Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePiTe: Pixel-Temporal Alignment for Large Video-Language Model
Fueled by the Large Language Models (LLMs) wave, Large Visual-Language Models (LVLMs) have emerged as a pivotal advancement, bridging the gap between image and text. However, video making it challenging for LVLMs to perform adequately due to the complexity of the relationship between language and spatial-temporal data structure. Recent Large Video-Language Models (LVidLMs) align feature of static visual data like image into latent space of language feature, by general multi-modal tasks to leverage abilities of LLMs sufficiently. In this paper, we explore fine-grained alignment approach via object trajectory for different modalities across both spatial and temporal dimensions simultaneously. Thus, we propose a novel LVidLM by trajectory-guided Pixel-Temporal Alignment, dubbed PiTe, that exhibits promising applicable model property. To achieve fine-grained video-language alignment, we curate a multi-modal pre-training dataset PiTe-143k, the dataset provision of moving trajectories in pixel level for all individual objects, that appear and mention in the video and caption both, by our automatic annotation pipeline. Meanwhile, PiTe demonstrates astounding capabilities on myriad video-related multi-modal tasks through beat the state-of-the-art methods by a large margin.
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP
We present CLIP2Video network to transfer the image-language pre-training model to video-text retrieval in an end-to-end manner. Leading approaches in the domain of video-and-language learning try to distill the spatio-temporal video features and multi-modal interaction between videos and languages from a large-scale video-text dataset. Different from them, we leverage pretrained image-language model, simplify it as a two-stage framework with co-learning of image-text and enhancing temporal relations between video frames and video-text respectively, make it able to train on comparatively small datasets. Specifically, based on the spatial semantics captured by Contrastive Language-Image Pretraining (CLIP) model, our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.
PMMTalk: Speech-Driven 3D Facial Animation from Complementary Pseudo Multi-modal Features
Speech-driven 3D facial animation has improved a lot recently while most related works only utilize acoustic modality and neglect the influence of visual and textual cues, leading to unsatisfactory results in terms of precision and coherence. We argue that visual and textual cues are not trivial information. Therefore, we present a novel framework, namely PMMTalk, using complementary Pseudo Multi-Modal features for improving the accuracy of facial animation. The framework entails three modules: PMMTalk encoder, cross-modal alignment module, and PMMTalk decoder. Specifically, the PMMTalk encoder employs the off-the-shelf talking head generation architecture and speech recognition technology to extract visual and textual information from speech, respectively. Subsequently, the cross-modal alignment module aligns the audio-image-text features at temporal and semantic levels. Then PMMTalk decoder is employed to predict lip-syncing facial blendshape coefficients. Contrary to prior methods, PMMTalk only requires an additional random reference face image but yields more accurate results. Additionally, it is artist-friendly as it seamlessly integrates into standard animation production workflows by introducing facial blendshape coefficients. Finally, given the scarcity of 3D talking face datasets, we introduce a large-scale 3D Chinese Audio-Visual Facial Animation (3D-CAVFA) dataset. Extensive experiments and user studies show that our approach outperforms the state of the art. We recommend watching the supplementary video.
A Strong Baseline for Temporal Video-Text Alignment
In this paper, we consider the problem of temporally aligning the video and texts from instructional videos, specifically, given a long-term video, and associated text sentences, our goal is to determine their corresponding timestamps in the video. To this end, we establish a simple, yet strong model that adopts a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to infer the optimal timestamp. We conduct thorough experiments to investigate: (i) the effect of upgrading ASR systems to reduce errors from speech recognition, (ii) the effect of various visual-textual backbones, ranging from CLIP to S3D, to the more recent InternVideo, (iii) the effect of transforming noisy ASR transcripts into descriptive steps by prompting a large language model (LLM), to summarize the core activities within the ASR transcript as a new training dataset. As a result, our proposed simple model demonstrates superior performance on both narration alignment and procedural step grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.3% on HT-Step, 3.4% on HTM-Align and 4.7% on CrossTask. We believe the proposed model and dataset with descriptive steps can be treated as a strong baseline for future research in temporal video-text alignment. All codes, models, and the resulting dataset will be publicly released to the research community.
Temporal Contrastive Learning for Video Temporal Reasoning in Large Vision-Language Models
Temporal reasoning is a critical challenge in video-language understanding, as it requires models to align semantic concepts consistently across time. While existing large vision-language models (LVLMs) and large language models (LLMs) excel at static tasks, they struggle to capture dynamic interactions and temporal dependencies in video sequences. In this work, we propose Temporal Semantic Alignment via Dynamic Prompting (TSADP), a novel framework that enhances temporal reasoning capabilities through dynamic task-specific prompts and temporal contrastive learning. TSADP leverages a Dynamic Prompt Generator (DPG) to encode fine-grained temporal relationships and a Temporal Contrastive Loss (TCL) to align visual and textual embeddings across time. We evaluate our method on the VidSitu dataset, augmented with enriched temporal annotations, and demonstrate significant improvements over state-of-the-art models in tasks such as Intra-Video Entity Association, Temporal Relationship Understanding, and Chronology Prediction. Human evaluations further confirm TSADP's ability to generate coherent and semantically accurate descriptions. Our analysis highlights the robustness, efficiency, and practical utility of TSADP, making it a step forward in the field of video-language understanding.
MEGA: Multimodal Alignment Aggregation and Distillation For Cinematic Video Segmentation
Previous research has studied the task of segmenting cinematic videos into scenes and into narrative acts. However, these studies have overlooked the essential task of multimodal alignment and fusion for effectively and efficiently processing long-form videos (>60min). In this paper, we introduce Multimodal alignmEnt aGgregation and distillAtion (MEGA) for cinematic long-video segmentation. MEGA tackles the challenge by leveraging multiple media modalities. The method coarsely aligns inputs of variable lengths and different modalities with alignment positional encoding. To maintain temporal synchronization while reducing computation, we further introduce an enhanced bottleneck fusion layer which uses temporal alignment. Additionally, MEGA employs a novel contrastive loss to synchronize and transfer labels across modalities, enabling act segmentation from labeled synopsis sentences on video shots. Our experimental results show that MEGA outperforms state-of-the-art methods on MovieNet dataset for scene segmentation (with an Average Precision improvement of +1.19%) and on TRIPOD dataset for act segmentation (with a Total Agreement improvement of +5.51%)
LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
With the release of large-scale motion datasets with textual annotations, the task of establishing a robust latent space for language and 3D human motion has recently witnessed a surge of interest. Methods have been proposed to convert human motion and texts into features to achieve accurate correspondence between them. Despite these efforts to align language and motion representations, we claim that the temporal element is often overlooked, especially for compound actions, resulting in chronological inaccuracies. To shed light on the temporal alignment in motion-language latent spaces, we propose Chronologically Accurate Retrieval (CAR) to evaluate the chronological understanding of the models. We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions. We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version. CAR reveals many cases where current motion-language models fail to distinguish the event chronology of human motion, despite their impressive performance in terms of conventional evaluation metrics. To achieve better temporal alignment between text and motion, we further propose to use these texts with shuffled sequence of events as negative samples during training to reinforce the motion-language models. We conduct experiments on text-motion retrieval and text-to-motion generation using the reinforced motion-language models, which demonstrate improved performance over conventional approaches, indicating the necessity to consider temporal elements in motion-language alignment.
HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
STELLA: Continual Audio-Video Pre-training with Spatio-Temporal Localized Alignment
Continuously learning a variety of audio-video semantics over time is crucial for audio-related reasoning tasks in our ever-evolving world. However, this is a nontrivial problem and poses two critical challenges: sparse spatio-temporal correlation between audio-video pairs and multimodal correlation overwriting that forgets audio-video relations. To tackle this problem, we propose a new continual audio-video pre-training method with two novel ideas: (1) Localized Patch Importance Scoring: we introduce a multimodal encoder to determine the importance score for each patch, emphasizing semantically intertwined audio-video patches. (2) Replay-guided Correlation Assessment: to reduce the corruption of previously learned audiovisual knowledge due to drift, we propose to assess the correlation of the current patches on the past steps to identify the patches exhibiting high correlations with the past steps. Based on the results from the two ideas, we perform probabilistic patch selection for effective continual audio-video pre-training. Experimental validation on multiple benchmarks shows that our method achieves a 3.69%p of relative performance gain in zero-shot retrieval tasks compared to strong continual learning baselines, while reducing memory consumption by ~45%.
Deep Visual-Semantic Alignments for Generating Image Descriptions
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.
LITA: Language Instructed Temporal-Localization Assistant
There has been tremendous progress in multimodal Large Language Models (LLMs). Recent works have extended these models to video input with promising instruction following capabilities. However, an important missing piece is temporal localization. These models cannot accurately answer the "When?" questions. We identify three key aspects that limit their temporal localization capabilities: (i) time representation, (ii) architecture, and (iii) data. We address these shortcomings by proposing Language Instructed Temporal-Localization Assistant (LITA) with the following features: (1) We introduce time tokens that encode timestamps relative to the video length to better represent time in videos. (2) We introduce SlowFast tokens in the architecture to capture temporal information at fine temporal resolution. (3) We emphasize temporal localization data for LITA. In addition to leveraging existing video datasets with timestamps, we propose a new task, Reasoning Temporal Localization (RTL), along with the dataset, ActivityNet-RTL, for learning and evaluating this task. Reasoning temporal localization requires both the reasoning and temporal localization of Video LLMs. LITA demonstrates strong performance on this challenging task, nearly doubling the temporal mean intersection-over-union (mIoU) of baselines. In addition, we show that our emphasis on temporal localization also substantially improves video-based text generation compared to existing Video LLMs, including a 36% relative improvement of Temporal Understanding. Code is available at: https://github.com/NVlabs/LITA
Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training
The correlation between the vision and text is essential for video moment retrieval (VMR), however, existing methods heavily rely on separate pre-training feature extractors for visual and textual understanding. Without sufficient temporal boundary annotations, it is non-trivial to learn universal video-text alignments. In this work, we explore multi-modal correlations derived from large-scale image-text data to facilitate generalisable VMR. To address the limitations of image-text pre-training models on capturing the video changes, we propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments. Whilst existing VMR methods are focusing on building temporal-aware video features, being aware of the text descriptions about the temporal changes is also critical but originally overlooked in pre-training by matching static images with sentences. Therefore, we extract visual context and spatial dynamic information from video frames and explicitly enforce their alignments with the phrases describing video changes (e.g. verb). By doing so, the potentially relevant visual and motion patterns in videos are encoded in the corresponding text embeddings (injected) so to enable more accurate video-text alignments. We conduct extensive experiments on two VMR benchmark datasets (Charades-STA and ActivityNet-Captions) and achieve state-of-the-art performances. Especially, VDI yields notable advantages when being tested on the out-of-distribution splits where the testing samples involve novel scenes and vocabulary.
Transferable speech-to-text large language model alignment module
By leveraging the power of Large Language Models(LLMs) and speech foundation models, state of the art speech-text bimodal works can achieve challenging tasks like spoken translation(ST) and question answering(SQA) altogether with much simpler architectures. In this paper, we utilize the capability of Whisper encoder and pre-trained Yi-6B. Empirical results reveal that modal alignment can be achieved with one layer module and hundred hours of speech-text multitask corpus. We further swap the Yi-6B with human preferences aligned version of Yi-6B-Chat during inference, and discover that the alignment capability is applicable as well. In addition, the alignment subspace revealed by singular value decomposition(SVD) also implies linear alignment subspace is sparse, which leaves the possibility to concatenate other features like voice-print or video to expand modality.
Speech-Text Dialog Pre-training for Spoken Dialog Understanding with Explicit Cross-Modal Alignment
Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text dialog Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context.
AVicuna: Audio-Visual LLM with Interleaver and Context-Boundary Alignment for Temporal Referential Dialogue
In everyday communication, humans frequently use speech and gestures to refer to specific areas or objects, a process known as Referential Dialogue (RD). While prior studies have investigated RD through Large Language Models (LLMs) or Large Multimodal Models (LMMs) in static contexts, the exploration of Temporal Referential Dialogue (TRD) within audio-visual media remains limited. Two primary challenges hinder progress in this field: (1) the absence of comprehensive, untrimmed audio-visual video datasets with precise temporal annotations, and (2) the need for methods to integrate complex temporal auditory and visual cues effectively. To address these challenges, we introduce a novel framework to generate PU-VALOR, an extensive audio-visual dataset comprising over 114,000 untrimmed videos with accurate temporal demarcations. We also present AVicuna, featuring an Audio-Visual Tokens Interleaver (AVTI) that ensures the temporal alignment of audio-visual information. Additionally, we develop the A5-222K dataset, encompassing more than 200,000 audio-text pairings, to facilitate the audio and text alignments. Our experiments demonstrate that AVicuna can effectively handle TRD in audio-visual videos and achieve state-of-the-art performance on various audio-visual video understanding tasks, particularly in untrimmed videos. We further investigate the optimal audio-interleaving rate for interleaved audio-visual inputs, which maximizes performance on the Audio-Visual Event Dense Localization task.
OneEncoder: A Lightweight Framework for Progressive Alignment of Modalities
Cross-modal alignment Learning integrates information from different modalities like text, image, audio and video to create unified models. This approach develops shared representations and learns correlations between modalities, enabling applications such as visual question answering and audiovisual content analysis. Current techniques rely on large modality-specific encoders, necessitating fine-tuning or training from scratch on vast aligned datasets (e.g., text-image, text-audio, image-audio). This approach has limitations: (i) it is very expensive due to the need for training large encoders on extensive datasets, (ii) acquiring aligned large paired datasets is challenging, and (iii) adding new modalities requires retraining the entire framework to incorporate these modalities. To address these issues, we propose OneEncoder, a lightweight framework that progressively represents and aligns four modalities (image, text, audio, video). Initially, we train a lightweight Universal Projection module (UP) to align image and text modalities. Then, we freeze the pretrained UP and progressively align future modalities to those already aligned. OneEncoder operates efficiently and cost-effectively, even in scenarios where vast aligned datasets are unavailable, due to its lightweight design. Trained on small paired datasets, it shows strong performance in tasks like classification, querying, and visual question answering, surpassing methods that rely on large datasets and specialized encoders.
Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model Adaptation
We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes. For this task, the videos are required to be aligned both globally and temporally with the input audio: globally, the input audio is semantically associated with the entire output video, and temporally, each segment of the input audio is associated with a corresponding segment of that video. We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model. The proposed method is based on a lightweight adaptor network, which learns to map the audio-based representation to the input representation expected by the text-to-video generation model. As such, it also enables video generation conditioned on text, audio, and, for the first time as far as we can ascertain, on both text and audio. We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples and further propose a novel evaluation metric (AV-Align) to assess the alignment of generated videos with input audio samples. AV-Align is based on the detection and comparison of energy peaks in both modalities. In comparison to recent state-of-the-art approaches, our method generates videos that are better aligned with the input sound, both with respect to content and temporal axis. We also show that videos produced by our method present higher visual quality and are more diverse.
Learning Alignment for Multimodal Emotion Recognition from Speech
Speech emotion recognition is a challenging problem because human convey emotions in subtle and complex ways. For emotion recognition on human speech, one can either extract emotion related features from audio signals or employ speech recognition techniques to generate text from speech and then apply natural language processing to analyze the sentiment. Further, emotion recognition will be beneficial from using audio-textual multimodal information, it is not trivial to build a system to learn from multimodality. One can build models for two input sources separately and combine them in a decision level, but this method ignores the interaction between speech and text in the temporal domain. In this paper, we propose to use an attention mechanism to learn the alignment between speech frames and text words, aiming to produce more accurate multimodal feature representations. The aligned multimodal features are fed into a sequential model for emotion recognition. We evaluate the approach on the IEMOCAP dataset and the experimental results show the proposed approach achieves the state-of-the-art performance on the dataset.
STA-V2A: Video-to-Audio Generation with Semantic and Temporal Alignment
Visual and auditory perception are two crucial ways humans experience the world. Text-to-video generation has made remarkable progress over the past year, but the absence of harmonious audio in generated video limits its broader applications. In this paper, we propose Semantic and Temporal Aligned Video-to-Audio (STA-V2A), an approach that enhances audio generation from videos by extracting both local temporal and global semantic video features and combining these refined video features with text as cross-modal guidance. To address the issue of information redundancy in videos, we propose an onset prediction pretext task for local temporal feature extraction and an attentive pooling module for global semantic feature extraction. To supplement the insufficient semantic information in videos, we propose a Latent Diffusion Model with Text-to-Audio priors initialization and cross-modal guidance. We also introduce Audio-Audio Align, a new metric to assess audio-temporal alignment. Subjective and objective metrics demonstrate that our method surpasses existing Video-to-Audio models in generating audio with better quality, semantic consistency, and temporal alignment. The ablation experiment validated the effectiveness of each module. Audio samples are available at https://y-ren16.github.io/STAV2A.
VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos
Fine-grained alignment between videos and text is challenging due to complex spatial and temporal dynamics in videos. Existing video-based Large Multimodal Models (LMMs) handle basic conversations but struggle with precise pixel-level grounding in videos. To address this, we introduce VideoGLaMM, a LMM designed for fine-grained pixel-level grounding in videos based on user-provided textual inputs. Our design seamlessly connects three key components: a Large Language Model, a dual vision encoder that emphasizes both spatial and temporal details, and a spatio-temporal decoder for accurate mask generation. This connection is facilitated via tunable V-L and L-V adapters that enable close Vision-Language (VL) alignment. The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions. To enable fine-grained grounding, we curate a multimodal dataset featuring detailed visually-grounded conversations using a semiautomatic annotation pipeline, resulting in a diverse set of 38k video-QA triplets along with 83k objects and 671k masks. We evaluate VideoGLaMM on three challenging tasks: Grounded Conversation Generation, Visual Grounding, and Referring Video Segmentation. Experimental results show that our model consistently outperforms existing approaches across all three tasks.
Unified Lexical Representation for Interpretable Visual-Language Alignment
Visual-Language Alignment (VLA) has gained a lot of attention since CLIP's groundbreaking work. Although CLIP performs well, the typical direct latent feature alignment lacks clarity in its representation and similarity scores. On the other hand, lexical representation, a vector whose element represents the similarity between the sample and a word from the vocabulary, is a natural sparse representation and interpretable, providing exact matches for individual words. However, lexical representations is difficult to learn due to no ground-truth supervision and false-discovery issues, and thus requires complex design to train effectively. In this paper, we introduce LexVLA, a more interpretable VLA framework by learning a unified lexical representation for both modalities without complex design. We use DINOv2 as our visual model for its local-inclined features and Llama 2, a generative language model, to leverage its in-context lexical prediction ability. To avoid the false discovery, we propose an overuse penalty to refrain the lexical representation from falsely frequently activating meaningless words. We demonstrate that these two pre-trained uni-modal models can be well-aligned by fine-tuning on modest multi-modal dataset and avoid intricate training configurations. On cross-modal retrieval benchmarks, LexVLA, trained on the CC-12M multi-modal dataset, outperforms baselines fine-tuned on larger datasets (e.g., YFCC15M) and those trained from scratch on even bigger datasets (e.g., 1.1B data, including CC-12M). We conduct extensive experiments to analyze LexVLA.
