Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBeyond Reverse KL: Generalizing Direct Preference Optimization with Diverse Divergence Constraints
The increasing capabilities of large language models (LLMs) raise opportunities for artificial general intelligence but concurrently amplify safety concerns, such as potential misuse of AI systems, necessitating effective AI alignment. Reinforcement Learning from Human Feedback (RLHF) has emerged as a promising pathway towards AI alignment but brings forth challenges due to its complexity and dependence on a separate reward model. Direct Preference Optimization (DPO) has been proposed as an alternative, and it remains equivalent to RLHF under the reverse KL regularization constraint. This paper presents f-DPO, a generalized approach to DPO by incorporating diverse divergence constraints. We show that under certain f-divergences, including Jensen-Shannon divergence, forward KL divergences and alpha-divergences, the complex relationship between the reward and optimal policy can also be simplified by addressing the Karush-Kuhn-Tucker conditions. This eliminates the need for estimating the normalizing constant in the Bradley-Terry model and enables a tractable mapping between the reward function and the optimal policy. Our approach optimizes LLMs to align with human preferences in a more efficient and supervised manner under a broad set of divergence constraints. Empirically, adopting these divergences ensures a balance between alignment performance and generation diversity. Importantly, f-DPO outperforms PPO-based methods in divergence efficiency, and divergence constraints directly influence expected calibration error (ECE).
Approximate Stein Classes for Truncated Density Estimation
Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary.
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
We present weight normalization: a reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction. By reparameterizing the weights in this way we improve the conditioning of the optimization problem and we speed up convergence of stochastic gradient descent. Our reparameterization is inspired by batch normalization but does not introduce any dependencies between the examples in a minibatch. This means that our method can also be applied successfully to recurrent models such as LSTMs and to noise-sensitive applications such as deep reinforcement learning or generative models, for which batch normalization is less well suited. Although our method is much simpler, it still provides much of the speed-up of full batch normalization. In addition, the computational overhead of our method is lower, permitting more optimization steps to be taken in the same amount of time. We demonstrate the usefulness of our method on applications in supervised image recognition, generative modelling, and deep reinforcement learning.
PowerNorm: Rethinking Batch Normalization in Transformers
The standard normalization method for neural network (NN) models used in Natural Language Processing (NLP) is layer normalization (LN). This is different than batch normalization (BN), which is widely-adopted in Computer Vision. The preferred use of LN in NLP is principally due to the empirical observation that a (naive/vanilla) use of BN leads to significant performance degradation for NLP tasks; however, a thorough understanding of the underlying reasons for this is not always evident. In this paper, we perform a systematic study of NLP transformer models to understand why BN has a poor performance, as compared to LN. We find that the statistics of NLP data across the batch dimension exhibit large fluctuations throughout training. This results in instability, if BN is naively implemented. To address this, we propose Power Normalization (PN), a novel normalization scheme that resolves this issue by (i) relaxing zero-mean normalization in BN, (ii) incorporating a running quadratic mean instead of per batch statistics to stabilize fluctuations, and (iii) using an approximate backpropagation for incorporating the running statistics in the forward pass. We show theoretically, under mild assumptions, that PN leads to a smaller Lipschitz constant for the loss, compared with BN. Furthermore, we prove that the approximate backpropagation scheme leads to bounded gradients. We extensively test PN for transformers on a range of NLP tasks, and we show that it significantly outperforms both LN and BN. In particular, PN outperforms LN by 0.4/0.6 BLEU on IWSLT14/WMT14 and 5.6/3.0 PPL on PTB/WikiText-103. We make our code publicly available at https://github.com/sIncerass/powernorm.
Rigid Body Flows for Sampling Molecular Crystal Structures
Normalizing flows (NF) are a class of powerful generative models that have gained popularity in recent years due to their ability to model complex distributions with high flexibility and expressiveness. In this work, we introduce a new type of normalizing flow that is tailored for modeling positions and orientations of multiple objects in three-dimensional space, such as molecules in a crystal. Our approach is based on two key ideas: first, we define smooth and expressive flows on the group of unit quaternions, which allows us to capture the continuous rotational motion of rigid bodies; second, we use the double cover property of unit quaternions to define a proper density on the rotation group. This ensures that our model can be trained using standard likelihood-based methods or variational inference with respect to a thermodynamic target density. We evaluate the method by training Boltzmann generators for two molecular examples, namely the multi-modal density of a tetrahedral system in an external field and the ice XI phase in the TIP4P water model. Our flows can be combined with flows operating on the internal degrees of freedom of molecules and constitute an important step towards the modeling of distributions of many interacting molecules.
Conformer-Based Speech Recognition On Extreme Edge-Computing Devices
With increasingly more powerful compute capabilities and resources in today's devices, traditionally compute-intensive automatic speech recognition (ASR) has been moving from the cloud to devices to better protect user privacy. However, it is still challenging to implement on-device ASR on resource-constrained devices, such as smartphones, smart wearables, and other smart home automation devices. In this paper, we propose a series of model architecture adaptions, neural network graph transformations, and numerical optimizations to fit an advanced Conformer based end-to-end streaming ASR system on resource-constrained devices without accuracy degradation. We achieve over 5.26 times faster than realtime (0.19 RTF) speech recognition on smart wearables while minimizing energy consumption and achieving state-of-the-art accuracy. The proposed methods are widely applicable to other transformer-based server-free AI applications. In addition, we provide a complete theory on optimal pre-normalizers that numerically stabilize layer normalization in any Lp-norm using any floating point precision.
Training Normalizing Flows from Dependent Data
Normalizing flows are powerful non-parametric statistical models that function as a hybrid between density estimators and generative models. Current learning algorithms for normalizing flows assume that data points are sampled independently, an assumption that is frequently violated in practice, which may lead to erroneous density estimation and data generation. We propose a likelihood objective of normalizing flows incorporating dependencies between the data points, for which we derive a flexible and efficient learning algorithm suitable for different dependency structures. We show that respecting dependencies between observations can improve empirical results on both synthetic and real-world data, and leads to higher statistical power in a downstream application to genome-wide association studies.
Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences
Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.
Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion
Normalization layers are one of the key building blocks for deep neural networks. Several theoretical studies have shown that batch normalization improves the signal propagation, by avoiding the representations from becoming collinear across the layers. However, results on mean-field theory of batch normalization also conclude that this benefit comes at the expense of exploding gradients in depth. Motivated by these two aspects of batch normalization, in this study we pose the following question: "Can a batch-normalized network keep the optimal signal propagation properties, but avoid exploding gradients?" We answer this question in the affirmative by giving a particular construction of an Multi-Layer Perceptron (MLP) with linear activations and batch-normalization that provably has bounded gradients at any depth. Based on Weingarten calculus, we develop a rigorous and non-asymptotic theory for this constructed MLP that gives a precise characterization of forward signal propagation, while proving that gradients remain bounded for linearly independent input samples, which holds in most practical settings. Inspired by our theory, we also design an activation shaping scheme that empirically achieves the same properties for certain non-linear activations.
Stochastic Normalizing Flows
The sampling of probability distributions specified up to a normalization constant is an important problem in both machine learning and statistical mechanics. While classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC) or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing interest in using normalizing flows in order to learn the transformation of a simple prior distribution to the given target distribution. Here we propose a generalized and combined approach to sample target densities: Stochastic Normalizing Flows (SNF) -- an arbitrary sequence of deterministic invertible functions and stochastic sampling blocks. We show that stochasticity overcomes expressivity limitations of normalizing flows resulting from the invertibility constraint, whereas trainable transformations between sampling steps improve efficiency of pure MCMC/LD along the flow. By invoking ideas from non-equilibrium statistical mechanics we derive an efficient training procedure by which both the sampler's and the flow's parameters can be optimized end-to-end, and by which we can compute exact importance weights without having to marginalize out the randomness of the stochastic blocks. We illustrate the representational power, sampling efficiency and asymptotic correctness of SNFs on several benchmarks including applications to sampling molecular systems in equilibrium.
Pre-RMSNorm and Pre-CRMSNorm Transformers: Equivalent and Efficient Pre-LN Transformers
Transformers have achieved great success in machine learning applications. Normalization techniques, such as Layer Normalization (LayerNorm, LN) and Root Mean Square Normalization (RMSNorm), play a critical role in accelerating and stabilizing the training of Transformers. While LayerNorm recenters and rescales input vectors, RMSNorm only rescales the vectors by their RMS value. Despite being more computationally efficient, RMSNorm may compromise the representation ability of Transformers. There is currently no consensus regarding the preferred normalization technique, as some models employ LayerNorm while others utilize RMSNorm, especially in recent large language models. It is challenging to convert Transformers with one normalization to the other type. While there is an ongoing disagreement between the two normalization types, we propose a solution to unify two mainstream Transformer architectures, Pre-LN and Pre-RMSNorm Transformers. By removing the inherent redundant mean information in the main branch of Pre-LN Transformers, we can reduce LayerNorm to RMSNorm, achieving higher efficiency. We further propose the Compressed RMSNorm (CRMSNorm) and Pre-CRMSNorm Transformer based on a lossless compression of the zero-mean vectors. We formally establish the equivalence of Pre-LN, Pre-RMSNorm, and Pre-CRMSNorm Transformer variants in both training and inference. It implies that Pre-LN Transformers can be substituted with Pre-(C)RMSNorm counterparts at almost no cost, offering the same arithmetic functionality along with free efficiency improvement. Experiments demonstrate that we can reduce the training and inference time of Pre-LN Transformers by 1% - 10%.
Online Normalization for Training Neural Networks
Online Normalization is a new technique for normalizing the hidden activations of a neural network. Like Batch Normalization, it normalizes the sample dimension. While Online Normalization does not use batches, it is as accurate as Batch Normalization. We resolve a theoretical limitation of Batch Normalization by introducing an unbiased technique for computing the gradient of normalized activations. Online Normalization works with automatic differentiation by adding statistical normalization as a primitive. This technique can be used in cases not covered by some other normalizers, such as recurrent networks, fully connected networks, and networks with activation memory requirements prohibitive for batching. We show its applications to image classification, image segmentation, and language modeling. We present formal proofs and experimental results on ImageNet, CIFAR, and PTB datasets.
Norm Tweaking: High-performance Low-bit Quantization of Large Language Models
As the size of large language models (LLMs) continues to grow, model compression without sacrificing accuracy has become a crucial challenge for deployment. While some quantization methods, such as GPTQ, have made progress in achieving acceptable 4-bit weight-only quantization, attempts at lower bit quantization often result in severe performance degradation. In this paper, we introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision while being cost-efficient. Our approach is inspired by the observation that rectifying the quantized activation distribution to match its float counterpart can readily restore accuracy for LLMs. To achieve this, we carefully design a tweaking strategy that includes calibration data generation and channel-wise distance constraint to update the weights of normalization layers for better generalization. We conduct extensive experiments on various datasets using several open-sourced LLMs. Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations, surpassing existing PTQ methods. On GLM-130B and OPT-66B, our method even achieves the same level of accuracy at 2-bit quantization as their float ones. Our simple and effective approach makes it more practical for real-world applications.
Scaling Parameter-Constrained Language Models with Quality Data
Scaling laws in language modeling traditionally quantify training loss as a function of dataset size and model parameters, providing compute-optimal estimates but often neglecting the impact of data quality on model generalization. In this paper, we extend the conventional understanding of scaling law by offering a microscopic view of data quality within the original formulation -- effective training tokens -- which we posit to be a critical determinant of performance for parameter-constrained language models. Specifically, we formulate the proposed term of effective training tokens to be a combination of two readily-computed indicators of text: (i) text diversity and (ii) syntheticity as measured by a teacher model. We pretrained over 200 models of 25M to 1.5B parameters on a diverse set of sampled, synthetic data, and estimated the constants that relate text quality, model size, training tokens, and eight reasoning task accuracy scores. We demonstrated the estimated constants yield +0.83 Pearson correlation with true accuracies, and analyzed it in scenarios involving widely-used data techniques such as data sampling and synthesis which aim to improve data quality.
Fixup Initialization: Residual Learning Without Normalization
Normalization layers are a staple in state-of-the-art deep neural network architectures. They are widely believed to stabilize training, enable higher learning rate, accelerate convergence and improve generalization, though the reason for their effectiveness is still an active research topic. In this work, we challenge the commonly-held beliefs by showing that none of the perceived benefits is unique to normalization. Specifically, we propose fixed-update initialization (Fixup), an initialization motivated by solving the exploding and vanishing gradient problem at the beginning of training via properly rescaling a standard initialization. We find training residual networks with Fixup to be as stable as training with normalization -- even for networks with 10,000 layers. Furthermore, with proper regularization, Fixup enables residual networks without normalization to achieve state-of-the-art performance in image classification and machine translation.
AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights
Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.
Partial Correlations in Compositional Data Analysis
Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.
Query-Key Normalization for Transformers
Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformer's normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply ell_2 normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT'15.
Lifting Architectural Constraints of Injective Flows
Normalizing Flows explicitly maximize a full-dimensional likelihood on the training data. However, real data is typically only supported on a lower-dimensional manifold leading the model to expend significant compute on modeling noise. Injective Flows fix this by jointly learning a manifold and the distribution on it. So far, they have been limited by restrictive architectures and/or high computational cost. We lift both constraints by a new efficient estimator for the maximum likelihood loss, compatible with free-form bottleneck architectures. We further show that naively learning both the data manifold and the distribution on it can lead to divergent solutions, and use this insight to motivate a stable maximum likelihood training objective. We perform extensive experiments on toy, tabular and image data, demonstrating the competitive performance of the resulting model.
