Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTowards Robust Model Watermark via Reducing Parametric Vulnerability
Deep neural networks are valuable assets considering their commercial benefits and huge demands for costly annotation and computation resources. To protect the copyright of DNNs, backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model by embedding a specific backdoor behavior before releasing it. The defenders (usually the model owners) can identify whether a suspicious third-party model is ``stolen'' from them based on the presence of the behavior. Unfortunately, these watermarks are proven to be vulnerable to removal attacks even like fine-tuning. To further explore this vulnerability, we investigate the parameter space and find there exist many watermark-removed models in the vicinity of the watermarked one, which may be easily used by removal attacks. Inspired by this finding, we propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior. Extensive experiments demonstrate that our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks. The codes for reproducing our main experiments are available at https://github.com/GuanhaoGan/robust-model-watermarking.
IDEAW: Robust Neural Audio Watermarking with Invertible Dual-Embedding
The audio watermarking technique embeds messages into audio and accurately extracts messages from the watermarked audio. Traditional methods develop algorithms based on expert experience to embed watermarks into the time-domain or transform-domain of signals. With the development of deep neural networks, deep learning-based neural audio watermarking has emerged. Compared to traditional algorithms, neural audio watermarking achieves better robustness by considering various attacks during training. However, current neural watermarking methods suffer from low capacity and unsatisfactory imperceptibility. Additionally, the issue of watermark locating, which is extremely important and even more pronounced in neural audio watermarking, has not been adequately studied. In this paper, we design a dual-embedding watermarking model for efficient locating. We also consider the impact of the attack layer on the invertible neural network in robustness training, improving the model to enhance both its reasonableness and stability. Experiments show that the proposed model, IDEAW, can withstand various attacks with higher capacity and more efficient locating ability compared to existing methods.
NNSplitter: An Active Defense Solution for DNN Model via Automated Weight Obfuscation
As a type of valuable intellectual property (IP), deep neural network (DNN) models have been protected by techniques like watermarking. However, such passive model protection cannot fully prevent model abuse. In this work, we propose an active model IP protection scheme, namely NNSplitter, which actively protects the model by splitting it into two parts: the obfuscated model that performs poorly due to weight obfuscation, and the model secrets consisting of the indexes and original values of the obfuscated weights, which can only be accessed by authorized users with the support of the trusted execution environment. Experimental results demonstrate the effectiveness of NNSplitter, e.g., by only modifying 275 out of over 11 million (i.e., 0.002%) weights, the accuracy of the obfuscated ResNet-18 model on CIFAR-10 can drop to 10%. Moreover, NNSplitter is stealthy and resilient against norm clipping and fine-tuning attacks, making it an appealing solution for DNN model protection. The code is available at: https://github.com/Tongzhou0101/NNSplitter.
Can AI-Generated Text be Reliably Detected?
In this paper, both empirically and theoretically, we show that several AI-text detectors are not reliable in practical scenarios. Empirically, we show that paraphrasing attacks, where a light paraphraser is applied on top of a large language model (LLM), can break a whole range of detectors, including ones using watermarking schemes as well as neural network-based detectors and zero-shot classifiers. Our experiments demonstrate that retrieval-based detectors, designed to evade paraphrasing attacks, are still vulnerable to recursive paraphrasing. We then provide a theoretical impossibility result indicating that as language models become more sophisticated and better at emulating human text, the performance of even the best-possible detector decreases. For a sufficiently advanced language model seeking to imitate human text, even the best-possible detector may only perform marginally better than a random classifier. Our result is general enough to capture specific scenarios such as particular writing styles, clever prompt design, or text paraphrasing. We also extend the impossibility result to include the case where pseudorandom number generators are used for AI-text generation instead of true randomness. We show that the same result holds with a negligible correction term for all polynomial-time computable detectors. Finally, we show that even LLMs protected by watermarking schemes can be vulnerable against spoofing attacks where adversarial humans can infer hidden LLM text signatures and add them to human-generated text to be detected as text generated by the LLMs, potentially causing reputational damage to their developers. We believe these results can open an honest conversation in the community regarding the ethical and reliable use of AI-generated text.
Protecting Intellectual Property of EEG-based Neural Networks with Watermarking
EEG-based neural networks, pivotal in medical diagnosis and brain-computer interfaces, face significant intellectual property (IP) risks due to their reliance on sensitive neurophysiological data and resource-intensive development. Current watermarking methods, particularly those using abstract trigger sets, lack robust authentication and fail to address the unique challenges of EEG models. This paper introduces a cryptographic wonder filter-based watermarking framework tailored for EEG-based neural networks. Leveraging collision-resistant hashing and public-key encryption, the wonder filter embeds the watermark during training, ensuring minimal distortion (leq 5% drop in EEG task accuracy) and high reliability (100\% watermark detection). The framework is rigorously evaluated against adversarial attacks, including fine-tuning, transfer learning, and neuron pruning. Results demonstrate persistent watermark retention, with classification accuracy for watermarked states remaining above 90\% even after aggressive pruning, while primary task performance degrades faster, deterring removal attempts. Piracy resistance is validated by the inability to embed secondary watermarks without severe accuracy loss ( >10% in EEGNet and CCNN models). Cryptographic hashing ensures authentication, reducing brute-force attack success probabilities. Evaluated on the DEAP dataset across models (CCNN, EEGNet, TSception), the method achieves >99.4% null-embedding accuracy, effectively eliminating false positives. By integrating wonder filters with EEG-specific adaptations, this work bridges a critical gap in IP protection for neurophysiological models, offering a secure, tamper-proof solution for healthcare and biometric applications. The framework's robustness against adversarial modifications underscores its potential to safeguard sensitive EEG models while maintaining diagnostic utility.
Watermarking Images in Self-Supervised Latent Spaces
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches. We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time. Our method can operate at any resolution and creates watermarks robust to a broad range of transformations (rotations, crops, JPEG, contrast, etc). It significantly outperforms the previous zero-bit methods, and its performance on multi-bit watermarking is on par with state-of-the-art encoder-decoder architectures trained end-to-end for watermarking. The code is available at github.com/facebookresearch/ssl_watermarking
An Efficient Watermarking Method for Latent Diffusion Models via Low-Rank Adaptation
The rapid proliferation of deep neural networks (DNNs) is driving a surge in model watermarking technologies, as the trained deep models themselves serve as intellectual properties. The core of existing model watermarking techniques involves modifying or tuning the models' weights. However, with the emergence of increasingly complex models, ensuring the efficiency of watermarking process is essential to manage the growing computational demands. Prioritizing efficiency not only optimizes resource utilization, making the watermarking process more applicable, but also minimizes potential impacts on model performance. In this letter, we propose an efficient watermarking method for latent diffusion models (LDMs) which is based on Low-Rank Adaptation (LoRA). We specifically choose to add trainable low-rank matrices to the existing weight matrices of the models to embed watermark, while keeping the original weights frozen. Moreover, we also propose a dynamic loss weight tuning algorithm to balance the generative task with the watermark embedding task, ensuring that the model can be watermarked with a limited impact on the quality of the generated images. Experimental results show that the proposed method ensures fast watermark embedding and maintains a very low bit error rate of the watermark, a high-quality of the generated image, and a zero false negative rate (FNR) for verification.
An Unforgeable Publicly Verifiable Watermark for Large Language Models
Recently, text watermarking algorithms for large language models (LLMs) have been proposed to mitigate the potential harms of text generated by LLMs, including fake news and copyright issues. However, current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection. To address this limitation, we propose an unforgeable publicly verifiable watermark algorithm that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages. Meanwhile, the token embedding parameters are shared between the generation and detection networks, which makes the detection network achieve a high accuracy very efficiently. Experiments demonstrate that our algorithm attains high detection accuracy and computational efficiency through neural networks with a minimized number of parameters. Subsequent analysis confirms the high complexity involved in forging the watermark from the detection network. Our code and data are available at https://github.com/THU-BPM/unforgeable_watermark{https://github.com/THU-BPM/unforgeable\_watermark}.
Adaptive White-Box Watermarking with Self-Mutual Check Parameters in Deep Neural Networks
Artificial Intelligence (AI) has found wide application, but also poses risks due to unintentional or malicious tampering during deployment. Regular checks are therefore necessary to detect and prevent such risks. Fragile watermarking is a technique used to identify tampering in AI models. However, previous methods have faced challenges including risks of omission, additional information transmission, and inability to locate tampering precisely. In this paper, we propose a method for detecting tampered parameters and bits, which can be used to detect, locate, and restore parameters that have been tampered with. We also propose an adaptive embedding method that maximizes information capacity while maintaining model accuracy. Our approach was tested on multiple neural networks subjected to attacks that modified weight parameters, and our results demonstrate that our method achieved great recovery performance when the modification rate was below 20%. Furthermore, for models where watermarking significantly affected accuracy, we utilized an adaptive bit technique to recover more than 15% of the accuracy loss of the model.
On the Learnability of Watermarks for Language Models
Watermarking of language model outputs enables statistical detection of model-generated text, which has many applications in the responsible deployment of language models. Existing watermarking strategies operate by altering the decoder of an existing language model, and the ability for a language model to directly learn to generate the watermark would have significant implications for the real-world deployment of watermarks. First, learned watermarks could be used to build open models that naturally generate watermarked text, allowing for open models to benefit from watermarking. Second, if watermarking is used to determine the provenance of generated text, an adversary can hurt the reputation of a victim model by spoofing its watermark and generating damaging watermarked text. To investigate the learnability of watermarks, we propose watermark distillation, which trains a student model to behave like a teacher model that uses decoding-based watermarking. We test our approach on three distinct decoding-based watermarking strategies and various hyperparameter settings, finding that models can learn to generate watermarked text with high detectability. We also find limitations to learnability, including the loss of watermarking capabilities under fine-tuning on normal text and high sample complexity when learning low-distortion watermarks.
Robustness of AI-Image Detectors: Fundamental Limits and Practical Attacks
In light of recent advancements in generative AI models, it has become essential to distinguish genuine content from AI-generated one to prevent the malicious usage of fake materials as authentic ones and vice versa. Various techniques have been introduced for identifying AI-generated images, with watermarking emerging as a promising approach. In this paper, we analyze the robustness of various AI-image detectors including watermarking and classifier-based deepfake detectors. For watermarking methods that introduce subtle image perturbations (i.e., low perturbation budget methods), we reveal a fundamental trade-off between the evasion error rate (i.e., the fraction of watermarked images detected as non-watermarked ones) and the spoofing error rate (i.e., the fraction of non-watermarked images detected as watermarked ones) upon an application of a diffusion purification attack. In this regime, we also empirically show that diffusion purification effectively removes watermarks with minimal changes to images. For high perturbation watermarking methods where notable changes are applied to images, the diffusion purification attack is not effective. In this case, we develop a model substitution adversarial attack that can successfully remove watermarks. Moreover, we show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images (potentially obscene) identified as watermarked ones, damaging the reputation of the developers. In particular, by just having black-box access to the watermarking method, we show that one can generate a watermarked noise image which can be added to the real images to have them falsely flagged as watermarked ones. Finally, we extend our theory to characterize a fundamental trade-off between the robustness and reliability of classifier-based deep fake detectors and demonstrate it through experiments.
Cross-Attention Watermarking of Large Language Models
A new approach to linguistic watermarking of language models is presented in which information is imperceptibly inserted into the output text while preserving its readability and original meaning. A cross-attention mechanism is used to embed watermarks in the text during inference. Two methods using cross-attention are presented that minimize the effect of watermarking on the performance of a pretrained model. Exploration of different training strategies for optimizing the watermarking and of the challenges and implications of applying this approach in real-world scenarios clarified the tradeoff between watermark robustness and text quality. Watermark selection substantially affects the generated output for high entropy sentences. This proactive watermarking approach has potential application in future model development.