TALL: Temporal Activity Localization via Language Query
This paper focuses on temporal localization of actions in untrimmed videos. Existing methods typically train classifiers for a pre-defined list of actions and apply them in a sliding window fashion. However, activities in the wild consist of a wide combination of actors, actions and objects; it is difficult to design a proper activity list that meets users' needs. We propose to localize activities by natural language queries. Temporal Activity Localization via Language (TALL) is challenging as it requires: (1) suitable design of text and video representations to allow cross-modal matching of actions and language queries; (2) ability to locate actions accurately given features from sliding windows of limited granularity. We propose a novel Cross-modal Temporal Regression Localizer (CTRL) to jointly model text query and video clips, output alignment scores and action boundary regression results for candidate clips. For evaluation, we adopt TaCoS dataset, and build a new dataset for this task on top of Charades by adding sentence temporal annotations, called Charades-STA. We also build complex sentence queries in Charades-STA for test. Experimental results show that CTRL outperforms previous methods significantly on both datasets.
MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild
Dynamic Facial Expression Recognition (DFER) has received significant interest in the recent years dictated by its pivotal role in enabling empathic and human-compatible technologies. Achieving robustness towards in-the-wild data in DFER is particularly important for real-world applications. One of the directions aimed at improving such models is multimodal emotion recognition based on audio and video data. Multimodal learning in DFER increases the model capabilities by leveraging richer, complementary data representations. Within the field of multimodal DFER, recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders. Another line of research has focused on adapting pre-trained static models for DFER. In this work, we propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders. We identify main challenges associated with this task, namely, intra-modality adaptation, cross-modal alignment, and temporal adaptation, and propose solutions to each of them. As a result, we demonstrate improvement over current state-of-the-art on two popular DFER benchmarks, namely DFEW and MFAW.
LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models
The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of 5% in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.
SOC: Semantic-Assisted Object Cluster for Referring Video Object Segmentation
This paper studies referring video object segmentation (RVOS) by boosting video-level visual-linguistic alignment. Recent approaches model the RVOS task as a sequence prediction problem and perform multi-modal interaction as well as segmentation for each frame separately. However, the lack of a global view of video content leads to difficulties in effectively utilizing inter-frame relationships and understanding textual descriptions of object temporal variations. To address this issue, we propose Semantic-assisted Object Cluster (SOC), which aggregates video content and textual guidance for unified temporal modeling and cross-modal alignment. By associating a group of frame-level object embeddings with language tokens, SOC facilitates joint space learning across modalities and time steps. Moreover, we present multi-modal contrastive supervision to help construct well-aligned joint space at the video level. We conduct extensive experiments on popular RVOS benchmarks, and our method outperforms state-of-the-art competitors on all benchmarks by a remarkable margin. Besides, the emphasis on temporal coherence enhances the segmentation stability and adaptability of our method in processing text expressions with temporal variations. Code will be available.
Temporal and cross-modal attention for audio-visual zero-shot learning
Audio-visual generalised zero-shot learning for video classification requires understanding the relations between the audio and visual information in order to be able to recognise samples from novel, previously unseen classes at test time. The natural semantic and temporal alignment between audio and visual data in video data can be exploited to learn powerful representations that generalise to unseen classes at test time. We propose a multi-modal and Temporal Cross-attention Framework (\modelName) for audio-visual generalised zero-shot learning. Its inputs are temporally aligned audio and visual features that are obtained from pre-trained networks. Encouraging the framework to focus on cross-modal correspondence across time instead of self-attention within the modalities boosts the performance significantly. We show that our proposed framework that ingests temporal features yields state-of-the-art performance on the \ucf, \vgg, and \activity benchmarks for (generalised) zero-shot learning. Code for reproducing all results is available at https://github.com/ExplainableML/TCAF-GZSL.
ModaVerse: Efficiently Transforming Modalities with LLMs
Humans possess the capability to comprehend diverse modalities and seamlessly transfer information between them. In this work, we introduce ModaVerse, a Multi-modal Large Language Model (MLLM) capable of comprehending and transforming content across various modalities including images, videos, and audio. Predominant MLLM frameworks have largely relied on the alignment of latent spaces of textual and non-textual features. This alignment process, which synchronizes a language model trained on textual data with encoders and decoders trained on multi-modal data, often necessitates extensive training of several projection layers in multiple stages. Inspired by LLM-as-agent methodologies, we propose a novel Input/Output (I/O) alignment mechanism that operates directly at the level of natural language. It aligns the LLM's output with the input of generative models, avoiding the complexities associated with latent feature alignments, and simplifying the multiple training stages of existing MLLMs into a single, efficient process. This conceptual advancement leads to significant reductions in both data and computational costs. By conducting experiments on several benchmarks, we demonstrate that our approach attains comparable performance with the state of the art while achieving considerable efficiencies in data usage and training duration.
Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation
Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks, but they often suffer from common issues such as semantic misalignment and poor temporal consistency due to limited natural language understanding and data scarcity. Additionally, 2D spatial structures widely used in T2A works lead to unsatisfactory audio quality when generating variable-length audio samples since they do not adequately prioritize temporal information. To address these challenges, we propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio. Our approach includes several techniques to improve semantic alignment and temporal consistency: Firstly, we use pre-trained large language models (LLMs) to parse the text into structured <event & order> pairs for better temporal information capture. We also introduce another structured-text encoder to aid in learning semantic alignment during the diffusion denoising process. To improve the performance of variable length generation and enhance the temporal information extraction, we design a feed-forward Transformer-based diffusion denoiser. Finally, we use LLMs to augment and transform a large amount of audio-label data into audio-text datasets to alleviate the problem of scarcity of temporal data. Extensive experiments show that our method outperforms baseline models in both objective and subjective metrics, and achieves significant gains in temporal information understanding, semantic consistency, and sound quality.
Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment
As a crucial extension of entity alignment (EA), multi-modal entity alignment (MMEA) aims to identify identical entities across disparate knowledge graphs (KGs) by exploiting associated visual information. However, existing MMEA approaches primarily concentrate on the fusion paradigm of multi-modal entity features, while neglecting the challenges presented by the pervasive phenomenon of missing and intrinsic ambiguity of visual images. In this paper, we present a further analysis of visual modality incompleteness, benchmarking latest MMEA models on our proposed dataset MMEA-UMVM, where the types of alignment KGs covering bilingual and monolingual, with standard (non-iterative) and iterative training paradigms to evaluate the model performance. Our research indicates that, in the face of modality incompleteness, models succumb to overfitting the modality noise, and exhibit performance oscillations or declines at high rates of missing modality. This proves that the inclusion of additional multi-modal data can sometimes adversely affect EA. To address these challenges, we introduce UMAEA , a robust multi-modal entity alignment approach designed to tackle uncertainly missing and ambiguous visual modalities. It consistently achieves SOTA performance across all 97 benchmark splits, significantly surpassing existing baselines with limited parameters and time consumption, while effectively alleviating the identified limitations of other models. Our code and benchmark data are available at https://github.com/zjukg/UMAEA.
Seeing the Image: Prioritizing Visual Correlation by Contrastive Alignment
Existing image-text modality alignment in Vision Language Models (VLMs) treats each text token equally in an autoregressive manner. Despite being simple and effective, this method results in sub-optimal cross-modal alignment by over-emphasizing the text tokens that are less correlated with or even contradictory with the input images. In this paper, we advocate for assigning distinct contributions for each text token based on its visual correlation. Specifically, we present by contrasting image inputs, the difference in prediction logits on each text token provides strong guidance of visual correlation. We therefore introduce Contrastive ALignment (CAL), a simple yet effective re-weighting strategy that prioritizes training visually correlated tokens. Our experimental results demonstrate that CAL consistently improves different types of VLMs across different resolutions and model sizes on various benchmark datasets. Importantly, our method incurs minimal additional computational overhead, rendering it highly efficient compared to alternative data scaling strategies. Codes are available at https://github.com/foundation-multimodal-models/CAL.
When Did It Happen? Duration-informed Temporal Localization of Narrated Actions in Vlogs
We consider the task of temporal human action localization in lifestyle vlogs. We introduce a novel dataset consisting of manual annotations of temporal localization for 13,000 narrated actions in 1,200 video clips. We present an extensive analysis of this data, which allows us to better understand how the language and visual modalities interact throughout the videos. We propose a simple yet effective method to localize the narrated actions based on their expected duration. Through several experiments and analyses, we show that our method brings complementary information with respect to previous methods, and leads to improvements over previous work for the task of temporal action localization.
AudioTime: A Temporally-aligned Audio-text Benchmark Dataset
Recent advancements in audio generation have enabled the creation of high-fidelity audio clips from free-form textual descriptions. However, temporal relationships, a critical feature for audio content, are currently underrepresented in mainstream models, resulting in an imprecise temporal controllability. Specifically, users cannot accurately control the timestamps of sound events using free-form text. We acknowledge that a significant factor is the absence of high-quality, temporally-aligned audio-text datasets, which are essential for training models with temporal control. The more temporally-aligned the annotations, the better the models can understand the precise relationship between audio outputs and temporal textual prompts. Therefore, we present a strongly aligned audio-text dataset, AudioTime. It provides text annotations rich in temporal information such as timestamps, duration, frequency, and ordering, covering almost all aspects of temporal control. Additionally, we offer a comprehensive test set and evaluation metric to assess the temporal control performance of various models. Examples are available on the https://zeyuxie29.github.io/AudioTime/
APE: Aligning Pretrained Encoders to Quickly Learn Aligned Multimodal Representations
Recent advances in learning aligned multimodal representations have been primarily driven by training large neural networks on massive, noisy paired-modality datasets. In this work, we ask whether it is possible to achieve similar results with substantially less training time and data. We achieve this by taking advantage of existing pretrained unimodal encoders and careful curation of alignment data relevant to the downstream task of interest. We study a natural approach to aligning existing encoders via small auxiliary functions, and we find that this method is competitive with (or outperforms) state of the art in many settings while being less prone to overfitting, less costly to train, and more robust to distribution shift. With a properly chosen alignment distribution, our method surpasses prior state of the art for ImageNet zero-shot classification on public data while using two orders of magnitude less time and data and training 77% fewer parameters.
CoAVT: A Cognition-Inspired Unified Audio-Visual-Text Pre-Training Model for Multimodal Processing
There has been a long-standing quest for a unified audio-visual-text model to enable various multimodal understanding tasks, which mimics the listening, seeing and reading process of human beings. Humans tends to represent knowledge using two separate systems: one for representing verbal (textual) information and one for representing non-verbal (visual and auditory) information. These two systems can operate independently but can also interact with each other. Motivated by this understanding of human cognition, in this paper, we introduce CoAVT -- a novel cognition-inspired Correlated Audio-Visual-Text pre-training model to connect the three modalities. It contains a joint audio-visual encoder that learns to encode audio-visual synchronization information together with the audio and visual content for non-verbal information, and a text encoder to handle textual input for verbal information. To bridge the gap between modalities, CoAVT employs a query encoder, which contains a set of learnable query embeddings, and extracts the most informative audiovisual features of the corresponding text. Additionally, to leverage the correspondences between audio and vision with language respectively, we also establish the audio-text and visual-text bi-modal alignments upon the foundational audiovisual-text tri-modal alignment to enhance the multimodal representation learning. Finally, we jointly optimize CoAVT model with three multimodal objectives: contrastive loss, matching loss and language modeling loss. Extensive experiments show that CoAVT can learn strong multimodal correlations and be generalized to various downstream tasks. CoAVT establishes new state-of-the-art performance on text-video retrieval task on AudioCaps for both zero-shot and fine-tuning settings, audio-visual event classification and audio-visual retrieval tasks on AudioSet and VGGSound.
VidLA: Video-Language Alignment at Scale
In this paper, we propose VidLA, an approach for video-language alignment at scale. There are two major limitations of previous video-language alignment approaches. First, they do not capture both short-range and long-range temporal dependencies and typically employ complex hierarchical deep network architectures that are hard to integrate with existing pretrained image-text foundation models. To effectively address this limitation, we instead keep the network architecture simple and use a set of data tokens that operate at different temporal resolutions in a hierarchical manner, accounting for the temporally hierarchical nature of videos. By employing a simple two-tower architecture, we are able to initialize our video-language model with pretrained image-text foundation models, thereby boosting the final performance. Second, existing video-language alignment works struggle due to the lack of semantically aligned large-scale training data. To overcome it, we leverage recent LLMs to curate the largest video-language dataset to date with better visual grounding. Furthermore, unlike existing video-text datasets which only contain short clips, our dataset is enriched with video clips of varying durations to aid our temporally hierarchical data tokens in extracting better representations at varying temporal scales. Overall, empirical results show that our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks, especially on longer videos, and performs competitively on classification benchmarks.
Implicit Temporal Modeling with Learnable Alignment for Video Recognition
Contrastive language-image pretraining (CLIP) has demonstrated remarkable success in various image tasks. However, how to extend CLIP with effective temporal modeling is still an open and crucial problem. Existing factorized or joint spatial-temporal modeling trades off between the efficiency and performance. While modeling temporal information within straight through tube is widely adopted in literature, we find that simple frame alignment already provides enough essence without temporal attention. To this end, in this paper, we proposed a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance. Specifically, for a frame pair, an interactive point is predicted in each frame, serving as a mutual information rich region. By enhancing the features around the interactive point, two frames are implicitly aligned. The aligned features are then pooled into a single token, which is leveraged in the subsequent spatial self-attention. Our method allows eliminating the costly or insufficient temporal self-attention in video. Extensive experiments on benchmarks demonstrate the superiority and generality of our module. Particularly, the proposed ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H. Code is released at https://github.com/Francis-Rings/ILA .
Learning to Exploit Temporal Structure for Biomedical Vision-Language Processing
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior images. This does not only introduce poor alignment between the modalities but also a missed opportunity to exploit rich self-supervision through existing temporal content in the data. In this work, we explicitly account for prior images and reports when available during both training and fine-tuning. Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model. It is designed to be versatile to arising challenges such as pose variations and missing input images across time. The resulting model excels on downstream tasks both in single- and multi-image setups, achieving state-of-the-art performance on (I) progression classification, (II) phrase grounding, and (III) report generation, whilst offering consistent improvements on disease classification and sentence-similarity tasks. We release a novel multi-modal temporal benchmark dataset, MS-CXR-T, to quantify the quality of vision-language representations in terms of temporal semantics. Our experimental results show the advantages of incorporating prior images and reports to make most use of the data.
Mug-STAN: Adapting Image-Language Pretrained Models for General Video Understanding
Large-scale image-language pretrained models, e.g., CLIP, have demonstrated remarkable proficiency in acquiring general multi-modal knowledge through web-scale image-text data. Despite the impressive performance of image-language models on various image tasks, how to effectively expand them on general video understanding remains an area of ongoing exploration. In this paper, we investigate the image-to-video transferring from the perspective of the model and the data, unveiling two key obstacles impeding the adaptation of image-language models: non-generalizable temporal modeling and partially misaligned video-text data. To address these challenges, we propose Spatial-Temporal Auxiliary Network with Mutual-guided alignment module (Mug-STAN), a simple yet effective framework extending image-text model to diverse video tasks and video-text data.Specifically, STAN adopts a branch structure with decomposed spatial-temporal modules to enable generalizable temporal modeling, while Mug suppresses misalignment by introducing token-wise feature aggregation of either modality from the other. Extensive experimental results verify Mug-STAN significantly improves adaptation of language-image pretrained models such as CLIP and CoCa at both video-text post-pretraining and finetuning stages. With our solution, state-of-the-art zero-shot and finetuning results on various downstream datasets, including MSR-VTT, DiDeMo, LSMDC, Kinetics-400, Something-Something-2, HMDB-51, UCF- 101, and AVA, are achieved. Moreover, by integrating pretrained Mug-STAN with the emerging multimodal dialogue model, we can realize zero-shot video chatting. Codes are available at https://github.com/farewellthree/STAN
Align and Attend: Multimodal Summarization with Dual Contrastive Losses
The goal of multimodal summarization is to extract the most important information from different modalities to form output summaries. Unlike the unimodal summarization, the multimodal summarization task explicitly leverages cross-modal information to help generate more reliable and high-quality summaries. However, existing methods fail to leverage the temporal correspondence between different modalities and ignore the intrinsic correlation between different samples. To address this issue, we introduce Align and Attend Multimodal Summarization (A2Summ), a unified multimodal transformer-based model which can effectively align and attend the multimodal input. In addition, we propose two novel contrastive losses to model both inter-sample and intra-sample correlations. Extensive experiments on two standard video summarization datasets (TVSum and SumMe) and two multimodal summarization datasets (Daily Mail and CNN) demonstrate the superiority of A2Summ, achieving state-of-the-art performances on all datasets. Moreover, we collected a large-scale multimodal summarization dataset BLiSS, which contains livestream videos and transcribed texts with annotated summaries. Our code and dataset are publicly available at ~https://boheumd.github.io/A2Summ/.
Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and Text Integration
Although instruction-tuned large language models (LLMs) have exhibited remarkable capabilities across various NLP tasks, their effectiveness on other data modalities beyond text has not been fully studied. In this work, we propose Macaw-LLM, a novel multi-modal LLM that seamlessly integrates visual, audio, and textual information. Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations. Our novel alignment module seamlessly bridges multi-modal features to textual features, simplifying the adaptation process from the modality modules to the cognitive module. In addition, we construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances. We have made our data, code and model publicly available, which we hope can pave the way for future research in multi-modal LLMs and expand the capabilities of LLMs to handle diverse data modalities and address complex real-world scenarios.
Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens
Contrastive learning-based vision-language pre-training approaches, such as CLIP, have demonstrated great success in many vision-language tasks. These methods achieve cross-modal alignment by encoding a matched image-text pair with similar feature embeddings, which are generated by aggregating information from visual patches and language tokens. However, direct aligning cross-modal information using such representations is challenging, as visual patches and text tokens differ in semantic levels and granularities. To alleviate this issue, we propose a Finite Discrete Tokens (FDT) based multimodal representation. FDT is a set of learnable tokens representing certain visual-semantic concepts. Both images and texts are embedded using shared FDT by first grounding multimodal inputs to FDT space and then aggregating the activated FDT representations. The matched visual and semantic concepts are enforced to be represented by the same set of discrete tokens by a sparse activation constraint. As a result, the granularity gap between the two modalities is reduced. Through both quantitative and qualitative analyses, we demonstrate that using FDT representations in CLIP-style models improves cross-modal alignment and performance in visual recognition and vision-language downstream tasks. Furthermore, we show that our method can learn more comprehensive representations, and the learned FDT capture meaningful cross-modal correspondence, ranging from objects to actions and attributes.
Text-centric Alignment for Multi-Modality Learning
This research paper addresses the challenge of modality mismatch in multimodal learning, where the modalities available during inference differ from those available at training. We propose the Text-centric Alignment for Multi-Modality Learning (TAMML) approach, an innovative method that utilizes Large Language Models (LLMs) with in-context learning and foundation models to enhance the generalizability of multimodal systems under these conditions. By leveraging the unique properties of text as a unified semantic space, TAMML demonstrates significant improvements in handling unseen, diverse, and unpredictable modality combinations. TAMML not only adapts to varying modalities but also maintains robust performance, showcasing the potential of foundation models in overcoming the limitations of traditional fixed-modality frameworks in embedding representations. This study contributes to the field by offering a flexible, effective solution for real-world applications where modality availability is dynamic and uncertain.
Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Video-and-language pre-training has shown promising improvements on various downstream tasks. Most previous methods capture cross-modal interactions with a transformer-based multimodal encoder, not fully addressing the misalignment between unimodal video and text features. Besides, learning fine-grained visual-language alignment usually requires off-the-shelf object detectors to provide object information, which is bottlenecked by the detector's limited vocabulary and expensive computation cost. We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment. First, we introduce a video-text contrastive (VTC) loss to align unimodal video-text features at the instance level, which eases the modeling of cross-modal interactions. Then, we propose a new visually-grounded pre-training task, prompting entity modeling (PEM), which aims to learn fine-grained region-entity alignment. To achieve this, we first introduce an entity prompter module, which is trained with VTC to produce the similarity between a video crop and text prompts instantiated with entity names. The PEM task then asks the model to predict the entity pseudo-labels (i.e~normalized similarity scores) for randomly-selected video crops. The resulting pre-trained model achieves state-of-the-art performance on both text-video retrieval and videoQA, outperforming prior work by a substantial margin. Our code and pre-trained models are available at https://github.com/salesforce/ALPRO.
Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages
Lyrics alignment gained considerable attention in recent years. State-of-the-art systems either re-use established speech recognition toolkits, or design end-to-end solutions involving a Connectionist Temporal Classification (CTC) loss. However, both approaches suffer from specific weaknesses: toolkits are known for their complexity, and CTC systems use a loss designed for transcription which can limit alignment accuracy. In this paper, we use instead a contrastive learning procedure that derives cross-modal embeddings linking the audio and text domains. This way, we obtain a novel system that is simple to train end-to-end, can make use of weakly annotated training data, jointly learns a powerful text model, and is tailored to alignment. The system is not only the first to yield an average absolute error below 0.2 seconds on the standard Jamendo dataset but it is also robust to other languages, even when trained on English data only. Finally, we release word-level alignments for the JamendoLyrics Multi-Lang dataset.
Multilingual Synopses of Movie Narratives: A Dataset for Vision-Language Story Understanding
Story video-text alignment, a core task in computational story understanding, aims to align video clips with corresponding sentences in their descriptions. However, progress on the task has been held back by the scarcity of manually annotated video-text correspondence and the heavy concentration on English narrations of Hollywood movies. To address these issues, in this paper, we construct a large-scale multilingual video story dataset named Multilingual Synopses of Movie Narratives (M-SYMON), containing 13,166 movie summary videos from 7 languages, as well as manual annotation of fine-grained video-text correspondences for 101.5 hours of video. Training on the human annotated data from SyMoN outperforms the SOTA methods by 15.7 and 16.2 percentage points on Clip Accuracy and Sentence IoU scores, respectively, demonstrating the effectiveness of the annotations. As benchmarks for future research, we create 6 baseline approaches with different multilingual training strategies, compare their performance in both intra-lingual and cross-lingual setups, exemplifying the challenges of multilingual video-text alignment. The dataset is released at: https://github.com/insundaycathy/M-SyMoN
Align With Purpose: Optimize Desired Properties in CTC Models with a General Plug-and-Play Framework
Connectionist Temporal Classification (CTC) is a widely used criterion for training supervised sequence-to-sequence (seq2seq) models. It enables learning the relations between input and output sequences, termed alignments, by marginalizing over perfect alignments (that yield the ground truth), at the expense of imperfect alignments. This binary differentiation of perfect and imperfect alignments falls short of capturing other essential alignment properties that hold significance in other real-world applications. Here we propose Align With Purpose, a general Plug-and-Play framework for enhancing a desired property in models trained with the CTC criterion. We do that by complementing the CTC with an additional loss term that prioritizes alignments according to a desired property. Our method does not require any intervention in the CTC loss function, enables easy optimization of a variety of properties, and allows differentiation between both perfect and imperfect alignments. We apply our framework in the domain of Automatic Speech Recognition (ASR) and show its generality in terms of property selection, architectural choice, and scale of training dataset (up to 280,000 hours). To demonstrate the effectiveness of our framework, we apply it to two unrelated properties: emission time and word error rate (WER). For the former, we report an improvement of up to 570ms in latency optimization with a minor reduction in WER, and for the latter, we report a relative improvement of 4.5% WER over the baseline models. To the best of our knowledge, these applications have never been demonstrated to work on a scale of data as large as ours. Notably, our method can be implemented using only a few lines of code, and can be extended to other alignment-free loss functions and to domains other than ASR.
Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer
Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.
Text2AC-Zero: Consistent Synthesis of Animated Characters using 2D Diffusion
We propose a zero-shot approach for consistent Text-to-Animated-Characters synthesis based on pre-trained Text-to-Image (T2I) diffusion models. Existing Text-to-Video (T2V) methods are expensive to train and require large-scale video datasets to produce diverse characters and motions. At the same time, their zero-shot alternatives fail to produce temporally consistent videos. We strive to bridge this gap, and we introduce a zero-shot approach that produces temporally consistent videos of animated characters and requires no training or fine-tuning. We leverage existing text-based motion diffusion models to generate diverse motions that we utilize to guide a T2I model. To achieve temporal consistency, we introduce the Spatial Latent Alignment module that exploits cross-frame dense correspondences that we compute to align the latents of the video frames. Furthermore, we propose Pixel-Wise Guidance to steer the diffusion process in a direction that minimizes visual discrepancies. Our proposed approach generates temporally consistent videos with diverse motions and styles, outperforming existing zero-shot T2V approaches in terms of pixel-wise consistency and user preference.
TALC: Time-Aligned Captions for Multi-Scene Text-to-Video Generation
Recent advances in diffusion-based generative modeling have led to the development of text-to-video (T2V) models that can generate high-quality videos conditioned on a text prompt. Most of these T2V models often produce single-scene video clips that depict an entity performing a particular action (e.g., `a red panda climbing a tree'). However, it is pertinent to generate multi-scene videos since they are ubiquitous in the real-world (e.g., `a red panda climbing a tree' followed by `the red panda sleeps on the top of the tree'). To generate multi-scene videos from the pretrained T2V model, we introduce Time-Aligned Captions (TALC) framework. Specifically, we enhance the text-conditioning mechanism in the T2V architecture to recognize the temporal alignment between the video scenes and scene descriptions. For instance, we condition the visual features of the earlier and later scenes of the generated video with the representations of the first scene description (e.g., `a red panda climbing a tree') and second scene description (e.g., `the red panda sleeps on the top of the tree'), respectively. As a result, we show that the T2V model can generate multi-scene videos that adhere to the multi-scene text descriptions and be visually consistent (e.g., entity and background). Further, we finetune the pretrained T2V model with multi-scene video-text data using the TALC framework. We show that the TALC-finetuned model outperforms the baseline methods by 15.5 points in the overall score, which averages visual consistency and text adherence using human evaluation. The project website is https://talc-mst2v.github.io/.
MCQA: Multimodal Co-attention Based Network for Question Answering
We present MCQA, a learning-based algorithm for multimodal question answering. MCQA explicitly fuses and aligns the multimodal input (i.e. text, audio, and video), which forms the context for the query (question and answer). Our approach fuses and aligns the question and the answer within this context. Moreover, we use the notion of co-attention to perform cross-modal alignment and multimodal context-query alignment. Our context-query alignment module matches the relevant parts of the multimodal context and the query with each other and aligns them to improve the overall performance. We evaluate the performance of MCQA on Social-IQ, a benchmark dataset for multimodal question answering. We compare the performance of our algorithm with prior methods and observe an accuracy improvement of 4-7%.
S^2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting
Recently, there has been a growing interest in leveraging pre-trained large language models (LLMs) for various time series applications. However, the semantic space of LLMs, established through the pre-training, is still underexplored and may help yield more distinctive and informative representations to facilitate time series forecasting. To this end, we propose Semantic Space Informed Prompt learning with LLM (S^2IP-LLM) to align the pre-trained semantic space with time series embeddings space and perform time series forecasting based on learned prompts from the joint space. We first design a tokenization module tailored for cross-modality alignment, which explicitly concatenates patches of decomposed time series components to create embeddings that effectively encode the temporal dynamics. Next, we leverage the pre-trained word token embeddings to derive semantic anchors and align selected anchors with time series embeddings by maximizing the cosine similarity in the joint space. This way, S^2IP-LLM can retrieve relevant semantic anchors as prompts to provide strong indicators (context) for time series that exhibit different temporal dynamics. With thorough empirical studies on multiple benchmark datasets, we demonstrate that the proposed S^2IP-LLM can achieve superior forecasting performance over state-of-the-art baselines. Furthermore, our ablation studies and visualizations verify the necessity of prompt learning informed by semantic space.
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
HowToCaption: Prompting LLMs to Transform Video Annotations at Scale
Instructional videos are an excellent source for learning multimodal representations by leveraging video-subtitle pairs extracted with automatic speech recognition systems (ASR) from the audio signal in the videos. However, in contrast to human-annotated captions, both speech and subtitles naturally differ from the visual content of the videos and thus provide only noisy supervision for multimodal learning. As a result, large-scale annotation-free web video training data remains sub-optimal for training text-video models. In this work, we propose to leverage the capability of large language models (LLMs) to obtain fine-grained video descriptions aligned with videos. Specifically, we prompt an LLM to create plausible video descriptions based on ASR narrations of the video for a large-scale instructional video dataset. To this end, we introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture context beyond a single sentence. To align the captions to the video temporally, we prompt the LLM to generate timestamps for each produced caption based on the subtitles. In this way, we obtain human-style video captions at scale without human supervision. We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption. Our evaluation shows that the resulting captions not only significantly improve the performance over many different benchmark datasets for text-video retrieval but also lead to a disentangling of textual narration from the audio, boosting performance in text-video-audio tasks.
Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities
Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.
It's Time for Artistic Correspondence in Music and Video
We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We propose a self-supervised approach that learns this correspondence directly from data, without any need of human annotations. In order to capture the high-level concepts that are required to solve the task, we propose modeling the long-term temporal context of both the video and the music signals, using Transformer networks for each modality. Experiments show that this approach strongly outperforms alternatives that do not exploit the temporal context. The combination of our contributions improve retrieval accuracy up to 10x over prior state of the art. This strong improvement allows us to introduce a wide range of analyses and applications. For instance, we can condition music retrieval based on visually defined attributes.
Text-Video Retrieval with Global-Local Semantic Consistent Learning
Adapting large-scale image-text pre-training models, e.g., CLIP, to the video domain represents the current state-of-the-art for text-video retrieval. The primary approaches involve transferring text-video pairs to a common embedding space and leveraging cross-modal interactions on specific entities for semantic alignment. Though effective, these paradigms entail prohibitive computational costs, leading to inefficient retrieval. To address this, we propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL), which capitalizes on latent shared semantics across modalities for text-video retrieval. Specifically, we introduce a parameter-free global interaction module to explore coarse-grained alignment. Then, we devise a shared local interaction module that employs several learnable queries to capture latent semantic concepts for learning fine-grained alignment. Furthermore, an Inter-Consistency Loss (ICL) is devised to accomplish the concept alignment between the visual query and corresponding textual query, and an Intra-Diversity Loss (IDL) is developed to repulse the distribution within visual (textual) queries to generate more discriminative concepts. Extensive experiments on five widely used benchmarks (i.e., MSR-VTT, MSVD, DiDeMo, LSMDC, and ActivityNet) substantiate the superior effectiveness and efficiency of the proposed method. Remarkably, our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost. Code is available at: https://github.com/zchoi/GLSCL.
Improving Joint Speech-Text Representations Without Alignment
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system.
Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding
Existing video-language pre-training methods primarily focus on instance-level alignment between video clips and captions via global contrastive learning but neglect rich fine-grained local information in both videos and text, which is of importance to downstream tasks requiring temporal localization and semantic reasoning. A powerful model is expected to be capable of capturing region-object correspondences and recognizing scene changes in a video clip, reflecting spatial and temporal granularity, respectively. To strengthen model's understanding into such fine-grained details, we propose a simple yet effective video-language modeling framework, S-ViLM, by exploiting the intrinsic structures of these two modalities. It includes two novel designs, inter-clip spatial grounding and intra-clip temporal grouping, to promote learning region-object alignment and temporal-aware features, simultaneously. Comprehensive evaluations demonstrate that S-ViLM performs favorably against existing approaches in learning more expressive representations. Specifically, S-ViLM surpasses the state-of-the-art methods substantially on four representative downstream tasks, covering text-video retrieval, video question answering, video action recognition, and temporal action localization.
EA-VTR: Event-Aware Video-Text Retrieval
Understanding the content of events occurring in the video and their inherent temporal logic is crucial for video-text retrieval. However, web-crawled pre-training datasets often lack sufficient event information, and the widely adopted video-level cross-modal contrastive learning also struggles to capture detailed and complex video-text event alignment. To address these challenges, we make improvements from both data and model perspectives. In terms of pre-training data, we focus on supplementing the missing specific event content and event temporal transitions with the proposed event augmentation strategies. Based on the event-augmented data, we construct a novel Event-Aware Video-Text Retrieval model, ie, EA-VTR, which achieves powerful video-text retrieval ability through superior video event awareness. EA-VTR can efficiently encode frame-level and video-level visual representations simultaneously, enabling detailed event content and complex event temporal cross-modal alignment, ultimately enhancing the comprehensive understanding of video events. Our method not only significantly outperforms existing approaches on multiple datasets for Text-to-Video Retrieval and Video Action Recognition tasks, but also demonstrates superior event content perceive ability on Multi-event Video-Text Retrieval and Video Moment Retrieval tasks, as well as outstanding event temporal logic understanding ability on Test of Time task.
TimeMarker: A Versatile Video-LLM for Long and Short Video Understanding with Superior Temporal Localization Ability
Rapid development of large language models (LLMs) has significantly advanced multimodal large language models (LMMs), particularly in vision-language tasks. However, existing video-language models often overlook precise temporal localization and struggle with videos of varying lengths. We introduce TimeMarker, a versatile Video-LLM designed for high-quality dialogue based on video content, emphasizing temporal localization. TimeMarker integrates Temporal Separator Tokens to enhance temporal awareness, accurately marking specific moments within videos. It employs the AnyLength mechanism for dynamic frame sampling and adaptive token merging, enabling effective handling of both short and long videos. Additionally, TimeMarker utilizes diverse datasets, including further transformed temporal-related video QA datasets, to bolster its temporal understanding capabilities. Image and interleaved data are also employed to further enhance the model's semantic perception ability. Evaluations demonstrate that TimeMarker achieves state-of-the-art performance across multiple benchmarks, excelling in both short and long video categories. Our project page is at https://github.com/TimeMarker-LLM/TimeMarker/.
Learning to Ground Instructional Articles in Videos through Narrations
In this paper we present an approach for localizing steps of procedural activities in narrated how-to videos. To deal with the scarcity of labeled data at scale, we source the step descriptions from a language knowledge base (wikiHow) containing instructional articles for a large variety of procedural tasks. Without any form of manual supervision, our model learns to temporally ground the steps of procedural articles in how-to videos by matching three modalities: frames, narrations, and step descriptions. Specifically, our method aligns steps to video by fusing information from two distinct pathways: i) {\em direct} alignment of step descriptions to frames, ii) {\em indirect} alignment obtained by composing steps-to-narrations with narrations-to-video correspondences. Notably, our approach performs global temporal grounding of all steps in an article at once by exploiting order information, and is trained with step pseudo-labels which are iteratively refined and aggressively filtered. In order to validate our model we introduce a new evaluation benchmark -- HT-Step -- obtained by manually annotating a 124-hour subset of HowTo100MA test server is accessible at \url{https://eval.ai/web/challenges/challenge-page/2082.} with steps sourced from wikiHow articles. Experiments on this benchmark as well as zero-shot evaluations on CrossTask demonstrate that our multi-modality alignment yields dramatic gains over several baselines and prior works. Finally, we show that our inner module for matching narration-to-video outperforms by a large margin the state of the art on the HTM-Align narration-video alignment benchmark.
AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Understanding
Aligning visual features with language embeddings is a key challenge in vision-language models (VLMs). The performance of such models hinges on having a good connector that maps visual features generated by a vision encoder to a shared embedding space with the LLM while preserving semantic similarity. Existing connectors, such as multilayer perceptrons (MLPs), often produce out-of-distribution or noisy inputs, leading to misalignment between the modalities. In this work, we propose a novel vision-text alignment method, AlignVLM, that maps visual features to a weighted average of LLM text embeddings. Our approach leverages the linguistic priors encoded by the LLM to ensure that visual features are mapped to regions of the space that the LLM can effectively interpret. AlignVLM is particularly effective for document understanding tasks, where scanned document images must be accurately mapped to their textual content. Our extensive experiments show that AlignVLM achieves state-of-the-art performance compared to prior alignment methods. We provide further analysis demonstrating improved vision-text feature alignment and robustness to noise.
Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization
The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications. We release all the code in https://github.com/taco-group/Re-Align.
DM^2S^2: Deep Multi-Modal Sequence Sets with Hierarchical Modality Attention
There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increases, several potential problems with the mid-fusion model structure arise, such as an increase in the dimensionality of the concatenated multimodal features and missing modalities. To address these problems, we propose a new concept that considers multimodal inputs as a set of sequences, namely, deep multimodal sequence sets (DM^2S^2). Our set-aware concept consists of three components that capture the relationships among multiple modalities: (a) a BERT-based encoder to handle the inter- and intra-order of elements in the sequences, (b) intra-modality residual attention (IntraMRA) to capture the importance of the elements in a modality, and (c) inter-modality residual attention (InterMRA) to enhance the importance of elements with modality-level granularity further. Our concept exhibits performance that is comparable to or better than the previous set-aware models. Furthermore, we demonstrate that the visualization of the learned InterMRA and IntraMRA weights can provide an interpretation of the prediction results.
A Simple but Strong Baseline for Sounding Video Generation: Effective Adaptation of Audio and Video Diffusion Models for Joint Generation
In this work, we build a simple but strong baseline for sounding video generation. Given base diffusion models for audio and video, we integrate them with additional modules into a single model and train it to make the model jointly generate audio and video. To enhance alignment between audio-video pairs, we introduce two novel mechanisms in our model. The first one is timestep adjustment, which provides different timestep information to each base model. It is designed to align how samples are generated along with timesteps across modalities. The second one is a new design of the additional modules, termed Cross-Modal Conditioning as Positional Encoding (CMC-PE). In CMC-PE, cross-modal information is embedded as if it represents temporal position information, and the embeddings are fed into the model like positional encoding. Compared with the popular cross-attention mechanism, CMC-PE provides a better inductive bias for temporal alignment in the generated data. Experimental results validate the effectiveness of the two newly introduced mechanisms and also demonstrate that our method outperforms existing methods.
Multi-granularity Correspondence Learning from Long-term Noisy Videos
Existing video-language studies mainly focus on learning short video clips, leaving long-term temporal dependencies rarely explored due to over-high computational cost of modeling long videos. To address this issue, one feasible solution is learning the correspondence between video clips and captions, which however inevitably encounters the multi-granularity noisy correspondence (MNC) problem. To be specific, MNC refers to the clip-caption misalignment (coarse-grained) and frame-word misalignment (fine-grained), hindering temporal learning and video understanding. In this paper, we propose NOise Robust Temporal Optimal traNsport (Norton) that addresses MNC in a unified optimal transport (OT) framework. In brief, Norton employs video-paragraph and clip-caption contrastive losses to capture long-term dependencies based on OT. To address coarse-grained misalignment in video-paragraph contrast, Norton filters out the irrelevant clips and captions through an alignable prompt bucket and realigns asynchronous clip-caption pairs based on transport distance. To address the fine-grained misalignment, Norton incorporates a soft-maximum operator to identify crucial words and key frames. Additionally, Norton exploits the potential faulty negative samples in clip-caption contrast by rectifying the alignment target with OT assignment to ensure precise temporal modeling. Extensive experiments on video retrieval, videoQA, and action segmentation verify the effectiveness of our method. Code is available at https://lin-yijie.github.io/projects/Norton.
