1 Tracking through Containers and Occluders in the Wild Tracking objects with persistence in cluttered and dynamic environments remains a difficult challenge for computer vision systems. In this paper, we introduce TCOW, a new benchmark and model for visual tracking through heavy occlusion and containment. We set up a task where the goal is to, given a video sequence, segment both the projected extent of the target object, as well as the surrounding container or occluder whenever one exists. To study this task, we create a mixture of synthetic and annotated real datasets to support both supervised learning and structured evaluation of model performance under various forms of task variation, such as moving or nested containment. We evaluate two recent transformer-based video models and find that while they can be surprisingly capable of tracking targets under certain settings of task variation, there remains a considerable performance gap before we can claim a tracking model to have acquired a true notion of object permanence. 5 authors · May 4, 2023
- Gaussian in the Wild: 3D Gaussian Splatting for Unconstrained Image Collections Novel view synthesis from unconstrained in-the-wild images remains a meaningful but challenging task. The photometric variation and transient occluders in those unconstrained images make it difficult to reconstruct the original scene accurately. Previous approaches tackle the problem by introducing a global appearance feature in Neural Radiance Fields (NeRF). However, in the real world, the unique appearance of each tiny point in a scene is determined by its independent intrinsic material attributes and the varying environmental impacts it receives. Inspired by this fact, we propose Gaussian in the wild (GS-W), a method that uses 3D Gaussian points to reconstruct the scene and introduces separated intrinsic and dynamic appearance feature for each point, capturing the unchanged scene appearance along with dynamic variation like illumination and weather. Additionally, an adaptive sampling strategy is presented to allow each Gaussian point to focus on the local and detailed information more effectively. We also reduce the impact of transient occluders using a 2D visibility map. More experiments have demonstrated better reconstruction quality and details of GS-W compared to NeRF-based methods, with a faster rendering speed. Video results and code are available at https://eastbeanzhang.github.io/GS-W/. 6 authors · Mar 22, 2024
- Robust Model-based Face Reconstruction through Weakly-Supervised Outlier Segmentation In this work, we aim to enhance model-based face reconstruction by avoiding fitting the model to outliers, i.e. regions that cannot be well-expressed by the model such as occluders or make-up. The core challenge for localizing outliers is that they are highly variable and difficult to annotate. To overcome this challenging problem, we introduce a joint Face-autoencoder and outlier segmentation approach (FOCUS).In particular, we exploit the fact that the outliers cannot be fitted well by the face model and hence can be localized well given a high-quality model fitting. The main challenge is that the model fitting and the outlier segmentation are mutually dependent on each other, and need to be inferred jointly. We resolve this chicken-and-egg problem with an EM-type training strategy, where a face autoencoder is trained jointly with an outlier segmentation network. This leads to a synergistic effect, in which the segmentation network prevents the face encoder from fitting to the outliers, enhancing the reconstruction quality. The improved 3D face reconstruction, in turn, enables the segmentation network to better predict the outliers. To resolve the ambiguity between outliers and regions that are difficult to fit, such as eyebrows, we build a statistical prior from synthetic data that measures the systematic bias in model fitting. Experiments on the NoW testset demonstrate that FOCUS achieves SOTA 3D face reconstruction performance among all baselines that are trained without 3D annotation. Moreover, our results on CelebA-HQ and the AR database show that the segmentation network can localize occluders accurately despite being trained without any segmentation annotation. 5 authors · Jun 17, 2021
- WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics. Recently, 3D Gaussian Splatting (3DGS) has shown promise for photorealistic and real-time NVS of static scenes. Building on 3DGS, we propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections. Our key innovation is a residual-based spherical harmonic coefficients transfer module that adapts 3DGS to varying lighting conditions and photometric post-processing. This lightweight module can be pre-computed and ensures efficient gradient propagation from rendered images to 3D Gaussian attributes. Additionally, we observe that the appearance encoder and the transient mask predictor, the two most critical parts of NVS from unconstrained photo collections, can be mutually beneficial. We introduce a plug-and-play lightweight spatial attention module to simultaneously predict transient occluders and latent appearance representation for each image. After training and preprocessing, our method aligns with the standard 3DGS format and rendering pipeline, facilitating seamlessly integration into various 3DGS applications. Extensive experiments on diverse datasets show our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed. 3 authors · Jun 4, 2024
