning, we design Motion-LLaVA, a motion-language model fine-tuned on WOMD-Reasoning. Quantitative and qualitative evaluations are performed on WOMD-Reasoning dataset as well as the outputs of Motion-LLaVA, supporting the data quality and wide applications of WOMD-Reasoning, in interaction predictions, traffic rule compliance plannings, etc. The dataset and its vision modal extension are available on https://waymo.com/open/download/. The codes & prompts to build it are available on https://github.com/yhli123/WOMD-Reasoning.
ReCogDrive: A Reinforced Cognitive Framework for End-to-End Autonomous Driving
Although end-to-end autonomous driving has made remarkable progress, its performance degrades significantly in rare and long-tail scenarios. Recent approaches attempt to address this challenge by leveraging the rich world knowledge of Vision-Language Models (VLMs), but these methods suffer from several limitations: (1) a significant domain gap between the pre-training data of VLMs and real-world driving data, (2) a dimensionality mismatch between the discrete language space and the continuous action space, and (3) imitation learning tends to capture the average behavior present in the dataset, which may be suboptimal even dangerous. In this paper, we propose ReCogDrive, an autonomous driving system that integrates VLMs with diffusion planner, which adopts a three-stage paradigm for training. In the first stage, we use a large-scale driving question-answering datasets to train the VLMs, mitigating the domain discrepancy between generic content and real-world driving scenarios. In the second stage, we employ a diffusion-based planner to perform imitation learning, mapping representations from the latent language space to continuous driving actions. Finally, we fine-tune the diffusion planner using reinforcement learning with NAVSIM non-reactive simulator, enabling the model to generate safer, more human-like driving trajectories. We evaluate our approach on the planning-oriented NAVSIM benchmark, achieving a PDMS of 89.6 and setting a new state-of-the-art that surpasses the previous vision-only SOTA by 5.6 PDMS.
End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent
Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.
SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries
Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail safety-critical traffic scenarios. However, traditional methods for generating such scenarios often fall short in terms of controllability and realism; they also neglect the dynamics of agent interactions. To address these limitations, we introduce SAFE-SIM, a novel diffusion-based controllable closed-loop safety-critical simulation framework. Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process of diffusion models, which allows an adversarial agent to challenge a planner with plausible maneuvers while all agents in the scene exhibit reactive and realistic behaviors. Furthermore, we propose novel guidance objectives and a partial diffusion process that enables users to control key aspects of the scenarios, such as the collision type and aggressiveness of the adversarial agent, while maintaining the realism of the behavior. We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability. These findings affirm that diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader autonomous driving landscape. Project website: https://safe-sim.github.io/.
Dolphins: Multimodal Language Model for Driving
The quest for fully autonomous vehicles (AVs) capable of navigating complex real-world scenarios with human-like understanding and responsiveness. In this paper, we introduce Dolphins, a novel vision-language model architected to imbibe human-like abilities as a conversational driving assistant. Dolphins is adept at processing multimodal inputs comprising video (or image) data, text instructions, and historical control signals to generate informed outputs corresponding to the provided instructions. Building upon the open-sourced pretrained Vision-Language Model, OpenFlamingo, we first enhance Dolphins's reasoning capabilities through an innovative Grounded Chain of Thought (GCoT) process. Then we tailored Dolphins to the driving domain by constructing driving-specific instruction data and conducting instruction tuning. Through the utilization of the BDD-X dataset, we designed and consolidated four distinct AV tasks into Dolphins to foster a holistic understanding of intricate driving scenarios. As a result, the distinctive features of Dolphins are characterized into two dimensions: (1) the ability to provide a comprehensive understanding of complex and long-tailed open-world driving scenarios and solve a spectrum of AV tasks, and (2) the emergence of human-like capabilities including gradient-free instant adaptation via in-context learning and error recovery via reflection.
DriveMoE: Mixture-of-Experts for Vision-Language-Action Model in End-to-End Autonomous Driving
End-to-end autonomous driving (E2E-AD) demands effective processing of multi-view sensory data and robust handling of diverse and complex driving scenarios, particularly rare maneuvers such as aggressive turns. Recent success of Mixture-of-Experts (MoE) architecture in Large Language Models (LLMs) demonstrates that specialization of parameters enables strong scalability. In this work, we propose DriveMoE, a novel MoE-based E2E-AD framework, with a Scene-Specialized Vision MoE and a Skill-Specialized Action MoE. DriveMoE is built upon our pi_0 Vision-Language-Action (VLA) baseline (originally from the embodied AI field), called Drive-pi_0. Specifically, we add Vision MoE to Drive-pi_0 by training a router to select relevant cameras according to the driving context dynamically. This design mirrors human driving cognition, where drivers selectively attend to crucial visual cues rather than exhaustively processing all visual information. In addition, we add Action MoE by training another router to activate specialized expert modules for different driving behaviors. Through explicit behavioral specialization, DriveMoE is able to handle diverse scenarios without suffering from modes averaging like existing models. In Bench2Drive closed-loop evaluation experiments, DriveMoE achieves state-of-the-art (SOTA) performance, demonstrating the effectiveness of combining vision and action MoE in autonomous driving tasks. We will release our code and models of DriveMoE and Drive-pi_0.
GAIA-1: A Generative World Model for Autonomous Driving
Autonomous driving promises transformative improvements to transportation, but building systems capable of safely navigating the unstructured complexity of real-world scenarios remains challenging. A critical problem lies in effectively predicting the various potential outcomes that may emerge in response to the vehicle's actions as the world evolves. To address this challenge, we introduce GAIA-1 ('Generative AI for Autonomy'), a generative world model that leverages video, text, and action inputs to generate realistic driving scenarios while offering fine-grained control over ego-vehicle behavior and scene features. Our approach casts world modeling as an unsupervised sequence modeling problem by mapping the inputs to discrete tokens, and predicting the next token in the sequence. Emerging properties from our model include learning high-level structures and scene dynamics, contextual awareness, generalization, and understanding of geometry. The power of GAIA-1's learned representation that captures expectations of future events, combined with its ability to generate realistic samples, provides new possibilities for innovation in the field of autonomy, enabling enhanced and accelerated training of autonomous driving technology.
FBLNet: FeedBack Loop Network for Driver Attention Prediction
The problem of predicting driver attention from the driving perspective is gaining increasing research focus due to its remarkable significance for autonomous driving and assisted driving systems. The driving experience is extremely important for safe driving,a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on the driving experience and quickly pay attention to the corresponding zones.However, the nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods, and the current methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative and long-term temporal information. The incremental knowledge in our model is like the driving experience of humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.
Vision-Language Models Provide Promptable Representations for Reinforcement Learning
Humans can quickly learn new behaviors by leveraging background world knowledge. In contrast, agents trained with reinforcement learning (RL) typically learn behaviors from scratch. We thus propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied RL. We initialize policies with VLMs by using them as promptable representations: embeddings that are grounded in visual observations and encode semantic features based on the VLM's internal knowledge, as elicited through prompts that provide task context and auxiliary information. We evaluate our approach on visually-complex, long horizon RL tasks in Minecraft and robot navigation in Habitat. We find that our policies trained on embeddings extracted from general-purpose VLMs outperform equivalent policies trained on generic, non-promptable image embeddings. We also find our approach outperforms instruction-following methods and performs comparably to domain-specific embeddings.
SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.
DriverGym: Democratising Reinforcement Learning for Autonomous Driving
Despite promising progress in reinforcement learning (RL), developing algorithms for autonomous driving (AD) remains challenging: one of the critical issues being the absence of an open-source platform capable of training and effectively validating the RL policies on real-world data. We propose DriverGym, an open-source OpenAI Gym-compatible environment specifically tailored for developing RL algorithms for autonomous driving. DriverGym provides access to more than 1000 hours of expert logged data and also supports reactive and data-driven agent behavior. The performance of an RL policy can be easily validated on real-world data using our extensive and flexible closed-loop evaluation protocol. In this work, we also provide behavior cloning baselines using supervised learning and RL, trained in DriverGym. We make DriverGym code, as well as all the baselines publicly available to further stimulate development from the community.
JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse
Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.
Integrated Decision Making and Trajectory Planning for Autonomous Driving Under Multimodal Uncertainties: A Bayesian Game Approach
Modeling the interaction between traffic agents is a key issue in designing safe and non-conservative maneuvers in autonomous driving. This problem can be challenging when multi-modality and behavioral uncertainties are engaged. Existing methods either fail to plan interactively or consider unimodal behaviors that could lead to catastrophic results. In this paper, we introduce an integrated decision-making and trajectory planning framework based on Bayesian game (i.e., game of incomplete information). Human decisions inherently exhibit discrete characteristics and therefore are modeled as types of players in the game. A general solver based on no-regret learning is introduced to obtain a corresponding Bayesian Coarse Correlated Equilibrium, which captures the interaction between traffic agents in the multimodal context. With the attained equilibrium, decision-making and trajectory planning are performed simultaneously, and the resulting interactive strategy is shown to be optimal over the expectation of rivals' driving intentions. Closed-loop simulations on different traffic scenarios are performed to illustrate the generalizability and the effectiveness of the proposed framework.
SEPT: Standard-Definition Map Enhanced Scene Perception and Topology Reasoning for Autonomous Driving
Online scene perception and topology reasoning are critical for autonomous vehicles to understand their driving environments, particularly for mapless driving systems that endeavor to reduce reliance on costly High-Definition (HD) maps. However, recent advances in online scene understanding still face limitations, especially in long-range or occluded scenarios, due to the inherent constraints of onboard sensors. To address this challenge, we propose a Standard-Definition (SD) Map Enhanced scene Perception and Topology reasoning (SEPT) framework, which explores how to effectively incorporate the SD map as prior knowledge into existing perception and reasoning pipelines. Specifically, we introduce a novel hybrid feature fusion strategy that combines SD maps with Bird's-Eye-View (BEV) features, considering both rasterized and vectorized representations, while mitigating potential misalignment between SD maps and BEV feature spaces. Additionally, we leverage the SD map characteristics to design an auxiliary intersection-aware keypoint detection task, which further enhances the overall scene understanding performance. Experimental results on the large-scale OpenLane-V2 dataset demonstrate that by effectively integrating SD map priors, our framework significantly improves both scene perception and topology reasoning, outperforming existing methods by a substantial margin.
DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model
In the past decade, autonomous driving has experienced rapid development in both academia and industry. However, its limited interpretability remains a significant unsolved problem, severely hindering autonomous vehicle commercialization and further development. Previous approaches utilizing small language models have failed to address this issue due to their lack of flexibility, generalization ability, and robustness. Recently, multimodal large language models (LLMs) have gained considerable attention from the research community for their capability to process and reason non-text data (e.g., images and videos) by text. In this paper, we present DriveGPT4, an interpretable end-to-end autonomous driving system utilizing LLMs. DriveGPT4 is capable of interpreting vehicle actions and providing corresponding reasoning, as well as answering diverse questions posed by human users for enhanced interaction. Additionally, DriveGPT4 predicts vehicle low-level control signals in an end-to-end fashion. These capabilities stem from a customized visual instruction tuning dataset specifically designed for autonomous driving. To the best of our knowledge, DriveGPT4 is the first work focusing on interpretable end-to-end autonomous driving. When evaluated on multiple tasks alongside conventional methods and video understanding LLMs, DriveGPT4 demonstrates superior qualitative and quantitative performance. Additionally, DriveGPT4 can be generalized in a zero-shot fashion to accommodate more unseen scenarios. The project page is available at https://tonyxuqaq.github.io/projects/DriveGPT4/ .
A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
Reinforcement learning (RL), with its ability to explore and optimize policies in complex, dynamic decision-making tasks, has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD). Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process tailored to diverse driving tasks remains underdeveloped. This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives. We first outline the fundamentals of RL methodologies, and then survey their applications in MoP, analyzing scenario-specific features and task requirements to shed light on their influence on RL design choices. Building on this analysis, we summarize key design experiences, extract insights from various driving task applications, and provide guidance for future implementations. Additionally, we examine the frontier challenges in RL-based MoP, review recent efforts to addresse these challenges, and propose strategies for overcoming unresolved issues.
RefAV: Towards Planning-Centric Scenario Mining
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
Rapid Exploration for Open-World Navigation with Latent Goal Models
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments. At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images. We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration. Trained on a large offline dataset of prior experience, the model acquires a representation of visual goals that is robust to task-irrelevant distractors. We demonstrate our method on a mobile ground robot in open-world exploration scenarios. Given an image of a goal that is up to 80 meters away, our method leverages its representation to explore and discover the goal in under 20 minutes, even amidst previously-unseen obstacles and weather conditions. Please check out the project website for videos of our experiments and information about the real-world dataset used at https://sites.google.com/view/recon-robot.
GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving
Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.
InDRiVE: Intrinsic Disagreement based Reinforcement for Vehicle Exploration through Curiosity Driven Generalized World Model
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
Parting with Misconceptions about Learning-based Vehicle Motion Planning
The release of nuPlan marks a new era in vehicle motion planning research, offering the first large-scale real-world dataset and evaluation schemes requiring both precise short-term planning and long-horizon ego-forecasting. Existing systems struggle to simultaneously meet both requirements. Indeed, we find that these tasks are fundamentally misaligned and should be addressed independently. We further assess the current state of closed-loop planning in the field, revealing the limitations of learning-based methods in complex real-world scenarios and the value of simple rule-based priors such as centerline selection through lane graph search algorithms. More surprisingly, for the open-loop sub-task, we observe that the best results are achieved when using only this centerline as scene context (\ie, ignoring all information regarding the map and other agents). Combining these insights, we propose an extremely simple and efficient planner which outperforms an extensive set of competitors, winning the nuPlan planning challenge 2023.