Watermark Anything with Localized Messages
Image watermarking methods are not tailored to handle small watermarked areas. This restricts applications in real-world scenarios where parts of the image may come from different sources or have been edited. We introduce a deep-learning model for localized image watermarking, dubbed the Watermark Anything Model (WAM). The WAM embedder imperceptibly modifies the input image, while the extractor segments the received image into watermarked and non-watermarked areas and recovers one or several hidden messages from the areas found to be watermarked. The models are jointly trained at low resolution and without perceptual constraints, then post-trained for imperceptibility and multiple watermarks. Experiments show that WAM is competitive with state-of-the art methods in terms of imperceptibility and robustness, especially against inpainting and splicing, even on high-resolution images. Moreover, it offers new capabilities: WAM can locate watermarked areas in spliced images and extract distinct 32-bit messages with less than 1 bit error from multiple small regions - no larger than 10% of the image surface - even for small 256times 256 images.
Evaluation of Security of ML-based Watermarking: Copy and Removal Attacks
The vast amounts of digital content captured from the real world or AI-generated media necessitate methods for copyright protection, traceability, or data provenance verification. Digital watermarking serves as a crucial approach to address these challenges. Its evolution spans three generations: handcrafted, autoencoder-based, and foundation model based methods. While the robustness of these systems is well-documented, the security against adversarial attacks remains underexplored. This paper evaluates the security of foundation models' latent space digital watermarking systems that utilize adversarial embedding techniques. A series of experiments investigate the security dimensions under copy and removal attacks, providing empirical insights into these systems' vulnerabilities. All experimental codes and results are available at https://github.com/vkinakh/ssl-watermarking-attacks .
Hidden in the Noise: Two-Stage Robust Watermarking for Images
As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques. In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
Safe and Robust Watermark Injection with a Single OoD Image
Training a high-performance deep neural network requires large amounts of data and computational resources. Protecting the intellectual property (IP) and commercial ownership of a deep model is challenging yet increasingly crucial. A major stream of watermarking strategies implants verifiable backdoor triggers by poisoning training samples, but these are often unrealistic due to data privacy and safety concerns and are vulnerable to minor model changes such as fine-tuning. To overcome these challenges, we propose a safe and robust backdoor-based watermark injection technique that leverages the diverse knowledge from a single out-of-distribution (OoD) image, which serves as a secret key for IP verification. The independence of training data makes it agnostic to third-party promises of IP security. We induce robustness via random perturbation of model parameters during watermark injection to defend against common watermark removal attacks, including fine-tuning, pruning, and model extraction. Our experimental results demonstrate that the proposed watermarking approach is not only time- and sample-efficient without training data, but also robust against the watermark removal attacks above.
Adversarial Watermarking for Face Recognition
Watermarking is an essential technique for embedding an identifier (i.e., watermark message) within digital images to assert ownership and monitor unauthorized alterations. In face recognition systems, watermarking plays a pivotal role in ensuring data integrity and security. However, an adversary could potentially interfere with the watermarking process, significantly impairing recognition performance. We explore the interaction between watermarking and adversarial attacks on face recognition models. Our findings reveal that while watermarking or input-level perturbation alone may have a negligible effect on recognition accuracy, the combined effect of watermarking and perturbation can result in an adversarial watermarking attack, significantly degrading recognition performance. Specifically, we introduce a novel threat model, the adversarial watermarking attack, which remains stealthy in the absence of watermarking, allowing images to be correctly recognized initially. However, once watermarking is applied, the attack is activated, causing recognition failures. Our study reveals a previously unrecognized vulnerability: adversarial perturbations can exploit the watermark message to evade face recognition systems. Evaluated on the CASIA-WebFace dataset, our proposed adversarial watermarking attack reduces face matching accuracy by 67.2% with an ell_infty norm-measured perturbation strength of {2}/{255} and by 95.9% with a strength of {4}/{255}.
Robust Invisible Video Watermarking with Attention
The goal of video watermarking is to embed a message within a video file in a way such that it minimally impacts the viewing experience but can be recovered even if the video is redistributed and modified, allowing media producers to assert ownership over their content. This paper presents RivaGAN, a novel architecture for robust video watermarking which features a custom attention-based mechanism for embedding arbitrary data as well as two independent adversarial networks which critique the video quality and optimize for robustness. Using this technique, we are able to achieve state-of-the-art results in deep learning-based video watermarking and produce watermarked videos which have minimal visual distortion and are robust against common video processing operations.
Watermarking Autoregressive Image Generation
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.
A Watermark for Large Language Models
Potential harms of large language models can be mitigated by watermarking model output, i.e., embedding signals into generated text that are invisible to humans but algorithmically detectable from a short span of tokens. We propose a watermarking framework for proprietary language models. The watermark can be embedded with negligible impact on text quality, and can be detected using an efficient open-source algorithm without access to the language model API or parameters. The watermark works by selecting a randomized set of "green" tokens before a word is generated, and then softly promoting use of green tokens during sampling. We propose a statistical test for detecting the watermark with interpretable p-values, and derive an information-theoretic framework for analyzing the sensitivity of the watermark. We test the watermark using a multi-billion parameter model from the Open Pretrained Transformer (OPT) family, and discuss robustness and security.
SEAL: Semantic Aware Image Watermarking
Generative models have rapidly evolved to generate realistic outputs. However, their synthetic outputs increasingly challenge the clear distinction between natural and AI-generated content, necessitating robust watermarking techniques. Watermarks are typically expected to preserve the integrity of the target image, withstand removal attempts, and prevent unauthorized replication onto unrelated images. To address this need, recent methods embed persistent watermarks into images produced by diffusion models using the initial noise. Yet, to do so, they either distort the distribution of generated images or rely on searching through a long dictionary of used keys for detection. In this paper, we propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark, enabling a distortion-free watermark that can be verified without requiring a database of key patterns. Instead, the key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing. Furthermore, conditioning the watermark detection on the original image content improves robustness against forgery attacks. To demonstrate that, we consider two largely overlooked attack strategies: (i) an attacker extracting the initial noise and generating a novel image with the same pattern; (ii) an attacker inserting an unrelated (potentially harmful) object into a watermarked image, possibly while preserving the watermark. We empirically validate our method's increased robustness to these attacks. Taken together, our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
Three Bricks to Consolidate Watermarks for Large Language Models
The task of discerning between generated and natural texts is increasingly challenging. In this context, watermarking emerges as a promising technique for ascribing generated text to a specific model. It alters the sampling generation process so as to leave an invisible trace in the generated output, facilitating later detection. This research consolidates watermarks for large language models based on three theoretical and empirical considerations. First, we introduce new statistical tests that offer robust theoretical guarantees which remain valid even at low false-positive rates (less than 10^{-6}). Second, we compare the effectiveness of watermarks using classical benchmarks in the field of natural language processing, gaining insights into their real-world applicability. Third, we develop advanced detection schemes for scenarios where access to the LLM is available, as well as multi-bit watermarking.
TrustMark: Universal Watermarking for Arbitrary Resolution Images
Imperceptible digital watermarking is important in copyright protection, misinformation prevention, and responsible generative AI. We propose TrustMark - a GAN-based watermarking method with novel design in architecture and spatio-spectra losses to balance the trade-off between watermarked image quality with the watermark recovery accuracy. Our model is trained with robustness in mind, withstanding various in- and out-place perturbations on the encoded image. Additionally, we introduce TrustMark-RM - a watermark remover method useful for re-watermarking. Our methods achieve state-of-art performance on 3 benchmarks comprising arbitrary resolution images.
Mark My Words: Analyzing and Evaluating Language Model Watermarks
The capabilities of large language models have grown significantly in recent years and so too have concerns about their misuse. In this context, the ability to distinguish machine-generated text from human-authored content becomes important. Prior works have proposed numerous schemes to watermark text, which would benefit from a systematic evaluation framework. This work focuses on text watermarking techniques - as opposed to image watermarks - and proposes a comprehensive benchmark for them under different tasks as well as practical attacks. We focus on three main metrics: quality, size (e.g. the number of tokens needed to detect a watermark), and tamper-resistance. Current watermarking techniques are good enough to be deployed: Kirchenbauer et al. can watermark Llama2-7B-chat with no perceivable loss in quality in under 100 tokens, and with good tamper-resistance to simple attacks, regardless of temperature. We argue that watermark indistinguishability is too strong a requirement: schemes that slightly modify logit distributions outperform their indistinguishable counterparts with no noticeable loss in generation quality. We publicly release our benchmark.
WaterPark: A Robustness Assessment of Language Model Watermarking
Various watermarking methods (``watermarkers'') have been proposed to identify LLM-generated texts; yet, due to the lack of unified evaluation platforms, many critical questions remain under-explored: i) What are the strengths/limitations of various watermarkers, especially their attack robustness? ii) How do various design choices impact their robustness? iii) How to optimally operate watermarkers in adversarial environments? To fill this gap, we systematize existing LLM watermarkers and watermark removal attacks, mapping out their design spaces. We then develop WaterPark, a unified platform that integrates 10 state-of-the-art watermarkers and 12 representative attacks. More importantly, by leveraging WaterPark, we conduct a comprehensive assessment of existing watermarkers, unveiling the impact of various design choices on their attack robustness. We further explore the best practices to operate watermarkers in adversarial environments. We believe our study sheds light on current LLM watermarking techniques while WaterPark serves as a valuable testbed to facilitate future research.
The Stable Signature: Rooting Watermarks in Latent Diffusion Models
Generative image modeling enables a wide range of applications but raises ethical concerns about responsible deployment. This paper introduces an active strategy combining image watermarking and Latent Diffusion Models. The goal is for all generated images to conceal an invisible watermark allowing for future detection and/or identification. The method quickly fine-tunes the latent decoder of the image generator, conditioned on a binary signature. A pre-trained watermark extractor recovers the hidden signature from any generated image and a statistical test then determines whether it comes from the generative model. We evaluate the invisibility and robustness of the watermarks on a variety of generation tasks, showing that Stable Signature works even after the images are modified. For instance, it detects the origin of an image generated from a text prompt, then cropped to keep 10% of the content, with 90+% accuracy at a false positive rate below 10^{-6}.
Image Watermarks are Removable Using Controllable Regeneration from Clean Noise
Image watermark techniques provide an effective way to assert ownership, deter misuse, and trace content sources, which has become increasingly essential in the era of large generative models. A critical attribute of watermark techniques is their robustness against various manipulations. In this paper, we introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques. Our primary insight involves regenerating the watermarked image starting from a clean Gaussian noise via a controllable diffusion model, utilizing the extracted semantic and spatial features from the watermarked image. The semantic control adapter and the spatial control network are specifically trained to control the denoising process towards ensuring image quality and enhancing consistency between the cleaned image and the original watermarked image. To achieve a smooth trade-off between watermark removal performance and image consistency, we further propose an adjustable and controllable regeneration scheme. This scheme adds varying numbers of noise steps to the latent representation of the watermarked image, followed by a controlled denoising process starting from this noisy latent representation. As the number of noise steps increases, the latent representation progressively approaches clean Gaussian noise, facilitating the desired trade-off. We apply our watermark removal methods across various watermarking techniques, and the results demonstrate that our methods offer superior visual consistency/quality and enhanced watermark removal performance compared to existing regeneration approaches.
WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off
Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite. Code available at https://github.com/eva-giboulot/WaterMax.
Robust Distortion-free Watermarks for Language Models
We propose a methodology for planting watermarks in text from an autoregressive language model that are robust to perturbations without changing the distribution over text up to a certain maximum generation budget. We generate watermarked text by mapping a sequence of random numbers -- which we compute using a randomized watermark key -- to a sample from the language model. To detect watermarked text, any party who knows the key can align the text to the random number sequence. We instantiate our watermark methodology with two sampling schemes: inverse transform sampling and exponential minimum sampling. We apply these watermarks to three language models -- OPT-1.3B, LLaMA-7B and Alpaca-7B -- to experimentally validate their statistical power and robustness to various paraphrasing attacks. Notably, for both the OPT-1.3B and LLaMA-7B models, we find we can reliably detect watermarked text (p leq 0.01) from 35 tokens even after corrupting between 40-50\% of the tokens via random edits (i.e., substitutions, insertions or deletions). For the Alpaca-7B model, we conduct a case study on the feasibility of watermarking responses to typical user instructions. Due to the lower entropy of the responses, detection is more difficult: around 25% of the responses -- whose median length is around 100 tokens -- are detectable with p leq 0.01, and the watermark is also less robust to certain automated paraphrasing attacks we implement.
Data Taggants: Dataset Ownership Verification via Harmless Targeted Data Poisoning
Dataset ownership verification, the process of determining if a dataset is used in a model's training data, is necessary for detecting unauthorized data usage and data contamination. Existing approaches, such as backdoor watermarking, rely on inducing a detectable behavior into the trained model on a part of the data distribution. However, these approaches have limitations, as they can be harmful to the model's performances or require unpractical access to the model's internals. Most importantly, previous approaches lack guarantee against false positives. This paper introduces data taggants, a novel non-backdoor dataset ownership verification technique. Our method uses pairs of out-of-distribution samples and random labels as secret keys, and leverages clean-label targeted data poisoning to subtly alter a dataset, so that models trained on it respond to the key samples with the corresponding key labels. The keys are built as to allow for statistical certificates with black-box access only to the model. We validate our approach through comprehensive and realistic experiments on ImageNet1k using ViT and ResNet models with state-of-the-art training recipes. Our findings demonstrate that data taggants can reliably make models trained on the protected dataset detectable with high confidence, without compromising validation accuracy, and demonstrates superiority over backdoor watermarking. Moreover, our method shows to be stealthy and robust against various defense mechanisms.
Dataset Inference: Ownership Resolution in Machine Learning
With increasingly more data and computation involved in their training, machine learning models constitute valuable intellectual property. This has spurred interest in model stealing, which is made more practical by advances in learning with partial, little, or no supervision. Existing defenses focus on inserting unique watermarks in a model's decision surface, but this is insufficient: the watermarks are not sampled from the training distribution and thus are not always preserved during model stealing. In this paper, we make the key observation that knowledge contained in the stolen model's training set is what is common to all stolen copies. The adversary's goal, irrespective of the attack employed, is always to extract this knowledge or its by-products. This gives the original model's owner a strong advantage over the adversary: model owners have access to the original training data. We thus introduce dataset inference, the process of identifying whether a suspected model copy has private knowledge from the original model's dataset, as a defense against model stealing. We develop an approach for dataset inference that combines statistical testing with the ability to estimate the distance of multiple data points to the decision boundary. Our experiments on CIFAR10, SVHN, CIFAR100 and ImageNet show that model owners can claim with confidence greater than 99% that their model (or dataset as a matter of fact) was stolen, despite only exposing 50 of the stolen model's training points. Dataset inference defends against state-of-the-art attacks even when the adversary is adaptive. Unlike prior work, it does not require retraining or overfitting the defended model.
LaWa: Using Latent Space for In-Generation Image Watermarking
With generative models producing high quality images that are indistinguishable from real ones, there is growing concern regarding the malicious usage of AI-generated images. Imperceptible image watermarking is one viable solution towards such concerns. Prior watermarking methods map the image to a latent space for adding the watermark. Moreover, Latent Diffusion Models (LDM) generate the image in the latent space of a pre-trained autoencoder. We argue that this latent space can be used to integrate watermarking into the generation process. To this end, we present LaWa, an in-generation image watermarking method designed for LDMs. By using coarse-to-fine watermark embedding modules, LaWa modifies the latent space of pre-trained autoencoders and achieves high robustness against a wide range of image transformations while preserving perceptual quality of the image. We show that LaWa can also be used as a general image watermarking method. Through extensive experiments, we demonstrate that LaWa outperforms previous works in perceptual quality, robustness against attacks, and computational complexity, while having very low false positive rate. Code is available here.
Proving membership in LLM pretraining data via data watermarks
Detecting whether copyright holders' works were used in LLM pretraining is poised to be an important problem. This work proposes using data watermarks to enable principled detection with only black-box model access, provided that the rightholder contributed multiple training documents and watermarked them before public release. By applying a randomly sampled data watermark, detection can be framed as hypothesis testing, which provides guarantees on the false detection rate. We study two watermarks: one that inserts random sequences, and another that randomly substitutes characters with Unicode lookalikes. We first show how three aspects of watermark design -- watermark length, number of duplications, and interference -- affect the power of the hypothesis test. Next, we study how a watermark's detection strength changes under model and dataset scaling: while increasing the dataset size decreases the strength of the watermark, watermarks remain strong if the model size also increases. Finally, we view SHA hashes as natural watermarks and show that we can robustly detect hashes from BLOOM-176B's training data, as long as they occurred at least 90 times. Together, our results point towards a promising future for data watermarks in real world use.
From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models
With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Text watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques, through a comprehensive survey of the research literature. Our work has two key advantages, (1) we analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, watermarking addition, and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research in protecting text authorship. This extensive coverage and detailed analysis sets our work apart, offering valuable insights into the evolving landscape of text watermarking in language models.
Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content. In this paper, we introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs. Unlike existing methods that perform post-hoc modifications to images after sampling, Tree-Ring Watermarking subtly influences the entire sampling process, resulting in a model fingerprint that is invisible to humans. The watermark embeds a pattern into the initial noise vector used for sampling. These patterns are structured in Fourier space so that they are invariant to convolutions, crops, dilations, flips, and rotations. After image generation, the watermark signal is detected by inverting the diffusion process to retrieve the noise vector, which is then checked for the embedded signal. We demonstrate that this technique can be easily applied to arbitrary diffusion models, including text-conditioned Stable Diffusion, as a plug-in with negligible loss in FID. Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed. Code is available at github.com/YuxinWenRick/tree-ring-watermark.
From Trade-off to Synergy: A Versatile Symbiotic Watermarking Framework for Large Language Models
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at https://github.com/redwyd/SymMark{https://github.com/redwyd/SymMark}.
CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields
Neural Radiance Fields (NeRF) have the potential to be a major representation of media. Since training a NeRF has never been an easy task, the protection of its model copyright should be a priority. In this paper, by analyzing the pros and cons of possible copyright protection solutions, we propose to protect the copyright of NeRF models by replacing the original color representation in NeRF with a watermarked color representation. Then, a distortion-resistant rendering scheme is designed to guarantee robust message extraction in 2D renderings of NeRF. Our proposed method can directly protect the copyright of NeRF models while maintaining high rendering quality and bit accuracy when compared among optional solutions.
Watermarking Text Generated by Black-Box Language Models
LLMs now exhibit human-like skills in various fields, leading to worries about misuse. Thus, detecting generated text is crucial. However, passive detection methods are stuck in domain specificity and limited adversarial robustness. To achieve reliable detection, a watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation. The method involves randomly dividing the model vocabulary to obtain a special list and adjusting the probability distribution to promote the selection of words in the list. A detection algorithm aware of the list can identify the watermarked text. However, this method is not applicable in many real-world scenarios where only black-box language models are available. For instance, third-parties that develop API-based vertical applications cannot watermark text themselves because API providers only supply generated text and withhold probability distributions to shield their commercial interests. To allow third-parties to autonomously inject watermarks into generated text, we develop a watermarking framework for black-box language model usage scenarios. Specifically, we first define a binary encoding function to compute a random binary encoding corresponding to a word. The encodings computed for non-watermarked text conform to a Bernoulli distribution, wherein the probability of a word representing bit-1 being approximately 0.5. To inject a watermark, we alter the distribution by selectively replacing words representing bit-0 with context-based synonyms that represent bit-1. A statistical test is then used to identify the watermark. Experiments demonstrate the effectiveness of our method on both Chinese and English datasets. Furthermore, results under re-translation, polishing, word deletion, and synonym substitution attacks reveal that it is arduous to remove the watermark without compromising the original semantics.
Robustness of Watermarking on Text-to-Image Diffusion Models
Watermarking has become one of promising techniques to not only aid in identifying AI-generated images but also serve as a deterrent against the unethical use of these models. However, the robustness of watermarking techniques has not been extensively studied recently. In this paper, we investigate the robustness of generative watermarking, which is created from the integration of watermarking embedding and text-to-image generation processing in generative models, e.g., latent diffusion models. Specifically, we propose three attacking methods, i.e., discriminator-based attacks, edge prediction-based attacks, and fine-tune-based attacks, under the scenario where the watermark decoder is not accessible. The model is allowed to be fine-tuned to created AI agents with specific generative tasks for personalizing or specializing. We found that generative watermarking methods are robust to direct evasion attacks, like discriminator-based attacks, or manipulation based on the edge information in edge prediction-based attacks but vulnerable to malicious fine-tuning. Experimental results show that our fine-tune-based attacks can decrease the accuracy of the watermark detection to nearly 67.92%. In addition, We conduct an ablation study on the length of fine-tuned messages, encoder/decoder's depth and structure to identify key factors that impact the performance of fine-tune-based attacks.
WAPITI: A Watermark for Finetuned Open-Source LLMs
Watermarking of large language models (LLMs) generation embeds an imperceptible statistical pattern within texts, making it algorithmically detectable. Watermarking is a promising method for addressing potential harm and biases from LLMs, as it enables traceability, accountability, and detection of manipulated content, helping to mitigate unintended consequences. However, for open-source models, watermarking faces two major challenges: (i) incompatibility with fine-tuned models, and (ii) vulnerability to fine-tuning attacks. In this work, we propose WAPITI, a new method that transfers watermarking from base models to fine-tuned models through parameter integration. To the best of our knowledge, we propose the first watermark for fine-tuned open-source LLMs that preserves their fine-tuned capabilities. Furthermore, our approach offers an effective defense against fine-tuning attacks. We test our method on various model architectures and watermarking strategies. Results demonstrate that our method can successfully inject watermarks and is highly compatible with fine-tuned models. Additionally, we offer an in-depth analysis of how parameter editing influences the watermark strength and overall capabilities of the resulting models.
Model Stealing Attacks Against Inductive Graph Neural Networks
Many real-world data come in the form of graphs. Graph neural networks (GNNs), a new family of machine learning (ML) models, have been proposed to fully leverage graph data to build powerful applications. In particular, the inductive GNNs, which can generalize to unseen data, become mainstream in this direction. Machine learning models have shown great potential in various tasks and have been deployed in many real-world scenarios. To train a good model, a large amount of data as well as computational resources are needed, leading to valuable intellectual property. Previous research has shown that ML models are prone to model stealing attacks, which aim to steal the functionality of the target models. However, most of them focus on the models trained with images and texts. On the other hand, little attention has been paid to models trained with graph data, i.e., GNNs. In this paper, we fill the gap by proposing the first model stealing attacks against inductive GNNs. We systematically define the threat model and propose six attacks based on the adversary's background knowledge and the responses of the target models. Our evaluation on six benchmark datasets shows that the proposed model stealing attacks against GNNs achieve promising performance.