Layer Normalization
Training state-of-the-art, deep neural networks is computationally expensive. One way to reduce the training time is to normalize the activities of the neurons. A recently introduced technique called batch normalization uses the distribution of the summed input to a neuron over a mini-batch of training cases to compute a mean and variance which are then used to normalize the summed input to that neuron on each training case. This significantly reduces the training time in feed-forward neural networks. However, the effect of batch normalization is dependent on the mini-batch size and it is not obvious how to apply it to recurrent neural networks. In this paper, we transpose batch normalization into layer normalization by computing the mean and variance used for normalization from all of the summed inputs to the neurons in a layer on a single training case. Like batch normalization, we also give each neuron its own adaptive bias and gain which are applied after the normalization but before the non-linearity. Unlike batch normalization, layer normalization performs exactly the same computation at training and test times. It is also straightforward to apply to recurrent neural networks by computing the normalization statistics separately at each time step. Layer normalization is very effective at stabilizing the hidden state dynamics in recurrent networks. Empirically, we show that layer normalization can substantially reduce the training time compared with previously published techniques.
HMC with Normalizing Flows
We propose using Normalizing Flows as a trainable kernel within the molecular dynamics update of Hamiltonian Monte Carlo (HMC). By learning (invertible) transformations that simplify our dynamics, we can outperform traditional methods at generating independent configurations. We show that, using a carefully constructed network architecture, our approach can be easily scaled to large lattice volumes with minimal retraining effort. The source code for our implementation is publicly available online at https://github.com/nftqcd/fthmc.
Neural Spline Flows
A normalizing flow models a complex probability density as an invertible transformation of a simple base density. Flows based on either coupling or autoregressive transforms both offer exact density evaluation and sampling, but rely on the parameterization of an easily invertible elementwise transformation, whose choice determines the flexibility of these models. Building upon recent work, we propose a fully-differentiable module based on monotonic rational-quadratic splines, which enhances the flexibility of both coupling and autoregressive transforms while retaining analytic invertibility. We demonstrate that neural spline flows improve density estimation, variational inference, and generative modeling of images.
Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
This paper revisits datasets and evaluation criteria for Symbolic Regression, a task of expressing given data using mathematical equations, specifically focused on its potential for scientific discovery. Focused on a set of formulas used in the existing datasets based on Feynman Lectures on Physics, we recreate 120 datasets to discuss the performance of symbolic regression for scientific discovery (SRSD). For each of the 120 SRSD datasets, we carefully review the properties of the formula and its variables to design reasonably realistic sampling range of values so that our new SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method can (re)discover physical laws from such datasets. As an evaluation metric, we also propose to use normalized edit distances between a predicted equation and the ground-truth equation trees. While existing metrics are either binary or errors between the target values and an SR model's predicted values for a given input, normalized edit distances evaluate a sort of similarity between the ground-truth and predicted equation trees. We have conducted experiments on our new SRSD datasets using five state-of-the-art SR methods in SRBench and a simple baseline based on a recent Transformer architecture. The results show that we provide a more realistic performance evaluation and open up a new machine learning-based approach for scientific discovery. Our datasets and code repository are publicly available.
Overcoming a Theoretical Limitation of Self-Attention
Although transformers are remarkably effective for many tasks, there are some surprisingly easy-looking regular languages that they struggle with. Hahn shows that for languages where acceptance depends on a single input symbol, a transformer's classification decisions become less and less confident (that is, with cross-entropy approaching 1 bit per string) as input strings get longer and longer. We examine this limitation using two languages: PARITY, the language of bit strings with an odd number of 1s, and FIRST, the language of bit strings starting with a 1. We demonstrate three ways of overcoming the limitation suggested by Hahn's lemma. First, we settle an open question by constructing a transformer that recognizes PARITY with perfect accuracy, and similarly for FIRST. Second, we use layer normalization to bring the cross-entropy of both models arbitrarily close to zero. Third, when transformers need to focus on a single position, as for FIRST, we find that they can fail to generalize to longer strings; we offer a simple remedy to this problem that also improves length generalization in machine translation.
Unified Normalization for Accelerating and Stabilizing Transformers
Solid results from Transformers have made them prevailing architectures in various natural language and vision tasks. As a default component in Transformers, Layer Normalization (LN) normalizes activations within each token to boost the robustness. However, LN requires on-the-fly statistics calculation in inference as well as division and square root operations, leading to inefficiency on hardware. What is more, replacing LN with other hardware-efficient normalization schemes (e.g., Batch Normalization) results in inferior performance, even collapse in training. We find that this dilemma is caused by abnormal behaviors of activation statistics, including large fluctuations over iterations and extreme outliers across layers. To tackle these issues, we propose Unified Normalization (UN), which can speed up the inference by being fused with other linear operations and achieve comparable performance on par with LN. UN strives to boost performance by calibrating the activation and gradient statistics with a tailored fluctuation smoothing strategy. Meanwhile, an adaptive outlier filtration strategy is applied to avoid collapse in training whose effectiveness is theoretically proved and experimentally verified in this paper. We demonstrate that UN can be an efficient drop-in alternative to LN by conducting extensive experiments on language and vision tasks. Besides, we evaluate the efficiency of our method on GPU. Transformers equipped with UN enjoy about 31% inference speedup and nearly 18% memory reduction. Code will be released at https://github.com/hikvision-research/Unified-Normalization.
PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation
Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied.
Construction de variables a l'aide de classifieurs comme aide a la regression
This paper proposes a method for the automatic creation of variables (in the case of regression) that complement the information contained in the initial input vector. The method works as a pre-processing step in which the continuous values of the variable to be regressed are discretized into a set of intervals which are then used to define value thresholds. Then classifiers are trained to predict whether the value to be regressed is less than or equal to each of these thresholds. The different outputs of the classifiers are then concatenated in the form of an additional vector of variables that enriches the initial vector of the regression problem. The implemented system can thus be considered as a generic pre-processing tool. We tested the proposed enrichment method with 5 types of regressors and evaluated it in 33 regression datasets. Our experimental results confirm the interest of the approach.
Root Mean Square Layer Normalization
Layer normalization (LayerNorm) has been successfully applied to various deep neural networks to help stabilize training and boost model convergence because of its capability in handling re-centering and re-scaling of both inputs and weight matrix. However, the computational overhead introduced by LayerNorm makes these improvements expensive and significantly slows the underlying network, e.g. RNN in particular. In this paper, we hypothesize that re-centering invariance in LayerNorm is dispensable and propose root mean square layer normalization, or RMSNorm. RMSNorm regularizes the summed inputs to a neuron in one layer according to root mean square (RMS), giving the model re-scaling invariance property and implicit learning rate adaptation ability. RMSNorm is computationally simpler and thus more efficient than LayerNorm. We also present partial RMSNorm, or pRMSNorm where the RMS is estimated from p% of the summed inputs without breaking the above properties. Extensive experiments on several tasks using diverse network architectures show that RMSNorm achieves comparable performance against LayerNorm but reduces the running time by 7%~64% on different models. Source code is available at https://github.com/bzhangGo/rmsnorm.
L2 Regularization versus Batch and Weight Normalization
Batch Normalization is a commonly used trick to improve the training of deep neural networks. These neural networks use L2 regularization, also called weight decay, ostensibly to prevent overfitting. However, we show that L2 regularization has no regularizing effect when combined with normalization. Instead, regularization has an influence on the scale of weights, and thereby on the effective learning rate. We investigate this dependence, both in theory, and experimentally. We show that popular optimization methods such as ADAM only partially eliminate the influence of normalization on the learning rate. This leads to a discussion on other ways to mitigate this issue.
Normalization Is All You Need: Understanding Layer-Normalized Federated Learning under Extreme Label Shift
Layer normalization (LN) is a widely adopted deep learning technique especially in the era of foundation models. Recently, LN has been shown to be surprisingly effective in federated learning (FL) with non-i.i.d. data. However, exactly why and how it works remains mysterious. In this work, we reveal the profound connection between layer normalization and the label shift problem in federated learning. To understand layer normalization better in FL, we identify the key contributing mechanism of normalization methods in FL, called feature normalization (FN), which applies normalization to the latent feature representation before the classifier head. Although LN and FN do not improve expressive power, they control feature collapse and local overfitting to heavily skewed datasets, and thus accelerates global training. Empirically, we show that normalization leads to drastic improvements on standard benchmarks under extreme label shift. Moreover, we conduct extensive ablation studies to understand the critical factors of layer normalization in FL. Our results verify that FN is an essential ingredient inside LN to significantly improve the convergence of FL while remaining robust to learning rate choices, especially under extreme label shift where each client has access to few classes.
NormFormer: Improved Transformer Pretraining with Extra Normalization
During pretraining, the Pre-LayerNorm transformer suffers from a gradient magnitude mismatch: gradients at early layers are much larger than at later layers. These issues can be alleviated by our proposed NormFormer architecture, which adds three normalization operations to each layer: a Layer Norm after self attention, head-wise scaling of self-attention outputs, and a Layer Norm after the first fully connected layer. The extra operations incur negligible compute cost (+0.4% parameter increase), but improve pretraining perplexity and downstream task performance for both causal and masked language models ranging from 125 Million to 2.7 Billion parameters. For example, adding NormFormer on top of our strongest 1.3B parameter baseline can reach equal perplexity 24% faster, or converge 0.27 perplexity better in the same compute budget. This model reaches GPT3-Large (1.3B) zero shot performance 60% faster. For masked language modeling, NormFormer improves fine-tuned GLUE performance by 1.9% on average. Code to train NormFormer models is available in fairseq https://github.com/pytorch/fairseq/tree/main/examples/normformer .
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
We show that deep neural networks (DNNs) can efficiently learn any composition of functions with bounded F_{1}-norm, which allows DNNs to break the curse of dimensionality in ways that shallow networks cannot. More specifically, we derive a generalization bound that combines a covering number argument for compositionality, and the F_{1}-norm (or the related Barron norm) for large width adaptivity. We show that the global minimizer of the regularized loss of DNNs can fit for example the composition of two functions f^{*}=hcirc g from a small number of observations, assuming g is smooth/regular and reduces the dimensionality (e.g. g could be the modulo map of the symmetries of f^{*}), so that h can be learned in spite of its low regularity. The measures of regularity we consider is the Sobolev norm with different levels of differentiability, which is well adapted to the F_{1} norm. We compute scaling laws empirically and observe phase transitions depending on whether g or h is harder to learn, as predicted by our theory.
Scale-Distribution Decoupling: Enabling Stable and Effective Training of Large Language Models
Training stability is a persistent challenge in the pre-training of large language models (LLMs), particularly for architectures such as Post-Norm Transformers, which are prone to gradient explosion and dissipation. In this paper, we propose Scale-Distribution Decoupling (SDD), a novel approach that stabilizes training by explicitly decoupling the scale and distribution of the weight matrix in fully-connected layers. SDD applies a normalization mechanism to regulate activations and a learnable scaling vector to maintain well-conditioned gradients, effectively preventing gradient explosion and dissipation. This separation improves optimization efficiency, particularly in deep networks, by ensuring stable gradient propagation. Experimental results demonstrate that our method stabilizes training across various LLM architectures and outperforms existing techniques in different normalization configurations. Furthermore, the proposed method is lightweight and compatible with existing frameworks, making it a practical solution for stabilizing LLM training. Code is available at https://github.com/kaihemo/SDD.
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
Weight Compander: A Simple Weight Reparameterization for Regularization
Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce weight compander (WC), a novel effective method to improve generalization by reparameterizing each weight in deep neural networks using a nonlinear function. It is a general, intuitive, cheap and easy to implement method, which can be combined with various other regularization techniques. Large weights in deep neural networks are a sign of a more complex network that is overfitted to the training data. Moreover, regularized networks tend to have a greater range of weights around zero with fewer weights centered at zero. We introduce a weight reparameterization function which is applied to each weight and implicitly reduces overfitting by restricting the magnitude of the weights while forcing them away from zero at the same time. This leads to a more democratic decision-making in the network. Firstly, individual weights cannot have too much influence in the prediction process due to the restriction of their magnitude. Secondly, more weights are used in the prediction process, since they are forced away from zero during the training. This promotes the extraction of more features from the input data and increases the level of weight redundancy, which makes the network less sensitive to statistical differences between training and test data. We extend our method to learn the hyperparameters of the introduced weight reparameterization function. This avoids hyperparameter search and gives the network the opportunity to align the weight reparameterization with the training progress. We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.
Graph Metanetworks for Processing Diverse Neural Architectures
Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures.