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.
M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action Recognition
Recently, the rise of large-scale vision-language pretrained models like CLIP, coupled with the technology of Parameter-Efficient FineTuning (PEFT), has captured substantial attraction in video action recognition. Nevertheless, prevailing approaches tend to prioritize strong supervised performance at the expense of compromising the models' generalization capabilities during transfer. In this paper, we introduce a novel Multimodal, Multi-task CLIP adapting framework named \name to address these challenges, preserving both high supervised performance and robust transferability. Firstly, to enhance the individual modality architectures, we introduce multimodal adapters to both the visual and text branches. Specifically, we design a novel visual TED-Adapter, that performs global Temporal Enhancement and local temporal Difference modeling to improve the temporal representation capabilities of the visual encoder. Moreover, we adopt text encoder adapters to strengthen the learning of semantic label information. Secondly, we design a multi-task decoder with a rich set of supervisory signals to adeptly satisfy the need for strong supervised performance and generalization within a multimodal framework. Experimental results validate the efficacy of our approach, demonstrating exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.
X-VILA: Cross-Modality Alignment for Large Language Model
We introduce X-VILA, an omni-modality model designed to extend the capabilities of large language models (LLMs) by incorporating image, video, and audio modalities. By aligning modality-specific encoders with LLM inputs and diffusion decoders with LLM outputs, X-VILA achieves cross-modality understanding, reasoning, and generation. To facilitate this cross-modality alignment, we curate an effective interleaved any-to-any modality instruction-following dataset. Furthermore, we identify a significant problem with the current cross-modality alignment method, which results in visual information loss. To address the issue, we propose a visual alignment mechanism with a visual embedding highway module. We then introduce a resource-efficient recipe for training X-VILA, that exhibits proficiency in any-to-any modality conversation, surpassing previous approaches by large margins. X-VILA also showcases emergent properties across modalities even in the absence of similar training data. The project will be made open-source.
Iterative pseudo-forced alignment by acoustic CTC loss for self-supervised ASR domain adaptation
High-quality data labeling from specific domains is costly and human time-consuming. In this work, we propose a self-supervised domain adaptation method, based upon an iterative pseudo-forced alignment algorithm. The produced alignments are employed to customize an end-to-end Automatic Speech Recognition (ASR) and iteratively refined. The algorithm is fed with frame-wise character posteriors produced by a seed ASR, trained with out-of-domain data, and optimized throughout a Connectionist Temporal Classification (CTC) loss. The alignments are computed iteratively upon a corpus of broadcast TV. The process is repeated by reducing the quantity of text to be aligned or expanding the alignment window until finding the best possible audio-text alignment. The starting timestamps, or temporal anchors, are produced uniquely based on the confidence score of the last aligned utterance. This score is computed with the paths of the CTC-alignment matrix. With this methodology, no human-revised text references are required. Alignments from long audio files with low-quality transcriptions, like TV captions, are filtered out by confidence score and ready for further ASR adaptation. The obtained results, on both the Spanish RTVE2022 and CommonVoice databases, underpin the feasibility of using CTC-based systems to perform: highly accurate audio-text alignments, domain adaptation and semi-supervised training of end-to-end ASR.
VideoCon: Robust Video-Language Alignment via Contrast Captions
Despite being (pre)trained on a massive amount of data, state-of-the-art video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions. Our work addresses this by identifying a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order, which alignment models should be robust against. To this end, we introduce the VideoCon, a video-language alignment dataset constructed by a large language model that generates plausible contrast video captions and explanations for differences between original and contrast video captions. Then, a generative video-language model is finetuned with VideoCon to assess video-language entailment and generate explanations. Our VideoCon-based alignment model significantly outperforms current models. It exhibits a 12-point increase in AUC for the video-language alignment task on human-generated contrast captions. Finally, our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks such as text-to-video retrieval (SSv2-Temporal) and video question answering (ATP-Hard). Moreover, our model shows superior performance on novel videos and human-crafted captions and explanations. Our code and data are available at https://github.com/Hritikbansal/videocon.
RESTORE: Towards Feature Shift for Vision-Language Prompt Learning
Prompt learning is effective for fine-tuning foundation models to improve their generalization across a variety of downstream tasks. However, the prompts that are independently optimized along a single modality path, may sacrifice the vision-language alignment of pre-trained models in return for improved performance on specific tasks and classes, leading to poorer generalization. In this paper, we first demonstrate that prompt tuning along only one single branch of CLIP (e.g., language or vision) is the reason why the misalignment occurs. Without proper regularization across the learnable parameters in different modalities, prompt learning violates the original pre-training constraints inherent in the two-tower architecture. To address such misalignment, we first propose feature shift, which is defined as the variation of embeddings after introducing the learned prompts, to serve as an explanatory tool. We dive into its relation with generalizability and thereafter propose RESTORE, a multi-modal prompt learning method that exerts explicit constraints on cross-modal consistency. To be more specific, to prevent feature misalignment, a feature shift consistency is introduced to synchronize inter-modal feature shifts by measuring and regularizing the magnitude of discrepancy during prompt tuning. In addition, we propose a "surgery" block to avoid short-cut hacking, where cross-modal misalignment can still be severe if the feature shift of each modality varies drastically at the same rate. It is implemented as feed-forward adapters upon both modalities to alleviate the misalignment problem. Extensive experiments on 15 datasets demonstrate that our method outperforms the state-of-the-art prompt tuning methods without compromising feature alignment.
Geodesic Multi-Modal Mixup for Robust Fine-Tuning
Pre-trained multi-modal models, such as CLIP, provide transferable embeddings and show promising results in diverse applications. However, the analysis of learned multi-modal embeddings is relatively unexplored, and the embedding transferability can be improved. In this work, we observe that CLIP holds separated embedding subspaces for two different modalities, and then we investigate it through the lens of uniformity-alignment to measure the quality of learned representation. Both theoretically and empirically, we show that CLIP retains poor uniformity and alignment even after fine-tuning. Such a lack of alignment and uniformity might restrict the transferability and robustness of embeddings. To this end, we devise a new fine-tuning method for robust representation equipping better alignment and uniformity. First, we propose a Geodesic Multi-Modal Mixup that mixes the embeddings of image and text to generate hard negative samples on the hypersphere. Then, we fine-tune the model on hard negatives as well as original negatives and positives with contrastive loss. Based on the theoretical analysis about hardness guarantee and limiting behavior, we justify the use of our method. Extensive experiments on retrieval, calibration, few- or zero-shot classification (under distribution shift), embedding arithmetic, and image captioning further show that our method provides transferable representations, enabling robust model adaptation on diverse tasks. Code: https://github.com/changdaeoh/multimodal-mixup
Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.
TIM: A Time Interval Machine for Audio-Visual Action Recognition
Diverse actions give rise to rich audio-visual signals in long videos. Recent works showcase that the two modalities of audio and video exhibit different temporal extents of events and distinct labels. We address the interplay between the two modalities in long videos by explicitly modelling the temporal extents of audio and visual events. We propose the Time Interval Machine (TIM) where a modality-specific time interval poses as a query to a transformer encoder that ingests a long video input. The encoder then attends to the specified interval, as well as the surrounding context in both modalities, in order to recognise the ongoing action. We test TIM on three long audio-visual video datasets: EPIC-KITCHENS, Perception Test, and AVE, reporting state-of-the-art (SOTA) for recognition. On EPIC-KITCHENS, we beat previous SOTA that utilises LLMs and significantly larger pre-training by 2.9% top-1 action recognition accuracy. Additionally, we show that TIM can be adapted for action detection, using dense multi-scale interval queries, outperforming SOTA on EPIC-KITCHENS-100 for most metrics, and showing strong performance on the Perception Test. Our ablations show the critical role of integrating the two modalities and modelling their time intervals in achieving this performance. Code and models at: https://github.com/JacobChalk/TIM
D3G: Exploring Gaussian Prior for Temporal Sentence Grounding with Glance Annotation
Temporal sentence grounding (TSG) aims to locate a specific moment from an untrimmed video with a given natural language query. Recently, weakly supervised methods still have a large performance gap compared to fully supervised ones, while the latter requires laborious timestamp annotations. In this study, we aim to reduce the annotation cost yet keep competitive performance for TSG task compared to fully supervised ones. To achieve this goal, we investigate a recently proposed glance-supervised temporal sentence grounding task, which requires only single frame annotation (referred to as glance annotation) for each query. Under this setup, we propose a Dynamic Gaussian prior based Grounding framework with Glance annotation (D3G), which consists of a Semantic Alignment Group Contrastive Learning module (SA-GCL) and a Dynamic Gaussian prior Adjustment module (DGA). Specifically, SA-GCL samples reliable positive moments from a 2D temporal map via jointly leveraging Gaussian prior and semantic consistency, which contributes to aligning the positive sentence-moment pairs in the joint embedding space. Moreover, to alleviate the annotation bias resulting from glance annotation and model complex queries consisting of multiple events, we propose the DGA module, which adjusts the distribution dynamically to approximate the ground truth of target moments. Extensive experiments on three challenging benchmarks verify the effectiveness of the proposed D3G. It outperforms the state-of-the-art weakly supervised methods by a large margin and narrows the performance gap compared to fully supervised methods. Code is available at https://github.com/solicucu/D3G.
Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment
Dense video captioning, a task of localizing meaningful moments and generating relevant captions for videos, often requires a large, expensive corpus of annotated video segments paired with text. In an effort to minimize the annotation cost, we propose ZeroTA, a novel method for dense video captioning in a zero-shot manner. Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time by optimizing solely on the input. This is accomplished by introducing a soft moment mask that represents a temporal segment in the video and jointly optimizing it with the prefix parameters of a language model. This joint optimization aligns a frozen language generation model (i.e., GPT-2) with a frozen vision-language contrastive model (i.e., CLIP) by maximizing the matching score between the generated text and a moment within the video. We also introduce a pairwise temporal IoU loss to let a set of soft moment masks capture multiple distinct events within the video. Our method effectively discovers diverse significant events within the video, with the resulting captions appropriately describing these events. The empirical results demonstrate that ZeroTA surpasses zero-shot baselines and even outperforms the state-of-the-art few-shot method on the widely-used benchmark ActivityNet Captions. Moreover, our method shows greater robustness compared to supervised methods when evaluated in out-of-domain scenarios. This research provides insight into the potential of aligning widely-used models, such as language generation models and vision-language models, to unlock a new capability: understanding temporal aspects of videos.
OneLLM: One Framework to Align All Modalities with Language
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
MultiWay-Adapater: Adapting large-scale multi-modal models for scalable image-text retrieval
As the size of Large Multi-Modal Models (LMMs) increases consistently, the adaptation of these pre-trained models to specialized tasks has become a computationally and memory-intensive challenge. Traditional fine-tuning methods require isolated, exhaustive retuning for each new task, limiting the models' versatility. Moreover, current efficient adaptation techniques often overlook modality alignment, focusing only on the knowledge extraction of new tasks. To tackle these issues, we introduce Multiway-Adapter, an innovative framework incorporating an 'Alignment Enhancer' to deepen modality alignment, enabling high transferability without tuning pre-trained parameters. Our method adds fewer than 1.25\% of additional parameters to LMMs, exemplified by the BEiT-3 model in our study. This leads to superior zero-shot image-text retrieval performance compared to fully fine-tuned models, while achieving up to a 57\% reduction in fine-tuning time. Our approach offers a resource-efficient and effective adaptation pathway for LMMs, broadening their applicability. The source code is publicly available at: https://github.com/longkukuhi/MultiWay-Adapter.
MaPLe: Multi-modal Prompt Learning
Pre-trained vision-language (V-L) models such as CLIP have shown excellent generalization ability to downstream tasks. However, they are sensitive to the choice of input text prompts and require careful selection of prompt templates to perform well. Inspired by the Natural Language Processing (NLP) literature, recent CLIP adaptation approaches learn prompts as the textual inputs to fine-tune CLIP for downstream tasks. We note that using prompting to adapt representations in a single branch of CLIP (language or vision) is sub-optimal since it does not allow the flexibility to dynamically adjust both representation spaces on a downstream task. In this work, we propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations. Our design promotes strong coupling between the vision-language prompts to ensure mutual synergy and discourages learning independent uni-modal solutions. Further, we learn separate prompts across different early stages to progressively model the stage-wise feature relationships to allow rich context learning. We evaluate the effectiveness of our approach on three representative tasks of generalization to novel classes, new target datasets and unseen domain shifts. Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes and 2.72% on overall harmonic-mean, averaged over 11 diverse image recognition datasets. Our code and pre-trained models are available at https://github.com/muzairkhattak/multimodal-prompt-learning.
Self-Supervised Learning in Event Sequences: A Comparative Study and Hybrid Approach of Generative Modeling and Contrastive Learning
This study investigates self-supervised learning techniques to obtain representations of Event Sequences. It is a key modality in various applications, including but not limited to banking, e-commerce, and healthcare. We perform a comprehensive study of generative and contrastive approaches in self-supervised learning, applying them both independently. We find that there is no single supreme method. Consequently, we explore the potential benefits of combining these approaches. To achieve this goal, we introduce a novel method that aligns generative and contrastive embeddings as distinct modalities, drawing inspiration from contemporary multimodal research. Generative and contrastive approaches are often treated as mutually exclusive, leaving a gap for their combined exploration. Our results demonstrate that this aligned model performs at least on par with, and mostly surpasses, existing methods and is more universal across a variety of tasks. Furthermore, we demonstrate that self-supervised methods consistently outperform the supervised approach on our datasets.
AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
Time is Encoded in the Weights of Finetuned Language Models
We present time vectors, a simple tool to customize language models to new time periods. Time vectors are created by finetuning a language model on data from a single time (e.g., a year or month), and then subtracting the weights of the original pretrained model. This vector specifies a direction in weight space that, as our experiments show, improves performance on text from that time period. Time vectors specialized to adjacent time periods appear to be positioned closer together in a manifold. Using this structure, we interpolate between time vectors to induce new models that perform better on intervening and future time periods, without any additional training. We demonstrate the consistency of our findings across different tasks, domains, model sizes, and time scales. Our results suggest that time is encoded in the weight space of finetuned models.
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) struggle with hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information enhancing factual and updated grounding. Recent advances in multimodal learning have led to the development of Multimodal RAG, incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges to Multimodal RAG, distinguishing it from traditional unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, metrics, benchmarks, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We precisely review training strategies, robustness enhancements, and loss functions, while also exploring the diverse Multimodal RAG scenarios. Furthermore, we discuss open challenges and future research directions to support advancements in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. Resources are available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
VLANet: Video-Language Alignment Network for Weakly-Supervised Video Moment Retrieval
Video Moment Retrieval (VMR) is a task to localize the temporal moment in untrimmed video specified by natural language query. For VMR, several methods that require full supervision for training have been proposed. Unfortunately, acquiring a large number of training videos with labeled temporal boundaries for each query is a labor-intensive process. This paper explores methods for performing VMR in a weakly-supervised manner (wVMR): training is performed without temporal moment labels but only with the text query that describes a segment of the video. Existing methods on wVMR generate multi-scale proposals and apply query-guided attention mechanisms to highlight the most relevant proposal. To leverage the weak supervision, contrastive learning is used which predicts higher scores for the correct video-query pairs than for the incorrect pairs. It has been observed that a large number of candidate proposals, coarse query representation, and one-way attention mechanism lead to blurry attention maps which limit the localization performance. To handle this issue, Video-Language Alignment Network (VLANet) is proposed that learns sharper attention by pruning out spurious candidate proposals and applying a multi-directional attention mechanism with fine-grained query representation. The Surrogate Proposal Selection module selects a proposal based on the proximity to the query in the joint embedding space, and thus substantially reduces candidate proposals which leads to lower computation load and sharper attention. Next, the Cascaded Cross-modal Attention module considers dense feature interactions and multi-directional attention flow to learn the multi-modal alignment. VLANet is trained end-to-end using contrastive loss which enforces semantically similar videos and queries to gather. The experiments show that the method achieves state-of-the-art performance on Charades-STA and DiDeMo datasets.
Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback
Recent advancements in large language models have influenced the development of video large multimodal models (VLMMs). The previous approaches for VLMMs involved Supervised Fine-Tuning (SFT) with instruction-tuned datasets, integrating LLM with visual encoders, and adding additional learnable modules. Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data compared to text-only data. We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF), providing self-preference feedback to refine itself and facilitating the alignment of video and text modalities. In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback in order to enrich the understanding of video content. Demonstrating enhanced performance across diverse video benchmarks, our multimodal RLAIF approach, VLM-RLAIF, outperforms existing approaches, including the SFT model. We commit to open-sourcing our code, models, and datasets to foster further research in this area.
End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-to-Character Recognition Model
Time-aligned lyrics can enrich the music listening experience by enabling karaoke, text-based song retrieval and intra-song navigation, and other applications. Compared to text-to-speech alignment, lyrics alignment remains highly challenging, despite many attempts to combine numerous sub-modules including vocal separation and detection in an effort to break down the problem. Furthermore, training required fine-grained annotations to be available in some form. Here, we present a novel system based on a modified Wave-U-Net architecture, which predicts character probabilities directly from raw audio using learnt multi-scale representations of the various signal components. There are no sub-modules whose interdependencies need to be optimized. Our training procedure is designed to work with weak, line-level annotations available in the real world. With a mean alignment error of 0.35s on a standard dataset our system outperforms the state-of-the-art by an order of magnitude.
VITATECS: A Diagnostic Dataset for Temporal Concept Understanding of Video-Language Models
The ability to perceive how objects change over time is a crucial ingredient in human intelligence. However, current benchmarks cannot faithfully reflect the temporal understanding abilities of video-language models (VidLMs) due to the existence of static visual shortcuts. To remedy this issue, we present VITATECS, a diagnostic VIdeo-Text dAtaset for the evaluation of TEmporal Concept underStanding. Specifically, we first introduce a fine-grained taxonomy of temporal concepts in natural language in order to diagnose the capability of VidLMs to comprehend different temporal aspects. Furthermore, to disentangle the correlation between static and temporal information, we generate counterfactual video descriptions that differ from the original one only in the specified temporal aspect. We employ a semi-automatic data collection framework using large language models and human-in-the-loop annotation to obtain high-quality counterfactual descriptions efficiently. Evaluation of representative video-language understanding models confirms their deficiency in temporal understanding, revealing the need for greater emphasis on the temporal elements in video-language research.
Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback
Reinforcement learning from human feedback (RLHF) has proven effective in enhancing the instruction-following capabilities of large language models; however, it remains underexplored in the cross-modality domain. As the number of modalities increases, aligning all-modality models with human intentions -- such as instruction following -- becomes a pressing challenge. In this work, we make the first attempt to fine-tune all-modality models (i.e. input and output with any modality, also named any-to-any models) using human preference data across all modalities (including text, image, audio, and video), ensuring its behavior aligns with human intentions. This endeavor presents several challenges. First, there is no large-scale all-modality human preference data in existing open-source resources, as most datasets are limited to specific modalities, predominantly text and image. Secondly, the effectiveness of binary preferences in RLHF for post-training alignment in complex all-modality scenarios remains an unexplored area. Finally, there is a lack of a systematic framework to evaluate the capabilities of all-modality models, particularly regarding modality selection and synergy. To address these challenges, we propose the align-anything framework, which includes meticulously annotated 200k all-modality human preference data. Then, we introduce an alignment method that learns from unified language feedback, effectively capturing complex modality-specific human preferences and enhancing the model's instruction-following capabilities. Furthermore, to assess performance improvements in all-modality models after post-training alignment, we construct a challenging all-modality capability evaluation framework -- eval-anything. All data, models, and code frameworks have been open-sourced for the community. For more details, please refer to https://github.com/PKU-Alignment/align-anything.
Video-Text Retrieval by Supervised Sparse Multi-Grained Learning
While recent progress in video-text retrieval has been advanced by the exploration of better representation learning, in this paper, we present a novel multi-grained sparse learning framework, S3MA, to learn an aligned sparse space shared between the video and the text for video-text retrieval. The shared sparse space is initialized with a finite number of sparse concepts, each of which refers to a number of words. With the text data at hand, we learn and update the shared sparse space in a supervised manner using the proposed similarity and alignment losses. Moreover, to enable multi-grained alignment, we incorporate frame representations for better modeling the video modality and calculating fine-grained and coarse-grained similarities. Benefiting from the learned shared sparse space and multi-grained similarities, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of S3MA over existing methods. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval.
Dynamic Word Embeddings for Evolving Semantic Discovery
Word evolution refers to the changing meanings and associations of words throughout time, as a byproduct of human language evolution. By studying word evolution, we can infer social trends and language constructs over different periods of human history. However, traditional techniques such as word representation learning do not adequately capture the evolving language structure and vocabulary. In this paper, we develop a dynamic statistical model to learn time-aware word vector representation. We propose a model that simultaneously learns time-aware embeddings and solves the resulting "alignment problem". This model is trained on a crawled NYTimes dataset. Additionally, we develop multiple intuitive evaluation strategies of temporal word embeddings. Our qualitative and quantitative tests indicate that our method not only reliably captures this evolution over time, but also consistently outperforms state-of-the-art temporal embedding approaches on both semantic accuracy and alignment quality.
DocLLM: A layout-aware generative language model for multimodal document understanding
Enterprise documents such as forms, invoices, receipts, reports, contracts, and other similar records, often carry rich semantics at the intersection of textual and spatial modalities. The visual cues offered by their complex layouts play a crucial role in comprehending these documents effectively. In this paper, we present DocLLM, a lightweight extension to traditional large language models (LLMs) for reasoning over visual documents, taking into account both textual semantics and spatial layout. Our model differs from existing multimodal LLMs by avoiding expensive image encoders and focuses exclusively on bounding box information to incorporate the spatial layout structure. Specifically, the cross-alignment between text and spatial modalities is captured by decomposing the attention mechanism in classical transformers to a set of disentangled matrices. Furthermore, we devise a pre-training objective that learns to infill text segments. This approach allows us to address irregular layouts and heterogeneous content frequently encountered in visual documents. The pre-trained model is fine-tuned using a large-scale instruction dataset, covering four core document intelligence tasks. We demonstrate that our solution outperforms SotA LLMs on 14 out of 16 datasets across all tasks, and generalizes well to 4 out of 5 previously unseen datasets.
The (R)Evolution of Multimodal Large Language Models: A Survey
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Distribution-Aware Prompt Tuning for Vision-Language Models
Pre-trained vision-language models (VLMs) have shown impressive performance on various downstream tasks by utilizing knowledge learned from large data. In general, the performance of VLMs on target tasks can be further improved by prompt tuning, which adds context to the input image or text. By leveraging data from target tasks, various prompt-tuning methods have been studied in the literature. A key to prompt tuning is the feature space alignment between two modalities via learnable vectors with model parameters fixed. We observed that the alignment becomes more effective when embeddings of each modality are `well-arranged' in the latent space. Inspired by this observation, we proposed distribution-aware prompt tuning (DAPT) for vision-language models, which is simple yet effective. Specifically, the prompts are learned by maximizing inter-dispersion, the distance between classes, as well as minimizing the intra-dispersion measured by the distance between embeddings from the same class. Our extensive experiments on 11 benchmark datasets demonstrate that our method significantly improves generalizability. The code is available at https://github.com/mlvlab/DAPT.
Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios. However, the absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors. In this paper, we propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration. Building on the foundation of BLIP-2, Lyrics infuses local visual features extracted from a visual refiner that includes image tagging, object detection and semantic segmentation modules into the Querying Transformer, while on the text side, the language inputs equip the boundary boxes and tags derived from the visual refiner. We further introduce a two-stage training scheme, in which the pre-training stage bridges the modality gap through explicit and comprehensive vision-language alignment targets. During the instruction fine-tuning stage, we introduce semantic-aware visual feature extraction, a crucial method that enables the model to extract informative features from concrete visual objects. Our approach achieves strong performance on 13 held-out datasets across various vision-language tasks, and demonstrates promising multi-modal understanding and detailed depiction capabilities in real dialogue scenarios.
MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality Hybrid
Multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) whose entities are associated with relevant images. However, current MMEA algorithms rely on KG-level modality fusion strategies for multi-modal entity representation, which ignores the variations of modality preferences of different entities, thus compromising robustness against noise in modalities such as blurry images and relations. This paper introduces MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, which dynamically predicts the mutual correlation coefficients among modalities for more fine-grained entity-level modality fusion and alignment. Experimental results demonstrate that our model not only achieves SOTA performance in multiple training scenarios, including supervised, unsupervised, iterative, and low-resource settings, but also has a limited number of parameters, efficient runtime, and interpretability. Our code is available at https://github.com/zjukg/MEAformer.
Multi-modal Attribute Prompting for Vision-Language Models
Large pre-trained Vision-Language Models (VLMs), like CLIP, exhibit strong generalization ability to downstream tasks but struggle in few-shot scenarios. Existing prompting techniques primarily focus on global text and image representations, yet overlooking multi-modal attribute characteristics. This limitation hinders the model's ability to perceive fine-grained visual details and restricts its generalization ability to a broader range of unseen classes. To address this issue, we propose a Multi-modal Attribute Prompting method (MAP) by jointly exploring textual attribute prompting, visual attribute prompting, and attribute-level alignment. The proposed MAP enjoys several merits. First, we introduce learnable visual attribute prompts enhanced by textual attribute semantics to adaptively capture visual attributes for images from unknown categories, boosting fine-grained visual perception capabilities for CLIP. Second, the proposed attribute-level alignment complements the global alignment to enhance the robustness of cross-modal alignment for open-vocabulary objects. To our knowledge, this is the first work to establish cross-modal attribute-level alignment for CLIP-based few-shot adaptation. Extensive experimental results on 11 datasets demonstrate that our method performs favorably against state-of-the-art approaches.
ChatBridge: Bridging Modalities with Large Language Model as a Language Catalyst
Building general-purpose models that can perceive diverse real-world modalities and solve various tasks is an appealing target in artificial intelligence. In this paper, we present ChatBridge, a novel multimodal language model that leverages the expressive capabilities of language as the catalyst to bridge the gap between various modalities. We show that only language-paired two-modality data is sufficient to connect all modalities. ChatBridge leverages recent large language models (LLM) and extends their zero-shot capabilities to incorporate diverse multimodal inputs. ChatBridge undergoes a two-stage training. The first stage aligns each modality with language, which brings emergent multimodal correlation and collaboration abilities. The second stage instruction-finetunes ChatBridge to align it with user intent with our newly proposed multimodal instruction tuning dataset, named MULTIS, which covers a wide range of 16 multimodal tasks of text, image, video, and audio modalities. We show strong quantitative and qualitative results on zero-shot multimodal tasks covering text, image, video, and audio modalities. All codes, data, and models of ChatBridge will be open-sourced.
OMCAT: Omni Context Aware Transformer
Large Language Models (LLMs) have made significant strides in text generation and comprehension, with recent advancements extending into multimodal LLMs that integrate visual and audio inputs. However, these models continue to struggle with fine-grained, cross-modal temporal understanding, particularly when correlating events across audio and video streams. We address these challenges with two key contributions: a new dataset and model, called OCTAV and OMCAT respectively. OCTAV (Omni Context and Temporal Audio Video) is a novel dataset designed to capture event transitions across audio and video. Second, OMCAT (Omni Context Aware Transformer) is a powerful model that leverages RoTE (Rotary Time Embeddings), an innovative extension of RoPE, to enhance temporal grounding and computational efficiency in time-anchored tasks. Through a robust three-stage training pipeline-feature alignment, instruction tuning, and OCTAV-specific training-OMCAT excels in cross-modal temporal understanding. Our model demonstrates state-of-the-art performance on Audio-Visual Question Answering (AVQA) tasks and the OCTAV benchmark, showcasing significant gains in temporal reasoning and cross-modal alignment, as validated through comprehensive experiments and ablation studies. Our dataset and code will be made publicly available. The link to our demo page is https://om-cat.github.io.
VATEX: A Large-Scale, High-Quality Multilingual Dataset for Video-and-Language Research
We present a new large-scale multilingual video description dataset, VATEX, which contains over 41,250 videos and 825,000 captions in both English and Chinese. Among the captions, there are over 206,000 English-Chinese parallel translation pairs. Compared to the widely-used MSR-VTT dataset, VATEX is multilingual, larger, linguistically complex, and more diverse in terms of both video and natural language descriptions. We also introduce two tasks for video-and-language research based on VATEX: (1) Multilingual Video Captioning, aimed at describing a video in various languages with a compact unified captioning model, and (2) Video-guided Machine Translation, to translate a source language description into the target language using the video information as additional spatiotemporal context. Extensive experiments on the VATEX dataset show that, first, the unified multilingual model can not only produce both English and Chinese descriptions for a video more efficiently, but also offer improved performance over the monolingual models. Furthermore, we demonstrate that the spatiotemporal video context can be effectively utilized to align source and target languages and thus assist machine translation. In the end, we discuss the potentials of using VATEX for other video-and-language research.
FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. The video show results can be available at https://fancyvideo.github.io/, and we will make our code and model weights publicly available.
Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This paper aims to align books to their movie releases in order to provide rich descriptive explanations for visual content that go semantically far beyond the captions available in current datasets. To align movies and books we exploit a neural sentence embedding that is trained in an unsupervised way from a large corpus of books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book. We propose a context-aware CNN to combine information from multiple sources. We demonstrate good quantitative performance for movie/book alignment and show several qualitative examples that showcase the diversity of tasks our model can be used for.
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Temporally Aligned Audio for Video with Autoregression
We introduce V-AURA, the first autoregressive model to achieve high temporal alignment and relevance in video-to-audio generation. V-AURA uses a high-framerate visual feature extractor and a cross-modal audio-visual feature fusion strategy to capture fine-grained visual motion events and ensure precise temporal alignment. Additionally, we propose VisualSound, a benchmark dataset with high audio-visual relevance. VisualSound is based on VGGSound, a video dataset consisting of in-the-wild samples extracted from YouTube. During the curation, we remove samples where auditory events are not aligned with the visual ones. V-AURA outperforms current state-of-the-art models in temporal alignment and semantic relevance while maintaining comparable audio quality. Code, samples, VisualSound and models are available at https://v-aura.notion.site
Unified Generative and Discriminative Training for Multi-modal Large Language Models
In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM's hidden state. This approach enhances the MLLM's ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling.
ELLA: Equip Diffusion Models with LLM for Enhanced Semantic Alignment
Diffusion models have demonstrated remarkable performance in the domain of text-to-image generation. However, most widely used models still employ CLIP as their text encoder, which constrains their ability to comprehend dense prompts, encompassing multiple objects, detailed attributes, complex relationships, long-text alignment, etc. In this paper, we introduce an Efficient Large Language Model Adapter, termed ELLA, which equips text-to-image diffusion models with powerful Large Language Models (LLM) to enhance text alignment without training of either U-Net or LLM. To seamlessly bridge two pre-trained models, we investigate a range of semantic alignment connector designs and propose a novel module, the Timestep-Aware Semantic Connector (TSC), which dynamically extracts timestep-dependent conditions from LLM. Our approach adapts semantic features at different stages of the denoising process, assisting diffusion models in interpreting lengthy and intricate prompts over sampling timesteps. Additionally, ELLA can be readily incorporated with community models and tools to improve their prompt-following capabilities. To assess text-to-image models in dense prompt following, we introduce Dense Prompt Graph Benchmark (DPG-Bench), a challenging benchmark consisting of 1K dense prompts. Extensive experiments demonstrate the superiority of ELLA in dense prompt following compared to state-of-the-art methods, particularly in multiple object compositions involving diverse attributes and relationships.
TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
This work proposes TimeChat, a time-sensitive multimodal large language model specifically designed for long video understanding. Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths to accommodate videos of various durations. Additionally, we construct an instruction-tuning dataset, encompassing 6 tasks and a total of 125K instances, to further enhance TimeChat's instruction-following performance. Experiment results across various video understanding tasks, such as dense captioning, temporal grounding, and highlight detection, demonstrate TimeChat's strong zero-shot temporal localization and reasoning capabilities. For example, it achieves +9.2 F1 score and +2.8 CIDEr on YouCook2, +5.8 HIT@1 on QVHighlights, and +27.5 R@1 (IoU=0.5) on Charades-STA, compared to state-of-the-art video large language models, holding the potential to serve as a versatile video assistant for long-form video comprehension tasks and satisfy realistic user requirements.
LSTP: Language-guided Spatial-Temporal Prompt Learning for Long-form Video-Text Understanding
Despite progress in video-language modeling, the computational challenge of interpreting long-form videos in response to task-specific linguistic queries persists, largely due to the complexity of high-dimensional video data and the misalignment between language and visual cues over space and time. To tackle this issue, we introduce a novel approach called Language-guided Spatial-Temporal Prompt Learning (LSTP). This approach features two key components: a Temporal Prompt Sampler (TPS) with optical flow prior that leverages temporal information to efficiently extract relevant video content, and a Spatial Prompt Solver (SPS) that adeptly captures the intricate spatial relationships between visual and textual elements. By harmonizing TPS and SPS with a cohesive training strategy, our framework significantly enhances computational efficiency, temporal understanding, and spatial-temporal alignment. Empirical evaluations across two challenging tasks--video question answering and temporal question grounding in videos--using a variety of video-language pretrainings (VLPs) and large language models (LLMs) demonstrate the superior performance, speed, and versatility of our proposed LSTP paradigm.
A Multi-Modal Context Reasoning Approach for Conditional Inference on Joint Textual and Visual Clues
Conditional inference on joint textual and visual clues is a multi-modal reasoning task that textual clues provide prior permutation or external knowledge, which are complementary with visual content and pivotal to deducing the correct option. Previous methods utilizing pretrained vision-language models (VLMs) have achieved impressive performances, yet they show a lack of multimodal context reasoning capability, especially for text-modal information. To address this issue, we propose a Multi-modal Context Reasoning approach, named ModCR. Compared to VLMs performing reasoning via cross modal semantic alignment, it regards the given textual abstract semantic and objective image information as the pre-context information and embeds them into the language model to perform context reasoning. Different from recent vision-aided language models used in natural language processing, ModCR incorporates the multi-view semantic alignment information between language and vision by introducing the learnable alignment prefix between image and text in the pretrained language model. This makes the language model well-suitable for such multi-modal reasoning scenario on joint textual and visual clues. We conduct extensive experiments on two corresponding data sets and experimental results show significantly improved performance (exact gain by 4.8% on PMR test set) compared to previous strong baselines. Code Link: https://github.com/YunxinLi/Multimodal-Context-Reasoning.
Exploring the Role of Explicit Temporal Modeling in Multimodal Large Language Models for Video Understanding
Applying Multimodal Large Language Models (MLLMs) to video understanding presents significant challenges due to the need to model temporal relations across frames. Existing approaches adopt either implicit temporal modeling, relying solely on the LLM decoder, or explicit temporal modeling, employing auxiliary temporal encoders. To investigate this debate between the two paradigms, we propose the Stackable Temporal Encoder (STE). STE enables flexible explicit temporal modeling with adjustable temporal receptive fields and token compression ratios. Using STE, we systematically compare implicit and explicit temporal modeling across dimensions such as overall performance, token compression effectiveness, and temporal-specific understanding. We also explore STE's design considerations and broader impacts as a plug-in module and in image modalities. Our findings emphasize the critical role of explicit temporal modeling, providing actionable insights to advance video MLLMs.
Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
mSLAM: Massively multilingual joint pre-training for speech and text
We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research.
Rhythmic Foley: A Framework For Seamless Audio-Visual Alignment In Video-to-Audio Synthesis
Our research introduces an innovative framework for video-to-audio synthesis, which solves the problems of audio-video desynchronization and semantic loss in the audio. By incorporating a semantic alignment adapter and a temporal synchronization adapter, our method significantly improves semantic integrity and the precision of beat point synchronization, particularly in fast-paced action sequences. Utilizing a contrastive audio-visual pre-trained encoder, our model is trained with video and high-quality audio data, improving the quality of the generated audio. This dual-adapter approach empowers users with enhanced control over audio semantics and beat effects, allowing the adjustment of the controller to achieve better results. Extensive experiments substantiate the effectiveness of our framework in achieving seamless audio-visual alignment.
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Text-video retrieval is a challenging cross-modal task, which aims to align visual entities with natural language descriptions. Current methods either fail to leverage the local details or are computationally expensive. What's worse, they fail to leverage the heterogeneous concepts in data. In this paper, we propose the Disentangled Conceptualization and Set-to-set Alignment (DiCoSA) to simulate the conceptualizing and reasoning process of human beings. For disentangled conceptualization, we divide the coarse feature into multiple latent factors related to semantic concepts. For set-to-set alignment, where a set of visual concepts correspond to a set of textual concepts, we propose an adaptive pooling method to aggregate semantic concepts to address the partial matching. In particular, since we encode concepts independently in only a few dimensions, DiCoSA is superior at efficiency and granularity, ensuring fine-grained interactions using a similar computational complexity as coarse-grained alignment. Extensive experiments on five datasets, including MSR-VTT, LSMDC, MSVD, ActivityNet, and DiDeMo, demonstrate that our method outperforms the existing state-of-the-art methods.
MM-TTS: Multi-modal Prompt based Style Transfer for Expressive Text-to-Speech Synthesis
The style transfer task in Text-to-Speech refers to the process of transferring style information into text content to generate corresponding speech with a specific style. However, most existing style transfer approaches are either based on fixed emotional labels or reference speech clips, which cannot achieve flexible style transfer. Recently, some methods have adopted text descriptions to guide style transfer. In this paper, we propose a more flexible multi-modal and style controllable TTS framework named MM-TTS. It can utilize any modality as the prompt in unified multi-modal prompt space, including reference speech, emotional facial images, and text descriptions, to control the style of the generated speech in a system. The challenges of modeling such a multi-modal style controllable TTS mainly lie in two aspects:1)aligning the multi-modal information into a unified style space to enable the input of arbitrary modality as the style prompt in a single system, and 2)efficiently transferring the unified style representation into the given text content, thereby empowering the ability to generate prompt style-related voice. To address these problems, we propose an aligned multi-modal prompt encoder that embeds different modalities into a unified style space, supporting style transfer for different modalities. Additionally, we present a new adaptive style transfer method named Style Adaptive Convolutions to achieve a better style representation. Furthermore, we design a Rectified Flow based Refiner to solve the problem of over-smoothing Mel-spectrogram and generate audio of higher fidelity. Since there is no public dataset for multi-modal TTS, we construct a dataset named MEAD-TTS, which is related to the field of expressive talking head. Our experiments on the MEAD-TTS dataset and out-of-domain datasets demonstrate that MM-TTS can achieve satisfactory results based on multi-modal prompts.