Towards Reverse-Engineering Black-Box Neural Networks
Many deployed learned models are black boxes: given input, returns output. Internal information about the model, such as the architecture, optimisation procedure, or training data, is not disclosed explicitly as it might contain proprietary information or make the system more vulnerable. This work shows that such attributes of neural networks can be exposed from a sequence of queries. This has multiple implications. On the one hand, our work exposes the vulnerability of black-box neural networks to different types of attacks -- we show that the revealed internal information helps generate more effective adversarial examples against the black box model. On the other hand, this technique can be used for better protection of private content from automatic recognition models using adversarial examples. Our paper suggests that it is actually hard to draw a line between white box and black box models.
Benchmarking the Robustness of Image Watermarks
This paper investigates the weaknesses of image watermarking techniques. We present WAVES (Watermark Analysis Via Enhanced Stress-testing), a novel benchmark for assessing watermark robustness, overcoming the limitations of current evaluation methods.WAVES integrates detection and identification tasks, and establishes a standardized evaluation protocol comprised of a diverse range of stress tests. The attacks in WAVES range from traditional image distortions to advanced and novel variations of adversarial, diffusive, and embedding-based attacks. We introduce a normalized score of attack potency which incorporates several widely used image quality metrics and allows us to produce of an ordered ranking of attacks. Our comprehensive evaluation over reveals previously undetected vulnerabilities of several modern watermarking algorithms. WAVES is envisioned as a toolkit for the future development of robust watermarking systems.
Certifiably Robust Image Watermark
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns. Watermarking AI-generated content is a key technology to address these concerns and has been widely deployed in industry. However, watermarking is vulnerable to removal attacks and forgery attacks. In this work, we propose the first image watermarks with certified robustness guarantees against removal and forgery attacks. Our method leverages randomized smoothing, a popular technique to build certifiably robust classifiers and regression models. Our major technical contributions include extending randomized smoothing to watermarking by considering its unique characteristics, deriving the certified robustness guarantees, and designing algorithms to estimate them. Moreover, we extensively evaluate our image watermarks in terms of both certified and empirical robustness. Our code is available at https://github.com/zhengyuan-jiang/Watermark-Library.
The Brittleness of AI-Generated Image Watermarking Techniques: Examining Their Robustness Against Visual Paraphrasing Attacks
The rapid advancement of text-to-image generation systems, exemplified by models like Stable Diffusion, Midjourney, Imagen, and DALL-E, has heightened concerns about their potential misuse. In response, companies like Meta and Google have intensified their efforts to implement watermarking techniques on AI-generated images to curb the circulation of potentially misleading visuals. However, in this paper, we argue that current image watermarking methods are fragile and susceptible to being circumvented through visual paraphrase attacks. The proposed visual paraphraser operates in two steps. First, it generates a caption for the given image using KOSMOS-2, one of the latest state-of-the-art image captioning systems. Second, it passes both the original image and the generated caption to an image-to-image diffusion system. During the denoising step of the diffusion pipeline, the system generates a visually similar image that is guided by the text caption. The resulting image is a visual paraphrase and is free of any watermarks. Our empirical findings demonstrate that visual paraphrase attacks can effectively remove watermarks from images. This paper provides a critical assessment, empirically revealing the vulnerability of existing watermarking techniques to visual paraphrase attacks. While we do not propose solutions to this issue, this paper serves as a call to action for the scientific community to prioritize the development of more robust watermarking techniques. Our first-of-its-kind visual paraphrase dataset and accompanying code are publicly available.
CopyrightMeter: Revisiting Copyright Protection in Text-to-image Models
Text-to-image diffusion models have emerged as powerful tools for generating high-quality images from textual descriptions. However, their increasing popularity has raised significant copyright concerns, as these models can be misused to reproduce copyrighted content without authorization. In response, recent studies have proposed various copyright protection methods, including adversarial perturbation, concept erasure, and watermarking techniques. However, their effectiveness and robustness against advanced attacks remain largely unexplored. Moreover, the lack of unified evaluation frameworks has hindered systematic comparison and fair assessment of different approaches. To bridge this gap, we systematize existing copyright protection methods and attacks, providing a unified taxonomy of their design spaces. We then develop CopyrightMeter, a unified evaluation framework that incorporates 17 state-of-the-art protections and 16 representative attacks. Leveraging CopyrightMeter, we comprehensively evaluate protection methods across multiple dimensions, thereby uncovering how different design choices impact fidelity, efficacy, and resilience under attacks. Our analysis reveals several key findings: (i) most protections (16/17) are not resilient against attacks; (ii) the "best" protection varies depending on the target priority; (iii) more advanced attacks significantly promote the upgrading of protections. These insights provide concrete guidance for developing more robust protection methods, while its unified evaluation protocol establishes a standard benchmark for future copyright protection research in text-to-image generation.
Mask Image Watermarking
We present MaskMark, a simple, efficient and flexible framework for image watermarking. MaskMark has two variants: MaskMark-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection, and MaskMark-ED, which focuses on local watermark embedding and extraction with enhanced robustness in small regions, enabling localized image protection. Built upon the classical Encoder- Distortion-Decoder training paradigm, MaskMark-D introduces a simple masking mechanism during the decoding stage to support both global and local watermark extraction. A mask is applied to the watermarked image before extraction, allowing the decoder to focus on selected regions and learn local extraction. A localization module is also integrated into the decoder to identify watermark regions during inference, reducing interference from irrelevant content and improving accuracy. MaskMark-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions for enhanced robustness. Comprehensive experiments show that MaskMark achieves state-of-the-art performance in global watermark extraction, local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. MaskMark is also flexible, by adjusting the distortion layer, it can adapt to different robustness requirements with just a few steps of fine-tuning. Moreover, our approach is efficient and easy to optimize, requiring only 20 hours on a single A6000 GPU with just 1/15 the computational cost of WAM.
Watermarking Degrades Alignment in Language Models: Analysis and Mitigation
Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives. To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.
MorphMark: Flexible Adaptive Watermarking for Large Language Models
Watermarking by altering token sampling probabilities based on red-green list is a promising method for tracing the origin of text generated by large language models (LLMs). However, existing watermark methods often struggle with a fundamental dilemma: improving watermark effectiveness (the detectability of the watermark) often comes at the cost of reduced text quality. This trade-off limits their practical application. To address this challenge, we first formalize the problem within a multi-objective trade-off analysis framework. Within this framework, we identify a key factor that influences the dilemma. Unlike existing methods, where watermark strength is typically treated as a fixed hyperparameter, our theoretical insights lead to the development of MorphMarka method that adaptively adjusts the watermark strength in response to changes in the identified factor, thereby achieving an effective resolution of the dilemma. In addition, MorphMark also prioritizes flexibility since it is a model-agnostic and model-free watermark method, thereby offering a practical solution for real-world deployment, particularly in light of the rapid evolution of AI models. Extensive experiments demonstrate that MorphMark achieves a superior resolution of the effectiveness-quality dilemma, while also offering greater flexibility and time and space efficiency.
Mist: Towards Improved Adversarial Examples for Diffusion Models
Diffusion Models (DMs) have empowered great success in artificial-intelligence-generated content, especially in artwork creation, yet raising new concerns in intellectual properties and copyright. For example, infringers can make profits by imitating non-authorized human-created paintings with DMs. Recent researches suggest that various adversarial examples for diffusion models can be effective tools against these copyright infringements. However, current adversarial examples show weakness in transferability over different painting-imitating methods and robustness under straightforward adversarial defense, for example, noise purification. We surprisingly find that the transferability of adversarial examples can be significantly enhanced by exploiting a fused and modified adversarial loss term under consistent parameters. In this work, we comprehensively evaluate the cross-method transferability of adversarial examples. The experimental observation shows that our method generates more transferable adversarial examples with even stronger robustness against the simple adversarial defense.
Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances
Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.
Class Attribute Inference Attacks: Inferring Sensitive Class Information by Diffusion-Based Attribute Manipulations
Neural network-based image classifiers are powerful tools for computer vision tasks, but they inadvertently reveal sensitive attribute information about their classes, raising concerns about their privacy. To investigate this privacy leakage, we introduce the first Class Attribute Inference Attack (CAIA), which leverages recent advances in text-to-image synthesis to infer sensitive attributes of individual classes in a black-box setting, while remaining competitive with related white-box attacks. Our extensive experiments in the face recognition domain show that CAIA can accurately infer undisclosed sensitive attributes, such as an individual's hair color, gender, and racial appearance, which are not part of the training labels. Interestingly, we demonstrate that adversarial robust models are even more vulnerable to such privacy leakage than standard models, indicating that a trade-off between robustness and privacy exists.
Autoregressive Images Watermarking through Lexical Biasing: An Approach Resistant to Regeneration Attack
Autoregressive (AR) image generation models have gained increasing attention for their breakthroughs in synthesis quality, highlighting the need for robust watermarking to prevent misuse. However, existing in-generation watermarking techniques are primarily designed for diffusion models, where watermarks are embedded within diffusion latent states. This design poses significant challenges for direct adaptation to AR models, which generate images sequentially through token prediction. Moreover, diffusion-based regeneration attacks can effectively erase such watermarks by perturbing diffusion latent states. To address these challenges, we propose Lexical Bias Watermarking (LBW), a novel framework designed for AR models that resists regeneration attacks. LBW embeds watermarks directly into token maps by biasing token selection toward a predefined green list during generation. This approach ensures seamless integration with existing AR models and extends naturally to post-hoc watermarking. To increase the security against white-box attacks, instead of using a single green list, the green list for each image is randomly sampled from a pool of green lists. Watermark detection is performed via quantization and statistical analysis of the token distribution. Extensive experiments demonstrate that LBW achieves superior watermark robustness, particularly in resisting regeneration attacks.
WMCodec: End-to-End Neural Speech Codec with Deep Watermarking for Authenticity Verification
Recent advances in speech spoofing necessitate stronger verification mechanisms in neural speech codecs to ensure authenticity. Current methods embed numerical watermarks before compression and extract them from reconstructed speech for verification, but face limitations such as separate training processes for the watermark and codec, and insufficient cross-modal information integration, leading to reduced watermark imperceptibility, extraction accuracy, and capacity. To address these issues, we propose WMCodec, the first neural speech codec to jointly train compression-reconstruction and watermark embedding-extraction in an end-to-end manner, optimizing both imperceptibility and extractability of the watermark. Furthermore, We design an iterative Attention Imprint Unit (AIU) for deeper feature integration of watermark and speech, reducing the impact of quantization noise on the watermark. Experimental results show WMCodec outperforms AudioSeal with Encodec in most quality metrics for watermark imperceptibility and consistently exceeds both AudioSeal with Encodec and reinforced TraceableSpeech in extraction accuracy of watermark. At bandwidth of 6 kbps with a watermark capacity of 16 bps, WMCodec maintains over 99% extraction accuracy under common attacks, demonstrating strong robustness.
All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines
Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.
SilentCipher: Deep Audio Watermarking
In the realm of audio watermarking, it is challenging to simultaneously encode imperceptible messages while enhancing the message capacity and robustness. Although recent advancements in deep learning-based methods bolster the message capacity and robustness over traditional methods, the encoded messages introduce audible artefacts that restricts their usage in professional settings. In this study, we introduce three key innovations. Firstly, our work is the first deep learning-based model to integrate psychoacoustic model based thresholding to achieve imperceptible watermarks. Secondly, we introduce psuedo-differentiable compression layers, enhancing the robustness of our watermarking algorithm. Lastly, we introduce a method to eliminate the need for perceptual losses, enabling us to achieve SOTA in both robustness as well as imperceptible watermarking. Our contributions lead us to SilentCipher, a model enabling users to encode messages within audio signals sampled at 44.1kHz.