Normalizing flows as an enhanced sampling method for atomistic supercooled liquids
Normalizing flows can transform a simple prior probability distribution into a more complex target distribution. Here, we evaluate the ability and efficiency of generative machine learning methods to sample the Boltzmann distribution of an atomistic model for glass-forming liquids. This is a notoriously difficult task, as it amounts to ergodically exploring the complex free energy landscape of a disordered and frustrated many-body system. We optimize a normalizing flow model to successfully transform high-temperature configurations of a dense liquid into low-temperature ones, near the glass transition. We perform a detailed comparative analysis with established enhanced sampling techniques developed in the physics literature to assess and rank the performance of normalizing flows against state-of-the-art algorithms. We demonstrate that machine learning methods are very promising, showing a large speedup over conventional molecular dynamics. Normalizing flows show performances comparable to parallel tempering and population annealing, while still falling far behind the swap Monte Carlo algorithm. Our study highlights the potential of generative machine learning models in scientific computing for complex systems, but also points to some of its current limitations and the need for further improvement.
Scaling Laws for Precision
Low precision training and inference affect both the quality and cost of language models, but current scaling laws do not account for this. In this work, we devise "precision-aware" scaling laws for both training and inference. We propose that training in lower precision reduces the model's "effective parameter count," allowing us to predict the additional loss incurred from training in low precision and post-train quantization. For inference, we find that the degradation introduced by post-training quantization increases as models are trained on more data, eventually making additional pretraining data actively harmful. For training, our scaling laws allow us to predict the loss of a model with different parts in different precisions, and suggest that training larger models in lower precision may be compute optimal. We unify the scaling laws for post and pretraining quantization to arrive at a single functional form that predicts degradation from training and inference in varied precisions. We fit on over 465 pretraining runs and validate our predictions on model sizes up to 1.7B parameters trained on up to 26B tokens.
Scaling Exponents Across Parameterizations and Optimizers
Robust and effective scaling of models from small to large width typically requires the precise adjustment of many algorithmic and architectural details, such as parameterization and optimizer choices. In this work, we propose a new perspective on parameterization by investigating a key assumption in prior work about the alignment between parameters and data and derive new theoretical results under weaker assumptions and a broader set of optimizers. Our extensive empirical investigation includes tens of thousands of models trained with all combinations of three optimizers, four parameterizations, several alignment assumptions, more than a dozen learning rates, and fourteen model sizes up to 26.8B parameters. We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work. Our results show that all parameterizations, not just maximal update parameterization (muP), can achieve hyperparameter transfer; moreover, our novel per-layer learning rate prescription for standard parameterization outperforms muP. Finally, we demonstrate that an overlooked aspect of parameterization, the epsilon parameter in Adam, must be scaled correctly to avoid gradient underflow and propose Adam-atan2, a new numerically stable, scale-invariant version of Adam that eliminates the epsilon hyperparameter entirely.
nGPT: Normalized Transformer with Representation Learning on the Hypersphere
We propose a novel neural network architecture, the normalized Transformer (nGPT) with representation learning on the hypersphere. In nGPT, all vectors forming the embeddings, MLP, attention matrices and hidden states are unit norm normalized. The input stream of tokens travels on the surface of a hypersphere, with each layer contributing a displacement towards the target output predictions. These displacements are defined by the MLP and attention blocks, whose vector components also reside on the same hypersphere. Experiments show that nGPT learns much faster, reducing the number of training steps required to achieve the same accuracy by a factor of 4 to 20, depending on the sequence length.
Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN
Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.
DeepNet: Scaling Transformers to 1,000 Layers
In this paper, we propose a simple yet effective method to stabilize extremely deep Transformers. Specifically, we introduce a new normalization function (DeepNorm) to modify the residual connection in Transformer, accompanying with theoretically derived initialization. In-depth theoretical analysis shows that model updates can be bounded in a stable way. The proposed method combines the best of two worlds, i.e., good performance of Post-LN and stable training of Pre-LN, making DeepNorm a preferred alternative. We successfully scale Transformers up to 1,000 layers (i.e., 2,500 attention and feed-forward network sublayers) without difficulty, which is one order of magnitude deeper than previous deep Transformers. Remarkably, on a multilingual benchmark with 7,482 translation directions, our 200-layer model with 3.2B parameters significantly outperforms the 48-layer state-of-the-art model with 12B parameters by 5 BLEU points, which indicates a promising scaling direction.
CRUDE: Calibrating Regression Uncertainty Distributions Empirically
Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
Feature Collapse
We formalize and study a phenomenon called feature collapse that makes precise the intuitive idea that entities playing a similar role in a learning task receive similar representations. As feature collapse requires a notion of task, we leverage a simple but prototypical NLP task to study it. We start by showing experimentally that feature collapse goes hand in hand with generalization. We then prove that, in the large sample limit, distinct words that play identical roles in this NLP task receive identical local feature representations in a neural network. This analysis reveals the crucial role that normalization mechanisms, such as LayerNorm, play in feature collapse and in generalization.
Normalizing Flows for Interventional Density Estimation
Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after interventions from observational data. For this, we propose a novel, fully-parametric deep learning method called Interventional Normalizing Flows. Specifically, we combine two normalizing flows, namely (i) a nuisance flow for estimating nuisance parameters and (ii) a target flow for parametric estimation of the density of potential outcomes. We further develop a tractable optimization objective based on a one-step bias correction for efficient and doubly robust estimation of the target flow parameters. As a result, our Interventional Normalizing Flows offer a properly normalized density estimator. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first proper fully-parametric, deep learning method for density estimation of potential outcomes.
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation
Lipschitz constants are connected to many properties of neural networks, such as robustness, fairness, and generalization. Existing methods for computing Lipschitz constants either produce relatively loose upper bounds or are limited to small networks. In this paper, we develop an efficient framework for computing the ell_infty local Lipschitz constant of a neural network by tightly upper bounding the norm of Clarke Jacobian via linear bound propagation. We formulate the computation of local Lipschitz constants with a linear bound propagation process on a high-order backward graph induced by the chain rule of Clarke Jacobian. To enable linear bound propagation, we derive tight linear relaxations for specific nonlinearities in Clarke Jacobian. This formulate unifies existing ad-hoc approaches such as RecurJac, which can be seen as a special case of ours with weaker relaxations. The bound propagation framework also allows us to easily borrow the popular Branch-and-Bound (BaB) approach from neural network verification to further tighten Lipschitz constants. Experiments show that on tiny models, our method produces comparable bounds compared to exact methods that cannot scale to slightly larger models; on larger models, our method efficiently produces tighter results than existing relaxed or naive methods, and our method scales to much larger practical models that previous works could not handle. We also demonstrate an application on provable monotonicity analysis. Code is available at https://github.com/shizhouxing/Local-Lipschitz-Constants.
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Deep multitask networks, in which one neural network produces multiple predictive outputs, can offer better speed and performance than their single-task counterparts but are challenging to train properly. We present a gradient normalization (GradNorm) algorithm that automatically balances training in deep multitask models by dynamically tuning gradient magnitudes. We show that for various network architectures, for both regression and classification tasks, and on both synthetic and real datasets, GradNorm improves accuracy and reduces overfitting across multiple tasks when compared to single-task networks, static baselines, and other adaptive multitask loss balancing techniques. GradNorm also matches or surpasses the performance of exhaustive grid search methods, despite only involving a single asymmetry hyperparameter alpha. Thus, what was once a tedious search process that incurred exponentially more compute for each task added can now be accomplished within a few training runs, irrespective of the number of tasks. Ultimately, we will demonstrate that gradient manipulation affords us great control over the training dynamics of multitask networks and may be one of the keys to unlocking the potential of multitask learning.
u-μP: The Unit-Scaled Maximal Update Parametrization
The Maximal Update Parametrization (muP) aims to make the optimal hyperparameters (HPs) of a model independent of its size, allowing them to be swept using a cheap proxy model rather than the full-size target model. We present a new scheme, u-muP, which improves upon muP by combining it with Unit Scaling, a method for designing models that makes them easy to train in low-precision. The two techniques have a natural affinity: muP ensures that the scale of activations is independent of model size, and Unit Scaling ensures that activations, weights and gradients begin training with a scale of one. This synthesis opens the door to a simpler scheme, whose default values are near-optimal. This in turn facilitates a more efficient sweeping strategy, with u-muP models reaching a lower loss than comparable muP models and working out-of-the-box in FP8.
Go Wider Instead of Deeper
More transformer blocks with residual connections have recently achieved impressive results on various tasks. To achieve better performance with fewer trainable parameters, recent methods are proposed to go shallower by parameter sharing or model compressing along with the depth. However, weak modeling capacity limits their performance. Contrastively, going wider by inducing more trainable matrixes and parameters would produce a huge model requiring advanced parallelism to train and inference. In this paper, we propose a parameter-efficient framework, going wider instead of deeper. Specially, following existing works, we adapt parameter sharing to compress along depth. But, such deployment would limit the performance. To maximize modeling capacity, we scale along model width by replacing feed-forward network (FFN) with mixture-of-experts (MoE). Across transformer blocks, instead of sharing normalization layers, we propose to use individual layernorms to transform various semantic representations in a more parameter-efficient way. To evaluate our plug-and-run framework, we design WideNet and conduct comprehensive experiments on popular computer vision and natural language processing benchmarks. On ImageNet-1K, our best model outperforms Vision Transformer (ViT) by 1.5% with 0.72 times trainable parameters. Using 0.46 times and 0.13 times parameters, our WideNet can still surpass ViT and ViT-MoE by 0.8% and 2.1%, respectively. On four natural language processing datasets, WideNet outperforms ALBERT by 1.8% on average and surpass BERT using factorized embedding parameterization by 0.8% with fewer parameters.
On Calibration of Modern Neural Networks
Confidence calibration -- the problem of predicting probability estimates representative of the true correctness likelihood -- is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important factors influencing calibration. We evaluate the performance of various post-processing calibration methods on state-of-the-art architectures with image and document classification datasets. Our analysis and experiments not only offer insights into neural network learning, but also provide a simple and straightforward recipe for practical settings: on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
Conditional LoRA Parameter Generation
Generative models have achieved remarkable success in image, video, and text domains. Inspired by this, researchers have explored utilizing generative models to generate neural network parameters. However, these efforts have been limited by the parameter size and the practicality of generating high-performance parameters. In this paper, we propose COND P-DIFF, a novel approach that demonstrates the feasibility of controllable high-performance parameter generation, particularly for LoRA (Low-Rank Adaptation) weights, during the fine-tuning process. Specifically, we employ an autoencoder to extract efficient latent representations for parameters. We then train a conditional latent diffusion model to synthesize high-performing model parameters from random noise based on specific task conditions. Experimental results in both computer vision and natural language processing domains consistently demonstrate that COND P-DIFF can generate high-performance parameters conditioned on the given task. Moreover, we observe that the parameter distribution generated by COND P-DIFF exhibits differences compared to the distribution obtained through normal optimization methods, indicating a certain level of generalization capability. Our work paves the way for further exploration of condition-driven parameter generation, offering a promising direction for task-specific adaptation of neural networks.
Kernelised Normalising Flows
Normalising Flows are non-parametric statistical models characterised by their dual capabilities of density estimation and generation. This duality requires an inherently invertible architecture. However, the requirement of invertibility imposes constraints on their expressiveness, necessitating a large number of parameters and innovative architectural designs to achieve good results. Whilst flow-based models predominantly rely on neural-network-based transformations for expressive designs, alternative transformation methods have received limited attention. In this work, we present Ferumal flow, a novel kernelised normalising flow paradigm that integrates kernels into the framework. Our results demonstrate that a kernelised flow can yield competitive or superior results compared to neural network-based flows whilst maintaining parameter efficiency. Kernelised flows excel especially in the low-data regime, enabling flexible non-parametric density estimation in applications with sparse data availability.
Evolving Normalization-Activation Layers
Normalization layers and activation functions are fundamental components in deep networks and typically co-locate with each other. Here we propose to design them using an automated approach. Instead of designing them separately, we unify them into a single tensor-to-tensor computation graph, and evolve its structure starting from basic mathematical functions. Examples of such mathematical functions are addition, multiplication and statistical moments. The use of low-level mathematical functions, in contrast to the use of high-level modules in mainstream NAS, leads to a highly sparse and large search space which can be challenging for search methods. To address the challenge, we develop efficient rejection protocols to quickly filter out candidate layers that do not work well. We also use multi-objective evolution to optimize each layer's performance across many architectures to prevent overfitting. Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures that go beyond existing design patterns. For example, some EvoNorms do not assume that normalization and activation functions must be applied sequentially, nor need to center the feature maps, nor require explicit activation functions. Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets but also transfer well to Mask R-CNN with FPN/SpineNet for instance segmentation and to BigGAN for image synthesis, outperforming BatchNorm and GroupNorm based layers in many cases.
Feasible Learning
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose HybridNorm, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. %Code will be made publicly available. Code is available at https://github.com/BryceZhuo/HybridNorm.
Feature Learning in Infinite-Width Neural Networks
As its width tends to infinity, a deep neural network's behavior under gradient descent can become simplified and predictable (e.g. given by the Neural Tangent Kernel (NTK)), if it is parametrized appropriately (e.g. the NTK parametrization). However, we show that the standard and NTK parametrizations of a neural network do not admit infinite-width limits that can learn features, which is crucial for pretraining and transfer learning such as with BERT. We propose simple modifications to the standard parametrization to allow for feature learning in the limit. Using the *Tensor Programs* technique, we derive explicit formulas for such limits. On Word2Vec and few-shot learning on Omniglot via MAML, two canonical tasks that rely crucially on feature learning, we compute these limits exactly. We find that they outperform both NTK baselines and finite-width networks, with the latter approaching the infinite-width feature learning performance as width increases. More generally, we classify a natural space of neural network parametrizations that generalizes standard, NTK, and Mean Field parametrizations. We show 1) any parametrization in this space either admits feature learning or has an infinite-width training dynamics given by kernel gradient descent, but not both; 2) any such infinite-width limit can be computed using the Tensor Programs technique. Code for our experiments can be found at github.com/edwardjhu/TP4.