BLSP: Bootstrapping Language-Speech Pre-training via Behavior Alignment of Continuation Writing
The emergence of large language models (LLMs) has sparked significant interest in extending their remarkable language capabilities to speech. However, modality alignment between speech and text still remains an open problem. Current solutions can be categorized into two strategies. One is a cascaded approach where outputs (tokens or states) of a separately trained speech recognition system are used as inputs for LLMs, which limits their potential in modeling alignment between speech and text. The other is an end-to-end approach that relies on speech instruction data, which is very difficult to collect in large quantities. In this paper, we address these issues and propose the BLSP approach that Bootstraps Language-Speech Pre-training via behavior alignment of continuation writing. We achieve this by learning a lightweight modality adapter between a frozen speech encoder and an LLM, ensuring that the LLM exhibits the same generation behavior regardless of the modality of input: a speech segment or its transcript. The training process can be divided into two steps. The first step prompts an LLM to generate texts with speech transcripts as prefixes, obtaining text continuations. In the second step, these continuations are used as supervised signals to train the modality adapter in an end-to-end manner. We demonstrate that this straightforward process can extend the capabilities of LLMs to speech, enabling speech recognition, speech translation, spoken language understanding, and speech conversation, even in zero-shot cross-lingual scenarios.
ADAPT: Vision-Language Navigation with Modality-Aligned Action Prompts
Vision-Language Navigation (VLN) is a challenging task that requires an embodied agent to perform action-level modality alignment, i.e., make instruction-asked actions sequentially in complex visual environments. Most existing VLN agents learn the instruction-path data directly and cannot sufficiently explore action-level alignment knowledge inside the multi-modal inputs. In this paper, we propose modAlity-aligneD Action PrompTs (ADAPT), which provides the VLN agent with action prompts to enable the explicit learning of action-level modality alignment to pursue successful navigation. Specifically, an action prompt is defined as a modality-aligned pair of an image sub-prompt and a text sub-prompt, where the former is a single-view observation and the latter is a phrase like ''walk past the chair''. When starting navigation, the instruction-related action prompt set is retrieved from a pre-built action prompt base and passed through a prompt encoder to obtain the prompt feature. Then the prompt feature is concatenated with the original instruction feature and fed to a multi-layer transformer for action prediction. To collect high-quality action prompts into the prompt base, we use the Contrastive Language-Image Pretraining (CLIP) model which has powerful cross-modality alignment ability. A modality alignment loss and a sequential consistency loss are further introduced to enhance the alignment of the action prompt and enforce the agent to focus on the related prompt sequentially. Experimental results on both R2R and RxR show the superiority of ADAPT over state-of-the-art methods.
Escaping Plato's Cave: Towards the Alignment of 3D and Text Latent Spaces
Recent works have shown that, when trained at scale, uni-modal 2D vision and text encoders converge to learned features that share remarkable structural properties, despite arising from different representations. However, the role of 3D encoders with respect to other modalities remains unexplored. Furthermore, existing 3D foundation models that leverage large datasets are typically trained with explicit alignment objectives with respect to frozen encoders from other representations. In this work, we investigate the possibility of a posteriori alignment of representations obtained from uni-modal 3D encoders compared to text-based feature spaces. We show that naive post-training feature alignment of uni-modal text and 3D encoders results in limited performance. We then focus on extracting subspaces of the corresponding feature spaces and discover that by projecting learned representations onto well-chosen lower-dimensional subspaces the quality of alignment becomes significantly higher, leading to improved accuracy on matching and retrieval tasks. Our analysis further sheds light on the nature of these shared subspaces, which roughly separate between semantic and geometric data representations. Overall, ours is the first work that helps to establish a baseline for post-training alignment of 3D uni-modal and text feature spaces, and helps to highlight both the shared and unique properties of 3D data compared to other representations.
Video-Teller: Enhancing Cross-Modal Generation with Fusion and Decoupling
This paper proposes Video-Teller, a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment to significantly enhance the video-to-text generation task. Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules. It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions. To effectively integrate visual and auditory information, Video-Teller builds upon the image-based BLIP-2 model and introduces a cascaded Q-Former which fuses information across frames and ASR texts. To better guide video summarization, we introduce a fine-grained modality alignment objective, where the cascaded Q-Former's output embedding is trained to align with the caption/summary embedding created by a pretrained text auto-encoder. Experimental results demonstrate the efficacy of our proposed video-language foundation model in accurately comprehending videos and generating coherent and precise language descriptions. It is worth noting that the fine-grained alignment enhances the model's capabilities (4% improvement of CIDEr score on MSR-VTT) with only 13% extra parameters in training and zero additional cost in inference.
Multimodal Pretraining for Dense Video Captioning
Learning specific hands-on skills such as cooking, car maintenance, and home repairs increasingly happens via instructional videos. The user experience with such videos is known to be improved by meta-information such as time-stamped annotations for the main steps involved. Generating such annotations automatically is challenging, and we describe here two relevant contributions. First, we construct and release a new dense video captioning dataset, Video Timeline Tags (ViTT), featuring a variety of instructional videos together with time-stamped annotations. Second, we explore several multimodal sequence-to-sequence pretraining strategies that leverage large unsupervised datasets of videos and caption-like texts. We pretrain and subsequently finetune dense video captioning models using both YouCook2 and ViTT. We show that such models generalize well and are robust over a wide variety of instructional videos.
MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions
Massive multi-modality datasets play a significant role in facilitating the success of large video-language models. However, current video-language datasets primarily provide text descriptions for visual frames, considering audio to be weakly related information. They usually overlook exploring the potential of inherent audio-visual correlation, leading to monotonous annotation within each modality instead of comprehensive and precise descriptions. Such ignorance results in the difficulty of multiple cross-modality studies. To fulfill this gap, we present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions, and 2M high-quality clips with multimodal captions. Trailers preview full-length video works and integrate context, visual frames, and background music. In particular, the trailer has two main advantages: (1) the topics are diverse, and the content characters are of various types, e.g., film, news, and gaming. (2) the corresponding background music is custom-designed, making it more coherent with the visual context. Upon these insights, we propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos. Here, to ensure the caption retains music perspective while preserving the authority of visual context, we leverage the advanced LLM to merge all annotations adaptively. In this fashion, our MMtrail dataset potentially paves the path for fine-grained large multimodal-language model training. In experiments, we provide evaluation metrics and benchmark results on our dataset, demonstrating the high quality of our annotation and its effectiveness for model training.
Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs
Research on multi-modal contrastive learning strategies for audio and text has rapidly gained interest. Contrastively trained Audio-Language Models (ALMs), such as CLAP, which establish a unified representation across audio and language modalities, have enhanced the efficacy in various subsequent tasks by providing good text aligned audio encoders and vice versa. These improvements are evident in areas like zero-shot audio classification and audio retrieval, among others. However, the ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research. In this paper, we propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL. We implement a two-stage training scheme TeminAL A & B, where the model first learns to differentiate between multiple sounds in TeminAL A, followed by a phase that instills a sense of time, thereby enhancing its temporal understanding in TeminAL B. This approach results in an average performance gain of 5.28% in temporal understanding on the ESC-50 dataset, while the model remains competitive in zero-shot retrieval and classification tasks on the AudioCap/Clotho datasets. We also note the lack of proper evaluation techniques for contrastive ALMs and propose a strategy for evaluating ALMs in zero-shot settings. The general-purpose zero-shot model evaluation strategy ZSTE, is used to evaluate various prior models. ZSTE demonstrates a general strategy to evaluate all ZS contrastive models. The model trained with TeminAL successfully outperforms current models on most downstream tasks.
StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized Image-Dialogue Data
The remarkable multimodal capabilities demonstrated by OpenAI's GPT-4 have sparked significant interest in the development of multimodal Large Language Models (LLMs). A primary research objective of such models is to align visual and textual modalities effectively while comprehending human instructions. Current methodologies often rely on annotations derived from benchmark datasets to construct image-dialogue datasets for training purposes, akin to instruction tuning in LLMs. However, these datasets often exhibit domain bias, potentially constraining the generative capabilities of the models. In an effort to mitigate these limitations, we propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning. This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models to yield a diverse and controllable dataset with varied image content. This not only provides greater flexibility compared to existing methodologies but also significantly enhances several model capabilities. Our research includes comprehensive experiments conducted on various datasets using the open-source LLAVA model as a testbed for our proposed pipeline. Our results underscore marked enhancements across more than ten commonly assessed capabilities,
Mismatch Quest: Visual and Textual Feedback for Image-Text Misalignment
While existing image-text alignment models reach high quality binary assessments, they fall short of pinpointing the exact source of misalignment. In this paper, we present a method to provide detailed textual and visual explanation of detected misalignments between text-image pairs. We leverage large language models and visual grounding models to automatically construct a training set that holds plausible misaligned captions for a given image and corresponding textual explanations and visual indicators. We also publish a new human curated test set comprising ground-truth textual and visual misalignment annotations. Empirical results show that fine-tuning vision language models on our training set enables them to articulate misalignments and visually indicate them within images, outperforming strong baselines both on the binary alignment classification and the explanation generation tasks. Our method code and human curated test set are available at: https://mismatch-quest.github.io/
LibriVoxDeEn: A Corpus for German-to-English Speech Translation and German Speech Recognition
We present a corpus of sentence-aligned triples of German audio, German text, and English translation, based on German audiobooks. The speech translation data consist of 110 hours of audio material aligned to over 50k parallel sentences. An even larger dataset comprising 547 hours of German speech aligned to German text is available for speech recognition. The audio data is read speech and thus low in disfluencies. The quality of audio and sentence alignments has been checked by a manual evaluation, showing that speech alignment quality is in general very high. The sentence alignment quality is comparable to well-used parallel translation data and can be adjusted by cutoffs on the automatic alignment score. To our knowledge, this corpus is to date the largest resource for German speech recognition and for end-to-end German-to-English speech translation.
How2: A Large-scale Dataset for Multimodal Language Understanding
In this paper, we introduce How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We also present integrated sequence-to-sequence baselines for machine translation, automatic speech recognition, spoken language translation, and multimodal summarization. By making available data and code for several multimodal natural language tasks, we hope to stimulate more research on these and similar challenges, to obtain a deeper understanding of multimodality in language processing.
Tri-Modal Motion Retrieval by Learning a Joint Embedding Space
Information retrieval is an ever-evolving and crucial research domain. The substantial demand for high-quality human motion data especially in online acquirement has led to a surge in human motion research works. Prior works have mainly concentrated on dual-modality learning, such as text and motion tasks, but three-modality learning has been rarely explored. Intuitively, an extra introduced modality can enrich a model's application scenario, and more importantly, an adequate choice of the extra modality can also act as an intermediary and enhance the alignment between the other two disparate modalities. In this work, we introduce LAVIMO (LAnguage-VIdeo-MOtion alignment), a novel framework for three-modality learning integrating human-centric videos as an additional modality, thereby effectively bridging the gap between text and motion. Moreover, our approach leverages a specially designed attention mechanism to foster enhanced alignment and synergistic effects among text, video, and motion modalities. Empirically, our results on the HumanML3D and KIT-ML datasets show that LAVIMO achieves state-of-the-art performance in various motion-related cross-modal retrieval tasks, including text-to-motion, motion-to-text, video-to-motion and motion-to-video.
Learning Transferable Spatiotemporal Representations from Natural Script Knowledge
Pre-training on large-scale video data has become a common recipe for learning transferable spatiotemporal representations in recent years. Despite some progress, existing methods are mostly limited to highly curated datasets (e.g., K400) and exhibit unsatisfactory out-of-the-box representations. We argue that it is due to the fact that they only capture pixel-level knowledge rather than spatiotemporal semantics, which hinders further progress in video understanding. Inspired by the great success of image-text pre-training (e.g., CLIP), we take the first step to exploit language semantics to boost transferable spatiotemporal representation learning. We introduce a new pretext task, Turning to Video for Transcript Sorting (TVTS), which sorts shuffled ASR scripts by attending to learned video representations. We do not rely on descriptive captions and learn purely from video, i.e., leveraging the natural transcribed speech knowledge to provide noisy but useful semantics over time. Our method enforces the vision model to contextualize what is happening over time so that it can re-organize the narrative transcripts, and can seamlessly apply to large-scale uncurated video data in the real world. Our method demonstrates strong out-of-the-box spatiotemporal representations on diverse benchmarks, e.g., +13.6% gains over VideoMAE on SSV2 via linear probing. The code is available at https://github.com/TencentARC/TVTS.
Vinoground: Scrutinizing LMMs over Dense Temporal Reasoning with Short Videos
There has been growing sentiment recently that modern large multimodal models (LMMs) have addressed most of the key challenges related to short video comprehension. As a result, both academia and industry are gradually shifting their attention towards the more complex challenges posed by understanding long-form videos. However, is this really the case? Our studies indicate that LMMs still lack many fundamental reasoning capabilities even when dealing with short videos. We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark encompassing 1000 short and natural video-caption pairs. We demonstrate that existing LMMs severely struggle to distinguish temporal differences between different actions and object transformations. For example, the best model GPT-4o only obtains ~50% on our text and video scores, showing a large gap compared to the human baseline of ~90%. All open-source multimodal models and CLIP-based models perform much worse, producing mostly random chance performance. Through this work, we shed light onto the fact that temporal reasoning in short videos is a problem yet to be fully solved. The dataset and evaluation code are available at https://vinoground.github.io.
One TTS Alignment To Rule Them All
Speech-to-text alignment is a critical component of neural textto-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to generalize to long utterances and out-of-domain text, leading to missing or repeating words. Most non-autoregressive endto-end TTS models rely on durations extracted from external sources. In this paper we leverage the alignment mechanism proposed in RAD-TTS as a generic alignment learning framework, easily applicable to a variety of neural TTS models. The framework combines forward-sum algorithm, the Viterbi algorithm, and a simple and efficient static prior. In our experiments, the alignment learning framework improves all tested TTS architectures, both autoregressive (Flowtron, Tacotron 2) and non-autoregressive (FastPitch, FastSpeech 2, RAD-TTS). Specifically, it improves alignment convergence speed of existing attention-based mechanisms, simplifies the training pipeline, and makes the models more robust to errors on long utterances. Most importantly, the framework improves the perceived speech synthesis quality, as judged by human evaluators.
All in One: Exploring Unified Video-Language Pre-training
Mainstream Video-Language Pre-training models actbert,clipbert,violet consist of three parts, a video encoder, a text encoder, and a video-text fusion Transformer. They pursue better performance via utilizing heavier unimodal encoders or multimodal fusion Transformers, resulting in increased parameters with lower efficiency in downstream tasks. In this work, we for the first time introduce an end-to-end video-language model, namely all-in-one Transformer, that embeds raw video and textual signals into joint representations using a unified backbone architecture. We argue that the unique temporal information of video data turns out to be a key barrier hindering the design of a modality-agnostic Transformer. To overcome the challenge, we introduce a novel and effective token rolling operation to encode temporal representations from video clips in a non-parametric manner. The careful design enables the representation learning of both video-text multimodal inputs and unimodal inputs using a unified backbone model. Our pre-trained all-in-one Transformer is transferred to various downstream video-text tasks after fine-tuning, including text-video retrieval, video-question answering, multiple choice and visual commonsense reasoning. State-of-the-art performances with the minimal model FLOPs on nine datasets demonstrate the superiority of our method compared to the competitive counterparts. The code and pretrained model have been released in https://github.com/showlab/all-in-one.
Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment
Recent advances in large language models, particularly following GPT-4o, have sparked increasing interest in developing omni-modal models capable of understanding more modalities. While some open-source alternatives have emerged, there is still a notable lag behind specialized single-modality models in performance. In this paper, we present Ola, an Omni-modal language model that achieves competitive performance across image, video, and audio understanding compared to specialized counterparts. The core design of Ola lies in its progressive modality alignment strategy that extends the supporting modality of the language model progressively. Our training pipeline begins with the most distinct modalities: image and text, then gradually expands the skill sets of the model using speech data that connects language and audio knowledge, and video data that connects all modalities. The progressive learning pipeline also enables us to maintain a relatively small size of the cross-modal alignment data, making developing omni-modal from existing vision-language models easy and less costly. Moreover, to unlock an advanced interactive experience like GPT-4o, we further design a sentence-wise decoding solution for streaming speech generation. Extensive experiments demonstrate that Ola surpasses existing open omni-modal LLMs across all modalities while achieving highly competitive performance compared to state-of-the-art specialized models of similar sizes. We aim to make Ola a fully open omni-modal understanding solution to advance future research in this emerging field. Model weights, code, and data are open-sourced at https://github.com/Ola-Omni/Ola.
Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion
Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.
ShareGPT4V: Improving Large Multi-Modal Models with Better Captions
In the realm of large multi-modal models (LMMs), efficient modality alignment is crucial yet often constrained by the scarcity of high-quality image-text data. To address this bottleneck, we introduce the ShareGPT4V dataset, a pioneering large-scale resource featuring 1.2 million highly descriptive captions, which surpasses existing datasets in diversity and information content, covering world knowledge, object properties, spatial relationships, and aesthetic evaluations. Specifically, ShareGPT4V originates from a curated 100K high-quality captions collected from advanced GPT4-Vision and has been expanded to 1.2M with a superb caption model trained on this subset. ShareGPT4V first demonstrates its effectiveness for the Supervised Fine-Tuning (SFT) phase, by substituting an equivalent quantity of detailed captions in existing SFT datasets with a subset of our high-quality captions, significantly enhancing the LMMs like LLaVA-7B, LLaVA-1.5-13B, and Qwen-VL-Chat-7B on the MME and MMBench benchmarks, with respective gains of 222.8/22.0/22.3 and 2.7/1.3/1.5. We further incorporate ShareGPT4V data into both the pre-training and SFT phases, obtaining ShareGPT4V-7B, a superior LMM based on a simple architecture that has remarkable performance across a majority of the multi-modal benchmarks. This project is available at https://ShareGPT4V.github.io to serve as a pivotal resource for advancing the LMMs community.
On the Consistency of Video Large Language Models in Temporal Comprehension
Video large language models (Video-LLMs) can temporally ground language queries and retrieve video moments. Yet, such temporal comprehension capabilities are neither well-studied nor understood. So we conduct a study on prediction consistency -- a key indicator for robustness and trustworthiness of temporal grounding. After the model identifies an initial moment within the video content, we apply a series of probes to check if the model's responses align with this initial grounding as an indicator of reliable comprehension. Our results reveal that current Video-LLMs are sensitive to variations in video contents, language queries, and task settings, unveiling severe deficiencies in maintaining consistency. We further explore common prompting and instruction-tuning methods as potential solutions, but find that their improvements are often unstable. To that end, we propose event temporal verification tuning that explicitly accounts for consistency, and demonstrate significant improvements for both grounding and consistency. Our data and code will be available at https://github.com/minjoong507/Consistency-of-Video-LLM.
TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models
Understanding fine-grained temporal dynamics is crucial for multimodal video comprehension and generation. Due to the lack of fine-grained temporal annotations, existing video benchmarks mostly resemble static image benchmarks and are incompetent at evaluating models for temporal understanding. In this paper, we introduce TemporalBench, a new benchmark dedicated to evaluating fine-grained temporal understanding in videos. TemporalBench consists of ~10K video question-answer pairs, derived from ~2K high-quality human annotations detailing the temporal dynamics in video clips. As a result, our benchmark provides a unique testbed for evaluating various temporal understanding and reasoning abilities such as action frequency, motion magnitude, event order, etc. Moreover, it enables evaluations on various tasks like both video question answering and captioning, both short and long video understanding, as well as different models such as multimodal video embedding models and text generation models. Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench, demonstrating a significant gap (~30%) between humans and AI in temporal understanding. Furthermore, we notice a critical pitfall for multi-choice QA where LLMs can detect the subtle changes in negative captions and find a centralized description as a cue for its prediction, where we propose Multiple Binary Accuracy (MBA) to correct such bias. We hope that TemporalBench can foster research on improving models' temporal reasoning capabilities. Both dataset and evaluation code will be made available.
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual \& audio encoders and the frozen LLMs. Unlike previous vision- LLMs that focus on static image comprehensions such as MiniGPT-4~zhu2023minigpt and LLaVA~liu2023visualit, Video-LLaMA tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. For the first challenge, we propose Video Q-former to extend the pre-trained image encoder to a video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind~girdhar2023imagebind as the pre-trained audio encoder which performs exceptionally well in aligning different modalities to a common embedding space. And then introduce an Audio Q-former to learn auditory query tokens. To align the output of both visual \& audio encoder with LLM's embedding space, we train Video-LLaMA on a large-scale vision caption dataset and a hign-quantity vision-instruction-tuning dataset. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information present in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants. Our code, pre-trained model, and demo are available at https://github.com/DAMO-NLP-SG/Video-LLaMA.
Scaling Multimodal Pre-Training via Cross-Modality Gradient Harmonization
Self-supervised pre-training recently demonstrates success on large-scale multimodal data, and state-of-the-art contrastive learning methods often enforce the feature consistency from cross-modality inputs, such as video/audio or video/text pairs. Despite its convenience to formulate and leverage in practice, such cross-modality alignment (CMA) is only a weak and noisy supervision, since two modalities can be semantically misaligned even they are temporally aligned. For example, even in the commonly adopted instructional videos, a speaker can sometimes refer to something that is not visually present in the current frame; and the semantic misalignment would only be more unpredictable for the raw videos from the internet. We conjecture that might cause conflicts and biases among modalities, and may hence prohibit CMA from scaling up to training with larger and more heterogeneous data. This paper first verifies our conjecture by observing that, even in the latest VATT pre-training using only instructional videos, there exist strong gradient conflicts between different CMA losses within the same video, audio, text triplet, indicating them as the noisy source of supervision. We then propose to harmonize such gradients, via two techniques: (i) cross-modality gradient realignment: modifying different CMA loss gradients for each sample triplet, so that their gradient directions are more aligned; and (ii) gradient-based curriculum learning: leveraging the gradient conflict information on an indicator of sample noisiness, to develop a curriculum learning strategy to prioritize training on less noisy sample triplets. Applying those techniques to pre-training VATT on the HowTo100M dataset, we consistently improve its performance on different downstream tasks. Moreover, we are able to scale VATT pre-training to more complicated non-narrative Youtube8M dataset to further improve the state-of-the-arts.
Leveraging Temporal Contextualization for Video Action Recognition
We propose a novel framework for video understanding, called Temporally Contextualized CLIP (TC-CLIP), which leverages essential temporal information through global interactions in a spatio-temporal domain within a video. To be specific, we introduce Temporal Contextualization (TC), a layer-wise temporal information infusion mechanism for videos, which 1) extracts core information from each frame, 2) connects relevant information across frames for the summarization into context tokens, and 3) leverages the context tokens for feature encoding. Furthermore, the Video-conditional Prompting (VP) module processes context tokens to generate informative prompts in the text modality. Extensive experiments in zero-shot, few-shot, base-to-novel, and fully-supervised action recognition validate the effectiveness of our model. Ablation studies for TC and VP support our design choices. Our project page with the source code is available at https://github.com/naver-ai/tc-clip
Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment
The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.
Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language Pretraining?
The multimedia community has shown a significant interest in perceiving and representing the physical world with multimodal pretrained neural network models, and among them, the visual-language pertaining (VLP) is, currently, the most captivating topic. However, there have been few endeavors dedicated to the exploration of 1) whether essential linguistic knowledge (e.g., semantics and syntax) can be extracted during VLP, and 2) how such linguistic knowledge impact or enhance the multimodal alignment. In response, here we aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment. Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge, containing four tasks: Semantic structure, Negation logic, Attribute ownership, and Relationship composition. Based on our proposed probing benchmarks, our holistic analyses of five advanced VLP models illustrate that the VLP model: i) shows insensitivity towards complex syntax structures and relies on content words for sentence comprehension; ii) demonstrates limited comprehension of combinations between sentences and negations; iii) faces challenges in determining the presence of actions or spatial relationships within visual information and struggles with verifying the correctness of triple combinations. We make our benchmark and code available at https://github.com/WangFei-2019/SNARE/.
T-CLAP: Temporal-Enhanced Contrastive Language-Audio Pretraining
Contrastive language-audio pretraining~(CLAP) has been developed to align the representations of audio and language, achieving remarkable performance in retrieval and classification tasks. However, current CLAP struggles to capture temporal information within audio and text features, presenting substantial limitations for tasks such as audio retrieval and generation. To address this gap, we introduce T-CLAP, a temporal-enhanced CLAP model. We use Large Language Models~(LLMs) and mixed-up strategies to generate temporal-contrastive captions for audio clips from extensive audio-text datasets. Subsequently, a new temporal-focused contrastive loss is designed to fine-tune the CLAP model by incorporating these synthetic data. We conduct comprehensive experiments and analysis in multiple downstream tasks. T-CLAP shows improved capability in capturing the temporal relationship of sound events and outperforms state-of-the-art models by a significant margin.
Grounded Entity-Landmark Adaptive Pre-training for Vision-and-Language Navigation
Cross-modal alignment is one key challenge for Vision-and-Language Navigation (VLN). Most existing studies concentrate on mapping the global instruction or single sub-instruction to the corresponding trajectory. However, another critical problem of achieving fine-grained alignment at the entity level is seldom considered. To address this problem, we propose a novel Grounded Entity-Landmark Adaptive (GELA) pre-training paradigm for VLN tasks. To achieve the adaptive pre-training paradigm, we first introduce grounded entity-landmark human annotations into the Room-to-Room (R2R) dataset, named GEL-R2R. Additionally, we adopt three grounded entity-landmark adaptive pre-training objectives: 1) entity phrase prediction, 2) landmark bounding box prediction, and 3) entity-landmark semantic alignment, which explicitly supervise the learning of fine-grained cross-modal alignment between entity phrases and environment landmarks. Finally, we validate our model on two downstream benchmarks: VLN with descriptive instructions (R2R) and dialogue instructions (CVDN). The comprehensive experiments show that our GELA model achieves state-of-the-art results on both tasks, demonstrating its effectiveness and generalizability.
TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval
We introduce TV show Retrieval (TVR), a new multimodal retrieval dataset. TVR requires systems to understand both videos and their associated subtitle (dialogue) texts, making it more realistic. The dataset contains 109K queries collected on 21.8K videos from 6 TV shows of diverse genres, where each query is associated with a tight temporal window. The queries are also labeled with query types that indicate whether each of them is more related to video or subtitle or both, allowing for in-depth analysis of the dataset and the methods that built on top of it. Strict qualification and post-annotation verification tests are applied to ensure the quality of the collected data. Further, we present several baselines and a novel Cross-modal Moment Localization (XML ) network for multimodal moment retrieval tasks. The proposed XML model uses a late fusion design with a novel Convolutional Start-End detector (ConvSE), surpassing baselines by a large margin and with better efficiency, providing a strong starting point for future work. We have also collected additional descriptions for each annotated moment in TVR to form a new multimodal captioning dataset with 262K captions, named TV show Caption (TVC). Both datasets are publicly available. TVR: https://tvr.cs.unc.edu, TVC: https://tvr.cs.unc.edu/tvc.html.
Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding
Recent vision-language pre-training models have exhibited remarkable generalization ability in zero-shot recognition tasks. Previous open-vocabulary 3D scene understanding methods mostly focus on training 3D models using either image or text supervision while neglecting the collective strength of all modalities. In this work, we propose a Dense Multimodal Alignment (DMA) framework to densely co-embed different modalities into a common space for maximizing their synergistic benefits. Instead of extracting coarse view- or region-level text prompts, we leverage large vision-language models to extract complete category information and scalable scene descriptions to build the text modality, and take image modality as the bridge to build dense point-pixel-text associations. Besides, in order to enhance the generalization ability of the 2D model for downstream 3D tasks without compromising the open-vocabulary capability, we employ a dual-path integration approach to combine frozen CLIP visual features and learnable mask features. Extensive experiments show that our DMA method produces highly competitive open-vocabulary segmentation performance on various indoor and outdoor tasks.
SpeechAlign: a Framework for Speech Translation Alignment Evaluation
Speech-to-Speech and Speech-to-Text translation are currently dynamic areas of research. To contribute to these fields, we present SpeechAlign, a framework to evaluate the underexplored field of source-target alignment in speech models. Our framework has two core components. First, to tackle the absence of suitable evaluation datasets, we introduce the Speech Gold Alignment dataset, built upon a English-German text translation gold alignment dataset. Secondly, we introduce two novel metrics, Speech Alignment Error Rate (SAER) and Time-weighted Speech Alignment Error Rate (TW-SAER), to evaluate alignment quality in speech models. By publishing SpeechAlign we provide an accessible evaluation framework for model assessment, and we employ it to benchmark open-source Speech Translation models.
MTPChat: A Multimodal Time-Aware Persona Dataset for Conversational Agents
Understanding temporal dynamics is critical for conversational agents, enabling effective content analysis and informed decision-making. However, time-aware datasets, particularly for persona-grounded conversations, are still limited, which narrows their scope and diminishes their complexity. To address this gap, we introduce MTPChat, a multimodal, time-aware persona dialogue dataset that integrates linguistic, visual, and temporal elements within dialogue and persona memory. Leveraging MTPChat, we propose two time-sensitive tasks: Temporal Next Response Prediction (TNRP) and Temporal Grounding Memory Prediction (TGMP), both designed to assess a model's ability to understand implicit temporal cues and dynamic interactions. Additionally, we present an innovative framework featuring an adaptive temporal module to effectively integrate multimodal streams and capture temporal dependencies. Experimental results validate the challenges posed by MTPChat and demonstrate the effectiveness of our framework in multimodal time-sensitive scenarios.
MAD: A Scalable Dataset for Language Grounding in Videos from Movie Audio Descriptions
The recent and increasing interest in video-language research has driven the development of large-scale datasets that enable data-intensive machine learning techniques. In comparison, limited effort has been made at assessing the fitness of these datasets for the video-language grounding task. Recent works have begun to discover significant limitations in these datasets, suggesting that state-of-the-art techniques commonly overfit to hidden dataset biases. In this work, we present MAD (Movie Audio Descriptions), a novel benchmark that departs from the paradigm of augmenting existing video datasets with text annotations and focuses on crawling and aligning available audio descriptions of mainstream movies. MAD contains over 384,000 natural language sentences grounded in over 1,200 hours of videos and exhibits a significant reduction in the currently diagnosed biases for video-language grounding datasets. MAD's collection strategy enables a novel and more challenging version of video-language grounding, where short temporal moments (typically seconds long) must be accurately grounded in diverse long-form videos that can last up to three hours. We have released MAD's data and baselines code at https://github.com/Soldelli/MAD.
SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities, typically comprising a Vision Encoder, an Adapter, and a Large Language Model (LLM). The adapter serves as the critical bridge between the visual and language components. However, training adapters with image-level supervision often results in significant misalignment, undermining the LLMs' capabilities and limiting the potential of Multimodal LLMs. To address this, we introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models, such as CLIP, to align visual tokens with the LLM's embedding space through contrastive learning. This approach ensures a more coherent integration of visual and language representations, enhancing the performance and interpretability of multimodal LLMs while preserving their inherent capabilities. Extensive experiments show that SEA effectively improves MLLMs, particularly for smaller models, without adding extra data or inference computation. SEA also lays the groundwork for developing more general and adaptable solutions to enhance multimodal systems.
u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model
Recent advances such as LLaVA and Mini-GPT4 have successfully integrated visual information into LLMs, yielding inspiring outcomes and giving rise to a new generation of multi-modal LLMs, or MLLMs. Nevertheless, these methods struggle with hallucinations and the mutual interference between tasks. To tackle these problems, we propose an efficient and accurate approach to adapt to downstream tasks by utilizing LLM as a bridge to connect multiple expert models, namely u-LLaVA. Firstly, we incorporate the modality alignment module and multi-task modules into LLM. Then, we reorganize or rebuild multi-type public datasets to enable efficient modality alignment and instruction following. Finally, task-specific information is extracted from the trained LLM and provided to different modules for solving downstream tasks. The overall framework is simple, effective, and achieves state-of-the-art performance across multiple benchmarks. We also release our model, the generated data, and the code base publicly available.
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
Learning to reliably perceive and understand the scene is an integral enabler for robots to operate in the real-world. This problem is inherently challenging due to the multitude of object types as well as appearance changes caused by varying illumination and weather conditions. Leveraging complementary modalities can enable learning of semantically richer representations that are resilient to such perturbations. Despite the tremendous progress in recent years, most multimodal convolutional neural network approaches directly concatenate feature maps from individual modality streams rendering the model incapable of focusing only on relevant complementary information for fusion. To address this limitation, we propose a mutimodal semantic segmentation framework that dynamically adapts the fusion of modality-specific features while being sensitive to the object category, spatial location and scene context in a self-supervised manner. Specifically, we propose an architecture consisting of two modality-specific encoder streams that fuse intermediate encoder representations into a single decoder using our proposed self-supervised model adaptation fusion mechanism which optimally combines complementary features. As intermediate representations are not aligned across modalities, we introduce an attention scheme for better correlation. In addition, we propose a computationally efficient unimodal segmentation architecture termed AdapNet++ that incorporates a new encoder with multiscale residual units and an efficient atrous spatial pyramid pooling that has a larger effective receptive field with more than 10x fewer parameters, complemented with a strong decoder with a multi-resolution supervision scheme that recovers high-resolution details. Comprehensive empirical evaluations on several benchmarks demonstrate that both our unimodal and multimodal architectures achieve state-of-the-art performance.
Enhancing Vision-Language Model with Unmasked Token Alignment
Contrastive pre-training on image-text pairs, exemplified by CLIP, becomes a standard technique for learning multi-modal visual-language representations. Although CLIP has demonstrated remarkable performance, training it from scratch on noisy web-scale datasets is computationally demanding. On the other hand, mask-then-predict pre-training approaches, like Masked Image Modeling (MIM), offer efficient self-supervised learning for single-modal representations. This paper introduces Unmasked Token Alignment (UTA), a method that leverages existing CLIP models to further enhance its vision-language representations. UTA trains a Vision Transformer (ViT) by aligning unmasked visual tokens to the corresponding image tokens from a frozen CLIP vision encoder, which automatically aligns the ViT model with the CLIP text encoder. The pre-trained ViT can be directly applied for zero-shot evaluation even without training on image-text pairs. Compared to MIM approaches, UTA does not suffer from training-finetuning inconsistency and is much more training-efficient by avoiding using the extra [MASK] tokens. Extensive experimental results demonstrate that UTA can enhance CLIP models and outperform existing MIM methods on various uni- and multi-modal benchmarks. Code and models are available at https://github.com/jihaonew/UTA.
Turing Representational Similarity Analysis (RSA): A Flexible Method for Measuring Alignment Between Human and Artificial Intelligence
As we consider entrusting Large Language Models (LLMs) with key societal and decision-making roles, measuring their alignment with human cognition becomes critical. This requires methods that can assess how these systems represent information and facilitate comparisons to human understanding across diverse tasks. To meet this need, we developed Turing Representational Similarity Analysis (RSA), a method that uses pairwise similarity ratings to quantify alignment between AIs and humans. We tested this approach on semantic alignment across text and image modalities, measuring how different Large Language and Vision Language Model (LLM and VLM) similarity judgments aligned with human responses at both group and individual levels. GPT-4o showed the strongest alignment with human performance among the models we tested, particularly when leveraging its text processing capabilities rather than image processing, regardless of the input modality. However, no model we studied adequately captured the inter-individual variability observed among human participants. This method helped uncover certain hyperparameters and prompts that could steer model behavior to have more or less human-like qualities at an inter-individual or group level. Turing RSA enables the efficient and flexible quantification of human-AI alignment and complements existing accuracy-based benchmark tasks. We demonstrate its utility across multiple modalities (words, sentences, images) for understanding how LLMs encode knowledge and for examining representational alignment with human cognition.
Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers
The quality of the data and annotation upper-bounds the quality of a downstream model. While there exist large text corpora and image-text pairs, high-quality video-text data is much harder to collect. First of all, manual labeling is more time-consuming, as it requires an annotator to watch an entire video. Second, videos have a temporal dimension, consisting of several scenes stacked together, and showing multiple actions. Accordingly, to establish a video dataset with high-quality captions, we propose an automatic approach leveraging multimodal inputs, such as textual video description, subtitles, and individual video frames. Specifically, we curate 3.8M high-resolution videos from the publicly available HD-VILA-100M dataset. We then split them into semantically consistent video clips, and apply multiple cross-modality teacher models to obtain captions for each video. Next, we finetune a retrieval model on a small subset where the best caption of each video is manually selected and then employ the model in the whole dataset to select the best caption as the annotation. In this way, we get 70M videos paired with high-quality text captions. We dub the dataset as Panda-70M. We show the value of the proposed dataset on three downstream tasks: video captioning, video and text retrieval, and text-driven video generation. The models trained on the proposed data score substantially better on the majority of metrics across all the tasks.
VADER: Video Alignment Differencing and Retrieval
We propose VADER, a spatio-temporal matching, alignment, and change summarization method to help fight misinformation spread via manipulated videos. VADER matches and coarsely aligns partial video fragments to candidate videos using a robust visual descriptor and scalable search over adaptively chunked video content. A transformer-based alignment module then refines the temporal localization of the query fragment within the matched video. A space-time comparator module identifies regions of manipulation between aligned content, invariant to any changes due to any residual temporal misalignments or artifacts arising from non-editorial changes of the content. Robustly matching video to a trusted source enables conclusions to be drawn on video provenance, enabling informed trust decisions on content encountered.
Enhance Temporal Relations in Audio Captioning with Sound Event Detection
Automated audio captioning aims at generating natural language descriptions for given audio clips, not only detecting and classifying sounds, but also summarizing the relationships between audio events. Recent research advances in audio captioning have introduced additional guidance to improve the accuracy of audio events in generated sentences. However, temporal relations between audio events have received little attention while revealing complex relations is a key component in summarizing audio content. Therefore, this paper aims to better capture temporal relationships in caption generation with sound event detection (SED), a task that locates events' timestamps. We investigate the best approach to integrate temporal information in a captioning model and propose a temporal tag system to transform the timestamps into comprehensible relations. Results evaluated by the proposed temporal metrics suggest that great improvement is achieved in terms of temporal relation generation.
VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation
We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
Which One Are You Referring To? Multimodal Object Identification in Situated Dialogue
The demand for multimodal dialogue systems has been rising in various domains, emphasizing the importance of interpreting multimodal inputs from conversational and situational contexts. We explore three methods to tackle this problem and evaluate them on the largest situated dialogue dataset, SIMMC 2.1. Our best method, scene-dialogue alignment, improves the performance by ~20% F1-score compared to the SIMMC 2.1 baselines. We provide analysis and discussion regarding the limitation of our methods and the potential directions for future works. Our code is publicly available at https://github.com/holylovenia/multimodal-object-identification.
Pretext Training Algorithms for Event Sequence Data
Pretext training followed by task-specific fine-tuning has been a successful approach in vision and language domains. This paper proposes a self-supervised pretext training framework tailored to event sequence data. We introduce a novel alignment verification task that is specialized to event sequences, building on good practices in masked reconstruction and contrastive learning. Our pretext tasks unlock foundational representations that are generalizable across different down-stream tasks, including next-event prediction for temporal point process models, event sequence classification, and missing event interpolation. Experiments on popular public benchmarks demonstrate the potential of the proposed method across different tasks and data domains.
LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment
The video-language (VL) pretraining has achieved remarkable improvement in multiple downstream tasks. However, the current VL pretraining framework is hard to extend to multiple modalities (N modalities, N>=3) beyond vision and language. We thus propose LanguageBind, taking the language as the bind across different modalities because the language modality is well-explored and contains rich semantics. Specifically, we freeze the language encoder acquired by VL pretraining, then train encoders for other modalities with contrastive learning. As a result, all modalities are mapped to a shared feature space, implementing multi-modal semantic alignment. While LanguageBind ensures that we can extend VL modalities to N modalities, we also need a high-quality dataset with alignment data pairs centered on language. We thus propose VIDAL-10M with Video, Infrared, Depth, Audio and their corresponding Language, naming as VIDAL-10M. In our VIDAL-10M, all videos are from short video platforms with complete semantics rather than truncated segments from long videos, and all the video, depth, infrared, and audio modalities are aligned to their textual descriptions. After pretraining on VIDAL-10M, we outperform ImageBind by 1.2% R@1 on the MSR-VTT dataset with only 15% of the parameters in the zero-shot video-text retrieval, validating the high quality of our dataset. Beyond this, our LanguageBind has achieved great improvement in the zero-shot video, audio, depth, and infrared understanding tasks. For instance, on the LLVIP and NYU-D datasets, LanguageBind outperforms ImageBind-huge with 23.8% and 11.1% top-1 accuracy. Code address: https://github.com/PKU-YuanGroup/LanguageBind.
Action Segmentation with Mixed Temporal Domain Adaptation
The main progress for action segmentation comes from densely-annotated data for fully-supervised learning. Since manual annotation for frame-level actions is time-consuming and challenging, we propose to exploit auxiliary unlabeled videos, which are much easier to obtain, by shaping this problem as a domain adaptation (DA) problem. Although various DA techniques have been proposed in recent years, most of them have been developed only for the spatial direction. Therefore, we propose Mixed Temporal Domain Adaptation (MTDA) to jointly align frame- and video-level embedded feature spaces across domains, and further integrate with the domain attention mechanism to focus on aligning the frame-level features with higher domain discrepancy, leading to more effective domain adaptation. Finally, we evaluate our proposed methods on three challenging datasets (GTEA, 50Salads, and Breakfast), and validate that MTDA outperforms the current state-of-the-art methods on all three datasets by large margins (e.g. 6.4% gain on F1@50 and 6.8% gain on the edit score for GTEA).
Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.
MinMo: A Multimodal Large Language Model for Seamless Voice Interaction
Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.
Plug-and-Play Regulators for Image-Text Matching
Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching. Generally, recent approaches first employ a cross-modal attention unit to capture latent region-word interactions, and then integrate all the alignments to obtain the final similarity. However, most of them adopt one-time forward association or aggregation strategies with complex architectures or additional information, while ignoring the regulation ability of network feedback. In this paper, we develop two simple but quite effective regulators which efficiently encode the message output to automatically contextualize and aggregate cross-modal representations. Specifically, we propose (i) a Recurrent Correspondence Regulator (RCR) which facilitates the cross-modal attention unit progressively with adaptive attention factors to capture more flexible correspondence, and (ii) a Recurrent Aggregation Regulator (RAR) which adjusts the aggregation weights repeatedly to increasingly emphasize important alignments and dilute unimportant ones. Besides, it is interesting that RCR and RAR are plug-and-play: both of them can be incorporated into many frameworks based on cross-modal interaction to obtain significant benefits, and their cooperation achieves further improvements. Extensive experiments on MSCOCO and Flickr30K datasets validate that they can bring an impressive and consistent R@1 gain on multiple models, confirming the general effectiveness and generalization ability of the proposed methods. Code and pre-trained models are available at: https://github.com/Paranioar/RCAR.
LaT: Latent Translation with Cycle-Consistency for Video-Text Retrieval
Video-text retrieval is a class of cross-modal representation learning problems, where the goal is to select the video which corresponds to the text query between a given text query and a pool of candidate videos. The contrastive paradigm of vision-language pretraining has shown promising success with large-scale datasets and unified transformer architecture, and demonstrated the power of a joint latent space. Despite this, the intrinsic divergence between the visual domain and textual domain is still far from being eliminated, and projecting different modalities into a joint latent space might result in the distorting of the information inside the single modality. To overcome the above issue, we present a novel mechanism for learning the translation relationship from a source modality space S to a target modality space T without the need for a joint latent space, which bridges the gap between visual and textual domains. Furthermore, to keep cycle consistency between translations, we adopt a cycle loss involving both forward translations from S to the predicted target space T', and backward translations from T' back to S. Extensive experiments conducted on MSR-VTT, MSVD, and DiDeMo datasets demonstrate the superiority and effectiveness of our LaT approach compared with vanilla state-of-the-art methods.
ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval
In this paper, we re-examine the task of cross-modal clip-sentence retrieval, where the clip is part of a longer untrimmed video. When the clip is short or visually ambiguous, knowledge of its local temporal context (i.e. surrounding video segments) can be used to improve the retrieval performance. We propose Context Transformer (ConTra); an encoder architecture that models the interaction between a video clip and its local temporal context in order to enhance its embedded representations. Importantly, we supervise the context transformer using contrastive losses in the cross-modal embedding space. We explore context transformers for video and text modalities. Results consistently demonstrate improved performance on three datasets: YouCook2, EPIC-KITCHENS and a clip-sentence version of ActivityNet Captions. Exhaustive ablation studies and context analysis show the efficacy of the proposed method.
SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. We release our code and model at https://github.com/microsoft/SpeechT5.
i-SRT: Aligning Large Multimodal Models for Videos by Iterative Self-Retrospective Judgment
Aligning Video Large Multimodal Models (VLMMs) face challenges such as modality misalignment and verbose responses. Although iterative approaches such as self-rewarding or iterative direct preference optimization (DPO) recently showed a significant improvement in language model alignment, particularly on reasoning tasks, self-aligned models applied to large video-language models often result in lengthy and irrelevant responses. To address these challenges, we propose a novel method that employs self-retrospection to enhance both response generation and preference modeling, and call iterative self-retrospective judgment (i-SRT). By revisiting and evaluating already generated content and preference in loop, i-SRT improves the alignment between textual and visual modalities, reduce verbosity, and enhances content relevance. Our empirical evaluations across diverse video question answering benchmarks demonstrate that i-SRT significantly outperforms prior arts. We are committed to opensourcing our code, models, and datasets to encourage further investigation.
COSMO: COntrastive Streamlined MultimOdal Model with Interleaved Pre-Training
In the evolution of Vision-Language Pre-training, shifting from short-text comprehension to encompassing extended textual contexts is pivotal. Recent autoregressive vision-language models like flamingo, palme, leveraging the long-context capability of Large Language Models, have excelled in few-shot text generation tasks but face challenges in alignment tasks. Addressing this gap, we introduce the contrastive loss into text generation models, presenting the COntrastive-Streamlined MultimOdal framework (\ModelName), strategically partitioning the language model into dedicated unimodal text processing and adept multimodal data handling components. \ModelName, our unified framework, merges unimodal and multimodal elements, enhancing model performance for tasks involving textual and visual data while notably reducing learnable parameters. However, these models demand extensive long-text datasets, yet the availability of high-quality long-text video datasets remains limited. To bridge this gap, this work introduces \VideoDatasetName, an inaugural interleaved video-text dataset featuring comprehensive captions, marking a significant step forward. Demonstrating its impact, we illustrate how enhances model performance in image-text tasks. With 34% learnable parameters and utilizing 72\% of the available data, our model demonstrates significant superiority over OpenFlamingo~openflamingo. For instance, in the 4-shot flickr captioning task, performance notably improves from 57.2% to 65.\%. The contributions of and are underscored by notable performance gains across 14 diverse downstream datasets encompassing both image-text and video-text tasks.
Multi-Modal Adapter for Vision-Language Models
Large pre-trained vision-language models, such as CLIP, have demonstrated state-of-the-art performance across a wide range of image classification tasks, without requiring retraining. Few-shot CLIP is competitive with existing specialized architectures that were trained on the downstream tasks. Recent research demonstrates that the performance of CLIP can be further improved using lightweight adaptation approaches. However, previous methods adapt different modalities of the CLIP model individually, ignoring the interactions and relationships between visual and textual representations. In this work, we propose Multi-Modal Adapter, an approach for Multi-Modal adaptation of CLIP. Specifically, we add a trainable Multi-Head Attention layer that combines text and image features to produce an additive adaptation of both. Multi-Modal Adapter demonstrates improved generalizability, based on its performance on unseen classes compared to existing adaptation methods. We perform additional ablations and investigations to validate and interpret the proposed approach.
Contrastive Vision-Language Alignment Makes Efficient Instruction Learner
We study the task of extending the large language model (LLM) into a vision-language instruction-following model. This task is crucial but challenging since the LLM is trained on text modality only, making it hard to effectively digest the visual modality. To address this, existing methods typically train a visual adapter to align the representation between a pre-trained vision transformer (ViT) and the LLM by a generative image captioning loss. However, we find that the generative objective can only produce weak alignment for vision and language, making the aligned vision-language model very hungry for the instruction fine-tuning data. In this paper, we propose CG-VLM that applies both Contrastive and Generative alignment objectives to effectively align the representation of ViT and LLM. Different from image level and sentence level alignment in common contrastive learning settings, CG-VLM aligns the image-patch level features and text-token level embeddings, which, however, is very hard to achieve as no explicit grounding patch-token relation provided in standard image captioning datasets. To address this issue, we propose to maximize the averaged similarity between pooled image-patch features and text-token embeddings. Extensive experiments demonstrate that the proposed CG-VLM produces strong vision-language alignment and is an efficient instruction learner. For example, using only 10% instruction tuning data, we reach 95% performance of state-of-the-art method LLaVA [29] on the zero-shot ScienceQA-Image benchmark.
ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time
Vision Language Models (VLMs) have become essential backbones for multimodal intelligence, yet significant safety challenges limit their real-world application. While textual inputs are often effectively safeguarded, adversarial visual inputs can easily bypass VLM defense mechanisms. Existing defense methods are either resource-intensive, requiring substantial data and compute, or fail to simultaneously ensure safety and usefulness in responses. To address these limitations, we propose a novel two-phase inference-time alignment framework, Evaluating Then Aligning (ETA): 1) Evaluating input visual contents and output responses to establish a robust safety awareness in multimodal settings, and 2) Aligning unsafe behaviors at both shallow and deep levels by conditioning the VLMs' generative distribution with an interference prefix and performing sentence-level best-of-N to search the most harmless and helpful generation paths. Extensive experiments show that ETA outperforms baseline methods in terms of harmlessness, helpfulness, and efficiency, reducing the unsafe rate by 87.5% in cross-modality attacks and achieving 96.6% win-ties in GPT-4 helpfulness evaluation. The code is publicly available at https://github.com/DripNowhy/ETA.
Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models
Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding. In this paper, we introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner. We identify that current Video-LLMs have limitations for fine-grained video understanding since they lack effective temporal modeling and timestamp representation. In light of this, we sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge to represent timestamps. To optimize the training of Grounded-VideoLLM, we employ a multi-stage training scheme, beginning with simple video-captioning tasks and progressively introducing video temporal grounding tasks of increasing complexity. To further enhance Grounded-VideoLLM's temporal reasoning capability, we also curate a grounded VideoQA dataset by an automatic annotation pipeline. Extensive experiments demonstrate that Grounded-VideoLLM not only excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA, but also shows great potential as a versatile video assistant for general video understanding.
Audio-Visual Scene Analysis with Self-Supervised Multisensory Features
The thud of a bouncing ball, the onset of speech as lips open -- when visual and audio events occur together, it suggests that there might be a common, underlying event that produced both signals. In this paper, we argue that the visual and audio components of a video signal should be modeled jointly using a fused multisensory representation. We propose to learn such a representation in a self-supervised way, by training a neural network to predict whether video frames and audio are temporally aligned. We use this learned representation for three applications: (a) sound source localization, i.e. visualizing the source of sound in a video; (b) audio-visual action recognition; and (c) on/off-screen audio source separation, e.g. removing the off-screen translator's voice from a foreign official's speech. Code, models, and video results are available on our webpage: http://andrewowens.com/multisensory
MotionLLM: Understanding Human Behaviors from Human Motions and Videos
This study delves into the realm of multi-modality (i.e., video and motion modalities) human behavior understanding by leveraging the powerful capabilities of Large Language Models (LLMs). Diverging from recent LLMs designed for video-only or motion-only understanding, we argue that understanding human behavior necessitates joint modeling from both videos and motion sequences (e.g., SMPL sequences) to capture nuanced body part dynamics and semantics effectively. In light of this, we present MotionLLM, a straightforward yet effective framework for human motion understanding, captioning, and reasoning. Specifically, MotionLLM adopts a unified video-motion training strategy that leverages the complementary advantages of existing coarse video-text data and fine-grained motion-text data to glean rich spatial-temporal insights. Furthermore, we collect a substantial dataset, MoVid, comprising diverse videos, motions, captions, and instructions. Additionally, we propose the MoVid-Bench, with carefully manual annotations, for better evaluation of human behavior understanding on video and motion. Extensive experiments show the superiority of MotionLLM in the caption, spatial-temporal comprehension, and reasoning ability.
Probabilistic Embeddings for Cross-Modal Retrieval
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particularly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
With the rapid development of Multi-modal Large Language Models (MLLMs), a number of diagnostic benchmarks have recently emerged to evaluate the comprehension capabilities of these models. However, most benchmarks predominantly assess spatial understanding in the static image tasks, while overlooking temporal understanding in the dynamic video tasks. To alleviate this issue, we introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench, which covers 20 challenging video tasks that cannot be effectively solved with a single frame. Specifically, we first introduce a novel static-to-dynamic method to define these temporal-related tasks. By transforming various static tasks into dynamic ones, we enable the systematic generation of video tasks that require a broad spectrum of temporal skills, ranging from perception to cognition. Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task. On one hand, such a distinct paradigm allows us to build MVBench efficiently, without much manual intervention. On the other hand, it guarantees evaluation fairness with ground-truth video annotations, avoiding the biased scoring of LLMs. Moreover, we further develop a robust video MLLM baseline, i.e., VideoChat2, by progressive multi-modal training with diverse instruction-tuning data. The extensive results on our MVBench reveal that, the existing MLLMs are far from satisfactory in temporal understanding, while our VideoChat2 largely surpasses these leading models by over 15% on MVBench. All models and data are available at https://github.com/OpenGVLab/Ask-Anything.
Localizing Moments in Video with Natural Language
We consider retrieving a specific temporal segment, or moment, from a video given a natural language text description. Methods designed to retrieve whole video clips with natural language determine what occurs in a video but not when. To address this issue, we propose the Moment Context Network (MCN) which effectively localizes natural language queries in videos by integrating local and global video features over time. A key obstacle to training our MCN model is that current video datasets do not include pairs of localized video segments and referring expressions, or text descriptions which uniquely identify a corresponding moment. Therefore, we collect the Distinct Describable Moments (DiDeMo) dataset which consists of over 10,000 unedited, personal videos in diverse visual settings with pairs of localized video segments and referring expressions. We demonstrate that MCN outperforms several baseline methods and believe that our initial results together with the release of DiDeMo will inspire further research on localizing video moments with natural language.
From Unimodal to Multimodal: Scaling up Projectors to Align Modalities
Recent contrastive multimodal vision-language models like CLIP have demonstrated robust open-world semantic understanding, becoming the standard image backbones for vision-language applications due to their aligned latent space. However, this practice has left powerful unimodal encoders for both vision and language underutilized in multimodal applications which raises a key question: Is there a plausible way to connect unimodal backbones for zero-shot vision-language tasks? To this end, we propose a novel approach that aligns vision and language modalities using only projection layers on pretrained, frozen unimodal encoders. Our method exploits the high semantic similarity between embedding spaces of well-trained vision and language models. It involves selecting semantically similar encoders in the latent space, curating a concept-rich dataset of image-caption pairs, and training simple MLP projectors. We evaluated our approach on 12 zero-shot classification datasets and 2 image-text retrieval datasets. Our best model, utilizing DINOv2 and All-Roberta-Large text encoder, achieves 76\(\%\) accuracy on ImageNet with a 20-fold reduction in data and 65 fold reduction in compute requirements. The proposed framework enhances the accessibility of model development while enabling flexible adaptation across diverse scenarios, offering an efficient approach to building multimodal models by utilizing existing unimodal architectures. Code and datasets will be released soon.
DialogCC: Large-Scale Multi-Modal Dialogue Dataset
As sharing images in an instant message is a crucial factor, there has been active research on learning a image-text multi-modal dialogue model. However, training a well-generalized multi-modal dialogue model is challenging because existing multi-modal dialogue datasets contain a small number of data, limited topics, and a restricted variety of images per dialogue. In this paper, we present a multi-modal dialogue dataset creation pipeline that involves matching large-scale images to dialogues based on CLIP similarity. Using this automatic pipeline, we propose a large-scale multi-modal dialogue dataset, DialogCC, which covers diverse real-world topics and various images per dialogue. With extensive experiments, we demonstrate that training a multi-modal dialogue model with our dataset can improve generalization performance. Additionally, existing models trained with our dataset achieve state-of-the-art performance on image and text retrieval tasks. The source code and the dataset will be released after publication.
Momentor: Advancing Video Large Language Model with Fine-Grained Temporal Reasoning
Large Language Models (LLMs) demonstrate remarkable proficiency in comprehending and handling text-based tasks. Many efforts are being made to transfer these attributes to video modality, which are termed Video-LLMs. However, existing Video-LLMs can only capture the coarse-grained semantics and are unable to effectively handle tasks related to comprehension or localization of specific video segments. In light of these challenges, we propose Momentor, a Video-LLM capable of accomplishing fine-grained temporal understanding tasks. To support the training of Momentor, we design an automatic data generation engine to construct Moment-10M, a large-scale video instruction dataset with segment-level instruction data. We train Momentor on Moment-10M, enabling it to perform segment-level reasoning and localization. Zero-shot evaluations on several tasks demonstrate that Momentor excels in fine-grained temporally grounded comprehension and localization.