Control Map Distribution using Map Query Bank for Online Map Generation
Reliable autonomous driving systems require high-definition (HD) map that contains detailed map information for planning and navigation. However, pre-build HD map requires a large cost. Visual-based Online Map Generation (OMG) has become an alternative low-cost solution to build a local HD map. Query-based BEV Transformer has been a base model for this task. This model learns HD map predictions from an initial map queries distribution which is obtained by offline optimization on training set. Besides the quality of BEV feature, the performance of this model also highly relies on the capacity of initial map query distribution. However, this distribution is limited because the limited query number. To make map predictions optimal on each test sample, it is essential to generate a suitable initial distribution for each specific scenario. This paper proposes to decompose the whole HD map distribution into a set of point representations, namely map query bank (MQBank). To build specific map query initial distributions of different scenarios, low-cost standard definition map (SD map) data is introduced as a kind of prior knowledge. Moreover, each layer of map decoder network learns instance-level map query features, which will lose detailed information of each point. However, BEV feature map is a point-level dense feature. It is important to keep point-level information in map queries when interacting with BEV feature map. This can also be solved with map query bank method. Final experiments show a new insight on SD map prior and a new record on OpenLaneV2 benchmark with 40.5%, 45.7% mAP on vehicle lane and pedestrian area.
Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving
A major challenge in autonomous vehicle research is modeling agent behaviors, which has critical applications including constructing realistic and reliable simulations for off-board evaluation and forecasting traffic agents motion for onboard planning. While supervised learning has shown success in modeling agents across various domains, these models can suffer from distribution shift when deployed at test-time. In this work, we improve the reliability of agent behaviors by closed-loop fine-tuning of behavior models with reinforcement learning. Our method demonstrates improved overall performance, as well as improved targeted metrics such as collision rate, on the Waymo Open Sim Agents challenge. Additionally, we present a novel policy evaluation benchmark to directly assess the ability of simulated agents to measure the quality of autonomous vehicle planners and demonstrate the effectiveness of our approach on this new benchmark.
Emergent Road Rules In Multi-Agent Driving Environments
For autonomous vehicles to safely share the road with human drivers, autonomous vehicles must abide by specific "road rules" that human drivers have agreed to follow. "Road rules" include rules that drivers are required to follow by law -- such as the requirement that vehicles stop at red lights -- as well as more subtle social rules -- such as the implicit designation of fast lanes on the highway. In this paper, we provide empirical evidence that suggests that -- instead of hard-coding road rules into self-driving algorithms -- a scalable alternative may be to design multi-agent environments in which road rules emerge as optimal solutions to the problem of maximizing traffic flow. We analyze what ingredients in driving environments cause the emergence of these road rules and find that two crucial factors are noisy perception and agents' spatial density. We provide qualitative and quantitative evidence of the emergence of seven social driving behaviors, ranging from obeying traffic signals to following lanes, all of which emerge from training agents to drive quickly to destinations without colliding. Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
The Matrix: Infinite-Horizon World Generation with Real-Time Moving Control
We present The Matrix, the first foundational realistic world simulator capable of generating continuous 720p high-fidelity real-scene video streams with real-time, responsive control in both first- and third-person perspectives, enabling immersive exploration of richly dynamic environments. Trained on limited supervised data from AAA games like Forza Horizon 5 and Cyberpunk 2077, complemented by large-scale unsupervised footage from real-world settings like Tokyo streets, The Matrix allows users to traverse diverse terrains -- deserts, grasslands, water bodies, and urban landscapes -- in continuous, uncut hour-long sequences. Operating at 16 FPS, the system supports real-time interactivity and demonstrates zero-shot generalization, translating virtual game environments to real-world contexts where collecting continuous movement data is often infeasible. For example, The Matrix can simulate a BMW X3 driving through an office setting--an environment present in neither gaming data nor real-world sources. This approach showcases the potential of AAA game data to advance robust world models, bridging the gap between simulations and real-world applications in scenarios with limited data.
OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction
In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation and autonomous driving. Extracting road structures from satellite images is an efficient way to construct large-scale maps. However, existing satellite datasets provide only coarse semantic-level labels with a relatively low resolution (up to level 19), impeding the advancement of this field. In contrast, the proposed OpenSatMap (1) has fine-grained instance-level annotations; (2) consists of high-resolution images (level 20); (3) is currently the largest one of its kind; (4) collects data with high diversity. Moreover, OpenSatMap covers and aligns with the popular nuScenes dataset and Argoverse 2 dataset to potentially advance autonomous driving technologies. By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving with Counterfactual Reasoning
The advances in vision-language models (VLMs) have led to a growing interest in autonomous driving to leverage their strong reasoning capabilities. However, extending these capabilities from 2D to full 3D understanding is crucial for real-world applications. To address this challenge, we propose OmniDrive, a holistic vision-language dataset that aligns agent models with 3D driving tasks through counterfactual reasoning. This approach enhances decision-making by evaluating potential scenarios and their outcomes, similar to human drivers considering alternative actions. Our counterfactual-based synthetic data annotation process generates large-scale, high-quality datasets, providing denser supervision signals that bridge planning trajectories and language-based reasoning. Futher, we explore two advanced OmniDrive-Agent frameworks, namely Omni-L and Omni-Q, to assess the importance of vision-language alignment versus 3D perception, revealing critical insights into designing effective LLM-agents. Significant improvements on the DriveLM Q\&A benchmark and nuScenes open-loop planning demonstrate the effectiveness of our dataset and methods.
DOROTHIE: Spoken Dialogue for Handling Unexpected Situations in Interactive Autonomous Driving Agents
In the real world, autonomous driving agents navigate in highly dynamic environments full of unexpected situations where pre-trained models are unreliable. In these situations, what is immediately available to vehicles is often only human operators. Empowering autonomous driving agents with the ability to navigate in a continuous and dynamic environment and to communicate with humans through sensorimotor-grounded dialogue becomes critical. To this end, we introduce Dialogue On the ROad To Handle Irregular Events (DOROTHIE), a novel interactive simulation platform that enables the creation of unexpected situations on the fly to support empirical studies on situated communication with autonomous driving agents. Based on this platform, we created the Situated Dialogue Navigation (SDN), a navigation benchmark of 183 trials with a total of 8415 utterances, around 18.7 hours of control streams, and 2.9 hours of trimmed audio. SDN is developed to evaluate the agent's ability to predict dialogue moves from humans as well as generate its own dialogue moves and physical navigation actions. We further developed a transformer-based baseline model for these SDN tasks. Our empirical results indicate that language guided-navigation in a highly dynamic environment is an extremely difficult task for end-to-end models. These results will provide insight towards future work on robust autonomous driving agents. The DOROTHIE platform, SDN benchmark, and code for the baseline model are available at https://github.com/sled-group/DOROTHIE.
Trajeglish: Learning the Language of Driving Scenarios
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite, knowledge bases, algorithm implementation, and pretrained models (https://minedojo.org) to promote research towards the goal of generally capable embodied agents.
MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations
World models for autonomous driving have the potential to dramatically improve the reasoning capabilities of today's systems. However, most works focus on camera data, with only a few that leverage lidar data or combine both to better represent autonomous vehicle sensor setups. In addition, raw sensor predictions are less actionable than 3D occupancy predictions, but there are no works examining the effects of combining both multimodal sensor data and 3D occupancy prediction. In this work, we perform a set of experiments with a MUltimodal World Model with Geometric VOxel representations (MUVO) to evaluate different sensor fusion strategies to better understand the effects on sensor data prediction. We also analyze potential weaknesses of current sensor fusion approaches and examine the benefits of additionally predicting 3D occupancy.