μnit Scaling: Simple and Scalable FP8 LLM Training
Large Language Model training with 8-bit floating point (FP8) formats promises significant efficiency improvements, but reduced numerical precision makes training challenging. It is currently possible to train in FP8 only if one is willing to tune various hyperparameters, reduce model scale, or accept the overhead of computing dynamic scale factors. We demonstrate simple, scalable FP8 training that requires no dynamic scaling factors or special hyperparameters, even at large model sizes. Our method, munit Scaling (muS), also enables simple hyperparameter transfer across model widths, matched numerics across training and inference, and other desirable properties. munit Scaling is straightforward to implement, consisting of a set of minimal interventions based on a first-principles analysis of common transformer operations. We validate our method by training models from 1B to 13B parameters, performing all hidden linear layer computations in FP8. We achieve quality equal to higher precision baselines while also training up to 33% faster.
NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search
Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
A smile is all you need: Predicting limiting activity coefficients from SMILES with natural language processing
Knowledge of mixtures' phase equilibria is crucial in nature and technical chemistry. Phase equilibria calculations of mixtures require activity coefficients. However, experimental data on activity coefficients is often limited due to high cost of experiments. For an accurate and efficient prediction of activity coefficients, machine learning approaches have been recently developed. However, current machine learning approaches still extrapolate poorly for activity coefficients of unknown molecules. In this work, we introduce the SMILES-to-Properties-Transformer (SPT), a natural language processing network to predict binary limiting activity coefficients from SMILES codes. To overcome the limitations of available experimental data, we initially train our network on a large dataset of synthetic data sampled from COSMO-RS (10 Million data points) and then fine-tune the model on experimental data (20 870 data points). This training strategy enables SPT to accurately predict limiting activity coefficients even for unknown molecules, cutting the mean prediction error in half compared to state-of-the-art models for activity coefficient predictions such as COSMO-RS, UNIFAC, and improving on recent machine learning approaches.
Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights from winning the Ariel Data Challenge 2023 using Normalizing Flows
Advancements in space telescopes have opened new avenues for gathering vast amounts of data on exoplanet atmosphere spectra. However, accurately extracting chemical and physical properties from these spectra poses significant challenges due to the non-linear nature of the underlying physics. This paper presents novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023, where one of the models secured the top position among 293 competitors. Leveraging Normalizing Flows, our models predict the posterior probability distribution of atmospheric parameters under different atmospheric assumptions. Moreover, we introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge. These findings highlight the need to reevaluate the evaluation metric and prompt further exploration of more efficient and accurate approaches for exoplanet atmosphere spectra analysis. Finally, we present recommendations to enhance the challenge and models, providing valuable insights for future applications on real observational data. These advancements pave the way for more effective and timely analysis of exoplanet atmospheric properties, advancing our understanding of these distant worlds.
xMEN: A Modular Toolkit for Cross-Lingual Medical Entity Normalization
Objective: To improve performance of medical entity normalization across many languages, especially when fewer language resources are available compared to English. Materials and Methods: We introduce xMEN, a modular system for cross-lingual medical entity normalization, which performs well in both low- and high-resource scenarios. When synonyms in the target language are scarce for a given terminology, we leverage English aliases via cross-lingual candidate generation. For candidate ranking, we incorporate a trainable cross-encoder model if annotations for the target task are available. We also evaluate cross-encoders trained in a weakly supervised manner based on machine-translated datasets from a high resource domain. Our system is publicly available as an extensible Python toolkit. Results: xMEN improves the state-of-the-art performance across a wide range of multilingual benchmark datasets. Weakly supervised cross-encoders are effective when no training data is available for the target task. Through the compatibility of xMEN with the BigBIO framework, it can be easily used with existing and prospective datasets. Discussion: Our experiments show the importance of balancing the output of general-purpose candidate generators with subsequent trainable re-rankers, which we achieve through a rank regularization term in the loss function of the cross-encoder. However, error analysis reveals that multi-word expressions and other complex entities are still challenging. Conclusion: xMEN exhibits strong performance for medical entity normalization in multiple languages, even when no labeled data and few terminology aliases for the target language are available. Its configuration system and evaluation modules enable reproducible benchmarks. Models and code are available online at the following URL: https://github.com/hpi-dhc/xmen
ConR: Contrastive Regularizer for Deep Imbalanced Regression
Imbalanced distributions are ubiquitous in real-world data. They create constraints on Deep Neural Networks to represent the minority labels and avoid bias towards majority labels. The extensive body of imbalanced approaches address categorical label spaces but fail to effectively extend to regression problems where the label space is continuous. Local and global correlations among continuous labels provide valuable insights towards effectively modelling relationships in feature space. In this work, we propose ConR, a contrastive regularizer that models global and local label similarities in feature space and prevents the features of minority samples from being collapsed into their majority neighbours. ConR discerns the disagreements between the label space and feature space and imposes a penalty on these disagreements. ConR addresses the continuous nature of label space with two main strategies in a contrastive manner: incorrect proximities are penalized proportionate to the label similarities and the correct ones are encouraged to model local similarities. ConR consolidates essential considerations into a generic, easy-to-integrate, and efficient method that effectively addresses deep imbalanced regression. Moreover, ConR is orthogonal to existing approaches and smoothly extends to uni- and multi-dimensional label spaces. Our comprehensive experiments show that ConR significantly boosts the performance of all the state-of-the-art methods on four large-scale deep imbalanced regression benchmarks. Our code is publicly available in https://github.com/BorealisAI/ConR.
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
A wide variety of deep learning techniques from style transfer to multitask learning rely on training affine transformations of features. Most prominent among these is the popular feature normalization technique BatchNorm, which normalizes activations and then subsequently applies a learned affine transform. In this paper, we aim to understand the role and expressive power of affine parameters used to transform features in this way. To isolate the contribution of these parameters from that of the learned features they transform, we investigate the performance achieved when training only these parameters in BatchNorm and freezing all weights at their random initializations. Doing so leads to surprisingly high performance considering the significant limitations that this style of training imposes. For example, sufficiently deep ResNets reach 82% (CIFAR-10) and 32% (ImageNet, top-5) accuracy in this configuration, far higher than when training an equivalent number of randomly chosen parameters elsewhere in the network. BatchNorm achieves this performance in part by naturally learning to disable around a third of the random features. Not only do these results highlight the expressive power of affine parameters in deep learning, but - in a broader sense - they characterize the expressive power of neural networks constructed simply by shifting and rescaling random features.
Fast and Unified Path Gradient Estimators for Normalizing Flows
Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
On the Robustness of Text Vectorizers
A fundamental issue in machine learning is the robustness of the model with respect to changes in the input. In natural language processing, models typically contain a first embedding layer, transforming a sequence of tokens into vector representations. While the robustness with respect to changes of continuous inputs is well-understood, the situation is less clear when considering discrete changes, for instance replacing a word by another in an input sentence. Our work formally proves that popular embedding schemes, such as concatenation, TF-IDF, and Paragraph Vector (a.k.a. doc2vec), exhibit robustness in the H\"older or Lipschitz sense with respect to the Hamming distance. We provide quantitative bounds for these schemes and demonstrate how the constants involved are affected by the length of the document. These findings are exemplified through a series of numerical examples.
Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift
A key challenge of modern machine learning systems is to achieve Out-of-Distribution (OOD) generalization -- generalizing to target data whose distribution differs from that of source data. Despite its significant importance, the fundamental question of ``what are the most effective algorithms for OOD generalization'' remains open even under the standard setting of covariate shift. This paper addresses this fundamental question by proving that, surprisingly, classical Maximum Likelihood Estimation (MLE) purely using source data (without any modification) achieves the minimax optimality for covariate shift under the well-specified setting. That is, no algorithm performs better than MLE in this setting (up to a constant factor), justifying MLE is all you need. Our result holds for a very rich class of parametric models, and does not require any boundedness condition on the density ratio. We illustrate the wide applicability of our framework by instantiating it to three concrete examples -- linear regression, logistic regression, and phase retrieval. This paper further complement the study by proving that, under the misspecified setting, MLE is no longer the optimal choice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal in certain scenarios.
Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation
With the increasingly powerful performances and enormous scales of Pretrained Language Models (PLMs), promoting parameter efficiency in fine-tuning has become a crucial need for effective and efficient adaptation to various downstream tasks. One representative line of fine-tuning methods is Orthogonal Fine-tuning (OFT), which rigorously preserves the angular distances within the parameter space to preserve the pretrained knowledge. Despite the empirical effectiveness, OFT still suffers low parameter efficiency at O(d^2) and limited capability of downstream adaptation. Inspired by Givens rotation, in this paper, we proposed quasi-Givens Orthogonal Fine-Tuning (qGOFT) to address the problems. We first use O(d) Givens rotations to accomplish arbitrary orthogonal transformation in SO(d) with provable equivalence, reducing parameter complexity from O(d^2) to O(d). Then we introduce flexible norm and relative angular adjustments under soft orthogonality regularization to enhance the adaptation capability of downstream semantic deviations. Extensive experiments on various tasks and PLMs validate the effectiveness of our methods.
Fair Normalizing Flows
Fair representation learning is an attractive approach that promises fairness of downstream predictors by encoding sensitive data. Unfortunately, recent work has shown that strong adversarial predictors can still exhibit unfairness by recovering sensitive attributes from these representations. In this work, we present Fair Normalizing Flows (FNF), a new approach offering more rigorous fairness guarantees for learned representations. Specifically, we consider a practical setting where we can estimate the probability density for sensitive groups. The key idea is to model the encoder as a normalizing flow trained to minimize the statistical distance between the latent representations of different groups. The main advantage of FNF is that its exact likelihood computation allows us to obtain guarantees on the maximum unfairness of any potentially adversarial downstream predictor. We experimentally demonstrate the effectiveness of FNF in enforcing various group fairness notions, as well as other attractive properties such as interpretability and transfer learning, on a variety of challenging real-world datasets.
Math Neurosurgery: Isolating Language Models' Math Reasoning Abilities Using Only Forward Passes
Math reasoning is a highly active area of Large Language Model (LLM) research because it is a hallmark of artificial intelligence. However, few works have explored how math reasoning is encoded within LLM parameters and if it is a skill that can be isolated within a model. Doing so could allow targeted intervention to improve math performance without altering non-math behavior and foster understanding of how models encode math reasoning. We introduce Math Neurosurgery (MathNeuro), a method for isolating math-specific parameters in LLMs using only forward passes. MathNeuro builds on existing work by using weights and activations to calculate parameter importance, but isolates math-specific parameters by removing those important for general language tasks. Pruning parameters MathNeuro identifies deletes a LLM's math reasoning ability without destroying its general language ability. Scaling these parameters by a small constant improves a pretrained or instruction-tuned LLM's performance by 4-17% on GSM8K while leaving non-math behavior unaltered. MathNeuro is also data efficient: most of its effectiveness holds when identifying math-specific parameters using a single sample. MathNeuro highlights the potential for future work to intervene on math-specific parameters.
Rethinking Model Re-Basin and Linear Mode Connectivity
Recent studies suggest that with sufficiently wide models, most SGD solutions can, up to permutation, converge into the same basin. This phenomenon, known as the model re-basin regime, has significant implications for model averaging by ensuring the linear mode connectivity. However, current re-basin strategies are ineffective in many scenarios due to a lack of comprehensive understanding of underlying mechanisms. Addressing this gap, this paper provides novel insights into understanding and improving the standard practice. Firstly, we decompose re-normalization into rescaling and reshift, uncovering that rescaling plays a crucial role in re-normalization while re-basin performance is sensitive to shifts in model activation. The finding calls for a more nuanced handling of the activation shift. Secondly, we identify that the merged model suffers from the issue of activation collapse and magnitude collapse. Varying the learning rate, weight decay, and initialization method can mitigate the issues and improve model performance. Lastly, we propose a new perspective to unify the re-basin and pruning, under which a lightweight yet effective post-pruning technique is derived, which can significantly improve the model performance after pruning. Our implementation is available at https://github.com/XingyuQu/rethink-re-basin.
The Two-Pass Softmax Algorithm
The softmax (also called softargmax) function is widely used in machine learning models to normalize real-valued scores into a probability distribution. To avoid floating-point overflow, the softmax function is conventionally implemented in three passes: the first pass to compute the normalization constant, and two other passes to compute outputs from normalized inputs. We analyze two variants of the Three-Pass algorithm and demonstrate that in a well-optimized implementation on HPC-class processors performance of all three passes is limited by memory bandwidth. We then present a novel algorithm for softmax computation in just two passes. The proposed Two-Pass algorithm avoids both numerical overflow and the extra normalization pass by employing an exotic representation for intermediate values, where each value is represented as a pair of floating-point numbers: one representing the "mantissa" and another representing the "exponent". Performance evaluation demonstrates that on out-of-cache inputs on an Intel Skylake-X processor the new Two-Pass algorithm outperforms the traditional Three-Pass algorithm by up to 28% in AVX512 implementation, and by up to 18% in AVX2 implementation. The proposed Two-Pass algorithm also outperforms the traditional Three-Pass algorithm on Intel Broadwell and AMD Zen 2 processors. To foster reproducibility, we released an open-source implementation of the new Two-Pass Softmax algorithm and other experiments in this paper as a part of XNNPACK library at GitHub.com/google/XNNPACK.