Towards Watermarking of Open-Source LLMs
While watermarks for closed LLMs have matured and have been included in large-scale deployments, these methods are not applicable to open-source models, which allow users full control over the decoding process. This setting is understudied yet critical, given the rising performance of open-source models. In this work, we lay the foundation for systematic study of open-source LLM watermarking. For the first time, we explicitly formulate key requirements, including durability against common model modifications such as model merging, quantization, or finetuning, and propose a concrete evaluation setup. Given the prevalence of these modifications, durability is crucial for an open-source watermark to be effective. We survey and evaluate existing methods, showing that they are not durable. We also discuss potential ways to improve their durability and highlight remaining challenges. We hope our work enables future progress on this important problem.
Leveraging Optimization for Adaptive Attacks on Image Watermarks
Untrustworthy users can misuse image generators to synthesize high-quality deepfakes and engage in unethical activities. Watermarking deters misuse by marking generated content with a hidden message, enabling its detection using a secret watermarking key. A core security property of watermarking is robustness, which states that an attacker can only evade detection by substantially degrading image quality. Assessing robustness requires designing an adaptive attack for the specific watermarking algorithm. When evaluating watermarking algorithms and their (adaptive) attacks, it is challenging to determine whether an adaptive attack is optimal, i.e., the best possible attack. We solve this problem by defining an objective function and then approach adaptive attacks as an optimization problem. The core idea of our adaptive attacks is to replicate secret watermarking keys locally by creating surrogate keys that are differentiable and can be used to optimize the attack's parameters. We demonstrate for Stable Diffusion models that such an attacker can break all five surveyed watermarking methods at no visible degradation in image quality. Optimizing our attacks is efficient and requires less than 1 GPU hour to reduce the detection accuracy to 6.3% or less. Our findings emphasize the need for more rigorous robustness testing against adaptive, learnable attackers.
A Comprehensive Real-World Assessment of Audio Watermarking Algorithms: Will They Survive Neural Codecs?
We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with various distortions such as compression, background noise, and reverberation, along with a diverse test dataset including speech, environmental sounds, and music recordings. Evaluating four existing watermarking methods on RAW-bench reveals two main insights: (i) neural compression techniques pose the most significant challenge, even when algorithms are trained with such compressions; and (ii) training with audio attacks generally improves robustness, although it is insufficient in some cases. Furthermore, we find that specific distortions, such as polarity inversion, time stretching, or reverb, seriously affect certain methods. The evaluation framework is accessible at github.com/SonyResearch/raw_bench.
An undetectable watermark for generative image models
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
SEAL: Entangled White-box Watermarks on Low-Rank Adaptation
Recently, LoRA and its variants have become the de facto strategy for training and sharing task-specific versions of large pretrained models, thanks to their efficiency and simplicity. However, the issue of copyright protection for LoRA weights, especially through watermark-based techniques, remains underexplored. To address this gap, we propose SEAL (SEcure wAtermarking on LoRA weights), the universal whitebox watermarking for LoRA. SEAL embeds a secret, non-trainable matrix between trainable LoRA weights, serving as a passport to claim ownership. SEAL then entangles the passport with the LoRA weights through training, without extra loss for entanglement, and distributes the finetuned weights after hiding the passport. When applying SEAL, we observed no performance degradation across commonsense reasoning, textual/visual instruction tuning, and text-to-image synthesis tasks. We demonstrate that SEAL is robust against a variety of known attacks: removal, obfuscation, and ambiguity attacks.
MaXsive: High-Capacity and Robust Training-Free Generative Image Watermarking in Diffusion Models
The great success of the diffusion model in image synthesis led to the release of gigantic commercial models, raising the issue of copyright protection and inappropriate content generation. Training-free diffusion watermarking provides a low-cost solution for these issues. However, the prior works remain vulnerable to rotation, scaling, and translation (RST) attacks. Although some methods employ meticulously designed patterns to mitigate this issue, they often reduce watermark capacity, which can result in identity (ID) collusion. To address these problems, we propose MaXsive, a training-free diffusion model generative watermarking technique that has high capacity and robustness. MaXsive best utilizes the initial noise to watermark the diffusion model. Moreover, instead of using a meticulously repetitive ring pattern, we propose injecting the X-shape template to recover the RST distortions. This design significantly increases robustness without losing any capacity, making ID collusion less likely to happen. The effectiveness of MaXsive has been verified on two well-known watermarking benchmarks under the scenarios of verification and identification.
IConMark: Robust Interpretable Concept-Based Watermark For AI Images
With the rapid rise of generative AI and synthetic media, distinguishing AI-generated images from real ones has become crucial in safeguarding against misinformation and ensuring digital authenticity. Traditional watermarking techniques have shown vulnerabilities to adversarial attacks, undermining their effectiveness in the presence of attackers. We propose IConMark, a novel in-generation robust semantic watermarking method that embeds interpretable concepts into AI-generated images, as a first step toward interpretable watermarking. Unlike traditional methods, which rely on adding noise or perturbations to AI-generated images, IConMark incorporates meaningful semantic attributes, making it interpretable to humans and hence, resilient to adversarial manipulation. This method is not only robust against various image augmentations but also human-readable, enabling manual verification of watermarks. We demonstrate a detailed evaluation of IConMark's effectiveness, demonstrating its superiority in terms of detection accuracy and maintaining image quality. Moreover, IConMark can be combined with existing watermarking techniques to further enhance and complement its robustness. We introduce IConMark+SS and IConMark+TM, hybrid approaches combining IConMark with StegaStamp and TrustMark, respectively, to further bolster robustness against multiple types of image manipulations. Our base watermarking technique (IConMark) and its variants (+TM and +SS) achieve 10.8%, 14.5%, and 15.9% higher mean area under the receiver operating characteristic curve (AUROC) scores for watermark detection, respectively, compared to the best baseline on various datasets.
Model Weight Theft With Just Noise Inputs: The Curious Case of the Petulant Attacker
This paper explores the scenarios under which an attacker can claim that 'Noise and access to the softmax layer of the model is all you need' to steal the weights of a convolutional neural network whose architecture is already known. We were able to achieve 96% test accuracy using the stolen MNIST model and 82% accuracy using the stolen KMNIST model learned using only i.i.d. Bernoulli noise inputs. We posit that this theft-susceptibility of the weights is indicative of the complexity of the dataset and propose a new metric that captures the same. The goal of this dissemination is to not just showcase how far knowing the architecture can take you in terms of model stealing, but to also draw attention to this rather idiosyncratic weight learnability aspects of CNNs spurred by i.i.d. noise input. We also disseminate some initial results obtained with using the Ising probability distribution in lieu of the i.i.d. Bernoulli distribution.
Detection Limits and Statistical Separability of Tree Ring Watermarks in Rectified Flow-based Text-to-Image Generation Models
Tree-Ring Watermarking is a significant technique for authenticating AI-generated images. However, its effectiveness in rectified flow-based models remains unexplored, particularly given the inherent challenges of these models with noise latent inversion. Through extensive experimentation, we evaluated and compared the detection and separability of watermarks between SD 2.1 and FLUX.1-dev models. By analyzing various text guidance configurations and augmentation attacks, we demonstrate how inversion limitations affect both watermark recovery and the statistical separation between watermarked and unwatermarked images. Our findings provide valuable insights into the current limitations of Tree-Ring Watermarking in the current SOTA models and highlight the critical need for improved inversion methods to achieve reliable watermark detection and separability. The official implementation, dataset release and all experimental results are available at this https://github.com/dsgiitr/flux-watermarking{link}.
StegaNeRF: Embedding Invisible Information within Neural Radiance Fields
Recent advances in neural rendering imply a future of widespread visual data distributions through sharing NeRF model weights. However, while common visual data (images and videos) have standard approaches to embed ownership or copyright information explicitly or subtly, the problem remains unexplored for the emerging NeRF format. We present StegaNeRF, a method for steganographic information embedding in NeRF renderings. We design an optimization framework allowing accurate hidden information extractions from images rendered by NeRF, while preserving its original visual quality. We perform experimental evaluations of our method under several potential deployment scenarios, and we further discuss the insights discovered through our analysis. StegaNeRF signifies an initial exploration into the novel problem of instilling customizable, imperceptible, and recoverable information to NeRF renderings, with minimal impact to rendered images. Project page: https://xggnet.github.io/StegaNeRF/.
Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems
Visual modifications to text are often used to obfuscate offensive comments in social media (e.g., "!d10t") or as a writing style ("1337" in "leet speak"), among other scenarios. We consider this as a new type of adversarial attack in NLP, a setting to which humans are very robust, as our experiments with both simple and more difficult visual input perturbations demonstrate. We then investigate the impact of visual adversarial attacks on current NLP systems on character-, word-, and sentence-level tasks, showing that both neural and non-neural models are, in contrast to humans, extremely sensitive to such attacks, suffering performance decreases of up to 82\%. We then explore three shielding methods---visual character embeddings, adversarial training, and rule-based recovery---which substantially improve the robustness of the models. However, the shielding methods still fall behind performances achieved in non-attack scenarios, which demonstrates the difficulty of dealing with visual attacks.
Provable Robust Watermarking for AI-Generated Text
We study the problem of watermarking large language models (LLMs) generated text -- one of the most promising approaches for addressing the safety challenges of LLM usage. In this paper, we propose a rigorous theoretical framework to quantify the effectiveness and robustness of LLM watermarks. We propose a robust and high-quality watermark method, Unigram-Watermark, by extending an existing approach with a simplified fixed grouping strategy. We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing. Experiments on three varying LLMs and two datasets verify that our Unigram-Watermark achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs. Code is available at https://github.com/XuandongZhao/Unigram-Watermark.
VectorDefense: Vectorization as a Defense to Adversarial Examples
Training deep neural networks on images represented as grids of pixels has brought to light an interesting phenomenon known as adversarial examples. Inspired by how humans reconstruct abstract concepts, we attempt to codify the input bitmap image into a set of compact, interpretable elements to avoid being fooled by the adversarial structures. We take the first step in this direction by experimenting with image vectorization as an input transformation step to map the adversarial examples back into the natural manifold of MNIST handwritten digits. We compare our method vs. state-of-the-art input transformations and further discuss the trade-offs between a hand-designed and a learned transformation defense.
Black-Box Detection of Language Model Watermarks
Watermarking has emerged as a promising way to detect LLM-generated text, by augmenting LLM generations with later detectable signals. Recent work has proposed multiple families of watermarking schemes, several of which focus on preserving the LLM distribution. This distribution-preservation property is motivated by the fact that it is a tractable proxy for retaining LLM capabilities, as well as the inherently implied undetectability of the watermark by downstream users. Yet, despite much discourse around undetectability, no prior work has investigated the practical detectability of any of the current watermarking schemes in a realistic black-box setting. In this work we tackle this for the first time, developing rigorous statistical tests to detect the presence, and estimate parameters, of all three popular watermarking scheme families, using only a limited number of black-box queries. We experimentally confirm the effectiveness of our methods on a range of schemes and a diverse set of open-source models. Further, we validate the feasibility of our tests on real-world APIs. Our findings indicate that current watermarking schemes are more detectable than previously believed.