6 Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections Novel view synthesis from unconstrained in-the-wild image collections remains a significant yet challenging task due to photometric variations and transient occluders that complicate accurate scene reconstruction. Previous methods have approached these issues by integrating per-image appearance features embeddings in Neural Radiance Fields (NeRFs). Although 3D Gaussian Splatting (3DGS) offers faster training and real-time rendering, adapting it for unconstrained image collections is non-trivial due to the substantially different architecture. In this paper, we introduce Splatfacto-W, an approach that integrates per-Gaussian neural color features and per-image appearance embeddings into the rasterization process, along with a spherical harmonics-based background model to represent varying photometric appearances and better depict backgrounds. Our key contributions include latent appearance modeling, efficient transient object handling, and precise background modeling. Splatfacto-W delivers high-quality, real-time novel view synthesis with improved scene consistency in in-the-wild scenarios. Our method improves the Peak Signal-to-Noise Ratio (PSNR) by an average of 5.3 dB compared to 3DGS, enhances training speed by 150 times compared to NeRF-based methods, and achieves a similar rendering speed to 3DGS. Additional video results and code integrated into Nerfstudio are available at https://kevinxu02.github.io/splatfactow/. 3 authors · Jul 17, 2024 2
- On Occlusions in Video Action Detection: Benchmark Datasets And Training Recipes This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic occlusions, OVIS-UCF and OVIS-JHMDB consisting of occlusions with realistic motions and Real-OUCF for occlusions in realistic-world scenarios. We formally confirm an intuitive expectation: existing models suffer a lot as occlusion severity is increased and exhibit different behaviours when occluders are static vs when they are moving. We discover several intriguing phenomenon emerging in neural nets: 1) transformers can naturally outperform CNN models which might have even used occlusion as a form of data augmentation during training 2) incorporating symbolic-components like capsules to such backbones allows them to bind to occluders never even seen during training and 3) Islands of agreement can emerge in realistic images/videos without instance-level supervision, distillation or contrastive-based objectives2(eg. video-textual training). Such emergent properties allow us to derive simple yet effective training recipes which lead to robust occlusion models inductively satisfying the first two stages of the binding mechanism (grouping/segregation). Models leveraging these recipes outperform existing video action-detectors under occlusion by 32.3% on O-UCF, 32.7% on O-JHMDB & 2.6% on Real-OUCF in terms of the vMAP metric. The code for this work has been released at https://github.com/rajatmodi62/OccludedActionBenchmark. 3 authors · Oct 25, 2024
- SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians Implicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections but are still limited by the large computational cost of volumetric rendering. More recently, 3D Gaussian Splatting emerged as a much faster alternative with superior rendering quality and training efficiency, especially for small-scale and object-centric scenarios. Nevertheless, this technique suffers from poor performance on unstructured in-the-wild data. To tackle this, we extend over 3D Gaussian Splatting to handle unstructured image collections. We achieve this by modeling appearance to seize photometric variations in the rendered images. Additionally, we introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner. Experiments on diverse photo collection scenes and multi-pass acquisition of outdoor landmarks show the effectiveness of our method over prior works achieving state-of-the-art results with improved efficiency. 5 authors · Mar 15, 2024
- A Bayesian Approach to OOD Robustness in Image Classification An important and unsolved problem in computer vision is to ensure that the algorithms are robust to changes in image domains. We address this problem in the scenario where we have access to images from the target domains but no annotations. Motivated by the challenges of the OOD-CV benchmark where we encounter real world Out-of-Domain (OOD) nuisances and occlusion, we introduce a novel Bayesian approach to OOD robustness for object classification. Our work extends Compositional Neural Networks (CompNets), which have been shown to be robust to occlusion but degrade badly when tested on OOD data. We exploit the fact that CompNets contain a generative head defined over feature vectors represented by von Mises-Fisher (vMF) kernels, which correspond roughly to object parts, and can be learned without supervision. We obverse that some vMF kernels are similar between different domains, while others are not. This enables us to learn a transitional dictionary of vMF kernels that are intermediate between the source and target domains and train the generative model on this dictionary using the annotations on the source domain, followed by iterative refinement. This approach, termed Unsupervised Generative Transition (UGT), performs very well in OOD scenarios even when occlusion is present. UGT is evaluated on different OOD benchmarks including the OOD-CV dataset, several popular datasets (e.g., ImageNet-C [9]), artificial image corruptions (including adding occluders), and synthetic-to-real domain transfer, and does well in all scenarios outperforming SOTA alternatives (e.g. up to 10% top-1 accuracy on Occluded OOD-CV dataset). 3 authors · Mar 11, 2024
- InLoc: Indoor Visual Localization with Dense Matching and View Synthesis We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. 8 authors · Mar 27, 2018 1