DrivingWorld: Constructing World Model for Autonomous Driving via Video GPT
Recent successes in autoregressive (AR) generation models, such as the GPT series in natural language processing, have motivated efforts to replicate this success in visual tasks. Some works attempt to extend this approach to autonomous driving by building video-based world models capable of generating realistic future video sequences and predicting ego states. However, prior works tend to produce unsatisfactory results, as the classic GPT framework is designed to handle 1D contextual information, such as text, and lacks the inherent ability to model the spatial and temporal dynamics essential for video generation. In this paper, we present DrivingWorld, a GPT-style world model for autonomous driving, featuring several spatial-temporal fusion mechanisms. This design enables effective modeling of both spatial and temporal dynamics, facilitating high-fidelity, long-duration video generation. Specifically, we propose a next-state prediction strategy to model temporal coherence between consecutive frames and apply a next-token prediction strategy to capture spatial information within each frame. To further enhance generalization ability, we propose a novel masking strategy and reweighting strategy for token prediction to mitigate long-term drifting issues and enable precise control. Our work demonstrates the ability to produce high-fidelity and consistent video clips of over 40 seconds in duration, which is over 2 times longer than state-of-the-art driving world models. Experiments show that, in contrast to prior works, our method achieves superior visual quality and significantly more accurate controllable future video generation. Our code is available at https://github.com/YvanYin/DrivingWorld.
Optimus-3: Towards Generalist Multimodal Minecraft Agents with Scalable Task Experts
Recently, agents based on multimodal large language models (MLLMs) have achieved remarkable progress across various domains. However, building a generalist agent with capabilities such as perception, planning, action, grounding, and reflection in open-world environments like Minecraft remains challenges: insufficient domain-specific data, interference among heterogeneous tasks, and visual diversity in open-world settings. In this paper, we address these challenges through three key contributions. 1) We propose a knowledge-enhanced data generation pipeline to provide scalable and high-quality training data for agent development. 2) To mitigate interference among heterogeneous tasks, we introduce a Mixture-of-Experts (MoE) architecture with task-level routing. 3) We develop a Multimodal Reasoning-Augmented Reinforcement Learning approach to enhance the agent's reasoning ability for visual diversity in Minecraft. Built upon these innovations, we present Optimus-3, a general-purpose agent for Minecraft. Extensive experimental results demonstrate that Optimus-3 surpasses both generalist multimodal large language models and existing state-of-the-art agents across a wide range of tasks in the Minecraft environment. Project page: https://cybertronagent.github.io/Optimus-3.github.io/
Reliving the Dataset: Combining the Visualization of Road Users' Interactions with Scenario Reconstruction in Virtual Reality
One core challenge in the development of automated vehicles is their capability to deal with a multitude of complex trafficscenarios with many, hard to predict traffic participants. As part of the iterative development process, it is necessary to detect criticalscenarios and generate knowledge from them to improve the highly automated driving (HAD) function. In order to tackle this challenge,numerous datasets have been released in the past years, which act as the basis for the development and testing of such algorithms.Nevertheless, the remaining challenges are to find relevant scenes, such as safety-critical corner cases, in these datasets and tounderstand them completely.Therefore, this paper presents a methodology to process and analyze naturalistic motion datasets in two ways: On the one hand, ourapproach maps scenes of the datasets to a generic semantic scene graph which allows for a high-level and objective analysis. Here,arbitrary criticality measures, e.g. TTC, RSS or SFF, can be set to automatically detect critical scenarios between traffic participants.On the other hand, the scenarios are recreated in a realistic virtual reality (VR) environment, which allows for a subjective close-upanalysis from multiple, interactive perspectives.
Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives
Recent advancements in Vision-Language Models (VLMs) have sparked interest in their use for autonomous driving, particularly in generating interpretable driving decisions through natural language. However, the assumption that VLMs inherently provide visually grounded, reliable, and interpretable explanations for driving remains largely unexamined. To address this gap, we introduce DriveBench, a benchmark dataset designed to evaluate VLM reliability across 17 settings (clean, corrupted, and text-only inputs), encompassing 19,200 frames, 20,498 question-answer pairs, three question types, four mainstream driving tasks, and a total of 12 popular VLMs. Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding, especially under degraded or missing visual inputs. This behavior, concealed by dataset imbalances and insufficient evaluation metrics, poses significant risks in safety-critical scenarios like autonomous driving. We further observe that VLMs struggle with multi-modal reasoning and display heightened sensitivity to input corruptions, leading to inconsistencies in performance. To address these challenges, we propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding. Additionally, we highlight the potential of leveraging VLMs' awareness of corruptions to enhance their reliability, offering a roadmap for developing more trustworthy and interpretable decision-making systems in real-world autonomous driving contexts. The benchmark toolkit is publicly accessible.
DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving
Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that our model achieves 76.1 driving score on the CARLA Town05 Long, and surpasses the Apollo baseline by 4.7 points under the same settings, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs. Code and models shall be released at https://github.com/OpenGVLab/DriveMLM.
Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.
Challenger: Affordable Adversarial Driving Video Generation
Generating photorealistic driving videos has seen significant progress recently, but current methods largely focus on ordinary, non-adversarial scenarios. Meanwhile, efforts to generate adversarial driving scenarios often operate on abstract trajectory or BEV representations, falling short of delivering realistic sensor data that can truly stress-test autonomous driving (AD) systems. In this work, we introduce Challenger, a framework that produces physically plausible yet photorealistic adversarial driving videos. Generating such videos poses a fundamental challenge: it requires jointly optimizing over the space of traffic interactions and high-fidelity sensor observations. Challenger makes this affordable through two techniques: (1) a physics-aware multi-round trajectory refinement process that narrows down candidate adversarial maneuvers, and (2) a tailored trajectory scoring function that encourages realistic yet adversarial behavior while maintaining compatibility with downstream video synthesis. As tested on the nuScenes dataset, Challenger generates a diverse range of aggressive driving scenarios-including cut-ins, sudden lane changes, tailgating, and blind spot intrusions-and renders them into multiview photorealistic videos. Extensive evaluations show that these scenarios significantly increase the collision rate of state-of-the-art end-to-end AD models (UniAD, VAD, SparseDrive, and DiffusionDrive), and importantly, adversarial behaviors discovered for one model often transfer to others.
Mirage-1: Augmenting and Updating GUI Agent with Hierarchical Multimodal Skills
Recent efforts to leverage the Multi-modal Large Language Model (MLLM) as GUI agents have yielded promising outcomes. However, these agents still struggle with long-horizon tasks in online environments, primarily due to insufficient knowledge and the inherent gap between offline and online domains. In this paper, inspired by how humans generalize knowledge in open-ended environments, we propose a Hierarchical Multimodal Skills (HMS) module to tackle the issue of insufficient knowledge. It progressively abstracts trajectories into execution skills, core skills, and ultimately meta-skills, providing a hierarchical knowledge structure for long-horizon task planning. To bridge the domain gap, we propose the Skill-Augmented Monte Carlo Tree Search (SA-MCTS) algorithm, which efficiently leverages skills acquired in offline environments to reduce the action search space during online tree exploration. Building on HMS, we propose Mirage-1, a multimodal, cross-platform, plug-and-play GUI agent. To validate the performance of Mirage-1 in real-world long-horizon scenarios, we constructed a new benchmark, AndroidLH. Experimental results show that Mirage-1 outperforms previous agents by 32\%, 19\%, 15\%, and 79\% on AndroidWorld, MobileMiniWob++, Mind2Web-Live, and AndroidLH, respectively. Project page: https://cybertronagent.github.io/Mirage-1.github.io/
SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and Reasoning
Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM). Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions. In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training. Finally, we show the potential of games as a test bed for LLMs.
Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving
In recent years there have been remarkable advancements in autonomous driving. While autonomous vehicles demonstrate high performance in closed-set conditions, they encounter difficulties when confronted with unexpected situations. At the same time, world models emerged in the field of model-based reinforcement learning as a way to enable agents to predict the future depending on potential actions. This led to outstanding results in sparse reward and complex control tasks. This work provides an overview of how world models can be leveraged to perform anomaly detection in the domain of autonomous driving. We provide a characterization of world models and relate individual components to previous works in anomaly detection to facilitate further research in the field.
Transcendental Idealism of Planner: Evaluating Perception from Planning Perspective for Autonomous Driving
Evaluating the performance of perception modules in autonomous driving is one of the most critical tasks in developing the complex intelligent system. While module-level unit test metrics adopted from traditional computer vision tasks are feasible to some extent, it remains far less explored to measure the impact of perceptual noise on the driving quality of autonomous vehicles in a consistent and holistic manner. In this work, we propose a principled framework that provides a coherent and systematic understanding of the impact an error in the perception module imposes on an autonomous agent's planning that actually controls the vehicle. Specifically, the planning process is formulated as expected utility maximisation, where all input signals from upstream modules jointly provide a world state description, and the planner strives for the optimal action by maximising the expected utility determined by both world states and actions. We show that, under practical conditions, the objective function can be represented as an inner product between the world state description and the utility function in a Hilbert space. This geometric interpretation enables a novel way to analyse the impact of noise in world state estimation on planning and leads to a universal metric for evaluating perception. The whole framework resembles the idea of transcendental idealism in the classical philosophical literature, which gives the name to our approach.
Open-world Machine Learning: A Review and New Outlooks
Machine learning has achieved remarkable success in many applications. However, existing studies are largely based on the closed-world assumption, which assumes that the environment is stationary, and the model is fixed once deployed. In many real-world applications, this fundamental and rather naive assumption may not hold because an open environment is complex, dynamic, and full of unknowns. In such cases, rejecting unknowns, discovering novelties, and then incrementally learning them, could enable models to be safe and evolve continually as biological systems do. This paper provides a holistic view of open-world machine learning by investigating unknown rejection, novel class discovery, and class-incremental learning in a unified paradigm. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we discuss several potential directions for future research. This paper aims to provide a comprehensive introduction to the emerging open-world machine learning paradigm, to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios
Imitation learning (IL) is a simple and powerful way to use high-quality human driving data, which can be collected at scale, to identify driving preferences and produce human-like behavior. However, policies based on imitation learning alone often fail to sufficiently account for safety and reliability concerns. In this paper, we show how imitation learning combined with reinforcement learning using simple rewards can substantially improve the safety and reliability of driving policies over those learned from imitation alone. In particular, we use a combination of imitation and reinforcement learning to train a policy on over 100k miles of urban driving data, and measure its effectiveness in test scenarios grouped by different levels of collision risk. To our knowledge, this is the first application of a combined imitation and reinforcement learning approach in autonomous driving that utilizes large amounts of real-world human driving data.
Zenseact Open Dataset: A large-scale and diverse multimodal dataset for autonomous driving
Existing datasets for autonomous driving (AD) often lack diversity and long-range capabilities, focusing instead on 360{\deg} perception and temporal reasoning. To address this gap, we introduce Zenseact Open Dataset (ZOD), a large-scale and diverse multimodal dataset collected over two years in various European countries, covering an area 9x that of existing datasets. ZOD boasts the highest range and resolution sensors among comparable datasets, coupled with detailed keyframe annotations for 2D and 3D objects (up to 245m), road instance/semantic segmentation, traffic sign recognition, and road classification. We believe that this unique combination will facilitate breakthroughs in long-range perception and multi-task learning. The dataset is composed of Frames, Sequences, and Drives, designed to encompass both data diversity and support for spatio-temporal learning, sensor fusion, localization, and mapping. Frames consist of 100k curated camera images with two seconds of other supporting sensor data, while the 1473 Sequences and 29 Drives include the entire sensor suite for 20 seconds and a few minutes, respectively. ZOD is the only large-scale AD dataset released under a permissive license, allowing for both research and commercial use. The dataset is accompanied by an extensive development kit. Data and more information are available online (https://zod.zenseact.com).
FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose FASIONAD -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a 6.7% reduction in average L2 trajectory error and 28.1% lower collision rate.
From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing
The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.
Accelerating exploration and representation learning with offline pre-training
Sequential decision-making agents struggle with long horizon tasks, since solving them requires multi-step reasoning. Most reinforcement learning (RL) algorithms address this challenge by improved credit assignment, introducing memory capability, altering the agent's intrinsic motivation (i.e. exploration) or its worldview (i.e. knowledge representation). Many of these components could be learned from offline data. In this work, we follow the hypothesis that exploration and representation learning can be improved by separately learning two different models from a single offline dataset. We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward separately from a single collection of human demonstrations can significantly improve the sample efficiency on the challenging NetHack benchmark. We also ablate various components of our experimental setting and highlight crucial insights.
SimWorld: A Unified Benchmark for Simulator-Conditioned Scene Generation via World Model
With the rapid advancement of autonomous driving technology, a lack of data has become a major obstacle to enhancing perception model accuracy. Researchers are now exploring controllable data generation using world models to diversify datasets. However, previous work has been limited to studying image generation quality on specific public datasets. There is still relatively little research on how to build data generation engines for real-world application scenes to achieve large-scale data generation for challenging scenes. In this paper, a simulator-conditioned scene generation engine based on world model is proposed. By constructing a simulation system consistent with real-world scenes, simulation data and labels, which serve as the conditions for data generation in the world model, for any scenes can be collected. It is a novel data generation pipeline by combining the powerful scene simulation capabilities of the simulation engine with the robust data generation capabilities of the world model. In addition, a benchmark with proportionally constructed virtual and real data, is provided for exploring the capabilities of world models in real-world scenes. Quantitative results show that these generated images significantly improve downstream perception models performance. Finally, we explored the generative performance of the world model in urban autonomous driving scenarios. All the data and code will be available at https://github.com/Li-Zn-H/SimWorld.
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10times reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization
The rapid development of large language and multimodal models has sparked significant interest in using proprietary models, such as GPT-4o, to develop autonomous agents capable of handling real-world scenarios like web navigation. Although recent open-source efforts have tried to equip agents with the ability to explore environments and continuously improve over time, they are building text-only agents in synthetic environments where the reward signals are clearly defined. Such agents struggle to generalize to realistic settings that require multimodal perception abilities and lack ground-truth signals. In this paper, we introduce an open-source framework designed to facilitate the development of multimodal web agent that can autonomously conduct real-world exploration and improve itself. We first train the base model with imitation learning to gain the basic abilities. We then let the agent explore the open web and collect feedback on its trajectories. After that, it further improves its policy by learning from well-performing trajectories judged by another general-purpose model. This exploration-feedback-optimization cycle can continue for several iterations. Experimental results show that our web agent successfully improves itself after each iteration, demonstrating strong performance across multiple test sets.