Development of different methods and their efficiencies for the estimation of diffusion coefficients following the diffusion couple technique
The interdiffusion coefficients are estimated either following the Wagner's method expressed with respect to the composition (mol or atomic fraction) normalized variable after considering the molar volume variation or the den Broeder's method expressed with respect to the concentration (composition divided by the molar volume) normalized variable. On the other hand, the relations for estimation of the intrinsic diffusion coefficients of components as established by van Loo and integrated diffusion coefficients in a phase with narrow homogeneity range as established by Wagner are currently available with respect to the composition normalized variable only. In this study, we have first derived the relation proposed by den Broeder following the line of treatment proposed by Wagner. Further, the relations for estimation of the intrinsic diffusion coefficients of the components and integrated interdiffusion coefficient are established with respect to the concentration normalized variable, which were not available earlier. The veracity of these methods is examined based on the estimation of data in Ni-Pd, Ni-Al and Cu-Sn systems. Our analysis indicates that both the approaches are logically correct and there is small difference in the estimated data in these systems although a higher difference could be found in other systems. The integrated interdiffusion coefficients with respect to the concentration (or concentration normalized variable) can only be estimated considering the ideal molar volume variation. This might be drawback in certain practical systems.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as nonlinear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) = int_Omega L(x, u(x), nabla u(x)) - f(x) u(x)dx. We show that if composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most B_L b^p, the solution to the PDE can be epsilon-approximated in the L^2 sense by a function with Barron norm Oleft(left(dB_Lright)^{max{p log(1/ epsilon), p^{log(1/epsilon)}}}right). By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating p, epsilon, B_L as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.
A Lie Group Approach to Riemannian Batch Normalization
Manifold-valued measurements exist in numerous applications within computer vision and machine learning. Recent studies have extended Deep Neural Networks (DNNs) to manifolds, and concomitantly, normalization techniques have also been adapted to several manifolds, referred to as Riemannian normalization. Nonetheless, most of the existing Riemannian normalization methods have been derived in an ad hoc manner and only apply to specific manifolds. This paper establishes a unified framework for Riemannian Batch Normalization (RBN) techniques on Lie groups. Our framework offers the theoretical guarantee of controlling both the Riemannian mean and variance. Empirically, we focus on Symmetric Positive Definite (SPD) manifolds, which possess three distinct types of Lie group structures. Using the deformation concept, we generalize the existing Lie groups on SPD manifolds into three families of parameterized Lie groups. Specific normalization layers induced by these Lie groups are then proposed for SPD neural networks. We demonstrate the effectiveness of our approach through three sets of experiments: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at https://github.com/GitZH-Chen/LieBN.git.
Generative Modeling for Low Dimensional Speech Attributes with Neural Spline Flows
Despite recent advances in generative modeling for text-to-speech synthesis, these models do not yet have the same fine-grained adjustability of pitch-conditioned deterministic models such as FastPitch and FastSpeech2. Pitch information is not only low-dimensional, but also discontinuous, making it particularly difficult to model in a generative setting. Our work explores several techniques for handling the aforementioned issues in the context of Normalizing Flow models. We also find this problem to be very well suited for Neural Spline flows, which is a highly expressive alternative to the more common affine-coupling mechanism in Normalizing Flows.
A Generalization of Transformer Networks to Graphs
We propose a generalization of transformer neural network architecture for arbitrary graphs. The original transformer was designed for Natural Language Processing (NLP), which operates on fully connected graphs representing all connections between the words in a sequence. Such architecture does not leverage the graph connectivity inductive bias, and can perform poorly when the graph topology is important and has not been encoded into the node features. We introduce a graph transformer with four new properties compared to the standard model. First, the attention mechanism is a function of the neighborhood connectivity for each node in the graph. Second, the positional encoding is represented by the Laplacian eigenvectors, which naturally generalize the sinusoidal positional encodings often used in NLP. Third, the layer normalization is replaced by a batch normalization layer, which provides faster training and better generalization performance. Finally, the architecture is extended to edge feature representation, which can be critical to tasks s.a. chemistry (bond type) or link prediction (entity relationship in knowledge graphs). Numerical experiments on a graph benchmark demonstrate the performance of the proposed graph transformer architecture. This work closes the gap between the original transformer, which was designed for the limited case of line graphs, and graph neural networks, that can work with arbitrary graphs. As our architecture is simple and generic, we believe it can be used as a black box for future applications that wish to consider transformer and graphs.
Benign Overfitting in Deep Neural Networks under Lazy Training
This paper focuses on over-parameterized deep neural networks (DNNs) with ReLU activation functions and proves that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification while obtaining (nearly) zero-training error under the lazy training regime. For this purpose, we unify three interrelated concepts of overparameterization, benign overfitting, and the Lipschitz constant of DNNs. Our results indicate that interpolating with smoother functions leads to better generalization. Furthermore, we investigate the special case where interpolating smooth ground-truth functions is performed by DNNs under the Neural Tangent Kernel (NTK) regime for generalization. Our result demonstrates that the generalization error converges to a constant order that only depends on label noise and initialization noise, which theoretically verifies benign overfitting. Our analysis provides a tight lower bound on the normalized margin under non-smooth activation functions, as well as the minimum eigenvalue of NTK under high-dimensional settings, which has its own interest in learning theory.
Parameter Competition Balancing for Model Merging
While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.
Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
Increasing the size of a Transformer model does not always lead to enhanced performance. This phenomenon cannot be explained by the empirical scaling laws. Furthermore, improved generalization ability occurs as the model memorizes the training samples. We present a theoretical framework that sheds light on the memorization process and performance dynamics of transformer-based language models. We model the behavior of Transformers with associative memories using Hopfield networks, such that each transformer block effectively conducts an approximate nearest-neighbor search. Based on this, we design an energy function analogous to that in the modern continuous Hopfield network which provides an insightful explanation for the attention mechanism. Using the majorization-minimization technique, we construct a global energy function that captures the layered architecture of the Transformer. Under specific conditions, we show that the minimum achievable cross-entropy loss is bounded from below by a constant approximately equal to 1. We substantiate our theoretical results by conducting experiments with GPT-2 on various data sizes, as well as training vanilla Transformers on a dataset of 2M tokens.
Unraveling the Mystery of Scaling Laws: Part I
Scaling law principles indicate a power-law correlation between loss and variables such as model size, dataset size, and computational resources utilized during training. These principles play a vital role in optimizing various aspects of model pre-training, ultimately contributing to the success of large language models such as GPT-4, Llama and Gemini. However, the original scaling law paper by OpenAI did not disclose the complete details necessary to derive the precise scaling law formulas, and their conclusions are only based on models containing up to 1.5 billion parameters. Though some subsequent works attempt to unveil these details and scale to larger models, they often neglect the training dependency of important factors such as the learning rate, context length and batch size, leading to their failure to establish a reliable formula for predicting the test loss trajectory. In this technical report, we confirm that the scaling law formulations proposed in the original OpenAI paper remain valid when scaling the model size up to 33 billion, but the constant coefficients in these formulas vary significantly with the experiment setup. We meticulously identify influential factors and provide transparent, step-by-step instructions to estimate all constant terms in scaling-law formulas by training on models with only 1M~60M parameters. Using these estimated formulas, we showcase the capability to accurately predict various attributes for models with up to 33B parameters before their training, including (1) the minimum possible test loss; (2) the minimum required training steps and processed tokens to achieve a specific loss; (3) the critical batch size with an optimal time/computation trade-off at any loss value; and (4) the complete test loss trajectory with arbitrary batch size.
What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization
Summarization models often generate text that is poorly calibrated to quality metrics because they are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has added a calibration step, which exposes a model to its own ranked outputs to improve relevance or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While effective, much of this work has focused on how to generate and optimize these sets. Less is known about why one setup is more effective than another. In this work, we uncover the underlying characteristics of effective sets. For each training instance, we form a large, diverse pool of candidates and systematically vary the subsets used for calibration fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity or the size of the gap between positive and negatives. On three diverse scientific long-form summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among others, that faithfulness calibration is optimal when the negative sets are extractive and more likely to be generated, whereas for relevance calibration, the metric margin between candidates should be maximized and surprise--the disagreement between model and metric defined candidate rankings--minimized. Code to create, select, and optimize calibration sets is available at https://github.com/griff4692/calibrating-summaries
Research without Re-search: Maximal Update Parametrization Yields Accurate Loss Prediction across Scales
As language models scale up, it becomes increasingly expensive to verify research ideas because conclusions on small models do not trivially transfer to large ones. A possible solution is to establish a generic system that directly predicts some metrics for large models solely based on the results and hyperparameters from small models. Existing methods based on scaling laws require hyperparameter search on the largest models, which is impractical with limited resources. We address this issue by presenting our discoveries indicating that Maximal Update parametrization (Mup) enables accurate fitting of scaling laws for hyperparameters close to common loss basins, without any search. Thus, different models can be directly compared on large scales with loss prediction even before the training starts. We propose a new paradigm as a first step towards reliable academic research for any model scale without heavy computation. Code is publicly available at https://github.com/cofe-ai/Mu-scaling.
LegendreTron: Uprising Proper Multiclass Loss Learning
Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as properness, which asserts that Bayes' rule is optimal. Recent works have sought to learn losses and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps R to [0,1] to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between R^{C-1} and the projected probability simplex Delta^{C-1} by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns proper canonical losses and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a t-test at 99% significance on all datasets with greater than 10 classes.
Marginal Tail-Adaptive Normalizing Flows
Learning the tail behavior of a distribution is a notoriously difficult problem. By definition, the number of samples from the tail is small, and deep generative models, such as normalizing flows, tend to concentrate on learning the body of the distribution. In this paper, we focus on improving the ability of normalizing flows to correctly capture the tail behavior and, thus, form more accurate models. We prove that the marginal tailedness of an autoregressive flow can be controlled via the tailedness of the marginals of its base distribution. This theoretical insight leads us to a novel type of flows based on flexible base distributions and data-driven linear layers. An empirical analysis shows that the proposed method improves on the accuracy -- especially on the tails of the distribution -- and is able to generate heavy-tailed data. We demonstrate its application on a weather and climate example, in which capturing the tail behavior is essential.
Peri-LN: Revisiting Layer Normalization in the Transformer Architecture
Designing Transformer architectures with the optimal layer normalization (LN) strategy that ensures large-scale training stability and expedite convergence has remained elusive, even in this era of large language models (LLMs). To this end, we present a comprehensive analytical foundation for understanding how different LN strategies influence training dynamics in large-scale Transformer training. Until recently, Pre-LN and Post-LN have long dominated standard practices despite their limitations in large-scale training. However, several open-source large-scale models have recently begun silently adopting a third strategy without much explanation. This strategy places layer normalization (LN) peripherally around sublayers, a design we term Peri-LN. While Peri-LN has demonstrated promising empirical performance, its precise mechanisms and benefits remain almost unexplored. Our in-depth analysis shows that Peri-LN strikes an ideal balance in variance growth -- unlike Pre-LN and Post-LN, which are prone to vanishing gradients and ``massive activations.'' To validate our theoretical insight, we conduct large-scale experiments on Transformers up to 3.2B parameters, showing that Peri-LN consistently achieves more balanced variance growth, steadier gradient flow, and convergence stability. Our results suggest that Peri-LN warrants broader consideration for large-scale Transformer architectures, providing renewed insights into the optimal placement and application of LN.
High-Performance Large-Scale Image Recognition Without Normalization
Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at https://github.com/deepmind/ deepmind-research/tree/master/nfnets
Test-time Batch Statistics Calibration for Covariate Shift
Deep neural networks have a clear degradation when applying to the unseen environment due to the covariate shift. Conventional approaches like domain adaptation requires the pre-collected target data for iterative training, which is impractical in real-world applications. In this paper, we propose to adapt the deep models to the novel environment during inference. An previous solution is test time normalization, which substitutes the source statistics in BN layers with the target batch statistics. However, we show that test time normalization may potentially deteriorate the discriminative structures due to the mismatch between target batch statistics and source parameters. To this end, we present a general formulation alpha-BN to calibrate the batch statistics by mixing up the source and target statistics for both alleviating the domain shift and preserving the discriminative structures. Based on alpha-BN, we further present a novel loss function to form a unified test time adaptation framework Core, which performs the pairwise class correlation online optimization. Extensive experiments show that our approaches achieve the state-of-the-art performance on total twelve datasets from three topics, including model robustness to corruptions, domain generalization on image classification and semantic segmentation. Particularly, our alpha-BN improves 28.4\% to 43.9\% on GTA5 rightarrow Cityscapes without any training, even outperforms the latest source-free domain adaptation method.