Training-Free Watermarking for Autoregressive Image Generation
Invisible image watermarking can protect image ownership and prevent malicious misuse of visual generative models. However, existing generative watermarking methods are mainly designed for diffusion models while watermarking for autoregressive image generation models remains largely underexplored. We propose IndexMark, a training-free watermarking framework for autoregressive image generation models. IndexMark is inspired by the redundancy property of the codebook: replacing autoregressively generated indices with similar indices produces negligible visual differences. The core component in IndexMark is a simple yet effective match-then-replace method, which carefully selects watermark tokens from the codebook based on token similarity, and promotes the use of watermark tokens through token replacement, thereby embedding the watermark without affecting the image quality. Watermark verification is achieved by calculating the proportion of watermark tokens in generated images, with precision further improved by an Index Encoder. Furthermore, we introduce an auxiliary validation scheme to enhance robustness against cropping attacks. Experiments demonstrate that IndexMark achieves state-of-the-art performance in terms of image quality and verification accuracy, and exhibits robustness against various perturbations, including cropping, noises, Gaussian blur, random erasing, color jittering, and JPEG compression.
Optimizing Adaptive Attacks against Content Watermarks for Language Models
Large Language Models (LLMs) can be misused to spread online spam and misinformation. Content watermarking deters misuse by hiding a message in model-generated outputs, enabling their detection using a secret watermarking key. Robustness is a core security property, stating that evading detection requires (significant) degradation of the content's quality. Many LLM watermarking methods have been proposed, but robustness is tested only against non-adaptive attackers who lack knowledge of the watermarking method and can find only suboptimal attacks. We formulate the robustness of LLM watermarking as an objective function and propose preference-based optimization to tune adaptive attacks against the specific watermarking method. Our evaluation shows that (i) adaptive attacks substantially outperform non-adaptive baselines. (ii) Even in a non-adaptive setting, adaptive attacks optimized against a few known watermarks remain highly effective when tested against other unseen watermarks, and (iii) optimization-based attacks are practical and require less than seven GPU hours. Our findings underscore the need to test robustness against adaptive attackers.
Robust Multi-bit Text Watermark with LLM-based Paraphrasers
We propose an imperceptible multi-bit text watermark embedded by paraphrasing with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave differently so that their paraphrasing difference reflected in the text semantics can be identified by a trained decoder. To embed our multi-bit watermark, we use two paraphrasers alternatively to encode the pre-defined binary code at the sentence level. Then we use a text classifier as the decoder to decode each bit of the watermark. Through extensive experiments, we show that our watermarks can achieve over 99.99\% detection AUC with small (1.1B) text paraphrasers while keeping the semantic information of the original sentence. More importantly, our pipeline is robust under word substitution and sentence paraphrasing perturbations and generalizes well to out-of-distributional data. We also show the stealthiness of our watermark with LLM-based evaluation. We open-source the code: https://github.com/xiaojunxu/multi-bit-text-watermark.
Learning to Watermark LLM-generated Text via Reinforcement Learning
We study how to watermark LLM outputs, i.e. embedding algorithmically detectable signals into LLM-generated text to track misuse. Unlike the current mainstream methods that work with a fixed LLM, we expand the watermark design space by including the LLM tuning stage in the watermark pipeline. While prior works focus on token-level watermark that embeds signals into the output, we design a model-level watermark that embeds signals into the LLM weights, and such signals can be detected by a paired detector. We propose a co-training framework based on reinforcement learning that iteratively (1) trains a detector to detect the generated watermarked text and (2) tunes the LLM to generate text easily detectable by the detector while keeping its normal utility. We empirically show that our watermarks are more accurate, robust, and adaptable (to new attacks). It also allows watermarked model open-sourcing. In addition, if used together with alignment, the extra overhead introduced is low - only training an extra reward model (i.e. our detector). We hope our work can bring more effort into studying a broader watermark design that is not limited to working with a fixed LLM. We open-source the code: https://github.com/xiaojunxu/learning-to-watermark-llm .
AI-generated Image Detection: Passive or Watermark?
While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice. Our code and data are publicly available at https://github.com/moyangkuo/ImageDetectBench.git.
Hiding Visual Information via Obfuscating Adversarial Perturbations
Growing leakage and misuse of visual information raise security and privacy concerns, which promotes the development of information protection. Existing adversarial perturbations-based methods mainly focus on the de-identification against deep learning models. However, the inherent visual information of the data has not been well protected. In this work, inspired by the Type-I adversarial attack, we propose an adversarial visual information hiding method to protect the visual privacy of data. Specifically, the method generates obfuscating adversarial perturbations to obscure the visual information of the data. Meanwhile, it maintains the hidden objectives to be correctly predicted by models. In addition, our method does not modify the parameters of the applied model, which makes it flexible for different scenarios. Experimental results on the recognition and classification tasks demonstrate that the proposed method can effectively hide visual information and hardly affect the performances of models. The code is available in the supplementary material.
Watermark Stealing in Large Language Models
LLM watermarking has attracted attention as a promising way to detect AI-generated content, with some works suggesting that current schemes may already be fit for deployment. In this work we dispute this claim, identifying watermark stealing (WS) as a fundamental vulnerability of these schemes. We show that querying the API of the watermarked LLM to approximately reverse-engineer a watermark enables practical spoofing attacks, as hypothesized in prior work, but also greatly boosts scrubbing attacks, which was previously unnoticed. We are the first to propose an automated WS algorithm and use it in the first comprehensive study of spoofing and scrubbing in realistic settings. We show that for under $50 an attacker can both spoof and scrub state-of-the-art schemes previously considered safe, with average success rate of over 80%. Our findings challenge common beliefs about LLM watermarking, stressing the need for more robust schemes. We make all our code and additional examples available at https://watermark-stealing.org.
An Independent Discriminant Network Towards Identification of Counterfeit Images and Videos
Rapid spread of false images and videos on online platforms is an emerging problem. Anyone may add, delete, clone or modify people and entities from an image using various editing software which are readily available. This generates false and misleading proof to hide the crime. Now-a-days, these false and counterfeit images and videos are flooding on the internet. These spread false information. Many methods are available in literature for detecting those counterfeit contents but new methods of counterfeiting are also evolving. Generative Adversarial Networks (GAN) are observed to be one effective method as it modifies the context and definition of images producing plausible results via image-to-image translation. This work uses an independent discriminant network that can identify GAN generated image or video. A discriminant network has been created using a convolutional neural network based on InceptionResNetV2. The article also proposes a platform where users can detect forged images and videos. This proposed work has the potential to help the forensics domain to detect counterfeit videos and hidden criminal evidence towards the identification of criminal activities.
Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking
Recently, stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing, with a range of photorealistic and unprecedented images being successfully generated. As a result, widespread interest has been ignited to develop and use various SD-based tools for visual content creation. However, the exposure of AI-created content on public platforms could raise both legal and ethical risks. In this regard, the traditional methods of adding watermarks to the already generated images (i.e. post-processing) may face a dilemma (e.g., being erased or modified) in terms of copyright protection and content monitoring, since the powerful image inversion and text-to-image editing techniques have been widely explored in SD-based methods. In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely Safe-SD) to adaptively implant the graphical watermarks (e.g., QR code) into the imperceptible structure-related pixels during the generative diffusion process for supporting text-driven invisible watermarking and detection. Different from the previous high-cost injection-then-detection training framework, we design a simple and unified architecture, which makes it possible to simultaneously train watermark injection and detection in a single network, greatly improving the efficiency and convenience of use. Moreover, to further support text-driven generative watermarking and deeply explore its robustness and high-traceability, we elaborately design lambda sampling and encryption algorithm to fine-tune a latent diffuser wrapped by a VAE for balancing high-fidelity image synthesis and high-traceable watermark detection. We present our quantitative and qualitative results on two representative datasets LSUN, COCO and FFHQ, demonstrating state-of-the-art performance of Safe-SD and showing it significantly outperforms the previous approaches.
On the Reliability of Watermarks for Large Language Models
Large language models (LLMs) are now deployed to everyday use and positioned to produce large quantities of text in the coming decade. Machine-generated text may displace human-written text on the internet and has the potential to be used for malicious purposes, such as spearphishing attacks and social media bots. Watermarking is a simple and effective strategy for mitigating such harms by enabling the detection and documentation of LLM-generated text. Yet, a crucial question remains: How reliable is watermarking in realistic settings in the wild? There, watermarked text might be mixed with other text sources, paraphrased by human writers or other language models, and used for applications in a broad number of domains, both social and technical. In this paper, we explore different detection schemes, quantify their power at detecting watermarks, and determine how much machine-generated text needs to be observed in each scenario to reliably detect the watermark. We especially highlight our human study, where we investigate the reliability of watermarking when faced with human paraphrasing. We compare watermark-based detection to other detection strategies, finding overall that watermarking is a reliable solution, especially because of its sample complexity - for all attacks we consider, the watermark evidence compounds the more examples are given, and the watermark is eventually detected.
Assessing the Efficacy of Invisible Watermarks in AI-Generated Medical Images
AI-generated medical images are gaining growing popularity due to their potential to address the data scarcity challenge in the real world. However, the issue of accurate identification of these synthetic images, particularly when they exhibit remarkable realism with their real copies, remains a concern. To mitigate this challenge, image generators such as DALLE and Imagen, have integrated digital watermarks aimed at facilitating the discernment of synthetic images' authenticity. These watermarks are embedded within the image pixels and are invisible to the human eye while remains their detectability. Nevertheless, a comprehensive investigation into the potential impact of these invisible watermarks on the utility of synthetic medical images has been lacking. In this study, we propose the incorporation of invisible watermarks into synthetic medical images and seek to evaluate their efficacy in the context of downstream classification tasks. Our goal is to pave the way for discussions on the viability of such watermarks in boosting the detectability of synthetic medical images, fortifying ethical standards, and safeguarding against data pollution and potential scams.
Watermarking Makes Language Models Radioactive
This paper investigates the radioactivity of LLM-generated texts, i.e. whether it is possible to detect that such input was used as training data. Conventional methods like membership inference can carry out this detection with some level of accuracy. We show that watermarked training data leaves traces easier to detect and much more reliable than membership inference. We link the contamination level to the watermark robustness, its proportion in the training set, and the fine-tuning process. We notably demonstrate that training on watermarked synthetic instructions can be detected with high confidence (p-value < 1e-5) even when as little as 5% of training text is watermarked. Thus, LLM watermarking, originally designed for detecting machine-generated text, gives the ability to easily identify if the outputs of a watermarked LLM were used to fine-tune another LLM.