Quantification of Actual Road User Behavior on the Basis of Given Traffic Rules
Driving on roads is restricted by various traffic rules, aiming to ensure safety for all traffic participants. However, human road users usually do not adhere to these rules strictly, resulting in varying degrees of rule conformity. Such deviations from given rules are key components of today's road traffic. In autonomous driving, robotic agents can disturb traffic flow, when rule deviations are not taken into account. In this paper, we present an approach to derive the distribution of degrees of rule conformity from human driving data. We demonstrate our method with the Waymo Open Motion dataset and Safety Distance and Speed Limit rules.
VDT-Auto: End-to-end Autonomous Driving with VLM-Guided Diffusion Transformers
In autonomous driving, dynamic environment and corner cases pose significant challenges to the robustness of ego vehicle's decision-making. To address these challenges, commencing with the representation of state-action mapping in the end-to-end autonomous driving paradigm, we introduce a novel pipeline, VDT-Auto. Leveraging the advancement of the state understanding of Visual Language Model (VLM), incorporating with diffusion Transformer-based action generation, our VDT-Auto parses the environment geometrically and contextually for the conditioning of the diffusion process. Geometrically, we use a bird's-eye view (BEV) encoder to extract feature grids from the surrounding images. Contextually, the structured output of our fine-tuned VLM is processed into textual embeddings and noisy paths. During our diffusion process, the added noise for the forward process is sampled from the noisy path output of the fine-tuned VLM, while the extracted BEV feature grids and embedded texts condition the reverse process of our diffusion Transformers. Our VDT-Auto achieved 0.52m on average L2 errors and 21% on average collision rate in the nuScenes open-loop planning evaluation. Moreover, the real-world demonstration exhibited prominent generalizability of our VDT-Auto. The code and dataset will be released after acceptance.
Driving Everywhere with Large Language Model Policy Adaptation
Adapting driving behavior to new environments, customs, and laws is a long-standing problem in autonomous driving, precluding the widespread deployment of autonomous vehicles (AVs). In this paper, we present LLaDA, a simple yet powerful tool that enables human drivers and autonomous vehicles alike to drive everywhere by adapting their tasks and motion plans to traffic rules in new locations. LLaDA achieves this by leveraging the impressive zero-shot generalizability of large language models (LLMs) in interpreting the traffic rules in the local driver handbook. Through an extensive user study, we show that LLaDA's instructions are useful in disambiguating in-the-wild unexpected situations. We also demonstrate LLaDA's ability to adapt AV motion planning policies in real-world datasets; LLaDA outperforms baseline planning approaches on all our metrics. Please check our website for more details: https://boyiliee.github.io/llada.
Unsupervised Self-Driving Attention Prediction via Uncertainty Mining and Knowledge Embedding
Predicting attention regions of interest is an important yet challenging task for self-driving systems. Existing methodologies rely on large-scale labeled traffic datasets that are labor-intensive to obtain. Besides, the huge domain gap between natural scenes and traffic scenes in current datasets also limits the potential for model training. To address these challenges, we are the first to introduce an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration. Our approach's Uncertainty Mining Branch (UMB) discovers commonalities and differences from multiple generated pseudo-labels achieved from models pre-trained on natural scenes by actively measuring the uncertainty. Meanwhile, our Knowledge Embedding Block (KEB) bridges the domain gap by incorporating driving knowledge to adaptively refine the generated pseudo-labels. Quantitative and qualitative results with equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches across all three public datasets demonstrate the effectiveness of the proposed method and the potential of this direction. The code will be made publicly available.
Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset
Large-scale datasets have fueled recent advancements in AI-based autonomous vehicle research. However, these datasets are usually collected from a single vehicle's one-time pass of a certain location, lacking multiagent interactions or repeated traversals of the same place. Such information could lead to transformative enhancements in autonomous vehicles' perception, prediction, and planning capabilities. To bridge this gap, in collaboration with the self-driving company May Mobility, we present the MARS dataset which unifies scenarios that enable MultiAgent, multitraveRSal, and multimodal autonomous vehicle research. More specifically, MARS is collected with a fleet of autonomous vehicles driving within a certain geographical area. Each vehicle has its own route and different vehicles may appear at nearby locations. Each vehicle is equipped with a LiDAR and surround-view RGB cameras. We curate two subsets in MARS: one facilitates collaborative driving with multiple vehicles simultaneously present at the same location, and the other enables memory retrospection through asynchronous traversals of the same location by multiple vehicles. We conduct experiments in place recognition and neural reconstruction. More importantly, MARS introduces new research opportunities and challenges such as multitraversal 3D reconstruction, multiagent perception, and unsupervised object discovery. Our data and codes can be found at https://ai4ce.github.io/MARS/.
Controllable Diverse Sampling for Diffusion Based Motion Behavior Forecasting
In autonomous driving tasks, trajectory prediction in complex traffic environments requires adherence to real-world context conditions and behavior multimodalities. Existing methods predominantly rely on prior assumptions or generative models trained on curated data to learn road agents' stochastic behavior bounded by scene constraints. However, they often face mode averaging issues due to data imbalance and simplistic priors, and could even suffer from mode collapse due to unstable training and single ground truth supervision. These issues lead the existing methods to a loss of predictive diversity and adherence to the scene constraints. To address these challenges, we introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT), which integrates map information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories. To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left. Moreover, we incorporate the predicted endpoints as an alternative behavioral token into the CDT model to facilitate the prediction of accurate trajectories. Extensive experiments on the Argoverse 2 benchmark demonstrate that CDT excels in generating diverse and scene-compliant trajectories in complex urban settings.
DriveLM: Driving with Graph Visual Question Answering
We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems to boost generalization and enable interactivity with human users. While recent approaches adapt VLMs to driving via single-round visual question answering (VQA), human drivers reason about decisions in multiple steps. Starting from the localization of key objects, humans estimate object interactions before taking actions. The key insight is that with our proposed task, Graph VQA, where we model graph-structured reasoning through perception, prediction and planning question-answer pairs, we obtain a suitable proxy task to mimic the human reasoning process. We instantiate datasets (DriveLM-Data) built upon nuScenes and CARLA, and propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving. The experiments demonstrate that Graph VQA provides a simple, principled framework for reasoning about a driving scene, and DriveLM-Data provides a challenging benchmark for this task. Our DriveLM-Agent baseline performs end-to-end autonomous driving competitively in comparison to state-of-the-art driving-specific architectures. Notably, its benefits are pronounced when it is evaluated zero-shot on unseen objects or sensor configurations. We hope this work can be the starting point to shed new light on how to apply VLMs for autonomous driving. To facilitate future research, all code, data, and models are available to the public.
Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps
Autonomous driving for urban and highway driving applications often requires High Definition (HD) maps to generate a navigation plan. Nevertheless, various challenges arise when generating and maintaining HD maps at scale. While recent online mapping methods have started to emerge, their performance especially for longer ranges is limited by heavy occlusion in dynamic environments. With these considerations in mind, our work focuses on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations. We first examine the integration of prototypical rasterized SD map representations into various online mapping architectures. Furthermore, to identify lightweight strategies, we extend the OpenLane-V2 dataset with OpenStreetMaps and evaluate the benefits of graphical SD map representations. A key finding from designing SD map integration components is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders. Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP). Furthermore, we show that the introduction of the SD maps leads to a reduction of the number of parameters in the perception and reasoning task by leveraging SD map graphs while improving the overall performance. Project Page: https://henryzhangzhy.github.io/sdhdmap/.
SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models
Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light implies stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.
Accelerating Online Mapping and Behavior Prediction via Direct BEV Feature Attention
Understanding road geometry is a critical component of the autonomous vehicle (AV) stack. While high-definition (HD) maps can readily provide such information, they suffer from high labeling and maintenance costs. Accordingly, many recent works have proposed methods for estimating HD maps online from sensor data. The vast majority of recent approaches encode multi-camera observations into an intermediate representation, e.g., a bird's eye view (BEV) grid, and produce vector map elements via a decoder. While this architecture is performant, it decimates much of the information encoded in the intermediate representation, preventing downstream tasks (e.g., behavior prediction) from leveraging them. In this work, we propose exposing the rich internal features of online map estimation methods and show how they enable more tightly integrating online mapping with trajectory forecasting. In doing so, we find that directly accessing internal BEV features yields up to 73% faster inference speeds and up to 29% more accurate predictions on the real-world nuScenes dataset.
MaskGWM: A Generalizable Driving World Model with Video Mask Reconstruction
World models that forecast environmental changes from actions are vital for autonomous driving models with strong generalization. The prevailing driving world model mainly build on video prediction model. Although these models can produce high-fidelity video sequences with advanced diffusion-based generator, they are constrained by their predictive duration and overall generalization capabilities. In this paper, we explore to solve this problem by combining generation loss with MAE-style feature-level context learning. In particular, we instantiate this target with three key design: (1) A more scalable Diffusion Transformer (DiT) structure trained with extra mask construction task. (2) we devise diffusion-related mask tokens to deal with the fuzzy relations between mask reconstruction and generative diffusion process. (3) we extend mask construction task to spatial-temporal domain by utilizing row-wise mask for shifted self-attention rather than masked self-attention in MAE. Then, we adopt a row-wise cross-view module to align with this mask design. Based on above improvement, we propose MaskGWM: a Generalizable driving World Model embodied with Video Mask reconstruction. Our model contains two variants: MaskGWM-long, focusing on long-horizon prediction, and MaskGWM-mview, dedicated to multi-view generation. Comprehensive experiments on standard benchmarks validate the effectiveness of the proposed method, which contain normal validation of Nuscene dataset, long-horizon rollout of OpenDV-2K dataset and zero-shot validation of Waymo dataset. Quantitative metrics on these datasets show our method notably improving state-of-the-art driving world model.
A Bayesian Approach to Reinforcement Learning of Vision-Based Vehicular Control
In this paper, we present a state-of-the-art reinforcement learning method for autonomous driving. Our approach employs temporal difference learning in a Bayesian framework to learn vehicle control signals from sensor data. The agent has access to images from a forward facing camera, which are preprocessed to generate semantic segmentation maps. We trained our system using both ground truth and estimated semantic segmentation input. Based on our observations from a large set of experiments, we conclude that training the system on ground truth input data leads to better performance than training the system on estimated input even if estimated input is used for evaluation. The system is trained and evaluated in a realistic simulated urban environment using the CARLA simulator. The simulator also contains a benchmark that allows for comparing to other systems and methods. The required training time of the system is shown to be lower and the performance on the benchmark superior to competing approaches.
Large Language Models for Autonomous Driving: Real-World Experiments
Autonomous driving systems are increasingly popular in today's technological landscape, where vehicles with partial automation have already been widely available on the market, and the full automation era with "driverless" capabilities is near the horizon. However, accurately understanding humans' commands, particularly for autonomous vehicles that have only passengers instead of drivers, and achieving a high level of personalization remain challenging tasks in the development of autonomous driving systems. In this paper, we introduce a Large Language Model (LLM)-based framework Talk-to-Drive (Talk2Drive) to process verbal commands from humans and make autonomous driving decisions with contextual information, satisfying their personalized preferences for safety, efficiency, and comfort. First, a speech recognition module is developed for Talk2Drive to interpret verbal inputs from humans to textual instructions, which are then sent to LLMs for reasoning. Then, appropriate commands for the Electrical Control Unit (ECU) are generated, achieving a 100% success rate in executing codes. Real-world experiments show that our framework can substantially reduce the takeover rate for a diverse range of drivers by up to 90.1%. To the best of our knowledge, Talk2Drive marks the first instance of employing an LLM-based system in a real-world autonomous driving environment.
Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. In this paper, we introduce an Infrastructure-to-Everything (I2X) collaborative prediction scheme. In this scheme, roadside units (RSUs) independently forecast the future trajectories of all vehicles and transmit these predictions unidirectionally to subscribing vehicles. Building on this scheme, we propose I2XTraj, a dedicated infrastructure-based trajectory prediction model. I2XTraj leverages real-time traffic signal states, prior maneuver strategy knowledge, and multi-agent interactions to generate accurate, joint multi-modal trajectory prediction. First, a continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals to guide trajectory proposal generation under varied intersection configurations. Second, a driving strategy awareness mechanism estimates the joint distribution of maneuver strategies by integrating spatial priors of intersection areas with dynamic vehicle states, enabling coverage of the full set of feasible maneuvers. Third, a spatial-temporal-mode attention network models multi-agent interactions to refine and adjust joint trajectory outputs.Finally, I2XTraj is evaluated on two real-world datasets of signalized intersections, the V2X-Seq and the SinD drone dataset. In both single-infrastructure and online collaborative scenarios, our model outperforms state-of-the-art methods by over 30\% on V2X-Seq and 15\% on SinD, demonstrating strong generalizability and robustness.
Mastering Spatial Graph Prediction of Road Networks
Accurately predicting road networks from satellite images requires a global understanding of the network topology. We propose to capture such high-level information by introducing a graph-based framework that simulates the addition of sequences of graph edges using a reinforcement learning (RL) approach. In particular, given a partially generated graph associated with a satellite image, an RL agent nominates modifications that maximize a cumulative reward. As opposed to standard supervised techniques that tend to be more restricted to commonly used surrogate losses, these rewards can be based on various complex, potentially non-continuous, metrics of interest. This yields more power and flexibility to encode problem-dependent knowledge. Empirical results on several benchmark datasets demonstrate enhanced performance and increased high-level reasoning about the graph topology when using a tree-based search. We further highlight the superiority of our approach under substantial occlusions by introducing a new synthetic benchmark dataset for this task.
OASim: an Open and Adaptive Simulator based on Neural Rendering for Autonomous Driving
With deep learning and computer vision technology development, autonomous driving provides new solutions to improve traffic safety and efficiency. The importance of building high-quality datasets is self-evident, especially with the rise of end-to-end autonomous driving algorithms in recent years. Data plays a core role in the algorithm closed-loop system. However, collecting real-world data is expensive, time-consuming, and unsafe. With the development of implicit rendering technology and in-depth research on using generative models to produce data at scale, we propose OASim, an open and adaptive simulator and autonomous driving data generator based on implicit neural rendering. It has the following characteristics: (1) High-quality scene reconstruction through neural implicit surface reconstruction technology. (2) Trajectory editing of the ego vehicle and participating vehicles. (3) Rich vehicle model library that can be freely selected and inserted into the scene. (4) Rich sensors model library where you can select specified sensors to generate data. (5) A highly customizable data generation system can generate data according to user needs. We demonstrate the high quality and fidelity of the generated data through perception performance evaluation on the Carla simulator and real-world data acquisition. Code is available at https://github.com/PJLab-ADG/OASim.