The Languini Kitchen: Enabling Language Modelling Research at Different Scales of Compute
The Languini Kitchen serves as both a research collective and codebase designed to empower researchers with limited computational resources to contribute meaningfully to the field of language modelling. We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours. The number of tokens on which a model is trained is defined by the model's throughput and the chosen compute class. Notably, this approach avoids constraints on critical hyperparameters which affect total parameters or floating-point operations. For evaluation, we pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length. On it, we compare methods based on their empirical scaling trends which are estimated through experiments at various levels of compute. This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput. While the GPT baseline achieves better perplexity throughout all our levels of compute, our LSTM baseline exhibits a predictable and more favourable scaling law. This is due to the improved throughput and the need for fewer training tokens to achieve the same decrease in test perplexity. Extrapolating the scaling laws leads of both models results in an intersection at roughly 50,000 accelerator hours. We hope this work can serve as the foundation for meaningful and reproducible language modelling research.
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
Although deep learning has produced dazzling successes for applications of image, speech, and video processing in the past few years, most trainings are with suboptimal hyper-parameters, requiring unnecessarily long training times. Setting the hyper-parameters remains a black art that requires years of experience to acquire. This report proposes several efficient ways to set the hyper-parameters that significantly reduce training time and improves performance. Specifically, this report shows how to examine the training validation/test loss function for subtle clues of underfitting and overfitting and suggests guidelines for moving toward the optimal balance point. Then it discusses how to increase/decrease the learning rate/momentum to speed up training. Our experiments show that it is crucial to balance every manner of regularization for each dataset and architecture. Weight decay is used as a sample regularizer to show how its optimal value is tightly coupled with the learning rates and momentums. Files to help replicate the results reported here are available.
The Curse of Depth in Large Language Models
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models(LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling, which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Our experimental results, spanning model sizes from 130M to 1B, demonstrate that LayerNorm Scaling significantly enhances LLM pre-training performance compared to Pre-LN. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training.
Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving reasoning over quantities, especially arithmetics. This has particular relevance in scientific datasets where combinations of text and numerical data are abundant. One fundamental limitation is the nature of the CE loss, which assumes a nominal (categorical) scale and thus cannot convey proximity between generated number tokens. As a remedy, we here present two versions of a number token loss. The first is based on an L_p loss between the ground truth token value and the weighted sum of the predicted class probabilities. The second loss minimizes the Wasserstein-1 distance between the distribution of the predicted output probabilities and the ground truth distribution. These regression-like losses can easily be added to any language model and extend the CE objective during training. We compare the proposed schemes on a mathematics dataset against existing tokenization, encoding, and decoding schemes for improving number representation in language models. Our results reveal a significant improvement in numerical accuracy when equipping a standard T5 model with the proposed loss schemes.
Best-First Beam Search
Decoding for many NLP tasks requires an effective heuristic algorithm for approximating exact search since the problem of searching the full output space is often intractable, or impractical in many settings. The default algorithm for this job is beam search -- a pruned version of breadth-first search. Quite surprisingly, beam search often returns better results than exact inference due to beneficial search bias for NLP tasks. In this work, we show that the standard implementation of beam search can be made up to 10x faster in practice. Our method assumes that the scoring function is monotonic in the sequence length, which allows us to safely prune hypotheses that cannot be in the final set of hypotheses early on. We devise effective monotonic approximations to popular nonmonontic scoring functions, including length normalization and mutual information decoding. Lastly, we propose a memory-reduced variant of Best-First Beam Search, which has a similar beneficial search bias in terms of downstream performance, but runs in a fraction of the time.
A Large-Scale Exploration of μ-Transfer
Large artificial neural networks have become a mainstay of language, vision, and audio processing and synthesis, yet their initializations and learning rates are often set in an unsophisticated fashion, due to the high cost of hyperparameter sweeps at scale. The mu-Parameterization (muP) offers a potential solution to this challenge, yielding scaling rules for model initialization and learning rates while reportedly enabling zero-shot hyperparameter transfer from small to large models. Despite its evident promise, the muP method is not yet widely adopted, perhaps due to higher implementation complexity, many variations, or complex theoretical background. This work investigates muP empirically, focusing on the ubiquitous transformer architecture, and aims to answer a simple question: does mu-Transfer yield optimal learning rates in practice? Studying models of up to 10B parameters and training budgets of up to 190B tokens, we find mu-Transfer works as intended for the majority of important cases, yet also identify a few cases where it may not.
Lowering PyTorch's Memory Consumption for Selective Differentiation
Memory is a limiting resource for many deep learning tasks. Beside the neural network weights, one main memory consumer is the computation graph built up by automatic differentiation (AD) for backpropagation. We observe that PyTorch's current AD implementation neglects information about parameter differentiability when storing the computation graph. This information is useful though to reduce memory whenever gradients are requested for a parameter subset, as is the case in many modern fine-tuning tasks. Specifically, inputs to layers that act linearly in their parameters (dense, convolution, or normalization layers) can be discarded whenever the parameters are marked as non-differentiable. We provide a drop-in, differentiability-agnostic implementation of such layers and demonstrate its ability to reduce memory without affecting run time.
Multi-stage Neural Networks: Function Approximator of Machine Precision
Deep learning techniques are increasingly applied to scientific problems, where the precision of networks is crucial. Despite being deemed as universal function approximators, neural networks, in practice, struggle to reduce the prediction errors below O(10^{-5}) even with large network size and extended training iterations. To address this issue, we developed the multi-stage neural networks that divides the training process into different stages, with each stage using a new network that is optimized to fit the residue from the previous stage. Across successive stages, the residue magnitudes decreases substantially and follows an inverse power-law relationship with the residue frequencies. The multi-stage neural networks effectively mitigate the spectral biases associated with regular neural networks, enabling them to capture the high frequency feature of target functions. We demonstrate that the prediction error from the multi-stage training for both regression problems and physics-informed neural networks can nearly reach the machine-precision O(10^{-16}) of double-floating point within a finite number of iterations. Such levels of accuracy are rarely attainable using single neural networks alone.
On Layer Normalization in the Transformer Architecture
The Transformer is widely used in natural language processing tasks. To train a Transformer however, one usually needs a carefully designed learning rate warm-up stage, which is shown to be crucial to the final performance but will slow down the optimization and bring more hyper-parameter tunings. In this paper, we first study theoretically why the learning rate warm-up stage is essential and show that the location of layer normalization matters. Specifically, we prove with mean field theory that at initialization, for the original-designed Post-LN Transformer, which places the layer normalization between the residual blocks, the expected gradients of the parameters near the output layer are large. Therefore, using a large learning rate on those gradients makes the training unstable. The warm-up stage is practically helpful for avoiding this problem. On the other hand, our theory also shows that if the layer normalization is put inside the residual blocks (recently proposed as Pre-LN Transformer), the gradients are well-behaved at initialization. This motivates us to remove the warm-up stage for the training of Pre-LN Transformers. We show in our experiments that Pre-LN Transformers without the warm-up stage can reach comparable results with baselines while requiring significantly less training time and hyper-parameter tuning on a wide range of applications.
Linguistic Collapse: Neural Collapse in (Large) Language Models
Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.
Digestion Algorithm in Hierarchical Symbolic Forests: A Fast Text Normalization Algorithm and Semantic Parsing Framework for Specific Scenarios and Lightweight Deployment
Text Normalization and Semantic Parsing have numerous applications in natural language processing, such as natural language programming, paraphrasing, data augmentation, constructing expert systems, text matching, and more. Despite the prominent achievements of deep learning in Large Language Models (LLMs), the interpretability of neural network architectures is still poor, which affects their credibility and hence limits the deployments of risk-sensitive scenarios. In certain scenario-specific domains with scarce data, rapidly obtaining a large number of supervised learning labels is challenging, and the workload of manually labeling data would be enormous. Catastrophic forgetting in neural networks further leads to low data utilization rates. In situations where swift responses are vital, the density of the model makes local deployment difficult and the response time long, which is not conducive to local applications of these fields. Inspired by the multiplication rule, a principle of combinatorial mathematics, and human thinking patterns, a multilayer framework along with its algorithm, the Digestion Algorithm in Hierarchical Symbolic Forests (DAHSF), is proposed to address these above issues, combining text normalization and semantic parsing workflows. The Chinese Scripting Language "Fire Bunny Intelligent Development Platform V2.0" is an important test and application of the technology discussed in this paper. DAHSF can run locally in scenario-specific domains on little datasets, with model size and memory usage optimized by at least two orders of magnitude, thus improving the execution speed, and possessing a promising optimization outlook.
From Logistic Regression to the Perceptron Algorithm: Exploring Gradient Descent with Large Step Sizes
We focus on the classification problem with a separable dataset, one of the most important and classical problems from machine learning. The standard approach to this task is logistic regression with gradient descent (LR+GD). Recent studies have observed that LR+GD can find a solution with arbitrarily large step sizes, defying conventional optimization theory. Our work investigates this phenomenon and makes three interconnected key observations about LR+GD with large step sizes. First, we find a remarkably simple explanation of why LR+GD with large step sizes solves the classification problem: LR+GD reduces to a batch version of the celebrated perceptron algorithm when the step size gamma to infty. Second, we observe that larger step sizes lead LR+GD to higher logistic losses when it tends to the perceptron algorithm, but larger step sizes also lead to faster convergence to a solution for the classification problem, meaning that logistic loss is an unreliable metric of the proximity to a solution. Surprisingly, high loss values can actually indicate faster convergence. Third, since the convergence rate in terms of loss function values of LR+GD is unreliable, we examine the iteration complexity required by LR+GD with large step sizes to solve the classification problem and prove that this complexity is suboptimal. To address this, we propose a new method, Normalized LR+GD - based on the connection between LR+GD and the perceptron algorithm - with much better theoretical guarantees.
Rethinking Data Distillation: Do Not Overlook Calibration
Neural networks trained on distilled data often produce over-confident output and require correction by calibration methods. Existing calibration methods such as temperature scaling and mixup work well for networks trained on original large-scale data. However, we find that these methods fail to calibrate networks trained on data distilled from large source datasets. In this paper, we show that distilled data lead to networks that are not calibratable due to (i) a more concentrated distribution of the maximum logits and (ii) the loss of information that is semantically meaningful but unrelated to classification tasks. To address this problem, we propose Masked Temperature Scaling (MTS) and Masked Distillation Training (MDT) which mitigate the limitations of distilled data and achieve better calibration results while maintaining the efficiency of dataset distillation.
Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate eta and batch size B. While techniques like muP (Yang et al., 2022) provide scaling rules for optimal eta transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal eta scaling on the pretraining token budget T, B and its relation to the critical batch size B_crit, which we measure to evolve as B_crit propto T. Furthermore, we show that the optimal batch size is positively correlated with B_crit: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal eta and B dynamics are preserved with muP model scaling, challenging the conventional view of B_crit dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of T and to remain constant with muP model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
Gradient-Mask Tuning Elevates the Upper Limits of LLM Performance
Large language models (LLMs) have revolutionized lots of fields of research. Although it is well-known that fine-tuning is essential for enhancing the capabilities of LLMs, existing research suggests that there is potential redundancy in the fine-tuning process and therefore proposes to update only a subset of parameters. However, these methods fail to leverage the task-specific information to identify important parameters during training. Based on the insight that gradients inherently contain information on task-specific data, we propose Gradient-Mask Tuning (GMT), a method that selectively updates parameters during training based on their gradient information. Specifically, we compute the absolute values of the gradients and apply masking to those with relatively smaller magnitudes. Our empirical results across various tasks demonstrate that GMT not only outperforms traditional fine-tuning methods but also elevates the upper limits of LLM performance. Further analysis indicates that GMT exhibits insensitivity to mask ratio and possesses computational efficiency comparable to vanilla SFT.
No Word is an Island -- A Transformation Weighting Model for Semantic Composition
Composition models of distributional semantics are used to construct phrase representations from the representations of their words. Composition models are typically situated on two ends of a spectrum. They either have a small number of parameters but compose all phrases in the same way, or they perform word-specific compositions at the cost of a far larger number of parameters. In this paper we propose transformation weighting (TransWeight), a composition model that consistently outperforms existing models on nominal compounds, adjective-noun phrases and adverb-adjective phrases in English, German and Dutch. TransWeight drastically reduces the number of parameters needed compared to the best model in the literature by composing similar words in the same way.
MathBridge: A Large-Scale Dataset for Translating Mathematical Expressions into Formula Images
Understanding sentences that contain mathematical expressions in text form poses significant challenges. To address this, the importance of converting these expressions into formula images has been highlighted. For instance, the expression ``x equals minus b plus or minus the square root of b squared minus four a c, all over two a'' is more readily comprehensible when displayed as an image x = -b pm sqrt{b^2 - 4ac}{2a}. To develop a text-to-image conversion system, we can break down the process into text-to-LaTeX and LaTeX-to-image conversions, with the latter being managed with by existing various LaTeX engines. However, the former approach has been notably hindered by the severe scarcity of text-to-LaTeX paired data, presenting a significant challenge in the field.In this context, we introduce MathBridge, the first extensive dataset for translating mathematical spoken English into LaTeX, which aims to establish a robust baseline for future research in text-to-LaTeX translation. MathBridge comprises approximately 23 million LaTeX formulas paired with corresponding spoken English expressions. Through comprehensive evaluations, including fine-tuning and testing with data, we discovered that MathBridge significantly enhances pre-trained language models' capabilities for text-to-LaTeX translation. Specifically, for the T5-large model, the sacreBLEU score increased from 4.77 to 46.8, demonstrating substantial enhancement. Our findings indicate the necessity for a new metric specifically for text-to-LaTeX conversion evaluation.