Detecting Images Generated by Diffusers
This paper explores the task of detecting images generated by text-to-image diffusion models. To evaluate this, we consider images generated from captions in the MSCOCO and Wikimedia datasets using two state-of-the-art models: Stable Diffusion and GLIDE. Our experiments show that it is possible to detect the generated images using simple Multi-Layer Perceptrons (MLPs), starting from features extracted by CLIP, or traditional Convolutional Neural Networks (CNNs). We also observe that models trained on images generated by Stable Diffusion can detect images generated by GLIDE relatively well, however, the reverse is not true. Lastly, we find that incorporating the associated textual information with the images rarely leads to significant improvement in detection results but that the type of subject depicted in the image can have a significant impact on performance. This work provides insights into the feasibility of detecting generated images, and has implications for security and privacy concerns in real-world applications. The code to reproduce our results is available at: https://github.com/davide-coccomini/Detecting-Images-Generated-by-Diffusers
Peccavi: Visual Paraphrase Attack Safe and Distortion Free Image Watermarking Technique for AI-Generated Images
A report by the European Union Law Enforcement Agency predicts that by 2026, up to 90 percent of online content could be synthetically generated, raising concerns among policymakers, who cautioned that "Generative AI could act as a force multiplier for political disinformation. The combined effect of generative text, images, videos, and audio may surpass the influence of any single modality." In response, California's Bill AB 3211 mandates the watermarking of AI-generated images, videos, and audio. However, concerns remain regarding the vulnerability of invisible watermarking techniques to tampering and the potential for malicious actors to bypass them entirely. Generative AI-powered de-watermarking attacks, especially the newly introduced visual paraphrase attack, have shown an ability to fully remove watermarks, resulting in a paraphrase of the original image. This paper introduces PECCAVI, the first visual paraphrase attack-safe and distortion-free image watermarking technique. In visual paraphrase attacks, an image is altered while preserving its core semantic regions, termed Non-Melting Points (NMPs). PECCAVI strategically embeds watermarks within these NMPs and employs multi-channel frequency domain watermarking. It also incorporates noisy burnishing to counter reverse-engineering efforts aimed at locating NMPs to disrupt the embedded watermark, thereby enhancing durability. PECCAVI is model-agnostic. All relevant resources and codes will be open-sourced.
Invisible Backdoor Triggers in Image Editing Model via Deep Watermarking
Diffusion models have achieved remarkable progress in both image generation and editing. However, recent studies have revealed their vulnerability to backdoor attacks, in which specific patterns embedded in the input can manipulate the model's behavior. Most existing research in this area has proposed attack frameworks focused on the image generation pipeline, leaving backdoor attacks in image editing relatively unexplored. Among the few studies targeting image editing, most utilize visible triggers, which are impractical because they introduce noticeable alterations to the input image before editing. In this paper, we propose a novel attack framework that embeds invisible triggers into the image editing process via poisoned training data. We leverage off-the-shelf deep watermarking models to encode imperceptible watermarks as backdoor triggers. Our goal is to make the model produce the predefined backdoor target when it receives watermarked inputs, while editing clean images normally according to the given prompt. With extensive experiments across different watermarking models, the proposed method achieves promising attack success rates. In addition, the analysis results of the watermark characteristics in term of backdoor attack further support the effectiveness of our approach. The code is available at:https://github.com/aiiu-lab/BackdoorImageEditing
WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models
To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method's hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering 9 tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate 4 open-source watermarks on 2 LLMs under 2 watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.
Safe-Sora: Safe Text-to-Video Generation via Graphical Watermarking
The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. We will release our code upon publication.
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
ScreenMark: Watermarking Arbitrary Visual Content on Screen
Digital watermarking has shown its effectiveness in protecting multimedia content. However, existing watermarking is predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multi-modal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage through screenshots, a vulnerability that current watermarking methods fail to adequately address.To address these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance. To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments on different datasets confirm the superior robustness, imperceptibility, and practical applicability of the method.
Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples
Recently, Diffusion Models (DMs) boost a wave in AI for Art yet raise new copyright concerns, where infringers benefit from using unauthorized paintings to train DMs to generate novel paintings in a similar style. To address these emerging copyright violations, in this paper, we are the first to explore and propose to utilize adversarial examples for DMs to protect human-created artworks. Specifically, we first build a theoretical framework to define and evaluate the adversarial examples for DMs. Then, based on this framework, we design a novel algorithm, named AdvDM, which exploits a Monte-Carlo estimation of adversarial examples for DMs by optimizing upon different latent variables sampled from the reverse process of DMs. Extensive experiments show that the generated adversarial examples can effectively hinder DMs from extracting their features. Therefore, our method can be a powerful tool for human artists to protect their copyright against infringers equipped with DM-based AI-for-Art applications. The code of our method is available on GitHub: https://github.com/mist-project/mist.git.
Synthesizing Robust Adversarial Examples
Standard methods for generating adversarial examples for neural networks do not consistently fool neural network classifiers in the physical world due to a combination of viewpoint shifts, camera noise, and other natural transformations, limiting their relevance to real-world systems. We demonstrate the existence of robust 3D adversarial objects, and we present the first algorithm for synthesizing examples that are adversarial over a chosen distribution of transformations. We synthesize two-dimensional adversarial images that are robust to noise, distortion, and affine transformation. We apply our algorithm to complex three-dimensional objects, using 3D-printing to manufacture the first physical adversarial objects. Our results demonstrate the existence of 3D adversarial objects in the physical world.
Testing Neural Network Verifiers: A Soundness Benchmark with Hidden Counterexamples
In recent years, many neural network (NN) verifiers have been developed to formally verify certain properties of neural networks such as robustness. Although many benchmarks have been constructed to evaluate the performance of NN verifiers, they typically lack a ground-truth for hard instances where no current verifier can verify and no counterexample can be found, which makes it difficult to check the soundness of a new verifier if it claims to verify hard instances which no other verifier can do. We propose to develop a soundness benchmark for NN verification. Our benchmark contains instances with deliberately inserted counterexamples while we also try to hide the counterexamples from regular adversarial attacks which can be used for finding counterexamples. We design a training method to produce neural networks with such hidden counterexamples. Our benchmark aims to be used for testing the soundness of NN verifiers and identifying falsely claimed verifiability when it is known that hidden counterexamples exist. We systematically construct our benchmark and generate instances across diverse model architectures, activation functions, input sizes, and perturbation radii. We demonstrate that our benchmark successfully identifies bugs in state-of-the-art NN verifiers, as well as synthetic bugs, providing a crucial step toward enhancing the reliability of testing NN verifiers. Our code is available at https://github.com/MVP-Harry/SoundnessBench and our benchmark is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.
Natural Adversarial Examples
We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datasets' real-world, unmodified examples transfer to various unseen models reliably, demonstrating that computer vision models have shared weaknesses. The first dataset is called ImageNet-A and is like the ImageNet test set, but it is far more challenging for existing models. We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models. On ImageNet-A a DenseNet-121 obtains around 2% accuracy, an accuracy drop of approximately 90%, and its out-of-distribution detection performance on ImageNet-O is near random chance levels. We find that existing data augmentation techniques hardly boost performance, and using other public training datasets provides improvements that are limited. However, we find that improvements to computer vision architectures provide a promising path towards robust models.
Tracing the Origin of Adversarial Attack for Forensic Investigation and Deterrence
Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy M_i and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source M_i. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.
Towards GAN Benchmarks Which Require Generalization
For many evaluation metrics commonly used as benchmarks for unconditional image generation, trivially memorizing the training set attains a better score than models which are considered state-of-the-art; we consider this problematic. We clarify a necessary condition for an evaluation metric not to behave this way: estimating the function must require a large sample from the model. In search of such a metric, we turn to neural network divergences (NNDs), which are defined in terms of a neural network trained to distinguish between distributions. The resulting benchmarks cannot be "won" by training set memorization, while still being perceptually correlated and computable only from samples. We survey past work on using NNDs for evaluation and implement an example black-box metric based on these ideas. Through experimental validation we show that it can effectively measure diversity, sample quality, and generalization.
Deep Leakage from Gradients
Exchanging gradients is a widely used method in modern multi-node machine learning system (e.g., distributed training, collaborative learning). For a long time, people believed that gradients are safe to share: i.e., the training data will not be leaked by gradient exchange. However, we show that it is possible to obtain the private training data from the publicly shared gradients. We name this leakage as Deep Leakage from Gradient and empirically validate the effectiveness on both computer vision and natural language processing tasks. Experimental results show that our attack is much stronger than previous approaches: the recovery is pixel-wise accurate for images and token-wise matching for texts. We want to raise people's awareness to rethink the gradient's safety. Finally, we discuss several possible strategies to prevent such deep leakage. The most effective defense method is gradient pruning.
Practical No-box Adversarial Attacks against DNNs
The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
Malware Detection by Eating a Whole EXE
In this work we introduce malware detection from raw byte sequences as a fruitful research area to the larger machine learning community. Building a neural network for such a problem presents a number of interesting challenges that have not occurred in tasks such as image processing or NLP. In particular, we note that detection from raw bytes presents a sequence problem with over two million time steps and a problem where batch normalization appear to hinder the learning process. We present our initial work in building a solution to tackle this problem, which has linear complexity dependence on the sequence length, and allows for interpretable sub-regions of the binary to be identified. In doing so we will discuss the many challenges in building a neural network to process data at this scale, and the methods we used to work around them.
I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models
Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks' robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.
Deep Learning with Differential Privacy
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
PostMark: A Robust Blackbox Watermark for Large Language Models
The most effective techniques to detect LLM-generated text rely on inserting a detectable signature -- or watermark -- during the model's decoding process. Most existing watermarking methods require access to the underlying LLM's logits, which LLM API providers are loath to share due to fears of model distillation. As such, these watermarks must be implemented independently by each LLM provider. In this paper, we develop PostMark, a modular post-hoc watermarking procedure in which an input-dependent set of words (determined via a semantic embedding) is inserted into the text after the decoding process has completed. Critically, PostMark does not require logit access, which means it can be implemented by a third party. We also show that PostMark is more robust to paraphrasing attacks than existing watermarking methods: our experiments cover eight baseline algorithms, five base LLMs, and three datasets. Finally, we evaluate the impact of PostMark on text quality using both automated and human assessments, highlighting the trade-off between quality and robustness to paraphrasing. We release our code, outputs, and annotations at https://github.com/lilakk/PostMark.
Controlled Caption Generation for Images Through Adversarial Attacks
Deep learning is found to be vulnerable to adversarial examples. However, its adversarial susceptibility in image caption generation is under-explored. We study adversarial examples for vision and language models, which typically adopt an encoder-decoder framework consisting of two major components: a Convolutional Neural Network (i.e., CNN) for image feature extraction and a Recurrent Neural Network (RNN) for caption generation. In particular, we investigate attacks on the visual encoder's hidden layer that is fed to the subsequent recurrent network. The existing methods either attack the classification layer of the visual encoder or they back-propagate the gradients from the language model. In contrast, we propose a GAN-based algorithm for crafting adversarial examples for neural image captioning that mimics the internal representation of the CNN such that the resulting deep features of the input image enable a controlled incorrect caption generation through the recurrent network. Our contribution provides new insights for understanding adversarial attacks on vision systems with language component. The proposed method employs two strategies for a comprehensive evaluation. The first examines if a neural image captioning system can be misled to output targeted image captions. The second analyzes the possibility of keywords into the predicted captions. Experiments show that our algorithm can craft effective adversarial images based on the CNN hidden layers to fool captioning framework. Moreover, we discover the proposed attack to be highly transferable. Our work leads to new robustness implications for neural image captioning.
Differentiable JPEG: The Devil is in the Details
JPEG remains one of the most widespread lossy image coding methods. However, the non-differentiable nature of JPEG restricts the application in deep learning pipelines. Several differentiable approximations of JPEG have recently been proposed to address this issue. This paper conducts a comprehensive review of existing diff. JPEG approaches and identifies critical details that have been missed by previous methods. To this end, we propose a novel diff. JPEG approach, overcoming previous limitations. Our approach is differentiable w.r.t. the input image, the JPEG quality, the quantization tables, and the color conversion parameters. We evaluate the forward and backward performance of our diff. JPEG approach against existing methods. Additionally, extensive ablations are performed to evaluate crucial design choices. Our proposed diff. JPEG resembles the (non-diff.) reference implementation best, significantly surpassing the recent-best diff. approach by 3.47dB (PSNR) on average. For strong compression rates, we can even improve PSNR by 9.51dB. Strong adversarial attack results are yielded by our diff. JPEG, demonstrating the effective gradient approximation. Our code is available at https://github.com/necla-ml/Diff-JPEG.