Automated Evaluation of Large Vision-Language Models on Self-driving Corner Cases
Large Vision-Language Models (LVLMs), due to the remarkable visual reasoning ability to understand images and videos, have received widespread attention in the autonomous driving domain, which significantly advances the development of interpretable end-to-end autonomous driving. However, current evaluations of LVLMs primarily focus on the multi-faceted capabilities in common scenarios, lacking quantifiable and automated assessment in autonomous driving contexts, let alone severe road corner cases that even the state-of-the-art autonomous driving perception systems struggle to handle. In this paper, we propose CODA-LM, a novel vision-language benchmark for self-driving, which provides the first automatic and quantitative evaluation of LVLMs for interpretable autonomous driving including general perception, regional perception, and driving suggestions. CODA-LM utilizes the texts to describe the road images, exploiting powerful text-only large language models (LLMs) without image inputs to assess the capabilities of LVLMs in autonomous driving scenarios, which reveals stronger alignment with human preferences than LVLM judges. Experiments demonstrate that even the closed-sourced commercial LVLMs like GPT-4V cannot deal with road corner cases well, suggesting that we are still far from a strong LVLM-powered intelligent driving agent, and we hope our CODA-LM can become the catalyst to promote future development.
PersFormer: 3D Lane Detection via Perspective Transformer and the OpenLane Benchmark
Methods for 3D lane detection have been recently proposed to address the issue of inaccurate lane layouts in many autonomous driving scenarios (uphill/downhill, bump, etc.). Previous work struggled in complex cases due to their simple designs of the spatial transformation between front view and bird's eye view (BEV) and the lack of a realistic dataset. Towards these issues, we present PersFormer: an end-to-end monocular 3D lane detector with a novel Transformer-based spatial feature transformation module. Our model generates BEV features by attending to related front-view local regions with camera parameters as a reference. PersFormer adopts a unified 2D/3D anchor design and an auxiliary task to detect 2D/3D lanes simultaneously, enhancing the feature consistency and sharing the benefits of multi-task learning. Moreover, we release one of the first large-scale real-world 3D lane datasets: OpenLane, with high-quality annotation and scenario diversity. OpenLane contains 200,000 frames, over 880,000 instance-level lanes, 14 lane categories, along with scene tags and the closed-in-path object annotations to encourage the development of lane detection and more industrial-related autonomous driving methods. We show that PersFormer significantly outperforms competitive baselines in the 3D lane detection task on our new OpenLane dataset as well as Apollo 3D Lane Synthetic dataset, and is also on par with state-of-the-art algorithms in the 2D task on OpenLane. The project page is available at https://github.com/OpenPerceptionX/PersFormer_3DLane and OpenLane dataset is provided at https://github.com/OpenPerceptionX/OpenLane.
Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving
In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 13638 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
Ghost in the Minecraft: Generally Capable Agents for Open-World Enviroments via Large Language Models with Text-based Knowledge and Memory
The captivating realm of Minecraft has attracted substantial research interest in recent years, serving as a rich platform for developing intelligent agents capable of functioning in open-world environments. However, the current research landscape predominantly focuses on specific objectives, such as the popular "ObtainDiamond" task, and has not yet shown effective generalization to a broader spectrum of tasks. Furthermore, the current leading success rate for the "ObtainDiamond" task stands at around 20%, highlighting the limitations of Reinforcement Learning (RL) based controllers used in existing methods. To tackle these challenges, we introduce Ghost in the Minecraft (GITM), a novel framework integrates Large Language Models (LLMs) with text-based knowledge and memory, aiming to create Generally Capable Agents (GCAs) in Minecraft. These agents, equipped with the logic and common sense capabilities of LLMs, can skillfully navigate complex, sparse-reward environments with text-based interactions. We develop a set of structured actions and leverage LLMs to generate action plans for the agents to execute. The resulting LLM-based agent markedly surpasses previous methods, achieving a remarkable improvement of +47.5% in success rate on the "ObtainDiamond" task, demonstrating superior robustness compared to traditional RL-based controllers. Notably, our agent is the first to procure all items in the Minecraft Overworld technology tree, demonstrating its extensive capabilities. GITM does not need any GPU for training, but a single CPU node with 32 CPU cores is enough. This research shows the potential of LLMs in developing capable agents for handling long-horizon, complex tasks and adapting to uncertainties in open-world environments. See the project website at https://github.com/OpenGVLab/GITM.
Gen-Drive: Enhancing Diffusion Generative Driving Policies with Reward Modeling and Reinforcement Learning Fine-tuning
Autonomous driving necessitates the ability to reason about future interactions between traffic agents and to make informed evaluations for planning. This paper introduces the Gen-Drive framework, which shifts from the traditional prediction and deterministic planning framework to a generation-then-evaluation planning paradigm. The framework employs a behavior diffusion model as a scene generator to produce diverse possible future scenarios, thereby enhancing the capability for joint interaction reasoning. To facilitate decision-making, we propose a scene evaluator (reward) model, trained with pairwise preference data collected through VLM assistance, thereby reducing human workload and enhancing scalability. Furthermore, we utilize an RL fine-tuning framework to improve the generation quality of the diffusion model, rendering it more effective for planning tasks. We conduct training and closed-loop planning tests on the nuPlan dataset, and the results demonstrate that employing such a generation-then-evaluation strategy outperforms other learning-based approaches. Additionally, the fine-tuned generative driving policy shows significant enhancements in planning performance. We further demonstrate that utilizing our learned reward model for evaluation or RL fine-tuning leads to better planning performance compared to relying on human-designed rewards. Project website: https://mczhi.github.io/GenDrive.
ArK: Augmented Reality with Knowledge Interactive Emergent Ability
Despite the growing adoption of mixed reality and interactive AI agents, it remains challenging for these systems to generate high quality 2D/3D scenes in unseen environments. The common practice requires deploying an AI agent to collect large amounts of data for model training for every new task. This process is costly, or even impossible, for many domains. In this study, we develop an infinite agent that learns to transfer knowledge memory from general foundation models (e.g. GPT4, DALLE) to novel domains or scenarios for scene understanding and generation in the physical or virtual world. The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK), which leverages knowledge-memory to generate scenes in unseen physical world and virtual reality environments. The knowledge interactive emergent ability (Figure 1) is demonstrated as the observation learns i) micro-action of cross-modality: in multi-modality models to collect a large amount of relevant knowledge memory data for each interaction task (e.g., unseen scene understanding) from the physical reality; and ii) macro-behavior of reality-agnostic: in mix-reality environments to improve interactions that tailor to different characterized roles, target variables, collaborative information, and so on. We validate the effectiveness of ArK on the scene generation and editing tasks. We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes, compared to baselines, demonstrating the potential benefit of incorporating ArK in generative AI for applications such as metaverse and gaming simulation.