Lifelong Machine Learning Potentials
Machine learning potentials (MLPs) trained on accurate quantum chemical data can retain the high accuracy, while inflicting little computational demands. On the downside, they need to be trained for each individual system. In recent years, a vast number of MLPs has been trained from scratch because learning additional data typically requires to train again on all data to not forget previously acquired knowledge. Additionally, most common structural descriptors of MLPs cannot represent efficiently a large number of different chemical elements. In this work, we tackle these problems by introducing element-embracing atom-centered symmetry functions (eeACSFs) which combine structural properties and element information from the periodic table. These eeACSFs are a key for our development of a lifelong machine learning potential (lMLP). Uncertainty quantification can be exploited to transgress a fixed, pre-trained MLP to arrive at a continuously adapting lMLP, because a predefined level of accuracy can be ensured. To extend the applicability of an lMLP to new systems, we apply continual learning strategies to enable autonomous and on-the-fly training on a continuous stream of new data. For the training of deep neural networks, we propose the continual resilient (CoRe) optimizer and incremental learning strategies relying on rehearsal of data, regularization of parameters, and the architecture of the model.
OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting
Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. https://github.com/BrotherHappy/OSTQuant{https://github.com/BrotherHappy/OSTQuant}.
Deep Neural Networks Tend To Extrapolate Predictably
Conventional wisdom suggests that neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs. Our work reassesses this assumption for neural networks with high-dimensional inputs. Rather than extrapolating in arbitrary ways, we observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD. Moreover, we find that this value often closely approximates the optimal constant solution (OCS), i.e., the prediction that minimizes the average loss over the training data without observing the input. We present results showing this phenomenon across 8 datasets with different distributional shifts (including CIFAR10-C and ImageNet-R, S), different loss functions (cross entropy, MSE, and Gaussian NLL), and different architectures (CNNs and transformers). Furthermore, we present an explanation for this behavior, which we first validate empirically and then study theoretically in a simplified setting involving deep homogeneous networks with ReLU activations. Finally, we show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
Pruning as a Domain-specific LLM Extractor
Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task-agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.
Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
In several recently proposed stochastic optimization methods (e.g. RMSProp, Adam, Adadelta), parameter updates are scaled by the inverse square roots of exponential moving averages of squared past gradients. Maintaining these per-parameter second-moment estimators requires memory equal to the number of parameters. For the case of neural network weight matrices, we propose maintaining only the per-row and per-column sums of these moving averages, and estimating the per-parameter second moments based on these sums. We demonstrate empirically that this method produces similar results to the baseline. Secondly, we show that adaptive methods can produce larger-than-desired updates when the decay rate of the second moment accumulator is too slow. We propose update clipping and a gradually increasing decay rate scheme as remedies. Combining these methods and dropping momentum, we achieve comparable results to the published Adam regime in training the Transformer model on the WMT 2014 English-German machine translation task, while using very little auxiliary storage in the optimizer. Finally, we propose scaling the parameter updates based on the scale of the parameters themselves.
Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models
Text generation models are notoriously vulnerable to errors in the training data. With the wide-spread availability of massive amounts of web-crawled data becoming more commonplace, how can we enhance the robustness of models trained on a massive amount of noisy web-crawled text? In our work, we propose Error Norm Truncation (ENT), a robust enhancement method to the standard training objective that truncates noisy data. Compared to methods that only uses the negative log-likelihood loss to estimate data quality, our method provides a more accurate estimation by considering the distribution of non-target tokens, which is often overlooked by previous work. Through comprehensive experiments across language modeling, machine translation, and text summarization, we show that equipping text generation models with ENT improves generation quality over standard training and previous soft and hard truncation methods. Furthermore, we show that our method improves the robustness of models against two of the most detrimental types of noise in machine translation, resulting in an increase of more than 2 BLEU points over the MLE baseline when up to 50% of noise is added to the data.
From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models
To date, toxicity mitigation in language models has almost entirely been focused on single-language settings. As language models embrace multilingual capabilities, it's crucial our safety measures keep pace. Recognizing this research gap, our approach expands the scope of conventional toxicity mitigation to address the complexities presented by multiple languages. In the absence of sufficient annotated datasets across languages, we employ translated data to evaluate and enhance our mitigation techniques. We also compare finetuning mitigation approaches against retrieval-augmented techniques under both static and continual toxicity mitigation scenarios. This allows us to examine the effects of translation quality and the cross-lingual transfer on toxicity mitigation. We also explore how model size and data quantity affect the success of these mitigation efforts. Covering nine languages, our study represents a broad array of linguistic families and levels of resource availability, ranging from high to mid-resource languages. Through comprehensive experiments, we provide insights into the complexities of multilingual toxicity mitigation, offering valuable insights and paving the way for future research in this increasingly important field. Code and data are available at https://github.com/for-ai/goodtriever.
Realizable Learning is All You Need
The equivalence of realizable and agnostic learnability is a fundamental phenomenon in learning theory. With variants ranging from classical settings like PAC learning and regression to recent trends such as adversarially robust learning, it's surprising that we still lack a unified theory; traditional proofs of the equivalence tend to be disparate, and rely on strong model-specific assumptions like uniform convergence and sample compression. In this work, we give the first model-independent framework explaining the equivalence of realizable and agnostic learnability: a three-line blackbox reduction that simplifies, unifies, and extends our understanding across a wide variety of settings. This includes models with no known characterization of learnability such as learning with arbitrary distributional assumptions and more general loss functions, as well as a host of other popular settings such as robust learning, partial learning, fair learning, and the statistical query model. More generally, we argue that the equivalence of realizable and agnostic learning is actually a special case of a broader phenomenon we call property generalization: any desirable property of a learning algorithm (e.g. noise tolerance, privacy, stability) that can be satisfied over finite hypothesis classes extends (possibly in some variation) to any learnable hypothesis class.
Mitigating the Accuracy-Robustness Trade-off via Multi-Teacher Adversarial Distillation
Adversarial training is a practical approach for improving the robustness of deep neural networks against adversarial attacks. Although bringing reliable robustness, the performance toward clean examples is negatively affected after adversarial training, which means a trade-off exists between accuracy and robustness. Recently, some studies have tried to use knowledge distillation methods in adversarial training, achieving competitive performance in improving the robustness but the accuracy for clean samples is still limited. In this paper, to mitigate the accuracy-robustness trade-off, we introduce the Multi-Teacher Adversarial Robustness Distillation (MTARD) to guide the model's adversarial training process by applying a strong clean teacher and a strong robust teacher to handle the clean examples and adversarial examples, respectively. During the optimization process, to ensure that different teachers show similar knowledge scales, we design the Entropy-Based Balance algorithm to adjust the teacher's temperature and keep the teachers' information entropy consistent. Besides, to ensure that the student has a relatively consistent learning speed from multiple teachers, we propose the Normalization Loss Balance algorithm to adjust the learning weights of different types of knowledge. A series of experiments conducted on public datasets demonstrate that MTARD outperforms the state-of-the-art adversarial training and distillation methods against various adversarial attacks.
Scaling Laws for Neural Machine Translation
We present an empirical study of scaling properties of encoder-decoder Transformer models used in neural machine translation (NMT). We show that cross-entropy loss as a function of model size follows a certain scaling law. Specifically (i) We propose a formula which describes the scaling behavior of cross-entropy loss as a bivariate function of encoder and decoder size, and show that it gives accurate predictions under a variety of scaling approaches and languages; we show that the total number of parameters alone is not sufficient for such purposes. (ii) We observe different power law exponents when scaling the decoder vs scaling the encoder, and provide recommendations for optimal allocation of encoder/decoder capacity based on this observation. (iii) We also report that the scaling behavior of the model is acutely influenced by composition bias of the train/test sets, which we define as any deviation from naturally generated text (either via machine generated or human translated text). We observe that natural text on the target side enjoys scaling, which manifests as successful reduction of the cross-entropy loss. (iv) Finally, we investigate the relationship between the cross-entropy loss and the quality of the generated translations. We find two different behaviors, depending on the nature of the test data. For test sets which were originally translated from target language to source language, both loss and BLEU score improve as model size increases. In contrast, for test sets originally translated from source language to target language, the loss improves, but the BLEU score stops improving after a certain threshold. We release generated text from all models used in this study.
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses muP parameterized networks, where the optimal hyperparameters for small width networks transfer to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of 1/text{depth} in combination with the muP parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and Vision Transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
Extracting Radiological Findings With Normalized Anatomical Information Using a Span-Based BERT Relation Extraction Model
Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.
Gradient-Based Post-Training Quantization: Challenging the Status Quo
Quantization has become a crucial step for the efficient deployment of deep neural networks, where floating point operations are converted to simpler fixed point operations. In its most naive form, it simply consists in a combination of scaling and rounding transformations, leading to either a limited compression rate or a significant accuracy drop. Recently, Gradient-based post-training quantization (GPTQ) methods appears to be constitute a suitable trade-off between such simple methods and more powerful, yet expensive Quantization-Aware Training (QAT) approaches, particularly when attempting to quantize LLMs, where scalability of the quantization process is of paramount importance. GPTQ essentially consists in learning the rounding operation using a small calibration set. In this work, we challenge common choices in GPTQ methods. In particular, we show that the process is, to a certain extent, robust to a number of variables (weight selection, feature augmentation, choice of calibration set). More importantly, we derive a number of best practices for designing more efficient and scalable GPTQ methods, regarding the problem formulation (loss, degrees of freedom, use of non-uniform quantization schemes) or optimization process (choice of variable and optimizer). Lastly, we propose a novel importance-based mixed-precision technique. Those guidelines lead to significant performance improvements on all the tested state-of-the-art GPTQ methods and networks (e.g. +6.819 points on ViT for 4-bit quantization), paving the way for the design of scalable, yet effective quantization methods.
Improving Convergence and Generalization Using Parameter Symmetries
In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
Regularization-based Pruning of Irrelevant Weights in Deep Neural Architectures
Deep neural networks exploiting millions of parameters are nowadays the norm in deep learning applications. This is a potential issue because of the great amount of computational resources needed for training, and of the possible loss of generalization performance of overparametrized networks. We propose in this paper a method for learning sparse neural topologies via a regularization technique which identifies non relevant weights and selectively shrinks their norm, while performing a classic update for relevant ones. This technique, which is an improvement of classical weight decay, is based on the definition of a regularization term which can be added to any loss functional regardless of its form, resulting in a unified general framework exploitable in many different contexts. The actual elimination of parameters identified as irrelevant is handled by an iterative pruning algorithm. We tested the proposed technique on different image classification and Natural language generation tasks, obtaining results on par or better then competitors in terms of sparsity and metrics, while achieving strong models compression.
What's the score? Automated Denoising Score Matching for Nonlinear Diffusions
Reversing a diffusion process by learning its score forms the heart of diffusion-based generative modeling and for estimating properties of scientific systems. The diffusion processes that are tractable center on linear processes with a Gaussian stationary distribution. This limits the kinds of models that can be built to those that target a Gaussian prior or more generally limits the kinds of problems that can be generically solved to those that have conditionally linear score functions. In this work, we introduce a family of tractable denoising score matching objectives, called local-DSM, built using local increments of the diffusion process. We show how local-DSM melded with Taylor expansions enables automated training and score estimation with nonlinear diffusion processes. To demonstrate these ideas, we use automated-DSM to train generative models using non-Gaussian priors on challenging low dimensional distributions and the CIFAR10 image dataset. Additionally, we use the automated-DSM to learn the scores for nonlinear processes studied in statistical physics.
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
We propose ScaledGD(\lambda), a preconditioned gradient descent method to tackle the low-rank matrix sensing problem when the true rank is unknown, and when the matrix is possibly ill-conditioned. Using overparametrized factor representations, ScaledGD(\lambda) starts from a small random initialization, and proceeds by gradient descent with a specific form of damped preconditioning to combat bad curvatures induced by overparameterization and ill-conditioning. At the expense of light computational overhead incurred by preconditioners, ScaledGD(\lambda) is remarkably robust to ill-conditioning compared to vanilla gradient descent (GD) even with overprameterization. Specifically, we show that, under the Gaussian design, ScaledGD(\lambda) converges to the true low-rank matrix at a constant linear rate after a small number of iterations that scales only logarithmically with respect to the condition number and the problem dimension. This significantly improves over the convergence rate of vanilla GD which suffers from a polynomial dependency on the condition number. Our work provides evidence on the power of preconditioning in accelerating the convergence without hurting generalization in overparameterized learning.
Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants
We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.