Unrestricted Adversarial Examples via Semantic Manipulation
Machine learning models, especially deep neural networks (DNNs), have been shown to be vulnerable against adversarial examples which are carefully crafted samples with a small magnitude of the perturbation. Such adversarial perturbations are usually restricted by bounding their L_p norm such that they are imperceptible, and thus many current defenses can exploit this property to reduce their adversarial impact. In this paper, we instead introduce "unrestricted" perturbations that manipulate semantically meaningful image-based visual descriptors - color and texture - in order to generate effective and photorealistic adversarial examples. We show that these semantically aware perturbations are effective against JPEG compression, feature squeezing and adversarially trained model. We also show that the proposed methods can effectively be applied to both image classification and image captioning tasks on complex datasets such as ImageNet and MSCOCO. In addition, we conduct comprehensive user studies to show that our generated semantic adversarial examples are photorealistic to humans despite large magnitude perturbations when compared to other attacks.
VideoMark: A Distortion-Free Robust Watermarking Framework for Video Diffusion Models
This work presents VideoMark, a training-free robust watermarking framework for video diffusion models. As diffusion models advance in generating highly realistic videos, the need for reliable content attribution mechanisms has become critical. While watermarking techniques for image diffusion models have made progress, directly extending these methods to videos presents unique challenges due to variable video lengths and vulnerability to temporal attacks. VideoMark addresses these limitations through a frame-wise watermarking strategy using pseudorandom error correction (PRC) codes to embed watermark information during the generation process. Our method generates an extended watermark message sequence and randomly selects starting positions for each video, ensuring uniform noise distribution in the latent space and maintaining generation quality. For watermark extraction, we introduce a Temporal Matching Module (TMM) that uses edit distance to align decoded messages with the original watermark sequence, providing robustness against temporal attacks such as frame deletion. Experimental results demonstrate that VideoMark achieves higher decoding accuracy than existing methods while maintaining video quality on par with watermark-free generation. Importantly, our watermark remains undetectable to attackers without the secret key, ensuring strong imperceptibility compared to other watermarking frameworks. VideoMark provides a practical solution for content attribution in diffusion-based video generation without requiring additional training or compromising video quality. Our code and data are available at https://github.com/KYRIE-LI11/VideoMark{https://github.com/KYRIE-LI11/VideoMark}.
Active Image Indexing
Image copy detection and retrieval from large databases leverage two components. First, a neural network maps an image to a vector representation, that is relatively robust to various transformations of the image. Second, an efficient but approximate similarity search algorithm trades scalability (size and speed) against quality of the search, thereby introducing a source of error. This paper improves the robustness of image copy detection with active indexing, that optimizes the interplay of these two components. We reduce the quantization loss of a given image representation by making imperceptible changes to the image before its release. The loss is back-propagated through the deep neural network back to the image, under perceptual constraints. These modifications make the image more retrievable. Our experiments show that the retrieval and copy detection of activated images is significantly improved. For instance, activation improves by +40% the Recall1@1 on various image transformations, and for several popular indexing structures based on product quantization and locality sensitivity hashing.
Silent Branding Attack: Trigger-free Data Poisoning Attack on Text-to-Image Diffusion Models
Text-to-image diffusion models have achieved remarkable success in generating high-quality contents from text prompts. However, their reliance on publicly available data and the growing trend of data sharing for fine-tuning make these models particularly vulnerable to data poisoning attacks. In this work, we introduce the Silent Branding Attack, a novel data poisoning method that manipulates text-to-image diffusion models to generate images containing specific brand logos or symbols without any text triggers. We find that when certain visual patterns are repeatedly in the training data, the model learns to reproduce them naturally in its outputs, even without prompt mentions. Leveraging this, we develop an automated data poisoning algorithm that unobtrusively injects logos into original images, ensuring they blend naturally and remain undetected. Models trained on this poisoned dataset generate images containing logos without degrading image quality or text alignment. We experimentally validate our silent branding attack across two realistic settings on large-scale high-quality image datasets and style personalization datasets, achieving high success rates even without a specific text trigger. Human evaluation and quantitative metrics including logo detection show that our method can stealthily embed logos.
Evaluating Adversarial Robustness: A Comparison Of FGSM, Carlini-Wagner Attacks, And The Role of Distillation as Defense Mechanism
This technical report delves into an in-depth exploration of adversarial attacks specifically targeted at Deep Neural Networks (DNNs) utilized for image classification. The study also investigates defense mechanisms aimed at bolstering the robustness of machine learning models. The research focuses on comprehending the ramifications of two prominent attack methodologies: the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner (CW) approach. These attacks are examined concerning three pre-trained image classifiers: Resnext50_32x4d, DenseNet-201, and VGG-19, utilizing the Tiny-ImageNet dataset. Furthermore, the study proposes the robustness of defensive distillation as a defense mechanism to counter FGSM and CW attacks. This defense mechanism is evaluated using the CIFAR-10 dataset, where CNN models, specifically resnet101 and Resnext50_32x4d, serve as the teacher and student models, respectively. The proposed defensive distillation model exhibits effectiveness in thwarting attacks such as FGSM. However, it is noted to remain susceptible to more sophisticated techniques like the CW attack. The document presents a meticulous validation of the proposed scheme. It provides detailed and comprehensive results, elucidating the efficacy and limitations of the defense mechanisms employed. Through rigorous experimentation and analysis, the study offers insights into the dynamics of adversarial attacks on DNNs, as well as the effectiveness of defensive strategies in mitigating their impact.
Axiomatic Attribution for Deep Networks
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
Is Watermarking LLM-Generated Code Robust?
We present the first study of the robustness of existing watermarking techniques on Python code generated by large language models. Although existing works showed that watermarking can be robust for natural language, we show that it is easy to remove these watermarks on code by semantic-preserving transformations.
Spy-Watermark: Robust Invisible Watermarking for Backdoor Attack
Backdoor attack aims to deceive a victim model when facing backdoor instances while maintaining its performance on benign data. Current methods use manual patterns or special perturbations as triggers, while they often overlook the robustness against data corruption, making backdoor attacks easy to defend in practice. To address this issue, we propose a novel backdoor attack method named Spy-Watermark, which remains effective when facing data collapse and backdoor defense. Therein, we introduce a learnable watermark embedded in the latent domain of images, serving as the trigger. Then, we search for a watermark that can withstand collapse during image decoding, cooperating with several anti-collapse operations to further enhance the resilience of our trigger against data corruption. Extensive experiments are conducted on CIFAR10, GTSRB, and ImageNet datasets, demonstrating that Spy-Watermark overtakes ten state-of-the-art methods in terms of robustness and stealthiness.
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
In this paper we establish rigorous benchmarks for image classifier robustness. Our first benchmark, ImageNet-C, standardizes and expands the corruption robustness topic, while showing which classifiers are preferable in safety-critical applications. Then we propose a new dataset called ImageNet-P which enables researchers to benchmark a classifier's robustness to common perturbations. Unlike recent robustness research, this benchmark evaluates performance on common corruptions and perturbations not worst-case adversarial perturbations. We find that there are negligible changes in relative corruption robustness from AlexNet classifiers to ResNet classifiers. Afterward we discover ways to enhance corruption and perturbation robustness. We even find that a bypassed adversarial defense provides substantial common perturbation robustness. Together our benchmarks may aid future work toward networks that robustly generalize.
Editable Neural Networks
These days deep neural networks are ubiquitously used in a wide range of tasks, from image classification and machine translation to face identification and self-driving cars. In many applications, a single model error can lead to devastating financial, reputational and even life-threatening consequences. Therefore, it is crucially important to correct model mistakes quickly as they appear. In this work, we investigate the problem of neural network editing - how one can efficiently patch a mistake of the model on a particular sample, without influencing the model behavior on other samples. Namely, we propose Editable Training, a model-agnostic training technique that encourages fast editing of the trained model. We empirically demonstrate the effectiveness of this method on large-scale image classification and machine translation tasks.
Adversarial Robustification via Text-to-Image Diffusion Models
Adversarial robustness has been conventionally believed as a challenging property to encode for neural networks, requiring plenty of training data. In the recent paradigm of adopting off-the-shelf models, however, access to their training data is often infeasible or not practical, while most of such models are not originally trained concerning adversarial robustness. In this paper, we develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data. Our intuition is to view recent text-to-image diffusion models as "adaptable" denoisers that can be optimized to specify target tasks. Based on this, we propose: (a) to initiate a denoise-and-classify pipeline that offers provable guarantees against adversarial attacks, and (b) to leverage a few synthetic reference images generated from the text-to-image model that enables novel adaptation schemes. Our experiments show that our data-free scheme applied to the pre-trained CLIP could improve the (provable) adversarial robustness of its diverse zero-shot classification derivatives (while maintaining their accuracy), significantly surpassing prior approaches that utilize the full training data. Not only for CLIP, we also demonstrate that our framework is easily applicable for robustifying other visual classifiers efficiently.
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
In this paper, we explore and compare multiple solutions to the problem of data augmentation in image classification. Previous work has demonstrated the effectiveness of data augmentation through simple techniques, such as cropping, rotating, and flipping input images. We artificially constrain our access to data to a small subset of the ImageNet dataset, and compare each data augmentation technique in turn. One of the more successful data augmentations strategies is the traditional transformations mentioned above. We also experiment with GANs to generate images of different styles. Finally, we propose a method to allow a neural net to learn augmentations that best improve the classifier, which we call neural augmentation. We discuss the successes and shortcomings of this method on various datasets.
CopyScope: Model-level Copyright Infringement Quantification in the Diffusion Workflow
Web-based AI image generation has become an innovative art form that can generate novel artworks with the rapid development of the diffusion model. However, this new technique brings potential copyright infringement risks as it may incorporate the existing artworks without the owners' consent. Copyright infringement quantification is the primary and challenging step towards AI-generated image copyright traceability. Previous work only focused on data attribution from the training data perspective, which is unsuitable for tracing and quantifying copyright infringement in practice because of the following reasons: (1) the training datasets are not always available in public; (2) the model provider is the responsible party, not the image. Motivated by this, in this paper, we propose CopyScope, a new framework to quantify the infringement of AI-generated images from the model level. We first rigorously identify pivotal components within the AI image generation pipeline. Then, we propose to take advantage of Fr\'echet Inception Distance (FID) to effectively capture the image similarity that fits human perception naturally. We further propose the FID-based Shapley algorithm to evaluate the infringement contribution among models. Extensive experiments demonstrate that our work not only reveals the intricacies of infringement quantification but also effectively depicts the infringing models quantitatively, thus promoting accountability in AI image-generation tasks.
Are CLIP features all you need for Universal Synthetic Image Origin Attribution?
The steady improvement of Diffusion Models for visual synthesis has given rise to many new and interesting use cases of synthetic images but also has raised concerns about their potential abuse, which poses significant societal threats. To address this, fake images need to be detected and attributed to their source model, and given the frequent release of new generators, realistic applications need to consider an Open-Set scenario where some models are unseen at training time. Existing forensic techniques are either limited to Closed-Set settings or to GAN-generated images, relying on fragile frequency-based "fingerprint" features. By contrast, we propose a simple yet effective framework that incorporates features from large pre-trained foundation models to perform Open-Set origin attribution of synthetic images produced by various generative models, including Diffusion Models. We show that our method leads to remarkable attribution performance, even in the low-data regime, exceeding the performance of existing methods and generalizes better on images obtained from a diverse set of architectures. We make the code publicly available at: https://github.com/ciodar/UniversalAttribution.