Variational Inference with Normalizing Flows
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks
The loss functions of many learning problems contain multiple additive terms that can disagree and yield conflicting update directions. For Physics-Informed Neural Networks (PINNs), loss terms on initial/boundary conditions and physics equations are particularly interesting as they are well-established as highly difficult tasks. To improve learning the challenging multi-objective task posed by PINNs, we propose the ConFIG method, which provides conflict-free updates by ensuring a positive dot product between the final update and each loss-specific gradient. It also maintains consistent optimization rates for all loss terms and dynamically adjusts gradient magnitudes based on conflict levels. We additionally leverage momentum to accelerate optimizations by alternating the back-propagation of different loss terms. We provide a mathematical proof showing the convergence of the ConFIG method, and it is evaluated across a range of challenging PINN scenarios. ConFIG consistently shows superior performance and runtime compared to baseline methods. We also test the proposed method in a classic multi-task benchmark, where the ConFIG method likewise exhibits a highly promising performance. Source code is available at https://tum-pbs.github.io/ConFIG
Predicting Rewards Alongside Tokens: Non-disruptive Parameter Insertion for Efficient Inference Intervention in Large Language Model
Transformer-based large language models (LLMs) exhibit limitations such as generating unsafe responses, unreliable reasoning, etc. Existing inference intervention approaches attempt to mitigate these issues by finetuning additional models to produce calibration signals (such as rewards) that guide the LLM's decoding process. However, this solution introduces substantial time and space overhead due to the separate models required. This work proposes Non-disruptive parameters insertion (Otter), inserting extra parameters into the transformer architecture to predict calibration signals along with the original LLM output. Otter offers state-of-the-art performance on multiple demanding tasks while saving up to 86.5\% extra space and 98.5\% extra time. Furthermore, Otter seamlessly integrates with existing inference engines, requiring only a one-line code change, and the original model response remains accessible after the parameter insertion. Our code is publicly available at https://github.com/chenhan97/Otter
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
Understanding the quality of a performance evaluation metric is crucial for ensuring that model outputs align with human preferences. However, it remains unclear how well each metric captures the diverse aspects of these preferences, as metrics often excel in one particular area but not across all dimensions. To address this, it is essential to systematically calibrate metrics to specific aspects of human preference, catering to the unique characteristics of each aspect. We introduce MetaMetrics, a calibrated meta-metric designed to evaluate generation tasks across different modalities in a supervised manner. MetaMetrics optimizes the combination of existing metrics to enhance their alignment with human preferences. Our metric demonstrates flexibility and effectiveness in both language and vision downstream tasks, showing significant benefits across various multilingual and multi-domain scenarios. MetaMetrics aligns closely with human preferences and is highly extendable and easily integrable into any application. This makes MetaMetrics a powerful tool for improving the evaluation of generation tasks, ensuring that metrics are more representative of human judgment across diverse contexts.
CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
Large language models (LLMs) have demonstrated remarkable abilities in representation learning for program synthesis and understanding tasks. The quality of the learned representations appears to be dictated by the neural scaling laws as a function of the number of model parameters and observations, while imposing upper bounds on the model performance by the amount of available data and compute, which is costly. In this study, we attempt to render the training of LLMs for program synthesis more efficient by unifying four key components: (1) model architectures, (2) learning methods, (3) infill sampling, and, (4) data distributions. Specifically, for the model architecture, we attempt to unify encoder and decoder-based models into a single prefix-LM. For learning methods, (i) causal language modeling, (ii) span corruption, (iii) infilling are unified into a simple learning algorithm. For infill sampling, we explore the claim of a "free lunch" hypothesis. For data distributions, the effect of a mixture distribution of programming and natural languages on model performance is explored. We conduct a comprehensive series of empirical experiments on 1B LLMs, for which failures and successes of this exploration are distilled into four lessons. We will provide a final recipe for training and release CodeGen2 models in size 1B, 3.7B, 7B, and, 16B parameters, along with the training framework as open-source: https://github.com/salesforce/CodeGen2.
Generative Marginalization Models
We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM.
Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning
Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free 2^nd-order optimizers for deep learning in low precision settings. Code: https://github.com/yorkerlin/StructuredNGD-DL
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization
In this paper, we aim to optimize a contrastive loss with individualized temperatures in a principled and systematic manner for self-supervised learning. The common practice of using a global temperature parameter tau ignores the fact that ``not all semantics are created equal", meaning that different anchor data may have different numbers of samples with similar semantics, especially when data exhibits long-tails. First, we propose a new robust contrastive loss inspired by distributionally robust optimization (DRO), providing us an intuition about the effect of tau and a mechanism for automatic temperature individualization. Then, we propose an efficient stochastic algorithm for optimizing the robust contrastive loss with a provable convergence guarantee without using large mini-batch sizes. Theoretical and experimental results show that our algorithm automatically learns a suitable tau for each sample. Specifically, samples with frequent semantics use large temperatures to keep local semantic structures, while samples with rare semantics use small temperatures to induce more separable features. Our method not only outperforms prior strong baselines (e.g., SimCLR, CLIP) on unimodal and bimodal datasets with larger improvements on imbalanced data but also is less sensitive to hyper-parameters. To our best knowledge, this is the first methodical approach to optimizing a contrastive loss with individualized temperatures.
Cut your Losses with Squentropy
Nearly all practical neural models for classification are trained using cross-entropy loss. Yet this ubiquitous choice is supported by little theoretical or empirical evidence. Recent work (Hui & Belkin, 2020) suggests that training using the (rescaled) square loss is often superior in terms of the classification accuracy. In this paper we propose the "squentropy" loss, which is the sum of two terms: the cross-entropy loss and the average square loss over the incorrect classes. We provide an extensive set of experiments on multi-class classification problems showing that the squentropy loss outperforms both the pure cross entropy and rescaled square losses in terms of the classification accuracy. We also demonstrate that it provides significantly better model calibration than either of these alternative losses and, furthermore, has less variance with respect to the random initialization. Additionally, in contrast to the square loss, squentropy loss can typically be trained using exactly the same optimization parameters, including the learning rate, as the standard cross-entropy loss, making it a true "plug-and-play" replacement. Finally, unlike the rescaled square loss, multiclass squentropy contains no parameters that need to be adjusted.
Symbol Preference Aware Generative Models for Recovering Variable Names from Stripped Binary
Decompilation aims to recover the source code form of a binary executable. It has many security applications such as malware analysis, vulnerability detection and code hardening. A prominent challenge in decompilation is to recover variable names. We propose a novel technique that leverages the strengths of generative models while mitigating model biases and potential hallucinations. We build a prototype, GenNm, from pre-trained generative models CodeGemma-2B and CodeLlama-7B. We finetune GenNm on decompiled functions, and mitigate model biases by incorporating symbol preference to the training pipeline. GenNm includes names from callers and callees while querying a function, providing rich contextual information within the model's input token limitation. It further leverages program analysis to validate the consistency of names produced by the generative model. Our results show that GenNm improves the state-of-the-art name recovery accuracy by 8.6 and 11.4 percentage points on two commonly used datasets, and improves the state-of-the-art from 8.5% to 22.8% in the most challenging setup where ground-truth variable names are not seen in the training dataset.
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively so for neural networks (NNs) with billions of parameters. We show that, in the recently discovered Maximal Update Parametrization (muP), many optimal HPs remain stable even as model size changes. This leads to a new HP tuning paradigm we call muTransfer: parametrize the target model in muP, tune the HP indirectly on a smaller model, and zero-shot transfer them to the full-sized model, i.e., without directly tuning the latter at all. We verify muTransfer on Transformer and ResNet. For example, 1) by transferring pretraining HPs from a model of 13M parameters, we outperform published numbers of BERT-large (350M parameters), with a total tuning cost equivalent to pretraining BERT-large once; 2) by transferring from 40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with tuning cost only 7% of total pretraining cost. A Pytorch implementation of our technique can be found at github.com/microsoft/mup and installable via `pip install mup`.
Improve Representation for Imbalanced Regression through Geometric Constraints
In representation learning, uniformity refers to the uniform feature distribution in the latent space (i.e., unit hypersphere). Previous work has shown that improving uniformity contributes to the learning of under-represented classes. However, most of the previous work focused on classification; the representation space of imbalanced regression remains unexplored. Classification-based methods are not suitable for regression tasks because they cluster features into distinct groups without considering the continuous and ordered nature essential for regression. In a geometric aspect, we uniquely focus on ensuring uniformity in the latent space for imbalanced regression through two key losses: enveloping and homogeneity. The enveloping loss encourages the induced trace to uniformly occupy the surface of a hypersphere, while the homogeneity loss ensures smoothness, with representations evenly spaced at consistent intervals. Our method integrates these geometric principles into the data representations via a Surrogate-driven Representation Learning (SRL) framework. Experiments with real-world regression and operator learning tasks highlight the importance of uniformity in imbalanced regression and validate the efficacy of our geometry-based loss functions.
Un-Mixing Test-Time Normalization Statistics: Combatting Label Temporal Correlation
Recent test-time adaptation methods heavily rely on nuanced adjustments of batch normalization (BN) parameters. However, one critical assumption often goes overlooked: that of independently and identically distributed (i.i.d.) test batches with respect to unknown labels. This oversight leads to skewed BN statistics and undermines the reliability of the model under non-i.i.d. scenarios. To tackle this challenge, this paper presents a novel method termed 'Un-Mixing Test-Time Normalization Statistics' (UnMix-TNS). Our method re-calibrates the statistics for each instance within a test batch by mixing it with multiple distinct statistics components, thus inherently simulating the i.i.d. scenario. The core of this method hinges on a distinctive online unmixing procedure that continuously updates these statistics components by incorporating the most similar instances from new test batches. Remarkably generic in its design, UnMix-TNS seamlessly integrates with a wide range of leading test-time adaptation methods and pre-trained architectures equipped with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS under varied scenarios-ranging from single to continual and mixed domain shifts, particularly excelling with temporally correlated test data and corrupted non-i.i.d. real-world streams. This adaptability is maintained even with very small batch sizes or single instances. Our results highlight UnMix-TNS's capacity to markedly enhance stability and performance across various benchmarks. Our code is publicly available at https://github.com/devavratTomar/unmixtns.
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.
Knowledge Distillation Based on Transformed Teacher Matching
As a technique to bridge logit matching and probability distribution matching, temperature scaling plays a pivotal role in knowledge distillation (KD). Conventionally, temperature scaling is applied to both teacher's logits and student's logits in KD. Motivated by some recent works, in this paper, we drop instead temperature scaling on the student side, and systematically study the resulting variant of KD, dubbed transformed teacher matching (TTM). By reinterpreting temperature scaling as a power transform of probability distribution, we show that in comparison with the original KD, TTM has an inherent R\'enyi entropy term in its objective function, which serves as an extra regularization term. Extensive experiment results demonstrate that thanks to this inherent regularization, TTM leads to trained students with better generalization than the original KD. To further enhance student's capability to match teacher's power transformed probability distribution, we introduce a sample-adaptive weighting coefficient into TTM, yielding a novel distillation approach dubbed weighted TTM (WTTM). It is shown, by comprehensive experiments, that although WTTM is simple, it is effective, improves upon TTM, and achieves state-of-the-art accuracy performance. Our source code is available at https://github.com/zkxufo/TTM.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes
Recently the LARS and LAMB optimizers have been proposed for training neural networks faster using large batch sizes. LARS and LAMB add layer-wise normalization to the update rules of Heavy-ball momentum and Adam, respectively, and have become popular in prominent benchmarks and deep learning libraries. However, without fair comparisons to standard optimizers, it remains an open question whether LARS and LAMB have any benefit over traditional, generic algorithms. In this work we demonstrate that standard optimization algorithms such as Nesterov momentum and Adam can match or exceed the results of LARS and LAMB at large batch sizes. Our results establish new, stronger baselines for future comparisons at these batch sizes and shed light on the difficulties of comparing optimizers for neural network training more generally.
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
Training stability is of great importance to Transformers. In this work, we investigate the training dynamics of Transformers by examining the evolution of the attention layers. In particular, we track the attention entropy for each attention head during the course of training, which is a proxy for model sharpness. We identify a common pattern across different architectures and tasks, where low attention entropy is accompanied by high training instability, which can take the form of oscillating loss or divergence. We denote the pathologically low attention entropy, corresponding to highly concentrated attention scores, as entropy collapse. As a remedy, we propose sigmaReparam, a simple and efficient solution where we reparametrize all linear layers with spectral normalization and an additional learned scalar. We demonstrate that the proposed reparameterization successfully prevents entropy collapse in the attention layers, promoting more stable training. Additionally, we prove a tight lower bound of the attention entropy, which decreases exponentially fast with the spectral norm of the attention logits, providing additional motivation for our approach. We conduct experiments with sigmaReparam on image classification, image self-supervised learning, machine translation, automatic speech recognition, and language modeling tasks, across Transformer architectures. We show that sigmaReparam provides stability and robustness with respect to the choice of hyperparameters, going so far as enabling training (a) a Vision Transformer to competitive performance without warmup, weight decay, layer normalization or adaptive optimizers; (b) deep architectures in machine translation and (c) speech recognition to competitive performance without warmup and adaptive optimizers.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
Constrained Monotonic Neural Networks
Wider adoption of neural networks in many critical domains such as finance and healthcare is being hindered by the need to explain their predictions and to impose additional constraints on them. Monotonicity constraint is one of the most requested properties in real-world scenarios and is the focus of this paper. One of the oldest ways to construct a monotonic fully connected neural network is to constrain signs on its weights. Unfortunately, this construction does not work with popular non-saturated activation functions as it can only approximate convex functions. We show this shortcoming can be fixed by constructing two additional activation functions from a typical unsaturated monotonic activation function and employing each of them on the part of neurons. Our experiments show this approach of building monotonic neural networks has better accuracy when compared to other state-of-the-art methods, while being the simplest one in the sense of having the least number of parameters, and not requiring any modifications to the learning procedure or post-learning steps. Finally, we prove it can approximate any continuous monotone function on a compact subset of R^n.